1
|
Seoane N, Picos A, Moraña-Fernández S, Schmidt M, Dolga A, Campos-Toimil M, Viña D. Effects of Sodium Nitroprusside on Lipopolysaccharide-Induced Inflammation and Disruption of Blood-Brain Barrier. Cells 2024; 13:843. [PMID: 38786065 PMCID: PMC11119468 DOI: 10.3390/cells13100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In various neurodegenerative conditions, inflammation plays a significant role in disrupting the blood-brain barrier (BBB), contributing to disease progression. Nitric oxide (NO) emerges as a central regulator of vascular function, with a dual role in inflammation, acting as both a pro- and anti-inflammatory molecule. This study investigates the effects of the NO donor sodium nitroprusside (SNP) in protecting the BBB from lipopolysaccharide (LPS)-induced inflammation, using bEnd.3 endothelial cells as a model system. Additionally, Raw 264.7 macrophages were employed to assess the effects of LPS and SNP on their adhesion to a bEnd.3 cell monolayer. Our results show that LPS treatment induces oxidative stress, activates the JAK2/STAT3 pathway, and increases pro-inflammatory markers. SNP administration effectively mitigates ROS production and IL-6 expression, suggesting a potential anti-inflammatory role. However, SNP did not significantly alter the adhesion of Raw 264.7 cells to bEnd.3 cells induced by LPS, probably because it did not have any effect on ICAM-1 expression, although it reduced VCAM expression. Moreover, SNP did not prevent BBB disruption. This research provides new insights into the role of NO in BBB disruption induced by inflammation.
Collapse
Affiliation(s)
- Nuria Seoane
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Aitor Picos
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Sandra Moraña-Fernández
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Amalia Dolga
- Department of Molecular Pharmacology, University of Groningen, 9713 AV Groningen, The Netherlands; (M.S.); (A.D.)
| | - Manuel Campos-Toimil
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Physiology and Pharmacology of Chronic Diseases (FIFAEC) Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; (N.S.); (A.P.); (S.M.-F.); (D.V.)
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
2
|
Fruekilde SK, Bailey CJ, Lambertsen KL, Clausen BH, Carlsen J, Xu NL, Drasbek KR, Gutiérrez-Jiménez E. Disturbed microcirculation and hyperaemic response in a murine model of systemic inflammation. J Cereb Blood Flow Metab 2022; 42:2303-2317. [PMID: 35999817 PMCID: PMC9670001 DOI: 10.1177/0271678x221112278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic inflammation affects cognitive functions and increases the risk of dementia. This phenomenon is thought to be mediated in part by cytokines that promote neuronal survival, but the continuous exposure to which may lead to neurodegeneration. The effects of systemic inflammation on cerebral blood vessels, and their provision of adequate oxygen to support critical brain parenchymal cell functions, remains unclear. Here, we demonstrate that neurovascular coupling is profoundly disturbed in lipopolysaccharide (LPS) induced systemic inflammation in awake mice. In the 24 hours following LPS injection, the hyperaemic response of pial vessels to functional activation was attenuated and delayed. Concurrently, under steady-state conditions, the capillary network displayed a significant increase in the number of capillaries with blocked blood flow, as well as increased duration of 'capillary stalls'-a phenomenon previously reported in animal models of stroke and Alzheimer's disease pathology. We speculate that vascular changes and impaired oxygen availability may affect brain functions following acute systemic inflammation and contribute to the long-term risk of neurodegenerative changes associated with chronic, systemic inflammation.
Collapse
Affiliation(s)
- Signe Kirk Fruekilde
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Christopher J Bailey
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kate Lykke Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, 6174University of Southern Denmark, Odense C, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, 6174University of Southern Denmark, Odense C, Denmark.,Department of Neurology, Odense University Hospital, Odense C, Denmark
| | - Bettina Hjelm Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, 6174University of Southern Denmark, Odense C, Denmark.,BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, 6174University of Southern Denmark, Odense C, Denmark
| | - Jasper Carlsen
- Research Unit for Molecular Medicine (MMF), Department of Clinical Medicine, 1006Aarhus University, Aarhus N, Denmark
| | - Ning-Long Xu
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China.,Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Kim Ryun Drasbek
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark.,Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, 1006Aarhus University, Aarhus C, Denmark
| |
Collapse
|
3
|
Petroni RC, de Oliveira SJS, Fungaro TP, Ariga SKK, Barbeiro HV, Soriano FG, de Lima TM. Short-term Obesity Worsens Heart Inflammation and Disrupts Mitochondrial Biogenesis and Function in an Experimental Model of Endotoxemia. Inflammation 2022; 45:1985-1999. [PMID: 35411498 DOI: 10.1007/s10753-022-01669-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022]
Abstract
Cardiomyopathy is a well-known complication of sepsis that may deteriorate when accompanied by obesity. To test this hypothesis we fed C57black/6 male mice for 6 week with a high fat diet (60% energy) and submitted them to endotoxemic shock using E. coli LPS (10 mg/kg). Inflammatory markers (cytokines and adhesion molecules) were determined in plasma and heart tissue, as well as heart mitochondrial biogenesis and function. Obesity markedly shortened the survival rate of mouse after LPS injection and induced a persistent systemic inflammation since TNFα, IL-1β, IL-6 and resistin plasma levels were higher 24 h after LPS injection. Heart tissue inflammation was significantly higher in obese mice, as detected by elevated mRNA expression of pro-inflammatory cytokines (IL-1β, IL-6 and TNFα). Obese animals presented reduced maximum respiratory rate after LPS injection, however fatty acid oxidation increased in both groups. LPS decreased mitochondrial DNA content and mitochondria biogenesis factors, such as PGC1α and PGC1β, in both groups, while NRF1 expression was significantly stimulated in obese mice hearts. Mitochondrial fusion/fission balance was only altered by obesity, with no influence of endotoxemia. Obesity accelerated endotoxemia death rate due to higher systemic inflammation and decreased heart mitochondrial respiratory capacity.
Collapse
Affiliation(s)
- Ricardo Costa Petroni
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suelen Jeronymo Souza de Oliveira
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Pineda Fungaro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Suely K K Ariga
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Hermes Vieira Barbeiro
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Francisco Garcia Soriano
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil
| | - Thais Martins de Lima
- Emergency Medicine Department, Medical School, University of São Paulo, Av. Dr. Arnaldo, 455 - Cerqueira César, São Paulo, São Paulo, CEP, 01246-903, Brazil.
| |
Collapse
|
4
|
Influence of antibiotic therapy on indicators of endotoxinemia and systemic inflammation in acute SARS-CoV-2 lung damage. ACTA BIOMEDICA SCIENTIFICA 2022. [DOI: 10.29413/abs.2022-7.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background. Prescribing antibacterial drugs for the treatment of a new coronavirus infection at the outpatient stage is often unreasonable and can also lead to an aggravation of the patient’s condition due to the effect of this group of drugs on the intestinal microflora and lead to other undesirable effects.The aim: to assess the level of lipopolysaccharide-binding protein and indicators of systemic inflammation in patients with moderate viral SARS-CoV-2 lung disease on the background of antibiotic therapy.Materials and methods. 60 patients hospitalized in the infectious diseases department with a positive PCR result for SARS-CoV-2 in the age group 44–70 years old were examined. The patients were divided into 2 groups: group 1 (n = 26) – patients who did not receive antibacterial drugs at the outpatient stage, group 2 (n = 34) – patients who received antibiotic therapy. The control group was also selected (n = 20). Patients underwent a study of the level of lipopolysaccharide-binding protein (LBP), ferritin and C-reactive protein in the peripheral blood.Results. In the group of patients with new coronavirus infection who were admitted to the inpatient stage of treatment and received antibacterial therapy at the outpatient stage, a significantly higher levels of LBP – 37.3 [13.8; 50.4] µg/ml (p˂0.05) and ferritin – 276.00 [184.00; 463.00] µg/ml (p˂0.05) were revealed, compared with group 1 and the control group.Conclusions. In the group of patients who received antibiotic therapy at the outpatient stage, a significantly higher level of LBP was revealed compared to the group in which this group of drugs was not used. These results indicate the possible impact of uncontrolled and early intake of antibacterial drugs on the gut microbiome and intestinal permeability, and also prove the need for a more responsible approach to the choice of starting therapy for new coronavirus infection.
