1
|
Talapko J, Juzbašić M, Meštrović T, Matijević T, Mesarić D, Katalinić D, Erić S, Milostić-Srb A, Flam J, Škrlec I. Aggregatibacter actinomycetemcomitans: From the Oral Cavity to the Heart Valves. Microorganisms 2024; 12:1451. [PMID: 39065217 PMCID: PMC11279289 DOI: 10.3390/microorganisms12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetecomitans) is a Gram-negative bacterial species that is an essential component of the oral microbiota. Due to its aggregative properties, it plays a role in the pathogenesis of human diseases. The presence of the surface proteins Fim, Briae, and microvesicles enables the bacterium to adhere to the epithelial surface and the tooth's surface. The presence of leukotoxin A (LtxA), which plays an important role in the pathogenicity of the bacterium, has been associated with both periodontitis and the etiology of rheumatoid arthritis (RA). A. actinomycetecomitans is also associated with several other systemic diseases and complications, such as endocarditis and different abscesses. In addition to leukotoxin A, A. actinomycetecomitans possesses several different virulence factors, including bacteriocins, chemotaxis inhibitory factors, cytotoxic factors, Fc-binding proteins, immunosuppressive factors, lipopolysaccharide collagenase, fibroblast inhibitory factors, antibiotic resistance determinants, adhesins, invasive factors and factors that inhibit the function of polymorphonuclear leukocytes. The ability of A. actinomycetemcomitans lipopolysaccharide to induce macrophages to secrete the interleukins IL-1, IL-1β, and tumor necrosis factor (TNF) is of considerable importance. The primary etiologic factor in the pathogenesis of periodontal disease is the oral biofilm colonized by anaerobic bacteria. Among these, A. actinomycetemcomitans occupies an important place as a facultative anaerobic bacterium. In addition, A. actinomycetemcomitans possesses many virulence factors that contribute to its potential to cause cancer. This article provides an overview of the virulence factors of A. actinomycetecomitans and its association with various systemic diseases, its oncogenic potential, and the treatment options for infections caused by A. actinomycetecomitans.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tatjana Matijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Dora Mesarić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Andrea Milostić-Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| |
Collapse
|
2
|
Zhu W, Liu J, Zhang Y, Zhao D, Li S, Dou H, Wang H, Xia X. The role of rcpA gene in regulating biofilm formation and virulence in Vibrio parahaemolyticus. Int J Food Microbiol 2024; 418:110714. [PMID: 38677238 DOI: 10.1016/j.ijfoodmicro.2024.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a common seafood-borne pathogen that can colonize the intestine of host and cause gastroenteritis. Biofilm formation by V. parahaemolyticus enhances its persistence in various environments, which poses a series of threats to food safety. This work aims to investigate the function of rcpA gene in biofilm formation and virulence of V. parahaemolyticus. Deletion of rcpA significantly reduced motility, biofilm biomass, and extracellular polymeric substances, and inhibited biofilm formation on a variety of food and food contact surfaces. In mice infection model, mice infected with ∆rcpA strain exhibited a decreased rate of pathogen colonization, a lower level of inflammatory cytokines, and less tissue damage when compared to mice infected with wild type strain. RNA-seq analysis revealed that 374 genes were differentially expressed in the rcpA deletion mutant, which include genes related to quorum sensing, flagellar system, ribosome, type VI secretion system, biotin metabolism and transcriptional regulation. In conclusion, rcpA plays a role in determining biofilm formation and virulence of V. parahaemolyticus and further research is necessitated to fully understand its function in V. parahaemolyticus.
Collapse
Affiliation(s)
- Wenxiu Zhu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Jiaxiu Liu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongyun Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Shugang Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Hanzheng Dou
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China.
| |
Collapse
|
3
|
Whitfield GB, Brun YV. The type IVc pilus: just a Tad different. Curr Opin Microbiol 2024; 79:102468. [PMID: 38579360 DOI: 10.1016/j.mib.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Bacteria utilize type IV pili (T4P) to interact with their environment, where they facilitate processes including motility, adherence, and DNA uptake. T4P require multisubunit, membrane-spanning nanomachines for assembly. The tight adherence (Tad) pili are an Archaea-derived T4P subgroup whose machinery exhibits significant mechanistic and architectural differences from bacterial type IVa and IVb pili. Most Tad biosynthetic genes are encoded in a single locus that is widespread in bacteria due to facile acquisition via horizontal gene transfer. These loci experience extensive structural rearrangements, including the acquisition of novel regulatory or biosynthetic genes, which fine-tune their function. This has permitted their integration into many different bacterial lifestyles, including the Caulobacter crescentus cell cycle, Myxococcus xanthus predation, and numerous plant and mammalian pathogens and symbionts.
Collapse
Affiliation(s)
- Gregory B Whitfield
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada.
| | - Yves V Brun
- Département de Microbiologie, Infectiologie, et Immunologie, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
4
|
Tang-Siegel GG. Human Serum Mediated Bacteriophage Life Cycle Switch in Aggregatibacter actinomycetemcomitans Is Linked to Pyruvate Dehydrogenase Complex. Life (Basel) 2023; 13:436. [PMID: 36836793 PMCID: PMC9959103 DOI: 10.3390/life13020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Antimicrobial resistance is rising as a major global public health threat and antibiotic resistance genes are widely spread among species, including human oral pathogens, e.g., Aggregatibacter actinomycetemcomitans. This Gram-negative, capnophilic, facultative anaerobe is well recognized as a causative agent leading to periodontal diseases, as well as seriously systemic infections including endocarditis. A. actinomycetemcomitans has also evolved mechanisms against complement-mediated phagocytosis and resiliently survives in serum-rich in vivo environments, i.e., inflamed periodontal pockets and blood circulations. This bacterium, however, demonstrated increasing sensitivity to human serum, when being infected by a pseudolysogenic bacteriophage S1249, which switched to the lytic state as a response to human serum. Concomitantly, the pyruvate dehydrogenase complex (PDHc), which is composed of multiple copies of three enzymes (E1, E2, and E3) and oxidatively decarboxylates pyruvate to acetyl-CoA available for tricarboxylic acid (TCA) cycle, was found up-regulated 10-fold in the bacterial lysogen after human serum exposure. The data clearly indicated that certain human serum components induced phage virion replication and egress, resulting in bacterial lysis. Phage manipulation of bacterial ATP production through regulation of PDHc, a gatekeeper linking glycolysis to TCA cycle through aerobic respiration, suggests that a more efficient energy production and delivery system is required for phage progeny replication and release in this in vivo environment. Insights into bacteriophage regulation of bacterial fitness in a mimic in vivo condition will provide alternative strategies to control bacterial infection, in addition to antibiotics.
Collapse
Affiliation(s)
- Gaoyan Grace Tang-Siegel
- Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont and State Agricultural College, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Maula T, Vahvelainen N, Tossavainen H, Koivunen T, T. Pöllänen M, Johansson A, Permi P, Ihalin R. Decreased temperature increases the expression of a disordered bacterial late embryogenesis abundant (LEA) protein that enhances natural transformation. Virulence 2021; 12:1239-1257. [PMID: 33939577 PMCID: PMC8096337 DOI: 10.1080/21505594.2021.1918497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 11/02/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are important players in the management of responses to stressful conditions, such as drought, high salinity, and changes in temperature. Many LEA proteins do not have defined three-dimensional structures, so they are intrinsically disordered proteins (IDPs) and are often highly hydrophilic. Although LEA-like sequences have been identified in bacterial genomes, the functions of bacterial LEA proteins have been studied only recently. Sequence analysis of outer membrane interleukin receptor I (BilRI) from the oral pathogen Aggregatibacter actinomycetemcomitans indicated that it shared sequence similarity with group 3/3b/4 LEA proteins. Comprehensive nuclearcgq magnetic resonance (NMR) studies confirmed its IDP nature, and expression studies in A. actinomycetemcomitans harboring a red fluorescence reporter protein-encoding gene revealed that bilRI promoter expression was increased at decreased temperatures. The amino acid backbone of BilRI did not stimulate either the production of reactive oxygen species from human leukocytes or the production of interleukin-6 from human macrophages. Moreover, BilRI-specific IgG antibodies could not be detected in the sera of A. actinomycetemcomitans culture-positive periodontitis patients. Since the bilRI gene is located near genes involved in natural competence (i.e., genes associated with the uptake of extracellular (eDNA) and its incorporation into the genome), we also investigated the role of BilRI in these events. Compared to wild-type cells, the ΔbilRI mutants showed a lower transformation efficiency, which indicates either a direct or indirect role in natural competence. In conclusion, A. actinomycetemcomitans might express BilRI, especially outside the host, to survive under stressful conditions and improve its transmission potential.