Collapse
|
5
|
Park JY, Lee TS, Noh EJ, Jang AR, Ahn JH, Kim DY, Jung DH, Song EJ, Lee YJ, Lee YJ, Lee SK, Park JH. Receptor-interacting protein kinase 2 contributes to host innate immune responses against Fusobacterium nucleatum in macrophages and decidual stromal cells. Am J Reprod Immunol 2021; 86:e13403. [PMID: 33580557 DOI: 10.1111/aji.13403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
PROBLEM Chorioamnionitis is caused by a bacterial infection that ascends from the vagina and can cause adverse pregnancy outcomes (APOs). Fusobacterium nucleatum (F. nucleatum) is a periodontal pathogen associated with the occurrence of APOs. In this study, we evaluated whether receptor-interacting protein kinase 2 (Ripk2), an adaptor protein of the cytosolic receptors nucleotide-binding oligomerization domain (NOD)1 and NOD2, in macrophages and human decidual stromal cells (hDSCs) contributes to immune responses against F. nucleatum. METHOD OF STUDY Bone marrow-derived macrophages (BMDMs) isolated from wild-type (WT) and Ripk2-deficient mice and hDSCs were cultured with F. nucleatum (MOI 1, 10, 100). BMDMs and hDSCs were assessed using enzyme-linked immunosorbent assay, Western blot analysis, real-time PCR, and nitrite assay. RESULTS Fusobacterium nucleatum-induced production of IL-6, but not of TNF-α and IL-10, was lower in Ripk2-deficient BMDMs than in WT cells. Western blotting revealed a decrease in F. nucleatum-induced p65 phosphorylation in Ripk2-deficient macrophages, whereas mitogen-activated protein kinases activation was comparable between WT and Ripk2-deficient cells. The production of nitric oxide (NO) in response to F. nucleatum and the gene and protein expression of inducible NO synthase was impaired in Ripk2-deficient BMDMs. In hDSCs, F. nucleatum upregulated the gene and protein expression of NOD1, NOD2, and Ripk2 in a time-dependent manner. F. nucleatum also increased the production of IL-6, CXCL8, and CCL2, whereas this production was decreased by the Ripk2 inhibitors SB203580 and PP2. CONCLUSIONS In conclusion, Ripk2 signaling appears to contribute to the F. nucleatum-induced immune response and can be a preventive and therapeutic target against APOs.
Collapse
Affiliation(s)
- Ji-Yeon Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Tae-Sung Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eui Jeong Noh
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ah-Ra Jang
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Hun Ahn
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Dong-Yeon Kim
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Do-Hyeon Jung
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Jung Song
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yeon-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Ji Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Sun Z, Cai D, Yang X, Shang Y, Li X, Jia Y, Yin C, Zou H, Xu Y, Sun Q, Zhang X. Stress Response Simulated by Continuous Injection of ACTH Attenuates Lipopolysaccharide-Induced Inflammation in Porcine Adrenal Gland. Front Vet Sci 2020; 7:315. [PMID: 32671106 PMCID: PMC7333078 DOI: 10.3389/fvets.2020.00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 11/13/2022] Open
Abstract
On modern farms, animals are at high risk of bacterial invasion due to environmental stress factors. The adrenal gland is the terminal organ of the stress response. The crosstalk between adrenal endocrine stress and innate immune response is critical for the maintenance of immune homeostasis during inflammation. Thus, it's important to explore whether stresses play a pivotal role in lipopolysaccharide (LPS)-induced inflammatory response in the porcine adrenal gland. Thirty-days-old Duroc × Landrace × Large White crossbred piglets (12 ± 0.5 kg) were randomly allocated into four groups in a 2 × 2 factorial arrangement of treatments, including ACTH pretreatment (with or without ACTH injection) and LPS challenge (with or without LPS injection). Each group consisted of six male piglets. The results showed that our LPS preparation alone induced mRNA expressions of IL-1β, IL-6, TNF-α, IL-10, COX-2, TLR2, TLR4, and GR (P < 0.05). ACTH pretreatment downregulated the TLR2 mRNA and IL-6 protein level induced by our LPS preparation significantly (P < 0.05) by one-way ANOVA analysis. Treatment with LPS alone extremely significantly decreased ssc-miR-338 levels (P < 0.01). Interaction of ACTH × LPS was significant for cNOS level (P = 0.011) and ssc-miR-338 expression (P = 0.04) by two-way ANOVA analysis. The LPS treatment significantly downregulated cNOS levels (P < 0.01), which was significantly attenuated by ACTH pretreatment (P < 0.05). Lipopolysaccharide alone did not affect ssc-miR-146b expression levels compared to that in the vehicle group. However, ACTH pretreatment in combination with LPS significantly increased this micro-RNA expression (P < 0.05). TLRs 1–10 were all expressed in adrenal tissue. The LPS challenge alone induced remarkable compensatory mitochondrial damages at the ultrastructural level, which was alleviated by ACTH pretreatment. Accordingly, ACTH pretreatment was able to block LPS-induced secretion of local adrenal cortisol (P < 0.05). Taken together, our results demonstrate that ACTH pretreatment seems to attenuate LPS-induced mitochondria damage and inflammation that decreased cNOS activity in the adrenal gland and ultimately returned local adrenal cortisol to basal levels at 6 h post LPS injection.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China.,Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Demin Cai
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, United States.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiaojing Yang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yueli Shang
- Laboratory of Animal Clinical Pathophysiology, Department of Animal Science and Technology, Shanghai Vocational College of Agriculture and Forestry, Shanghai, China
| | - Xian Li
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yimin Jia
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Chao Yin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huafeng Zou
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yunming Xu
- Department of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xuhui Zhang
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
7
|
Prabhu AA, Kumar JP, Mandal BB, Veeranki VD. Glucose-methanol-based fed-batch fermentation for the production of recombinant human interferon gamma (rhIFN-γ) and evaluation of its antitumor potential. Biotechnol Appl Biochem 2019; 67:973-982. [PMID: 31811672 DOI: 10.1002/bab.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/02/2019] [Indexed: 11/09/2022]
Abstract
Squamous cell carcinoma (SCC) is nonmelanoma skin cancer, which is very common in patients having T-cell immunosuppressant drugs. Anticancerous agents such as cytokines showed effective response on SCC. Human interferon-gamma (hIFN-γ), a type II cytokines, are having potent antiproliferative and immunomodulatory effects. In the current study, the fed-batch cultivation of recombinant Pichia pastoris was carried out, and its effect on cell biomass production, recombinant human interferon-gamma (rhIFN-γ) production, and the overflow metabolites was estimated. P. pastoris GS115 strain coexpressed with 6-phosphogluconolactonase (SOL3) and ribulose-phosphate 3-epimerase (RPE1) gene (GS115/rhIFN-γ/SR) resulted in 60 mg L-1 of rhIFN-γ production, which was twofold higher as compared with the production from GS115/rhIFN-γ strain. The antiproliferative potential of rhIFN-γ was examined on the human squamous carcinoma (A431) cell lines. Cells treated with 80 ng mL-1 of rhIFN-γ exhibited 50% growth inhibition by enhancing the production of intracellular reactive oxygen species levels and disrupting membrane integrity. Our findings highlight a state of art process development strategy for the high-level production of rhIFN-γ and its potential application as a therapeutic drug in SCC therapy.
Collapse
Affiliation(s)
- Ashish A Prabhu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Jadi Praveen Kumar
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Biman B Mandal
- Biomaterial and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
8
|
Tatoyan M, Ter-Pogossyan Z, Semerjyan A, Gevorgyan V, Karalyan NY, Sahakyan C, Mkrtchyan G, Gazaryan H, Avagyan H, Karalyan Z. Serum Concentrations of Vascular Endothelial Growth Factor, Stromal Cell-Derived Factor, Nitric Oxide and Endothelial DNA Proliferation in Development of Microvascular Pathology in Acute African Swine Fever. J Comp Pathol 2019; 167:50-59. [DOI: 10.1016/j.jcpa.2018.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/28/2018] [Accepted: 12/27/2018] [Indexed: 12/12/2022]
|
9
|
Association of polymorphisms in serotonin and nitric oxide genes with clinical outcome of dengue in Brazilian northeast population. Acta Trop 2019; 190:144-148. [PMID: 30452889 DOI: 10.1016/j.actatropica.2018.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Serotonin and nitric oxide seem to be involved in Dengue virus infection. The aim of this study was to investigate if SNPs in serotonin and nitric oxide are associated with dengue severity. A retrospective case-control study was conducted, with groups of dengue fever (DF; n = 78) and dengue hemorrhagic fever patients (DHF; n = 49). Genotyping was performed using qPCR and PCR. The power of the sample size was calculated by G*power software. The heterozygous SL for 5-HTTLPR SNP was significantly correlated with protection against progression to DHF in the codominant SS/SL/LL (OR = 0.22, 95% CI = 0.06-0.81, p = 0.011) and overdominant models SL vs SS + LL (OR = 0.19, 95% CI = 0.06-0.65, p = 0.003). For the ENOS (rs1799983) SNP, the genotype GT was positively associated with protection for development of the clinical form in DHF compared to dengue fever (OR = 0.39, 95% CI = (0.13-1.14), p = 0.0058) in codominant GG/GT/TT and overdominant model GT vs GG + TT (OR = 0.35, 95% CI = (0.12-1.02), p = 0.04). To our knowledge, this is the first study to identify the association of the serotonin and nitric oxide SNPs with dengue severity.
Collapse
|
10
|
O'Neill J, Jasionek G, Drummond SE, Brett O, Lucking EF, Abdulla MA, O'Halloran KD. Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat. Am J Physiol Renal Physiol 2019; 316:F635-F645. [PMID: 30648908 DOI: 10.1152/ajprenal.00254.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) occurs in more than 50% of patients with obstructive sleep apnea (OSA). However, the impact of intermittent hypoxia (IH) on renal function and oxygen homeostasis is unclear. Male Sprague-Dawley rats were exposed to IH (270 s at 21% O2; 90 s hypoxia, 6.5% O2 at nadir) for 4 h [acute IH (AIH)] or to chronic IH (CIH) for 8 h/day for 2 wk. Animals were anesthetized and surgically prepared for the measurement of mean arterial pressure (MAP), and left renal excretory function, renal blood flow (RBF), and renal oxygen tension (Po2). AIH had no effect on MAP (123 ± 14 vs. 129 ± 14 mmHg, means ± SE, sham vs. IH). The CIH group was hypertensive (122 ± 9 vs. 144 ± 15 mmHg, P < 0.05). Glomerular filtration rate (GFR) (0.92 ± 0.27 vs. 1.33 ± 0.33 ml/min), RBF (3.8 ± 1.5 vs. 7.2 ± 2.4 ml/min), and transported sodium (TNa) (132 ± 39 vs. 201 ± 47 μmol/min) were increased in the AIH group (all P < 0.05). In the CIH group, GFR (1.25 ± 0.28 vs. 0.86 ± 0.28 ml/min, P < 0.05) and TNa (160 ± 39 vs. 120 ± 40 μmol/min, P < 0.05) were decreased, while RBF (4.13 ± 1.5 vs. 3.08 ± 1.5 ml/min) was not significantly different. Oxygen consumption (QO2) was increased in the AIH group (6.76 ± 2.60 vs. 13.60 ± 7.77 μmol/min, P < 0.05), but it was not significantly altered in the CIH group (3.97 ± 2.63 vs. 6.82 ± 3.29 μmol/min). Cortical Po2 was not significantly different in the AIH group (46 ± 4 vs. 46 ± 3 mmHg), but it was decreased in the CIH group (44 ± 5 mmHg vs. 38 ± 2 mmHg, P < 0.05). For AIH, renal oxygen homeostasis was preserved through a maintained balance between O2 supply (RBF) and consumption (GFR). For CIH, mismatched TNa and QO2 reflect inefficient O2 utilization and, thereby, sustained decrease in cortical Po2.
Collapse
Affiliation(s)
- Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Greg Jasionek
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Orla Brett
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Mohammed A Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork , Cork , Ireland
| |
Collapse
|
11
|
Chung TH, Wu YP, Chew CY, Lam CH, Tan KT. Imaging and Quantification of Secreted Peroxynitrite at the Cell Surface by a Streptavidin-Biotin-Controlled Binding Probe. Chembiochem 2018; 19:2584-2590. [PMID: 30352141 DOI: 10.1002/cbic.201800542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/13/2022]
Abstract
The ability to detect and image secreted peroxynitrite (ONOO- ) along the extracellular surface of a single cell is biologically significant, as ONOO- generally exerts its function for host defense and signal transductions at the plasma membrane. However, as a result of the short lifetime and fast diffusion rate of small ONOO- , precise determination of the ONOO- level at the cell surface remains a challenging task. In this paper, the use of a membrane-anchored streptavidin-biotin-controlled binding probe (CBP), ONOO-CBP, to determine quantitatively the ONOO- level at the cell surface and to investigate the effect of different stimulants on the production of ONOO- along the plasma membrane of macrophages is reported. Our results revealed that the combination of NO synthase (iNOS) and NADPH oxidase (NOX) activators was highly effective in inducing ONOO- secretion, achieving more than a 25-fold increase in ONOO- relative to untreated cells. After 1 h of phorbol-12-myristate-13-acetate (PMA) stimulation, the amount of ONOO- secreted by RAW264.7 macrophages was similar to the condition treated with 25 μm 3-morpholinosydnonimine hydrochloride (SIN-1), which was estimated to release about 20 μm of ONOO- into Dulbecco's modified Eagle's medium (DMEM) in 1 h. This novel approach should open up new opportunities to image various reactive oxygen and nitrogen species secreted at the plasma membrane that cannot be simply achieved by conventional analytical methods.