Collapse
Affiliation(s)
- Terhi Maula
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Nelli Vahvelainen
- Department of Life Technologies, University of Turku, Turku, Finland
| | - Helena Tossavainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tuuli Koivunen
- Department of Life Technologies, University of Turku, Turku, Finland
| | | | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Perttu Permi
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Department of Chemistry, Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Riikka Ihalin
- Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Fine DH, Schreiner H, Velusamy SK. Aggregatibacter, A Low Abundance Pathobiont That Influences Biogeography, Microbial Dysbiosis, and Host Defense Capabilities in Periodontitis: The History of A Bug, And Localization of Disease. Pathogens 2020; 9:pathogens9030179. [PMID: 32131551 PMCID: PMC7157720 DOI: 10.3390/pathogens9030179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, the focus of this review, was initially proposed as a microbe directly related to a phenotypically distinct form of periodontitis called localized juvenile periodontitis. At the time, it seemed as if specific microbes were implicated as the cause of distinct forms of disease. Over the years, much has changed. The sense that specific microbes relate to distinct forms of disease has been challenged, as has the sense that distinct forms of periodontitis exist. This review consists of two components. The first part is presented as a detective story where we attempt to determine what role, if any, Aggregatibacter plays as a participant in disease. The second part describes landscape ecology in the context of how the host environment shapes the framework of local microbial dysbiosis. We then conjecture as to how the local host response may limit the damage caused by pathobionts. We propose that the host may overcome the constant barrage of a dysbiotic microbiota by confining it to a local tooth site. We conclude speculating that the host response can confine local damage by restricting bacteremic translocation of members of the oral microbiota to distant organs thus constraining morbidity and mortality of the host.
Collapse
|
7
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
9
|
Aggregatibacter actinomycetemcomitans colonization and persistence in a primate model. Proc Natl Acad Sci U S A 2019; 116:22307-22313. [PMID: 31611409 DOI: 10.1073/pnas.1905238116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is associated with aggressive periodontitis resulting in premature tooth loss in adolescents. Tooth adherence and biofilm persistence are prerequisites for survival in the oral domain. Here, using a rhesus monkey model, 16S rRNA sequencing, and weighted network analysis, we assessed colonization of A. actinomycetemcomitans variants and ascertained microbial interactions in biofilm communities. Variants in A. actinomycetemcomitans leukotoxin (ltx) were created, labeled, inoculated, and compared with their progenitor strain for in vivo colonization. Samples of tooth-related plaque were assessed for colonization at baseline and after debridement and inoculation of labeled strains. Null, minimal, and hyper-Ltx-producing strains were created and assessed for hydroxyapatite binding and biofilm formation in vitro. Ltx-hyperproducing strains colonized with greater prevalence and at higher levels than wild type or ltx mutants (P = 0.05). Indigenous and inoculated A. actinomycetemcomitans strains that attached were associated with lactate-producing species (i.e., Leptotrichia, Abiotrophia, and Streptoccocci). A. actinomycetemcomitans was found at 0.13% of the total flora at baseline and at 0.05% 4 wk after inoculation. In vivo data were supported by in vitro results. We conclude that hyper-Ltx production affords these strains with an attachment advantage providing a foothold for competition with members of the indigenous microbiota. Increased attachment can be linked to ltx gene expression and up-regulation of adherence-associated genes. Growth of attached A. actinomycetemcomitans in vivo was enhanced by lactate availability due to consorting species. These associations provide A. actinomycetemcomitans with the constituents required for its colonization and survival in the complex and competitive oral environment.
Collapse
|
10
|
Fine DH, Patil AG, Velusamy SK. Aggregatibacter actinomycetemcomitans ( Aa) Under the Radar: Myths and Misunderstandings of Aa and Its Role in Aggressive Periodontitis. Front Immunol 2019; 10:728. [PMID: 31040843 PMCID: PMC6476972 DOI: 10.3389/fimmu.2019.00728] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 11/23/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a low-abundance Gram-negative oral pathobiont that is highly associated with a silent but aggressive orphan disease that results in periodontitis and tooth loss in adolescents of African heritage. For the most part Aa conducts its business by utilizing strategies allowing it to conceal itself below the radar of the host mucosal immune defense system. A great deal of misinformation has been conveyed with respect to Aa biology in health and disease. The purpose of this review is to present misconceptions about Aa and the strategies that it uses to colonize, survive, and evade the host. In the process Aa manages to undermine host mucosal defenses and contribute to disease initiation. This review will present clinical observational, molecular, and interventional studies that illustrate genetic, phenotypic, and biogeographical tactics that have been recently clarified and demonstrate how Aa survives and suppresses host mucosal defenses to take part in disease pathogenesis. At one point in time Aa was considered to be the causative agent of Localized Aggressive Periodontitis. Currently, it is most accurate to look at Aa as a community activist and necessary partner of a pathogenic consortium that suppresses the initial host response so as to encourage overgrowth of its partners. The data for Aa's activist role stems from molecular genetic studies complemented by experimental animal investigations that demonstrate how Aa establishes a habitat (housing), nutritional sustenance in that habitat (food), and biogeographical mobilization and/or relocation from its initial habitat (transportation). In this manner Aa can transfer to a protected but vulnerable domain (pocket or sulcus) where its community activism is most useful. Aa's “strategy” includes obtaining housing, food, and transportation at no cost to its partners challenging the economic theory that “there ain't no such thing as a free lunch.” This “strategy” illustrates how co-evolution can promote Aa's survival, on one hand, and overgrowth of community members, on the other, which can result in local host dysbiosis and susceptibility to infection.
Collapse
Affiliation(s)
- Daniel H Fine
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Amey G Patil
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Senthil K Velusamy
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| |
Collapse
|
11
|
Li T, Zhang Q, Wang R, Zhang S, Pei J, Li Y, Li L, Zhou R. The roles of flp1 and tadD in Actinobacillus pleuropneumoniae pilus biosynthesis and pathogenicity. Microb Pathog 2019; 126:310-317. [DOI: 10.1016/j.micpath.2018.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/07/2023]
|
12
|
More than a Tad: spatiotemporal control of Caulobacter pili. Curr Opin Microbiol 2017; 42:79-86. [PMID: 29161615 DOI: 10.1016/j.mib.2017.10.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 01/09/2023]
Abstract
The Type IV pilus (T4P) is a powerful and sophisticated bacterial nanomachine involved in numerous cellular processes, including adhesion, DNA uptake and motility. Aside from the well-described subtype T4aP of the Gram-negative genera, including Myxococcus, Pseudomonas and Neisseria, the Tad (tight adherence) pilus secretion system re-shuffles homologous parts from other secretion systems along with uncharacterized components into a new type of protein translocation apparatus. A representative of the Tad apparatus, the Caulobacter crescentus pilus assembly (Cpa) machine is built exclusively at the newborn cell pole once per cell cycle. Recent comprehensive genetic analyses unearthed a myriad of spatiotemporal determinants acting on the Tad/Cpa system, many of which are conserved in other α-proteobacteria, including obligate intracellular pathogens and symbionts.
Collapse
|
13
|
Llama-Palacios A, Potupa O, Sánchez MC, Figuero E, Herrera D, Sanz M. Aggregatibacter actinomycetemcomitans Growth in Biofilm versus Planktonic State: Differential Expression of Proteins. J Proteome Res 2017; 16:3158-3167. [PMID: 28707473 DOI: 10.1021/acs.jproteome.7b00127] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a pathogenic bacterium residing in the subgingival plaque biofilm strongly associated with the pathogenesis of periodontitis. The aim of this investigation was to study the protein differential expression of Aa when growing on biofilm compared with planktonic state using proteomic analysis by the 2D-DIGE system. Eighty-seven proteins were differentially expressed during biofilm growth (1.5-fold, p < 0.05), with 13 overexpressed and 37 down-expressed. Those repressed were mainly proteins involved in metabolism, biosynthesis, and transport. The overexpressed proteins were outer membrane proteins (OMPs) and highly immunogenic proteins such as YaeT (OMP), FtsZ, OMP39, OMP18/16, the chaperone GroEL, OMPA, adenylate kinase (Adk), and dihydrolipoamide acetyltransferase. The enrichment fractions of the OMPs from biofilm and planktonic states were obtained, and these proteins were analyzed by Western blotting with human serum from a periodontitis patient and one healthy control. These immunogenic proteins overexpressed in the biofilm may represent candidate virulence factors.