Collapse
Affiliation(s)
- Tzu-Hsuan Chung
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yung-Peng Wu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chee Ying Chew
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chak Hin Lam
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
12
|
Abdel-Maksoud MS, El-Gamal MI, Gamal El-Din MM, Choi Y, Choi J, Shin JS, Kang SY, Yoo KH, Lee KT, Baek D, Oh CH. Synthesis of New Triarylpyrazole Derivatives Possessing Terminal Sulfonamide Moiety and Their Inhibitory Effects on PGE₂ and Nitric Oxide Productions in Lipopolysaccharide-Induced RAW 264.7 Macrophages. Molecules 2018; 23:molecules23102556. [PMID: 30301280 PMCID: PMC6222820 DOI: 10.3390/molecules23102556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 01/20/2023] Open
Abstract
This article describes the design, synthesis, and in vitro anti-inflammatory screening of new triarylpyrazole derivatives. A total of 34 new compounds were synthesized containing a terminal arylsulfonamide moiety and a different linker between the sulfonamide and pyridine ring at position 4 of the pyrazole ring. All the target compounds were tested for both cytotoxicity and nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Compounds 1b, 1d, 1g, 2a, and 2c showed the highest NO inhibition percentages and the lowest cytotoxic effect. The most potent derivatives were tested for their ability to inhibit prostaglandin E₂ (PGE₂) in LPS-induced RAW 264.7 macrophages. The IC50 for nitric oxide inhibition, PGE₂ inhibition, and cell viability were determined. In addition, 1b, 1d, 1g, 2a, and 2c were tested for their inhibitory effect on LPS-induced inducible nitric oxide synthase (iNOS) and Cyclooxygenase 2 (COX-2) protein expression as well as iNOS enzymatic activity.
Collapse
Affiliation(s)
- Mohammed S Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt.
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt.
| | - Mahmoud M Gamal El-Din
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt.
| | - Yunji Choi
- Department of Chemistry, Hanseo University, Seosan 31962, Korea.
| | - Jungseung Choi
- Department of Chemistry, Hanseo University, Seosan 31962, Korea.
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02792 Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-650, Korea.
| | - Shin-Young Kang
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02792 Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-650, Korea.
| | - Kyung Ho Yoo
- Department of Chemistry, Hanseo University, Seosan 31962, Korea.
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02792 Korea.
- Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 130-650, Korea.
| | - Daejin Baek
- Department of Chemistry, Hanseo University, Seosan 31962, Korea.
| | - Chang-Hyun Oh
- Center for Biomaterials, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Korea.
- Department of Biomolecular Science, University of Science and Technology, Daejeon, Yuseong-gu 34113, Korea.
| |
Collapse
|
13
|
Tseng CH, Tung CW, Peng SI, Chen YL, Tzeng CC, Cheng CM. Discovery of Pyrazolo[4,3- c]quinolines Derivatives as Potential Anti-Inflammatory Agents through Inhibiting of NO Production. Molecules 2018; 23:molecules23051036. [PMID: 29710774 PMCID: PMC6102577 DOI: 10.3390/molecules23051036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
The synthesis and anti-inflammatory effects of certain pyrazolo[4,3-c]quinoline derivatives 2a–2r are described. The anti-inflammatory activities of these derivatives were evaluated by means of inhibiting nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells. Among them, 3-amino-4-(4-hydroxyphenylamino)-1H-pyrazolo[4,3-c]-quinoline (2i) and 4-(3-amino-1H-pyrazolo[4,3-c]quinolin-4-ylamino)benzoic acid (2m) exhibited significant inhibition of LPS-stimulated NO production with a potency approximately equal to that of the positive control, 1400 W. Important structure features were analyzed by quantitative structure–activity relationship (QSAR) analysis to give better insights into the structure determinants for predicting the inhibitory effects on the accumulation of nitric oxide for RAW 264.7 cells in response to LPS. In addition, our results indicated that their anti-inflammatory effects involve the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) protein expression. Further studies on the structural optimization are ongoing.
Collapse
Affiliation(s)
- Chih-Hua Tseng
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 807, Taiwan.
| | - Chun-Wei Tung
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
- Ph.D. Program in Toxicology, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Shin-I Peng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Yeh-Long Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Cherng-Chyi Tzeng
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Chih-Mei Cheng
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| |
Collapse
|
14
|
Onyema OO, Guo Y, Wang Q, Stoler MH, Lau C, Li K, Nazaroff CD, Wang X, Li W, Kreisel D, Gelman AE, Lee JJ, Jacobsen EA, Krupnick AS. Eosinophils promote inducible NOS-mediated lung allograft acceptance. JCI Insight 2017; 2:96455. [PMID: 29263310 DOI: 10.1172/jci.insight.96455] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/15/2017] [Indexed: 12/26/2022] Open
Abstract
Lungs allografts have worse long-term survival compared with other organ transplants. This is most likely due to their unique immunoregulation that may not respond to traditional immunosuppression. For example, local NO generation by inducible NOS (iNOS) is critical for lung allograft acceptance but associates with rejection of other solid organs. The source of NO in accepting lung allografts remains unknown. Here, we report that, unlike the case for other pulmonary processes in which myeloid cells control NO generation, recipient-derived eosinophils play a critical and nonredundant role in iNOS-mediated lung allograft acceptance. Depletion of eosinophils reduces NO levels to that of recipients with global deletion of iNOS and leads to a costimulatory blockade-resistant form of rejection. Furthermore, NO production by eosinophils depends on Th1 polarization by inflammatory mediators, such as IFN-γ and TNF-α. Neutralization of such mediators abrogates eosinophil suppressive capacity. Our data point to what we believe to be a unique and previously unrecognized role of eosinophil polarization in mediating allograft tolerance and put into perspective the use of high-dose eosinophil-ablating corticosteroids after lung transplantation.
Collapse
Affiliation(s)
| | - Yizhan Guo
- Department of Surgery, Carter Center for Immunology, and
| | - Qing Wang
- Department of Surgery, Carter Center for Immunology, and
| | - Mark H Stoler
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Christine Lau
- Department of Surgery, Carter Center for Immunology, and
| | - Kang Li
- Department of Surgery, Carter Center for Immunology, and
| | - Christopher Daniel Nazaroff
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Wenjun Li
- Department of Surgery, Washington University in St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University in St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University in St. Louis, Missouri, USA
| | - James J Lee
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Elizabeth A Jacobsen
- Division of Pulmonary Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | | |
Collapse
|
15
|
Roy S, Dutta D, Satyavarapu EM, Yadav PK, Mandal C, Kar S, Mandal C. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci Rep 2017; 7:4141. [PMID: 28646156 PMCID: PMC5482887 DOI: 10.1038/s41598-017-03943-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/12/2017] [Indexed: 11/09/2022] Open
Abstract
Earlier we have established a carbazole alkaloid (mahanine) isolated from an Indian edible medicinal plant as an anticancer agent with minimal effect on normal cells. Here we report for the first time that mahanine-treated drug resistant and sensitive virulent Leishmania donovani promastigotes underwent apoptosis through phosphatidylserine externalization, DNA fragmentation and cell cycle arrest. An early induction of reactive oxygen species (ROS) suggests that the mahanine-induced apoptosis was mediated by oxidative stress. Additionally, mahanine-treated Leishmania-infected macrophages exhibited anti-amastigote activity by nitric oxide (NO)/ROS generation along with suppression of uncoupling protein 2 and Th1-biased cytokines response through modulating STAT pathway. Moreover, we have demonstrated the interaction of a few antioxidant enzymes present in parasite with mahanine through molecular modeling. Reduced genetic and protein level expression of one such enzyme namely ascorbate peroxidase was also observed in mahanine-treated promastigotes. Furthermore, oral administration of mahanine in acute murine model exhibited almost complete reduction of parasite burden, upregulation of NO/iNOS/ROS/IL-12 and T cell proliferation. Taken together, we have established a new function of mahanine as a potent antileishmanial molecule, capable of inducing ROS and exploit antioxidant enzymes in parasite along with modulation of host's immune response which could be developed as an inexpensive and nontoxic therapeutics either alone or in combination.
Collapse
Affiliation(s)
- Saptarshi Roy
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Devawati Dutta
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Eswara M Satyavarapu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Pawan K Yadav
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Chhabinath Mandal
- National Institute of Pharmaceutical Education and Research, Kolkata, 4, Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Susanta Kar
- Division of Parasitology, CSIR-Central Drug Research Institute, Lucknow, 226001, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
16
|
Koide N, Mu MM, Hassan F, Islam S, Tumurkhuu G, Dagvadorj J, Naiki Y, Mori I, Yoshida T, Yokochi T. Lipopolysaccharide enhances interferon-γ-induced nitric oxide (NO) production in murine vascular endothelial cells via augmentation of interferon regulatory factor-1 activation. ACTA ACUST UNITED AC 2016; 13:167-75. [PMID: 17621559 DOI: 10.1177/0968051907080894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipopolysaccharide (LPS) enhances the production of nitric oxide (NO) in interferon (IFN)-γstimulated vascular endothelial cells. We studied the mechanism by which LPS enhances IFN-γ-induced NO production by using the murine vascular endothelial cell line, END-D. LPS enhanced IFN-γinduced NO production via augmented expression of inducible type NO synthase (iNOS) mRNA. LPS significantly augmented the activation of interferon regulatory factor (IRF)-1 in IFN-γ-stimulated END-D cells, although it did not affect the activation of either MyD88-dependent nuclear factor (NF)-κB or MyD88-independent IRF-3. SB203580, an inhibitor of p38 mitogen-activated protein kinase (MAPK), prevented the nuclear translocation of IRF-1 in LPS and IFN-γ-stimulated END-D cells, and inhibited the iNOS expression and NO production in those cells. Therefore, it is proposed that LPS enhanced NO production in IFN-γ-stimulated END-D cells via augmenting p38 MAPKmediated IRF-1 activation.
Collapse
Affiliation(s)
- Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sugiyama T, Fujita M, Koide N, Morikawa A, Takahashi K, Yoshida T, Mori H, Yokochi T. Differences in the mechanism of nitric oxide production between mouse vascular endothelial cells and macrophages. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519030090020601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The detailed mechanism of NO production in mouse vascular endothelial cells, END-D, was studied. The NO production in END-D cells was triggered by gamma interferon (IFN-γ), but not LPS. However, LPS augmented the NO production in IFN-γ-stimulated END-D cells. A high level of NO production was due to the expression of an inducible type of NO synthase (iNOS) in those cells. A significant amount of NO was detected 18 h after IFN-γ stimulation, accompanied by the delayed iNOS expression. The JAK/STAT signal pathway mediated IFN-γ-induced NO production, but did not participate in the LPS-induced augmentation. Further, no activation of nuclear factor (NF)-κB was involved in the NO production in END-D cells stimulated with either IFN-γ and/or LPS. The mechanism of NO production in END-D cells was suggested to be different from that in mouse macrophages. The differential regulation of NO production in mouse vascular endothelial cells and macrophages is discussed.
Collapse
Affiliation(s)
- Tsuyoshi Sugiyama
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan,
| | - Megumi Fujita
- Department of Public Health Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan
| | - Akiko Morikawa
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kazuko Takahashi
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan
| | - Tomoaki Yoshida
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hiroshi Mori
- Department of Public Health Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, and Division of Bacterial Toxin, Research Center for Infectious Disease, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
18
|
Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z. Nitric oxide participates in IFN-gamma-induced HUVECs hyperpermeability. Physiol Res 2016; 65:1053-1058. [PMID: 27539106 DOI: 10.33549/physiolres.933237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
Collapse
Affiliation(s)
- C T Ng
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| | | | | | | | | | | |
Collapse
|
19
|
Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. Int J Biochem Cell Biol 2016; 81:307-314. [PMID: 27477311 DOI: 10.1016/j.biocel.2016.07.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/22/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Septic patients with myocardial dysfunction have a 3-fold increase in mortality compared with patients without cardiovascular impairment, and usually show myocarditis, disruption of the contractile apparatus, increased amounts of interstitial collagen, and damaged mitochondria. The presence of nitric oxide and cytokines in cardiac tissue constitute the molecular markers and the intracellular messengers of inflammatory conditions in the heart due to the onset of sepsis and endotoxemia, derived from the nuclear factor-κB pathway activation and proinflammatory gene transcription. Sepsis occurs with an exacerbated inflammatory response that damages tissue mitochondria and impaired bioenergetic processes. The heart consumes 20-30 times its own weight in adenosine triphosphate every day, and 90% of this molecule is derived from mitochondrial oxidative phosphorylation. Cardiac energy management is comprised in sepsis and endotoxemia; both a deficit in energy production and alterations in the source of energy substrates are believed to be involved in impaired cardiac function. Although several hypotheses try to explain the molecular mechanisms underlying the complex condition of sepsis and endotoxemia, the current view is that these syndromes are the result of an intricate balance between prevailing levels of mitochondrial stress, biogenesis/autophagy signaling and mitochondria quality control processes, rather on a single factor. The aim of this review is to discuss current hypothesis of cardiac dysfunction related to energy metabolism and mitochondrial function in experimental models of sepsis and endotoxemia, and to introduce the importance of lipids (mainly cardiolipin) in the mechanism of cardiac energy mismanagement in these inflammatory conditions.