Collapse
Affiliation(s)
- Arancha Llama-Palacios
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Oksana Potupa
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - María C Sánchez
- Oral Microbiology Laboratory at the Faculty of Odontology, University Complutense , Madrid 28040, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense , Madrid 28040, Spain
| |
Collapse
|
14
|
Obradović D, Gašperšič R, Caserman S, Leonardi A, Jamnik M, Podlesek Z, Seme K, Anderluh G, Križaj I, Maček P, Butala M. A Cytolethal Distending Toxin Variant from Aggregatibacter actinomycetemcomitans with an Aberrant CdtB That Lacks the Conserved Catalytic Histidine 160. PLoS One 2016; 11:e0159231. [PMID: 27414641 PMCID: PMC4945079 DOI: 10.1371/journal.pone.0159231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/29/2016] [Indexed: 12/19/2022] Open
Abstract
The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116–188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116–188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.
Collapse
Affiliation(s)
- Davor Obradović
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Gašperšič
- Department of Oral Medicine and Periodontology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Simon Caserman
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Maja Jamnik
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Zdravko Podlesek
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Katja Seme
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (PM); (MB)
| |
Collapse
|
15
|
Abstract
During the first step of biofilm formation, initial attachment is dictated by physicochemical and electrostatic interactions between the surface and the bacterial envelope. Depending on the nature of these interactions, attachment can be transient or permanent. To achieve irreversible attachment, bacterial cells have developed a series of surface adhesins promoting specific or nonspecific adhesion under various environmental conditions. This article reviews the recent advances in our understanding of the secretion, assembly, and regulation of the bacterial adhesins during biofilm formation, with a particular emphasis on the fimbrial, nonfimbrial, and discrete polysaccharide adhesins in Gram-negative bacteria.
Collapse
|
16
|
Kumar A, Menon S, Nagaraja T, Narayanan S. Identification of an outer membrane protein of Fusobacterium necrophorum subsp. necrophorum that binds with high affinity to bovine endothelial cells. Vet Microbiol 2015; 176:196-201. [DOI: 10.1016/j.vetmic.2014.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/05/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
17
|
Roux N, Spagnolo J, de Bentzmann S. Neglected but amazingly diverse type IVb pili. Res Microbiol 2012; 163:659-73. [PMID: 23103334 DOI: 10.1016/j.resmic.2012.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/19/2012] [Indexed: 01/12/2023]
Abstract
This review provides an overview of current knowledge concerning type IVb pili in Gram-negative bacteria. The number of these pili identified is steadily increasing with genome sequencing and mining studies, but studies of these pili are somewhat uneven, because their expression is tightly regulated and the signals or regulators controlling expression need to be identified. However, as illustrated here, they have a number of interesting functional, assembly-related and regulatory features.
Collapse
Affiliation(s)
- Nicolas Roux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS UMR7255 - Aix Marseille University, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13402, cédex 20, Marseille, France
| | | | | |
Collapse
|
18
|
Rylev M, Abduljabar AB, Reinholdt J, Ennibi OK, Haubek D, Birkelund S, Kilian M. Proteomic and immunoproteomic analysis of Aggregatibacter actinomycetemcomitans JP2 clone strain HK1651. J Proteomics 2011; 74:2972-85. [PMID: 21867783 DOI: 10.1016/j.jprot.2011.07.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/06/2011] [Accepted: 07/24/2011] [Indexed: 11/25/2022]
Abstract
The proteome of Aggregatibacter actinomycetemcomitans HK1651 (JP2 clone) and immunoreactive antigens were studied by two-dimensional (2D) gel electrophoresis, matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS), and 2D immunoblotting. The highly leukotoxic JP2 clone of A. actinomycetemcomitans is strongly associated with aggressive periodontitis (AgP) in adolescents of North-West African descent and the pathogenicity of this bacterium is of major interest. Hence, we developed a comprehensive 2D proteome reference map of A. actinomycetemcomitans proteins with 167 identified spots representing 114 different proteins of which 15 were outer membrane proteins. To unravel immunoreactive antigens, we applied 2D-gel and subsequent immunoblotting analyses using sera from five individuals with A. actinomycetemcomitans infections and one healthy control. The analysis revealed 32 immunoreactive proteins. Antibodies to two outer membrane proteins, YaeT (85 kDa) and Omp39 (39 kDa), not previously described as immunoreactive, were found only in subjects with current or previous A. actinomycetemcomitans JP2 infection. Further proteome-based studies of A. actinomycetemcomitans combined with analyses of the humoral immune response and targeted against outer membrane proteins may provide important insight into the host relationship of this important pathogen.
Collapse
Affiliation(s)
- Mette Rylev
- Department of Medical Microbiology and Immunology, School of Dentistry, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
Paino A, Tuominen H, Jääskeläinen M, Alanko J, Nuutila J, Asikainen SE, Pelliniemi LJ, Pöllänen MT, Chen C, Ihalin R. Trimeric form of intracellular ATP synthase subunit β of Aggregatibacter actinomycetemcomitans binds human interleukin-1β. PLoS One 2011; 6:e18929. [PMID: 21533109 PMCID: PMC3078924 DOI: 10.1371/journal.pone.0018929] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/11/2011] [Indexed: 12/20/2022] Open
Abstract
Bacterial biofilms resist host defenses and antibiotics partly because of their decreased metabolism. Some bacteria use proinflammatory cytokines, such as interleukin (IL)-1β, as cues to promote biofilm formation and to alter virulence. Although one potential bacterial IL-1β receptor has been identified, current knowledge of the bacterial IL-1β sensing mechanism is limited. In chronic biofilm infection, periodontitis, Aggregatibacter actinomycetemcomitans requires tight adherence (tad)-locus to form biofilms, and tissue destroying active lesions contain more IL-1β than inactive ones. The effect of IL-1β on the metabolic activity of A. actinomycetemcomitans biofilm was tested using alamarBlue™. The binding of IL-1β to A. actinomycetemcomitans cells was investigated using transmission electron microscopy and flow cytometry. To identify the proteins which interacted with IL-1β, different protein fractions from A. actinomycetemcomitans were run in native-PAGE and blotted using biotinylated IL-1β and avidin-HRP, and identified using mass spectroscopy. We show that although IL-1β slightly increases the biofilm formation of A. actinomycetemcomitans, it reduces the metabolic activity of the biofilm. A similar reduction was observed with all tad-locus mutants except the secretin mutant, although all tested mutant strains as well as wild type strains bound IL-1β. Our results suggest that IL-1β might be transported into the A. actinomycetemcomitans cells, and the trimeric form of intracellular ATP synthase subunit β interacted with IL-1β, possibly explaining the decreased metabolic activity. Because ATP synthase is highly conserved, it might universally enhance biofilm resistance to host defense by binding IL-1β during inflammation.