Collapse
Affiliation(s)
- Silvia Alvarez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.
| | - Tamara Vico
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| | - Virginia Vanasco
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina
| |
Collapse
|
20
|
Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I. Human Host Defense Cathelicidin Peptide LL-37 Enhances the Lipopolysaccharide Uptake by Liver Sinusoidal Endothelial Cells without Cell Activation. THE JOURNAL OF IMMUNOLOGY 2016; 196:1338-1347. [DOI: 10.4049/jimmunol.1403203] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
The liver is a major organ that removes waste substances from the blood, and liver sinusoidal endothelial cells (LSECs) are professional scavenger cells, which incorporate and degrade various endogenous and exogenous molecules including pathogenic factor LPS. Mammalian cells express a number of peptide antibiotics that function as effectors in the innate host defense systems. LL-37, a human cathelicidin antimicrobial peptide, has a potent LPS-neutralizing activity and exhibits protective actions on various infection models. However, the effect of LL-37 on the LPS clearance has not been clarified. In this study, to further understand the host-protective mechanism of LL-37, we evaluated the effect of LL-37 on the LPS clearance in vitro. LL-37 enhanced the LPS uptake by human LSECs. Of interest, LL-37 was similarly incorporated into LSECs both in the presence and the absence of LPS, and the incorporated LPS and LL-37 were colocalized in LSECs. Importantly, the uptake of LPS and LL-37 was inhibited by endocytosis inhibitors, heparan sulfate proteoglycan analogs, and glycosaminoglycan lyase treatment of the cells. Moreover, the uptake of LL-37-LPS did not activate TLR4 signaling in both MyD88-dependent and -independent pathways. In addition, the incorporated LL-37-LPS was likely transported to the lysosomes in LSECs. Together these observations suggest that LL-37 enhances the LPS uptake by LSECs via endocytosis through the complex formation with LPS and the interaction with cell-surface heparan sulfate proteoglycans, thereby facilitating the intracellular incorporation and degradation of LPS without cell activation. In this article, we propose a novel function of LL-37 in enhancing LPS clearance.
Collapse
Affiliation(s)
- Kaori Suzuki
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Taisuke Murakami
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Zhongshuang Hu
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hiroshi Tamura
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
- †Laboratory Program Support Consulting Office, Tokyo 160-0023, Japan
| | - Kyoko Kuwahara-Arai
- ‡Department of Bacteriology, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan; and
| | - Toshiaki Iba
- §Department of Emergency and Disaster Medicine, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- *Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
21
|
Effects of incretin agonists on endothelial nitric oxide synthase expression and nitric oxide synthesis in human coronary artery endothelial cells exposed to TNFα and glycated albumin. Pharmacol Rep 2015; 67:69-77. [PMID: 25560578 DOI: 10.1016/j.pharep.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/25/2022]
|
22
|
Mori D, Koide N, Tsolmongyn B, Nagata H, Sano T, Nonami T, Yokochi T. Poly I:C enhances production of nitric oxide in response to interferon-γ via upregulation of interferon regulatory factor 7 in vascular endothelial cells. Microvasc Res 2015; 98:68-73. [PMID: 25582076 DOI: 10.1016/j.mvr.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/22/2014] [Accepted: 01/04/2015] [Indexed: 12/19/2022]
Abstract
The effect of poly I:C on interferon (IFN)-γ-induced nitric oxide (NO) production in vascular endothelial cells was examined using murine aortic endothelial END-D cells. Poly I:C augmented IFN-γ-induced NO production although it alone did not induce the NO production. Poly I:C augmented the NO production via enhanced expression of an inducible NO synthase protein. Poly I:C did not affect the activation of Janus kinase (JAK) 1/2, and signal transducer and activator of transcription (STAT) 1 in IFN-γ signaling. Moreover, there was no significant difference in the IFN-γ-induced interferon regulatory factor (IRF) 1 expression between the presence and absence of poly I:C. Poly I:C led to the activation of IRF7 in END-D cells. Inhibition of poly I:C signaling by amlexanox, an inhibitor of TANK-binding kinase (TBK) 1 and IκB kinase (IKK) ε, abolished the augmentation of IFN-γ-induced NO production. Therefore, poly I:C was suggested to augment IFN-γ-induced NO production at the transcriptional level via enhanced IRF7 activation.
Collapse
Affiliation(s)
- Daiki Mori
- Department of Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Bilegtsaikhan Tsolmongyn
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Hiroshi Nagata
- Department of Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Tsuyoshi Sano
- Department of Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Toshiaki Nonami
- Department of Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan.
| |
Collapse
|
23
|
Macrophages are the determinant of resistance to and outcome of nonlethal Babesia microti infection in mice. Infect Immun 2014; 83:8-16. [PMID: 25312951 DOI: 10.1128/iai.02128-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ(-/-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.
Collapse
|
24
|
Arsenic augments the uptake of oxidized LDL by upregulating the expression of lectin-like oxidized LDL receptor in mouse aortic endothelial cells. Toxicol Appl Pharmacol 2013; 273:651-8. [DOI: 10.1016/j.taap.2013.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/25/2013] [Accepted: 10/04/2013] [Indexed: 10/26/2022]
|
25
|
Hassan F, Islam S, Koide N, Mu MM, Ito H, Mori I, Yoshida T, Yokochi T. Role of p38 Mitogen-Activated Protein Kinase (MAPK) for Vacuole Formation in Lipopolysaccharide (LPS)-Stimulated Macrophages. Microbiol Immunol 2013; 48:807-15. [PMID: 15557738 DOI: 10.1111/j.1348-0421.2004.tb03612.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of p38 mitogen-activated protein kinase (MAPK) on vacuole formation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells was examined. LPS definitely induced the formation of vacuoles in RAW 264.7 cells and SB202190 as a p38 specific inhibitor also induced slight vacuole formation. The simultaneous treatment with LPS and SB202190 induced many more vacuoles in RAW 264.7 cells than the treatment with LPS or SB202190 alone, and the vacuoles were extraordinarily large in size. On the other hand, an inactive inhibitor of p38 MAPK did not augment LPS-induced vacuole formation. Further, the inhibitors of other MAPKs and nuclear factor (NF)-kappaB pathways did not affect it. The extraordinarily large vacuoles in RAW 264.7 cells treated with LPS and SB202190 were possibly formed via fusion of small vacuoles. However, SB202190 did not augment vacuole formation in CpG DNA or interferon (IFN)-gamma-stimulated RAW 264.7 cells. The role of p38 MAPK in the vacuole formation in LPS-stimulated macrophages is discussed.
Collapse
Affiliation(s)
- Ferdaus Hassan
- Department of Microbiology and Immunology and Research Center for Infectious Disease, Aichi Medical University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tsolmongyn B, Koide N, Jambalganiin U, Odkhuu E, Naiki Y, Komatsu T, Yoshida T, Yokochi T. A Toll-like receptor 2 ligand, Pam3CSK4, augments interferon-γ-induced nitric oxide production via a physical association between MyD88 and interferon-γ receptor in vascular endothelial cells. Immunology 2013; 140:352-61. [PMID: 23826757 PMCID: PMC3800440 DOI: 10.1111/imm.12147] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/26/2013] [Accepted: 07/01/2013] [Indexed: 02/06/2023] Open
Abstract
The effect of Pam3CSK4, a Toll-like receptor 2 (TLR2) ligand, on interferon-γ (IFN-γ) -induced nitric oxide (NO) production in mouse vascular endothelial END-D cells was studied. Pre-treatment or post-treatment with Pam3CSK4 augmented IFN-γ-induced NO production via enhanced expression of an inducible NO synthase (iNOS) protein and mRNA. Pam3CSK4 augmented phosphorylation of Janus kinase 1 and 2, followed by enhanced phosphorylation of signal transducer and activator of transcription 1 (STAT1) at tyrosine 701. Subsequently, the enhanced STAT1 activation augmented IFN-γ-induced IFN-regulatory factor 1 expression leading to the iNOS expression. Pam3CSK4 also induced the activation of p38 and subsequent phosphorylation of STAT1 at serine 727. A pharmacological p38 inhibitor abolished the augmentation of IFN-γ-induced NO production by Pam3CSK4. Surprisingly, Pam3CSK4 enhanced a physical association of MyD88 and IFN-γ receptor. Together, these findings suggest that Pam3CSK4 up-regulates IFN-γ signalling in vascular endothelial cells via the physical association between MyD88 and IFN-γ receptor α, and p38-dependent serine 727 STAT1 phosphorylation.
Collapse
Affiliation(s)
- Bilegtsaikhan Tsolmongyn
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Edgar AR, Judith PY, Elisa DSM, Rafael CR. Glucocorticoids and estrogens modulate the NF-κB pathway differently in the micro- and macrovasculature. Med Hypotheses 2013; 81:1078-82. [PMID: 24199951 DOI: 10.1016/j.mehy.2013.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
Estrogens and glucocorticoids have synergistic effects in the micro and macrovasculature of endothelial cells (ECs), having pro-inflammatory effects in the former and inhibiting the expression of adhesion molecules in the latter. The molecular basis of these effects in the endothelium has not yet been clarified. We postulate that the ECs of the micro- and macrovasculature have different non-genomic mechanisms that regulate levels of preexisting complexes of glucocorticoids and estrogens with their respective receptors. Since these receptors are regulated by NF-κB, their expression could be critical to the activation of a pro- or anti-inflammatory response. In the macrovasculature the synergistic effects of estrogens and glucocorticoids on ECs may be through the inhibition of NF-κB, leading to the inhibition of the expression of inflammatory molecules. It seems likely that glucocorticoid-receptor and estrogen-receptor complexes directly bind to NF-κB proteins in the macrovasculature, resulting in the inhibition of an excessive proinflammatory response. Further insights into these processes may help clarify the role of the endothelial cells of different vascular beds during the inflammatory response and chronic inflammation, and thus contribute to the design of more effective therapeutic strategies for the prevention of diseases related to inflammation, including atherosclerosis, systemic lupus erythematosus and rheumatoid arthritis.
Collapse
Affiliation(s)
- Abarca-Rojano Edgar
- Laboratorio de Respiración Celular Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luıis y Díaz Mirón, México, D.F., Mexico.
| | | | | | | |
Collapse
|
28
|
Tanigawa T, Odkhuu E, Morikawa A, Hayashi K, Sato T, Shibata R, Goto F, Ueda H, Yokochi T. Immunological role of prostaglandin E2 production in mouse auditory cells in response to LPS. Innate Immun 2013; 20:639-46. [PMID: 24055878 DOI: 10.1177/1753425913503578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/30/2013] [Indexed: 01/22/2023] Open
Abstract
The effect of LPS on the production of prostaglandin E2 (PGE2) in mouse HEI-OC1 auditory cells was examined. HEI-OC1 auditory cells constitutively produce a small amount of PGE2. LPS augmented the PGE2 production via enhanced cyclooxygenase 2 (COX2) expression. LPS-induced augmentation of COX2 expression was dependent on up-regulation of COX2 mRNA expression. LPS induced the production of TNF-α, but not IL-1β· An anti-TNF-α neutralizing Ab significantly inhibited PGE2 production and COX2 mRNA expression in response to LPS. LPS-induced PGE2 production was prevented by a series of pharmacological signaling inhibitors to NF-κB and MAPKs. Pam3CSK4 as a TLR2 ligand, as well as LPS as a TLR4 ligand, augmented the PGE2 production. However, poly I:C as a TLR3 ligand, imiquimod as a TLR7 ligand and CpG DNA as a TLR9 ligand did not augment it. HEI-OC1 cells expressed TLR2, TLR4 and TLR9, but not TLR3 or TLR7. The putative role of LPS-induced PGE2 production in auditory cells is discussed.
Collapse
Affiliation(s)
- Tohru Tanigawa
- Department of Otolaryngology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Erdenezaya Odkhuu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Akiko Morikawa
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | | | - Takashi Sato
- Department of Otolaryngology, Aichi Gakuin University, Aichi, Japan
| | - Rei Shibata
- Department of Cardiology, Graduate School of Medical Sciences, Nagoya University, Aichi, Japan
| | - Fumiyuki Goto
- Department of Otolaryngology, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Hiromi Ueda
- Department of Otolaryngology, Aichi Medical University School of Medicine, Aichi, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| |
Collapse
|
29
|
Arsenic upregulates the expression of angiotensin II Type I receptor in mouse aortic endothelial cells. Toxicol Lett 2013; 220:70-5. [DOI: 10.1016/j.toxlet.2013.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022]
|
30
|
Terashima T, Haque A, Kajita Y, Takeuchi A, Nakagawa T, Yokochi T. Flavopiridol inhibits interferon-γ-induced nitric oxide production in mouse vascular endothelial cells. Immunol Lett 2012; 148:91-6. [DOI: 10.1016/j.imlet.2012.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 08/30/2012] [Accepted: 10/07/2012] [Indexed: 12/26/2022]
|
31
|
Javanmard SH, Dana N. The effect of interferon γ on endothelial cell nitric oxide production and apoptosis. Adv Biomed Res 2012; 1:69. [PMID: 23326799 PMCID: PMC3544124 DOI: 10.4103/2277-9175.102973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 03/14/2012] [Indexed: 12/18/2022] Open
Abstract
Background: Nitric oxide (NO) is an important molecule in maintaining endothelial survival and normal function. It is a unique mediator, which may promote or suppress both inflammation and apoptosis. Endothelial cell (EC) injury, dysfunction, and death in response to cytokines, especially interferon gamma (IFN-γ), represent the critical event for the initiation of several inflammatory diseases. Objective(s): EC injury or death result in endothelial dysfunction that precedes the development of atherosclerosis and its subsequent vascular events. We examine the effect of different concentrations of IFN-γ on human umbilical vein ECs (HUVECs) NO production and apoptosis. Materials and Methods: HUVECs were cultured at 37°C for 24 h in the absence (control) or presence of 10, 100, and 1000 μg IFN-γ, respectively. The apoptotic cells were determined as annexin V-positive propidium iodide (PI)-negative cells by flow cytometry. Total nitrite concentration was measured in cell cultures supernatant by Griess method. Results: A comparison of the effect of IFN-γ on EC NO production with untreated cells showed that pretreatment of HUVEC with IFN-γ failed to have a significant effect on NO production by these cells at 10 and 100 U/mL, whereas it led to a significant decreased NO production at 1000 U/mL (P < 0.05). The cells stimulated with IFN-γ showed significantly higher apoptotic cells (PI negative and annexin V-positive cells) after 24 h, compared with cells with no stimulations (P < 0.05). Conclusion: IFN-γ has detrimental effects on ECs in high doses. This might be due to inducible NO synthase activation.