Collapse
Affiliation(s)
- Annamari Paino
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heidi Tuominen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Mari Jääskeläinen
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jonna Alanko
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Jari Nuutila
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | | | | | - Marja T. Pöllänen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, USC School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Riikka Ihalin
- Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
- * E-mail:
| |
Collapse
|
20
|
Freire MO, Sedghizadeh PP, Schaudinn C, Gorur A, Downey JS, Choi JH, Chen W, Kook JK, Chen C, Goodman SD, Zadeh HH. Development of an animal model for Aggregatibacter actinomycetemcomitans biofilm-mediated oral osteolytic infection: a preliminary study. J Periodontol 2011; 82:778-89. [PMID: 21222546 DOI: 10.1902/jop.2010.100263] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biofilm-induced inflammatory osteolytic oral infections, such as periodontitis and peri-implantitis, have complex etiology and pathogenesis. A significant obstacle to research has been the lack of appropriate animal models where the inflammatory response to biofilms can be investigated. The aim of this study is to develop a novel animal model to study the host response to Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans)-biofilm colonizing titanium implants. METHODS Titanium implants were inoculated in vitro with A. actinomycetemcomitans, establishing a biofilm for 1 to 3 days. Biofilm-inoculated and control implants were transmucosally placed into rat hard palate or alveolar ridge. Analysis included documentation of clinical inflammation, polymerase chain reaction, and culture detection of A. actinomycetemcomitans and microcomputed tomography quantitation of peri-implant bone volume. RESULTS Viable A. actinomycetemcomitans biofilm was successfully established on titanium implants in vitro, detected by confocal laser scanning microscopy. An inflammatory response characterized by clinical inflammation, bleeding, ulceration, hyperplasia, and necrosis was observed around biofilm-inoculated implants. A. actinomycetemcomitans was detected by polymerase chain reaction and culture analysis on 100% of biofilm-inoculated implants for up to 3 weeks and 25% for up to 6 weeks. Microcomputed tomography analysis demonstrated significantly lower bone volume (P <0.05) around biofilm-inoculated implants (29.6% ± 7.6%) compared to non-inoculated implants (50.5% ± 9.6%) after 6 weeks. CONCLUSIONS These results describe a novel animal model where A. actinomycetemcomitans biofilm was established in vitro on titanium implants before placement in rat oral cavity, leading to an inflammatory response, osteolysis, and tissue destruction. This model may have potential use for investigation of host responses to biofilm pathogens and antibiofilm therapy.
Collapse
Affiliation(s)
- Marcelo O Freire
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Saito T, Ishihara K, Ryu M, Okuda K, Sakurai K. Fimbriae-associated genes are biofilm-forming factors in Aggregatibacter actinomycetemcomitans strains. THE BULLETIN OF TOKYO DENTAL COLLEGE 2011; 51:145-50. [PMID: 20877161 DOI: 10.2209/tdcpublication.51.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aggregatibactor actinomycetemcomitans colonizes human periodontal lesions and is implicated in both aggressive periodontitis and chronic periodontitis. Clinical isolated colonies of A. actinomycetemcomitans were rough type. The rough type has a remarkable ability to adhere tenaciously to solid surfaces and colonize firmly. Rough type colonies change into smooth type colonies during the course of repeated inoculation and biofilm-forming activity ceases. Adherence by A. actinomycetemcomitans is mediated by the tight-adherence (tad) gene locus, which includes flp, rcpA and rcpB. In this study, we investigated the relationship between its biofilm-forming ability and expression of the flp, rcpA and rcpB genes associated with fimbriae protein production. First, we changed rough type strain organized biofilm on glass into smooth type and confirmed it by observation of biofilm on glass surfaces. Then, we carried out Real-Time PCR and found that expression of the rcpA and rcpB genes was clearly reduced in smooth type colonies. This suggests that expression of rcpA and rcpB plays a key role in biofilm formation by A. actinomycetemcomitans strains and the establishment of persistent infections in periodontal lesions.
Collapse
Affiliation(s)
- Takayuki Saito
- Department of Removable Prosthodontics and Gerodontology, Tokyo Dental College, Chiba, Japan.
| | | | | | | | | |
Collapse
|
22
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Henderson B, Ward JM, Ready D. Aggregatibacter (Actinobacillus) actinomycetemcomitans: a triple A* periodontopathogen? Periodontol 2000 2010; 54:78-105. [DOI: 10.1111/j.1600-0757.2009.00331.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Maeda T, Maeda H, Yamabe K, Mineshiba J, Tanimoto I, Yamamoto T, Naruishi K, Kokeguchi S, Takashiba S. Highly expressed genes in a rough-colony-forming phenotype ofAggregatibacter actinomycetemcomitans: implication of amip-like gene for the invasion of host tissue. ACTA ACUST UNITED AC 2010; 58:226-36. [DOI: 10.1111/j.1574-695x.2009.00624.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Transcriptional and translational analysis of biofilm determinants of Aggregatibacter actinomycetemcomitans in response to environmental perturbation. Infect Immun 2009; 77:2896-907. [PMID: 19433550 DOI: 10.1128/iai.00126-09] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fimbriae, lipopolysaccharide (LPS), and extracellular polymeric substance (EPS) all contribute to biofilm formation by the periodontopathogen Aggregatibacter actinomycetemcomitans. To understand how individual biofilm determinants respond to changing environmental conditions, the transcription of genes responsible for fimbria, LPS, and EPS production, as well as the translation of these components, was determined in rough (Rv) and isogenic smooth (Sv) variants of A. actinomycetemcomitans cultured in half-strength and full-strength culture medium under anaerobic or aerobic conditions, and in iron-supplemented and iron-chelated medium. The transcription of tadV (fimbrial assembly), pgaC (extracellular polysaccharide synthesis), and orf8 or rmlB (lipopolysaccharide synthesis) was measured by real-time PCR. The amounts of fimbriae, LPS, and EPS were also estimated from stained sodium dodecyl sulfate-polyacrylamide gels and verified by Western blotting and enzyme-linked immunoadsorbent assay using specific antibodies. Each gene was significantly upregulated in the Rv compared to in the Sv. The transcription of fimbrial, LPS, and EPS genes in the Rv was increased approximately twofold in cells cultured in full-strength medium under anaerobic conditions compared to that in cells cultured under aerobic conditions. Under anaerobic conditions, the transcription of fimbrial and EPS enzymes was elevated in both Rv and Sv cells cultured in half-strength medium, compared to that in full-strength medium. Iron chelation also increased the transcription and translation of all biofilm determinants compared to their expression with iron supplementation, yet the quantity of biofilm was not significantly changed by any environmental perturbation except iron limitation. Thus, anaerobic conditions, nutrient stress, and iron limitation each upregulate known biofilm determinants of A. actinomycetemcomitans to contribute to biofilm formation.
Collapse
|
26
|
Inoue T, Fukui K, Ohta H. LEUKOTOXIN PRODUCTION BY ACTINOBACILLUS ACTINOMYCETEMCOMITANS. TOXIN REV 2008. [DOI: 10.1080/15569540500320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Clock SA, Planet PJ, Perez BA, Figurski DH. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans. J Bacteriol 2008; 190:980-90. [PMID: 18055598 PMCID: PMC2223556 DOI: 10.1128/jb.01347-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 11/20/2007] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic secretion relies on proteins that are widely conserved, including NTPases and secretins, and on proteins that are system specific. The Tad secretion system in Aggregatibacter actinomycetemcomitans is dedicated to the assembly and export of Flp pili, which are needed for tight adherence. Consistent with predictions that RcpA forms the multimeric outer membrane secretion channel (secretin) of the Flp pilus biogenesis apparatus, we observed the RcpA protein in multimers that were stable in the presence of detergent and found that rcpA and its closely related homologs form a novel and distinct subfamily within a well-supported gene phylogeny of the entire secretin gene superfamily. We also found that rcpA-like genes were always linked to Aggregatibacter rcpB- or Caulobacter cpaD-like genes. Using antisera, we determined the localization and gross abundances of conserved (RcpA and TadC) and unique (RcpB, RcpC, and TadD) Tad proteins. The three Rcp proteins (RcpA, RcpB, and RcpC) and TadD, a putative lipoprotein, localized to the bacterial outer membrane. RcpA, RcpC, and TadD were also found in the inner membrane, while TadC localized exclusively to the inner membrane. The RcpA secretin was necessary for wild-type abundances of RcpB and RcpC, and TadC was required for normal levels of all three Rcp proteins. TadC abundance defects were observed in rcpA and rcpC mutants. TadD production was essential for wild-type RcpA and RcpB abundances, and RcpA did not multimerize or localize to the outer membrane without the expression of TadD. These data indicate that membrane proteins TadC and TadD may influence the assembly, transport, and/or function of individual outer membrane Rcp proteins.
Collapse
Affiliation(s)
- Sarah A Clock
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
28
|
A LysR-type transcriptional regulator in Burkholderia cenocepacia influences colony morphology and virulence. Infect Immun 2007; 76:38-47. [PMID: 17967860 DOI: 10.1128/iai.00874-07] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Burkholderia cenocepacia strain K56-2 typically has rough colony morphology on agar medium; however, shiny colony variants (shv) can appear spontaneously. These shv all had a minimum of 50% reduction in biomass formation and were generally avirulent in an alfalfa seedling infection model. Three shv-K56-2 S15, K56-2 S76, and K56-2 S86-were analyzed for virulence in a chronic agar bead model of respiratory infection and, although all shv were able to establish chronic infection, they produced significantly less lung histopathology than the rough K56-2. Transmission electron microscopy revealed that an extracellular matrix surrounding bacterial cells was absent or reduced in the shv compared to the rough wild type. Transposon mutagenesis was performed on the rough wild-type strain and a mutant with an insertion upstream of ORF BCAS0225, coding for a putative LysR-type regulator, exhibited shiny colony morphology, reduced biofilm production, increased N-acyl homoserine lactone production, and avirulence in alfalfa. The rough parental colony morphotype, biofilm formation, and virulence in alfalfa were restored by providing BCAS0225 in trans in the BCAS0225::pGSVTp-luxCDABF mutant. Introduction of BCAS0225 restored the rough morphotype in several shv which were determined to have spontaneous mutations in this gene. In the present study, we show that the conversion from rough wild type to shv in B. cenocepacia correlates with reduced biofilm formation and virulence, and we determined that BCAS0225 is one gene involved in the regulation of these phenotypes.
Collapse
|
29
|
Balashova NV, Park DH, Patel JK, Figurski DH, Kachlany SC. Interaction between leukotoxin and Cu,Zn superoxide dismutase in Aggregatibacter actinomycetemcomitans. Infect Immun 2007; 75:4490-7. [PMID: 17635874 PMCID: PMC1951164 DOI: 10.1128/iai.00288-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter (Actinobacillus) actinomycetemcomitans is a gram-negative oral pathogen that is the etiologic agent of localized aggressive periodontitis and systemic infections. A. actinomycetemcomitans produces leukotoxin (LtxA), which is a member of the RTX (repeats in toxin) family of secreted bacterial toxins and is known to target human leukocytes and erythrocytes. To better understand how LtxA functions as a virulence factor, we sought to detect and study potential A. actinomycetemcomitans proteins that interact with LtxA. We found that Cu,Zn superoxide dismutase (SOD) interacts specifically with LtxA. Cu,Zn SOD was purified from A. actinomycetemcomitans to homogeneity and remained enzymatically active. Purified Cu,Zn SOD allowed us to isolate highly specific anti-Cu,Zn SOD antibody and this antibody was used to further confirm protein interaction. Cu,Zn SOD-deficient mutants displayed decreased survival in the presence of reactive oxygen and nitrogen species and could be complemented with wild-type Cu,Zn SOD in trans. We suggest that A. actinomycetemcomitans Cu,Zn SOD may protect both bacteria and LtxA from reactive species produced by host inflammatory cells during disease. This is the first example of a protein-protein interaction involving a bacterial Cu,Zn SOD.
Collapse
Affiliation(s)
- Nataliya V Balashova
- Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
30
|
Tomich M, Planet PJ, Figurski DH. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 2007; 5:363-75. [PMID: 17435791 DOI: 10.1038/nrmicro1636] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York 10032, USA
| | | | | |
Collapse
|
31
|
Kustos I, Kocsis B, Kilár F. Bacterial outer membrane protein analysis by electrophoresis and microchip technology. Expert Rev Proteomics 2007; 4:91-106. [PMID: 17288518 DOI: 10.1586/14789450.4.1.91] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Outer membrane proteins are indispensable components of bacterial cells and participate in several relevant functions of the microorganisms. Changes in the outer membrane protein composition might alter antibiotic sensitivity and pathogenicity. Furthermore, the effects of various factors on outer membrane protein expression, such as antibiotic treatment, mutation, changes in the environment, lipopolysaccharide modification and biofilm formation, have been analyzed. Traditionally, the outer membrane protein profile determination was performed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Converting this technique to capillary electrophoresis format resulted in faster separation, lower sample consumption and automation. Coupling capillary electrophoresis with mass spectrometry enabled the fast identification of bacterial proteins, while immediate quantitative analysis permitted the determination of up- and downregulation of certain outer membrane proteins. Adapting capillary electrophoresis to microchip format ensured a further ten- to 100-fold decrease in separation time. Application of different separation techniques combined with various sensitive detector systems has ensured further opportunities in the field of high-throughput bacterial protein analysis. This review provides an overview using selected examples of outer membrane proteins and the development and application of the electrophoretic and microchip technologies for the analysis of these proteins.
Collapse
Affiliation(s)
- Ildikó Kustos
- University of Pécs, Department of Medical Microbiology & Immunology, Faculty of Medicine, Pécs, Hungary.
| | | | | |
Collapse
|
32
|
Wang Y, Orvis J, Dyer D, Chen C. Genomic distribution and functions of uptake signal sequences in Actinobacillus actinomycetemcomitans. MICROBIOLOGY-SGM 2007; 152:3319-3325. [PMID: 17074902 DOI: 10.1099/mic.0.29018-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actinobacillus actinomycetemcomitans is naturally competent for transformation, with a transformation system similar to that of Haemophilus influenzae that preferentially takes up DNA bearing uptake signal sequences (USS) with the same 9-base USS core. This study examined the function of the extended 29-base USS, which comprises a highly conserved 1st region (containing the 9-base core) and 2nd and 3rd semi-conserved AT-rich regions, in transformation of A. actinomycetemcomitans. Transformation frequency was not affected by either location (in middle or at 5' end) or quantity (one or two) of USS in donor DNA. Relative transformation efficiencies (in comparison to the positive control) were 28-67 % for linear DNA with single-base mutations in the USS 1st region, and 47 % and 73 %, respectively, for linear DNA with USS that contained either a non-consensus 2nd or a non-consensus 3rd region. Plasmids with a stand-alone 1st or a stand-alone 2nd-3rd region exhibited 21 % and 6 % relative transformation efficiencies, respectively. It was also noted that A. actinomycetemcomitans and H. influenzae were similar in the frequencies and distribution patterns of USS in their genomes. In conclusion, all three regions of the extended 29-base USS are required for optimum transformation in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ying Wang
- Division of Primary Oral Health Care, University of Southern California School of Dentistry, 925 W 34th Street, Room 4107, Los Angeles, CA 90089-0641, USA
| | - Joshua Orvis
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, OK 73190, USA
| | - David Dyer
- Department of Microbiology and Immunology, University of Oklahoma, Oklahoma City, OK 73190, USA
| | - Casey Chen
- Division of Primary Oral Health Care, University of Southern California School of Dentistry, 925 W 34th Street, Room 4107, Los Angeles, CA 90089-0641, USA
| |
Collapse
|
33
|
Fine DH, Kaplan JB, Kachlany SC, Schreiner HC. How we got attached to Actinobacillus actinomycetemcomitans: A model for infectious diseases. Periodontol 2000 2006; 42:114-57. [PMID: 16930309 DOI: 10.1111/j.1600-0757.2006.00189.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Daniel H Fine
- Center for Oral Infectious Diseases, Department of Oral Biology, University of Medicine and Dentistry of New Jersey, Newark, New Jersey, USA
| | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
35
|
Tomich M, Fine DH, Figurski DH. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol 2006; 188:6899-914. [PMID: 16980493 PMCID: PMC1595517 DOI: 10.1128/jb.00690-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tad locus of Actinobacillus actinomycetemcomitans encodes genes for the biogenesis of Flp pili, which allow the bacterium to adhere tenaciously to surfaces and form strong biofilms. Although tad (tight adherence) loci are widespread among bacterial and archaeal species, very little is known about the functions of the individual components of the Tad secretion apparatus. Here we characterize the mechanism by which the pre-Flp1 prepilin is processed to the mature pilus subunit. We demonstrate that the tadV gene encodes a prepilin peptidase that is both necessary and sufficient for proteolytic maturation of Flp1. TadV was also found to be required for maturation of the TadE and TadF pilin-like proteins, which we term pseudopilins. Using site-directed mutagenesis, we show that processing of pre-Flp1, pre-TadE, and pre-TadF is required for biofilm formation. Mutation of a highly conserved glutamic acid residue at position +5 of Flp1, relative to the cleavage site, resulted in a processed pilin that was blocked in assembly. In contrast, identical mutations in TadE or TadF had no effect on biofilm formation, indicating that the mechanisms by which Flp1 pilin and the pseudopilins function are distinct. We also determined that two conserved aspartic acid residues in TadV are critical for function of the prepilin peptidase. Together, our results indicate that the A. actinomycetemcomitans TadV protein is a member of a novel subclass of nonmethylating aspartic acid prepilin peptidases.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 1516 HHSC, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
36
|
Perez BA, Planet PJ, Kachlany SC, Tomich M, Fine DH, Figurski DH. Genetic analysis of the requirement for flp-2, tadV, and rcpB in Actinobacillus actinomycetemcomitans biofilm formation. J Bacteriol 2006; 188:6361-75. [PMID: 16923904 PMCID: PMC1595400 DOI: 10.1128/jb.00496-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tad locus of Actinobacillus actinomycetemcomitans encodes a molecular transport system required for tenacious, nonspecific adherence to surfaces and formation of extremely strong biofilms. This locus is dedicated to the biogenesis of Flp pili, which are required for colonization and virulence. We have previously shown that 11 of the 14 tad locus genes are required for adherence and Flp pilus production. Here, we present genetic and phylogenetic analyses of flp-2, tadV, and rcpB genes in biofilm formation. We show that tadV, predicted to encode prepilin peptidase, is required for adherence. In contrast, targeted insertional inactivation of flp-2, a gene closely related to the prepillin gene flp-1, did not abrogate biofilm formation. Expression studies did not detect Flp2-T7 protein under standard laboratory conditions. We present phylogenetic data showing that there is no significant evidence for natural selection in the available flp-2 sequences from A. actinomycetemcomitans, suggesting that flp-2 does not play a significant role in the biology of this organism. Mutants with insertions at the 3' end of rcpB formed biofilms equivalent to wild-type A. actinomycetemcomitans. Surprisingly, 5' end chromosomal insertion mutants in rcpB were obtained only when a wild-type copy of the rcpB gene was provided in trans or when the Tad secretion system was inactivated. Together, our results strongly suggest that A. actinomycetemcomitans rcpB is essential in the context of a functional tad locus. These data show three different phenotypes for the three genes.
Collapse
Affiliation(s)
- B A Perez
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th St., New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
37
|
de Bentzmann S, Aurouze M, Ball G, Filloux A. FppA, a novel Pseudomonas aeruginosa prepilin peptidase involved in assembly of type IVb pili. J Bacteriol 2006; 188:4851-60. [PMID: 16788194 PMCID: PMC1483019 DOI: 10.1128/jb.00345-06] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several subclasses of type IV pili have been described according to the characteristics of the structural prepilin subunit. Whereas molecular mechanisms of type IVa pilus assembly have been well documented for Pseudomonas aeruginosa and involve the PilD prepilin peptidase, no type IVb pili have been described in this microorganism. One subclass of type IVb prepilins has been identified as the Flp prepilin subfamily. Long and bundled Flp pili involved in tight adherence have been identified in Actinobacillus actinomycetemcomitans, for which assembly was due to a dedicated machinery encoded by the tad-rcp locus. A similar flp-tad-rcp locus containing flp, tad, and rcp gene homologues was identified in the P. aeruginosa genome. The function of these genes has been investigated, which revealed their involvement in the formation of extracellular Flp appendages. We also identified a gene (designated by open reading frame PA4295) outside the flp-tad-rcp locus, that we named fppA, encoding a novel prepilin peptidase. This is the second enzyme of this kind found in P. aeruginosa; however, it appears to be truncated and is similar to the C-terminal domain of the previously characterized PilD peptidase. In this study, we show that FppA is responsible for the maturation of the Flp prepilin and belongs to the aspartic acid protease family. We also demonstrate that FppA is required for the assembly of cell surface appendages that we called Flp pili. Finally, we observed an Flp-dependent bacterial aggregation process on the epithelial cell surface and an increased biofilm phenotype linked to Flp pilus assembly.
Collapse
Affiliation(s)
- Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, CNRS-IBSM-UPR9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
38
|
Diaz R, Ghofaily LA, Patel J, Balashova NV, Freitas AC, Labib I, Kachlany SC. Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans. Microb Pathog 2006; 40:48-55. [PMID: 16414241 DOI: 10.1016/j.micpath.2005.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Actinobacillus actinomycetemcomitans is a Gram negative pathogen that is the etiologic agent of localized aggressive periodontitis (LAP), a rapidly progressing and severe disease of the oral cavity that affects predominantly adolescents. A. actinomycetemcomitans is also found in extraoral infections including infective endocarditis. As one of its many virulence determinants, A. actinomycetemcomitans produces the RTX (repeats in toxin) exotoxin, leukotoxin (LtxA). LtxA specifically kills leukocytes of humans and Old World Monkeys. All of our current knowledge of A. actinomycetemcomitans LtxA is based on the protein from strain JP2, a nonadherent laboratory isolate. Because laboratory isolates can lose virulence properties, we wished to examine LtxA from a clinical isolate, NJ4500. We show that localization patterns of LtxA do not differ between the strains. Subcellular localization studies with NJ4500 revealed that LtxA localizes to the outer membrane and that the interaction between LtxA and the surface of cells is specific. Surface localized LtxA was not removed with NaCl treatment and protease protection experiments revealed that approximately 10 kDa of LtxA is exposed. We purified secreted LtxA from NJ4500 and found that the specific activity of this toxin was greater than that of secreted LtxA from JP2. For other RTX toxins, fatty acid modification affects toxin activity, and A. actinomycetemcomitans LtxA is predicted to be modified. We show by two-dimensional gel electrophoresis that NJ4500 LtxA is more highly modified than JP2 LtxA, suggesting that the difference in activities could be due to differential modification. Studies of A. actinomycetemcomitans pathogenesis should therefore consider LtxA from clinical isolates.
Collapse
Affiliation(s)
- Roger Diaz
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Permpanich P, Kowolik MJ, Galli DM. Resistance of fluorescent-labelled Actinobacillus actinomycetemcomitans strains to phagocytosis and killing by human neutrophils. Cell Microbiol 2006; 8:72-84. [PMID: 16367867 DOI: 10.1111/j.1462-5822.2005.00601.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neutrophils are initially the predominant cells involved in the host defence of bacterial infections, including periodontal disease. Aggressive periodontitis is associated with Actinobacillus actinomycetemcomitans, a Gram-negative capnophilic microorganism. Infections caused by A. actinomycetemcomitans are not resolved by the host immune response despite the accumulation of neutrophils at the site of inflammation. To better understand the role of natural host defence mechanisms in A. actinomycetemcomitans infections, the interaction of phenotypically diverse strains of this pathogen with human neutrophils was assessed directly using techniques such as genetic labelling with the gene for green fluorescent protein, fluorescence-activated cell sorting and fluorescence imaging. The study included clinical isolates of A. actinomycetemcomitans represented by self-aggregating, biofilm-associated and isogenic planktonic variants. Data obtained showed that complement-mediated phagocytosis of A. actinomycetemcomitans was generally inefficient regardless of strain-specific serotype or leukotoxin production. Furthermore, the majority of ingested bacteria remained viable after exposure to neutrophils for 1 h. Interestingly, uptake of antibody-opsonized bacteria resulted in the rapid cell death of neutrophils. This was in contrast to ingestion of complement-opsonized bacteria, which did not affect neutrophil viability. The methods used in this study provided reliable and reproducible results with respect to adherence, phagocytosis and killing of A. actinomycetemcomitans when encountering human neutrophils.
Collapse
Affiliation(s)
- Piyanuj Permpanich
- School of Dentistry, Department of Oral Biology, Indiana University, Indianapolis, IN 46202, USA
| | | | | |
Collapse
|
40
|
Abstract
BACKGROUND Horizontal gene transfer (HGT) is a process by which bacteria acquire genes from organisms of distant taxa. HGT is now recognized as a major driving force in the evolution of bacterial pathogens. Through this process, bacteria may accumulate blocks of DNA such as genomic islands (GEIs) that encode fitness or virulence factors. The periodontal pathogen A. actinomycetemcomitans has been known to exhibit variable virulence potential. It is postulated that GEIs may play a role in modifying the virulence potential of A. actinomycetemcomitans. This study was initiated to identify and determine the distribution of GEIs in A. actinomycetemcomitans. METHODS Forty-seven A. actinomycetemcomitans strains of serotypes a through f were examined. Strain-specific variant DNA in the genomes of A. actinomycetemcomitans was identified by polymerase chain reaction (PCR) genomic mapping and sequenced to identify GEIs. The distribution of the GEIs among test strains of A. actinomycetemcomitans was determined by PCR analysis and Southern hybridization assays. RESULTS An approximately 22 kb GEI of A. actinomycetemcomitans, designated AAI-1, was identified in five serotype b strains. The AAI-1 exhibits low %G+C and encodes proteins of phage, restriction modification systems, mobile elements, and other hypothetical proteins of unknown functions. The insertion of AAI-1 was found to cause truncation of A. actinomycetemcomitans genes at the insertion site. CONCLUSIONS Some A. actinomycetemcomitans strains may harbor GEIs, which were acquired via HGT by the bacteria. The GEIs may increase the gene repertoire of A. actinomycetemcomitans. However, the insertion of the GEIs in A. actinomycetemcomitans may also cause truncation and inactivation of resident genes at the insertion sites. The virulence significance of such gain and loss of genes in A. actinomycetemcomitans remains to be determined.
Collapse
Affiliation(s)
- Weizhen Chen
- Division of Primary Oral Health Care, School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
41
|
Haase EM, Bonstein T, Palmer RJ, Scannapieco FA. Environmental influences on Actinobacillus actinomycetemcomitans biofilm formation. Arch Oral Biol 2005; 51:299-314. [PMID: 16226214 DOI: 10.1016/j.archoralbio.2005.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/02/2005] [Accepted: 09/06/2005] [Indexed: 01/08/2023]
Abstract
Fresh clinical isolates of the periodontal pathogen Actinobacillus actinomycetemcomitans have an adherent, rough colony morphology that transforms into a minimally adherent, smooth colony phenotype during successive in vitro passage. The objectives of this study were: (1) to compare biofilm formation of the rough (RVs) and smooth variants (SVs) of several strains of A. actinomycetemcomitans grown under various environmental conditions and (2) to examine the dynamics of biofilm formation. A microtitre plate biofilm assay was used to evaluate biofilm formation of strains grown in broth with modified salt concentration and pH, and to evaluate the effect of pre-conditioning films. Scanning electron microscopy (SEM) was used to monitor microscopic changes in morphology. Dynamics of biofilm formation were measured in a flowcell monitored by confocal microscopy. The RVs generally produced greater biofilm than the SVs. However, medium-dependent differences in biofilm formation were evident for some rough/smooth pairs. The RVs were more tolerant to changes in salt and pH, and more resistant to chlorhexidine than the SVs. Horse serum virtually eliminated, and saliva significantly reduced, biofilm formation by the SVs in contrast to the RVs. SEM revealed no alteration in morphology with change of environment. In a flowcell, the RVs produced towers of microcolonies anchored by a small contact area, whereas the SVs produced an open architecture of reduced height. After 7 days in a flowcell, the rough to smooth phenotype transition could be demonstrated. In conclusion, strain, growth medium and conditioning film all affect biofilm formation. The RVs produce biofilms of unique architecture that may serve to protect the bacterium from environmental perturbations.
Collapse
Affiliation(s)
- Elaine M Haase
- Department of Oral Biology, University at Buffalo, 109 Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
42
|
Teughels W, Sliepen I, De Keersmaecker S, Quirynen M, Lippmann J, Pauwels M, Fives-Taylor P. Influence of genetic background on transformation and expression of Green Fluorescent Protein in Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2005; 20:274-81. [PMID: 16101962 DOI: 10.1111/j.1399-302x.2005.00224.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND/AIMS The development of an electro-transformation system and the construction of shuttle plasmids for Actinobacillus actinomycetemcomitans have enhanced the molecular analysis of virulence factors. However, inefficient transformation is frequently encountered. This study investigated the efficiency of electro-transformation and expression of Green Fluorescent Protein (GFP) in 12 different A. actinomycetemcomitans strains. The influence of the plasmid vector, serotype, and phenotype were the major factors taken into consideration. MATERIAL AND METHODS Twelve serotyped A. actinomycetemcomitans strains were independently electro-transformed with two different Escherichia coli-A. actinomycetemcomitans shuttle plasmids (pVT1303 and pVT1304), both containing an identical ltx-GFPmut2 gene construct but a different backbone (pDMG4 and pPK1, respectively). The transformation efficiency, transformation frequency, and electro-transformation survival rate were determined by culture techniques. GFP expression was observed at the colony level by fluorescence microscopy. RESULTS All strains could be transformed with both plasmids. However, major differences were observed for the transformation efficiency, transformation frequency, and electro-transformation survival rate between strains. The data demonstrated that plasmid vector, serotype, and phenotype are key players for obtaining a successful transformation. An inverted relationship between the electro-transformation survival rate and tranformation frequency was also observed. GFP expression was also influenced by phenotype, serotype and plasmid vector. CONCLUSIONS The serotype of A. actinomycetemcomitans has an important influence on its survival after electro-transformation and on transformation frequency. The expression of GFP is strain and plasmid vector dependent.
Collapse
Affiliation(s)
- W Teughels
- Catholic University Leuven, Department of Periodontology, Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Liu A, Chen C. Genetic basis for conversion of rough-to-smooth colony morphology in Actinobacillus actinomycetemcomitans. Infect Immun 2005; 73:3749-53. [PMID: 15908406 PMCID: PMC1111812 DOI: 10.1128/iai.73.6.3749-3753.2005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The basis of the rough-to-smooth conversion of Actinobacillus actinomycetemcomitans was examined. Smooth variants often contained mutations at the flp promoter region. Replacing the mutated flp promoter with the wild-type promoter restored the rough phenotype. The expression level of the flp promoter was approximately 100-fold lower in smooth than in rough strains. Mutations of the flp promoter are a cause of the rough-to-smooth conversion.
Collapse
Affiliation(s)
- Ying Wang
- Division of Primary Oral Health Care, University of Southern California School of Dentistry, 925 W. 34th Street, Los Angeles, CA 90089-0641, USA
| | | | | |
Collapse
|
44
|
Wang Y, Chen C. Mutation analysis of the flp operon in Actinobacillus actinomycetemcomitans. Gene 2005; 351:61-71. [PMID: 15837433 DOI: 10.1016/j.gene.2005.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 01/19/2005] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
Fresh clinical isolates of the periodontal pathogen Actinobacillus actinomycetemcomitans live as autoaggregates, in which cells are densely packed and embedded in an extracellular matrix composed of bundled fimbriae, exopolymers, and vesicles. The expression of fimbriae is known to be determined by the flp operon of 14 genes, flp-1-flp-2-tadV-rcpCAB-tadZABCDEFG. We generated mutations of each gene of this operon in A. actinomycetemcomitans strain D7S. All mutants expressed some changes in the production of extracellular matrix materials that include vesicles, exopolymers, and fimbriae. The expression of fimbriae required the function of flp-1, rcpA, rcpB, tadB, tadD, tadE, and tadF. Mutants of flp-2, tadZ, tadA, tadC, and tadG expressed reduced levels of fimbriae, or fimbriae that had different gross appearance. Importantly, the expression of the non-fimbrial matrix materials was affected by all mutations, suggesting that the flp operon was involved in production of these materials. The flp locus apparently plays a central role in autoaggregation of A. actinomycetemcomitans, which may be the primary survival strategy of this bacterium in vivo.
Collapse
Affiliation(s)
- Ying Wang
- University of Southern California School of Dentistry, Los Angeles, 90089, USA.
| | | |
Collapse
|
45
|
Inoue T, Shingaki R, Sogawa N, Sogawa CA, Asaumi JI, Kokeguchi S, Fukui K. Biofilm formation by a fimbriae-deficient mutant of Actinobacillus actinomycetemcomitans. Microbiol Immunol 2004; 47:877-81. [PMID: 14638999 DOI: 10.1111/j.1348-0421.2003.tb03454.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Actinobacillus actinomycetemcomitans strain 310-TR produces fimbriae and forms a tight biofilm in broth cultures, without turbid growth. The fimbriae-deficient mutant 310-DF, constructed in this study, was grown as a relatively fragile biofilm at the bottom of a culture vessel. Scanning electron microscopy revealed that on glass coverslips, 310-TR formed tight and spherical microcolonies, while 310-DF produced looser ones. These findings suggest that fimbriae are not essential for the surface-adherent growth but are required for enhancing cell-to-surface and cell-to-cell interactions to stabilize the biofilm. Treatment of the 310-DF biofilm with either sodium metaperiodate or DNase resulted in significant desorption of cells from glass surfaces, indicating that both carbohydrate residues and DNA molecules present on the cell surface are also involved in the biofilm formation.
Collapse
Affiliation(s)
- Tetsuyoshi Inoue
- Department of Oral Microbiology, Okayama University Graduate School of Medicine and Dentistry, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Li L, Matevski D, Aspiras M, Ellen RP, Lépine G. Two epithelial cell invasion-related loci of the oral pathogen Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2004; 19:16-25. [PMID: 14678470 DOI: 10.1046/j.0902-0055.2003.00102.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two invasion-related loci, apiA and the two-gene operon apiBC, were isolated from the oral pathogen Actinobacillus actinomycetemcomitans UT32. apiA encodes a 32.5 kDa protein that migrates on SDS-PAGE as a 101 kDa protein as detected by Western blot analysis or silver staining of an outer membrane-enriched fraction of Escherichia coli transformants. E. coli expressing ApiA have a different phenotype than the host vector, in broth and on solid media, and a colony morphology that resembles that of fresh A. actinomycetemcomitans isolates. These E. coli transformants bound to chicken collagen type II, human collagen type II, III, V and fibronectin. apiB and apiC encode proteins of 130.1 and 70.6 kDa, respectively. ApiBC conferred on E. coli a slightly enhanced ability to bind to collagen type III. ApiA- and ApiB-deficient mutants were constructed in A. actinomycetemcomitans. The ApiB-mutant had 4-fold diminished invasion of KB cells; the ApiA-mutant had increased invasion. Both loci were found in all A. actinomycetemcomitans strains, although polymorphism was detected only for apiBC. The deduced sequences of these invasion-related proteins are homologous to members of the YadA adhesin/invasin family.
Collapse
Affiliation(s)
- L Li
- University of Toronto, Faculty of Dentistry, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
47
|
Kolodrubetz D, Phillips L, Jacobs C, Burgum A, Kraig E. Anaerobic regulation of Actinobacillus actinomycetemcomitans leukotoxin transcription is ArcA/FnrA-independent and requires a novel promoter element. Res Microbiol 2004; 154:645-53. [PMID: 14596902 DOI: 10.1016/j.resmic.2003.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The periodontal pathogen, Actinobacillus actinomycetemcomitans, produces a 116-kDa leukotoxin that appears to help the bacterium evade the innate host immune response. The expression of leukotoxin is induced when cells are grown anaerobically, a condition found in the subgingival crevice. This regulation most likely occurs at the transcriptional stage since the levels of leukotoxin RNA are induced by hypoxic growth. In order to map the leukotoxin promoter element(s) responsible for oxygen regulation, deletion and linker-scanning mutations were cloned into a transcriptional reporter gene plasmid and then tested in A. actinomycetemcomitans grown aerobically or anaerobically. A 35-bp DNA element, at position -36 to -70, was found to be responsible for the repression of leukotoxin synthesis in aerobically grown A. actinomycetemcomitans. The sequence of this oxygen response element (ORE) does not match the consensus binding sites for known DNA binding proteins, not even Fnr or ArcA which play major roles in oxygen regulation in other bacteria. However, since sequence analysis alone cannot disprove a role for the Fnr or ArcAB pathways in leukotoxin regulation, the genes for the Fnr and ArcA homologues in A. actinomycetemcomitans were identified, mutated by targeted insertional mutagenesis and assessed for loss of oxygen regulation. Deletion of either fnr or arcA altered the expression of numerous A. actinomycetemcomitans proteins, but leukotoxin expression was still repressed by oxygen. These results, coupled with the promoter mutation analyses, lead to the conclusion that A. actinomycetemcomitans employs a novel pathway in the aerobic/anaerobic regulation of leukotoxin synthesis.
Collapse
Affiliation(s)
- David Kolodrubetz
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA.
| | | | | | | | | |
Collapse
|
48
|
Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective. ACTA ACUST UNITED AC 2003; 14:331-44. [PMID: 14530302 DOI: 10.1177/154411130301400504] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This review will focus on the impact of molecular genetic approaches on elucidating the bacterial etiology of oral diseases from an historical perspective. Relevant results from the pre- and post-recombinant DNA periods will be highlighted, including the roles of gene cloning, mutagenesis, and nucleotide sequencing in this area of research. Finally, the impact of whole-genome sequencing on deciphering the virulence mechanisms of oral pathogens, along with new approaches to control these organisms, will be discussed.
Collapse
Affiliation(s)
- Howard K Kuramitsu
- Department of Oral Biology, State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
49
|
Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 2003; 185:4693-8. [PMID: 12896987 PMCID: PMC166467 DOI: 10.1128/jb.185.16.4693-4698.2003] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in broth, fresh clinical isolates of the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans form tenaciously adherent biofilm colonies on surfaces such as plastic and glass. These biofilm colonies release adherent cells into the medium, and the released cells can attach to the surface of the culture vessel and form new colonies, enabling the biofilm to spread. We mutagenized A. actinomycetemcomitans clinical strain CU1000 with transposon IS903phikan and isolated a transposon insertion mutant that formed biofilm colonies which were tightly adherent to surfaces but which lacked the ability to release cells into the medium and disperse. The transposon insertion in the mutant strain mapped to a gene, designated dspB, that was predicted to encode a secreted protein homologous to the catalytic domain of the family 20 glycosyl hydrolases. A plasmid carrying a wild-type dspB gene restored the ability of biofilm colonies of the mutant strain to disperse. We expressed A. actinomycetemcomitans DspB protein engineered to contain a hexahistidine metal-binding site at its C terminus in Escherichia coli and purified the protein by using Ni affinity chromatography. Substrate specificity studies performed with monosaccharides labeled with 4-nitrophenyl groups showed that DspB hydrolyzed the 1-->4 glycosidic bond of beta-substituted N-acetylglucosamine, which is consistent with the known functions of other family 20 glycosyl hydrolases. When added to culture medium, purified DspB protein, but not heat-inactivated DspB, restored the ability of the mutant strain to release cells and disperse. DspB protein also caused the detachment of cells from preformed biofilm colonies of strain CU1000 grown attached to plastic and the disaggregation of highly autoaggregated clumps of CU1000 cells in solution. We concluded that dspB encodes a soluble beta-N-acetylglucosaminidase that causes detachment and dispersion of A. actinomycetemcomitans biofilm cells.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
50
|
Wang Y, Shi W, Chen W, Chen C. Type IV pilus gene homologs pilABCD are required for natural transformation in Actinobacillus actinomycetemcomitans. Gene 2003; 312:249-55. [PMID: 12909361 DOI: 10.1016/s0378-1119(03)00620-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Some clinical isolates of the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans are naturally competent for DNA uptake. In this study, we examined the sequence and the function of a type IV pilus-like pilABCD gene cluster and its downstream region in a naturally transformable A. actinomycetemcomitans strain D7S. Specific knockout mutants of pilABCD of strain D7S were constructed by replacing individual genes with an antibiotic resistance cassette. The transformation frequency of chromosome markers in the wildtype strain D7S was approximately 10(-3) per CFU. In contrast, the delta pilA, delta pilB, delta pilC, delta pilBC or delta pilD mutants were non-transformable (transformation frequency <10(-8)). Disruption of an ORF downstream of pilD had no apparent effect on the transformability of this bacterium. The pilA or pilBC deletion did not seem to affect fimbria expression or cell surface structure in either rough or smooth strains as determined by scanning and transmission electron microscopy examinations. RT-PCR analysis showed that pilA was expressed in strain D7S under a competence-inducing growth condition. The expression of pilA was barely detectable in strain D7S cultured under a non-competence-inducing condition or in the non-transformable strain JP-2. The results indicate that pilABCD are required for competence but are apparently not involved in fimbria expression of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ying Wang
- University of Southern California School of Dentistry, 925 W 34th Street, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|