Collapse
|
32
|
Tanigawa T, Morikawa A, Hayashi K, Dan K, Tsuchihashi N, Goto F, Ueda H, Yokochi T. Auditory cells produce nitric oxide in response to bacterial lipopolysaccharide. Innate Immun 2012; 19:115-20. [DOI: 10.1177/1753425912450347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The NO productivity of auditory cells in response to LPS was examined by using conditionally immortalized murine HEI-OC1 auditory cells. HEI-OC1 cells produced NO in response to LPS ranging from 0.1 µg/ml to 100 µg/ml in a concentration-dependent manner. LPS at 100 µg/ml exhibited no cytotoxic action against HEI-OC1 cells and led to the highest level of NO production. The NO output in LPS-treated HEI-OC1 cells gradually increased up to 72 h. LPS-induced NO production was mediated by the expression of an inducible NO synthase (iNOS) protein. TLR4 and CD14 was expressed on the cell surface of HEI-OC1 cells. LPS augmented the production of IFN-β in the MyD88-independent pathway of LPS signalling. HEI-OC1 cells produced NO in response to a TLR2 ligand but not TLR3 ligand. LPS was suggested to lead to NO production in auditory cells via iNOS expression. The immunological significance of NO production in auditory cells is discussed.
Collapse
Affiliation(s)
- Tohru Tanigawa
- Department of Otolaryngology Aichi Medical University School of Medicine, Aichi, Japan
| | - Akiko Morikawa
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| | | | - Katsuaki Dan
- Collaborative Research Resources, Core Instrumentation Facility, Keio University, Tokyo, Japan
| | - Nana Tsuchihashi
- Department of Otorhinolaryngology, Graduated School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hiromi Ueda
- Department of Otolaryngology Aichi Medical University School of Medicine, Aichi, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Aichi, Japan
| |
Collapse
|
33
|
Tsukiyama T, Matsuda-Tsukiyama M, Bohgaki M, Terai S, Tanaka S, Hatakeyama S. Ymer acts as a multifunctional regulator in nuclear factor-κB and Fas signaling pathways. Mol Med 2012; 18:587-97. [PMID: 22331027 DOI: 10.2119/molmed.2011.00435] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 01/08/2023] Open
Abstract
The nuclear factor (NF)-κB family of transcription factors regulates diverse cellular functions, including inflammation, oncogenesis and apoptosis. It was reported that A20 plays a critical role in the termination of NF-κB signaling after activation. Previously, we showed that Ymer interacts and collaborates with A20, followed by degradation of receptor-interacting protein (RIP) and attenuation of NF-κB signaling. Here we show the function of Ymer in regulation of several signaling pathways including NF-κB on the basis of results obtained by using Ymer transgenic (Ymer Tg) mice. Ymer Tg mice exhibited impaired immune responses, including NF-κB and mitogen-activated protein kinase (MAPK) activation, cell proliferation and cytokine production, to tumor necrosis factor (TNF)-α, polyI:C or lipopolysaccharide (LPS) stimulation. Ymer Tg mice were more resistant to LPS-induced septic shock than wild-type mice. Transgene of Ymer inhibited the onset of glomerulonephritis in lpr/lpr mice as an autoimmune disease model. In contrast to the inflammatory immune response to LPS, Fas-mediated cell death was strongly induced in liver cells of Ymer Tg mice in which Ymer is abundantly expressed. These findings suggest that Ymer acts as a regulator downstream of several receptors and that Ymer functions as a positive or negative regulator in a signaling pathway-dependent manner.
Collapse
Affiliation(s)
- Tadasuke Tsukiyama
- Department of Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Park HJ, Suh HG, Kim JH, Jang AR, Jung HJ, Lee SD, Ha WT, Lee R, Kim JH, Kim SH, Sung SH, Moon SH, Kim BK, Song H. Immune Modulation Effect of Pig Placenta Extracts in a Mouse Model: Putative Use as a Functional Food Supplement. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.5.701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
35
|
Badamtseren B, Odkhuu E, Koide N, Haque A, Naiki Y, Hashimoto S, Komatsu T, Yoshida T, Yokochi T. Thalidomide inhibits interferon-γ-mediated nitric oxide production in mouse vascular endothelial cells. Cell Immunol 2011; 270:19-24. [DOI: 10.1016/j.cellimm.2011.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/17/2011] [Accepted: 03/21/2011] [Indexed: 01/22/2023]
|
36
|
Koide N, Morikawa A, Odkhuu E, Haque A, Badamtseren B, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Low susceptibility of NC/Nga mice to the lipopolysaccharide-mediated lethality with D-galactosamine sensitization and the involvement of fewer natural killer T cells. Innate Immun 2010; 18:35-43. [PMID: 21113080 DOI: 10.1177/1753425910390400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.
Collapse
Affiliation(s)
- Naoki Koide
- Research Center for Infectious Disease, Aichi Medical University, Aichi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Koide N, Naiki Y, Morikawa A, Tumurkhuu G, Dagvadorj J, Noman ASM, Iftekar-E-Khuda I, Komatsu T, Yoshida T, Yokochi T. Nystatin-induced nitric oxide production in mouse macrophage-like cell line RAW264.7. Microbiol Immunol 2009; 53:295-300. [DOI: 10.1111/j.1348-0421.2009.00118.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
38
|
Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr Hypertens Rev 2008; 4:245-255. [PMID: 20559453 DOI: 10.2174/157340208786241336] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as 'oxidative stress'. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kawanishi N, Tanaka Y, Kato Y, Shiva D, Yano H. Lipopolysaccharide-induced monocyte chemotactic protein-1 is enhanced by suppression of nitric oxide production, which depends on poor CD14 expression on the surface of skeletal muscle. Cell Biochem Funct 2008; 26:486-92. [PMID: 18383566 DOI: 10.1002/cbf.1471] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
It is known that lipopolysaccharide (LPS)-induced monocyte chemotactic protein (MCP)-1 secretion from tissues recruits monocytes from the circulation, but the mechanism of the LPS-induced MCP-1 production in skeletal muscle is largely unexplained. To clarify the effect of LPS on MCP-1 production in skeletal muscle cells, C2C12 cells from a mouse skeletal muscle cell line, and RAW 264.7 cells from a mouse macrophage cell line, were used to assess production of LPS-induced MCP-1, nitric oxide (NO) and interferon (IFN)-beta. In addition, we evaluated inducible NO synthases (iNOS) mRNA expression using RT-PCR, and cell surface expression of CD14 and toll-like receptor (TLR) 4 using flow cytometry. In C2C12 cells, LPS stimulation increased MCP-1 production (p < 0.01), but combined treatment with LPS and NO inducer, diethylammonium (Z)-1-(N,N-diethylamino) diazen-1-ium-1,2-diolate (NONOate), significantly inhibited its production (p < 0.01). LPS stimulation neither induced production of NO nor of IFN-beta, which is an NO inducer. Recombinant IFN-beta stimulation, on the other hand, enhanced LPS-induced NO production (p < 0.01). Interestingly, we found that surface expression of CD14, which regulates IFN-beta production, in C2C12 cells was much lower than that in RAW 264.7 cells, although TLR4 expression on C2C12 cells was similar to that on RAW 264.7 cells. These data suggest that the reduced NO production in response to LPS may depend on low expression of CD14 on the cell surface of skeletal muscle, and that it may enhance LPS-induced MCP-1 production. Together, these functions of skeletal muscle could decrease the risk of bacterial infection by recruitment of monocytes.
Collapse
Affiliation(s)
- Noriaki Kawanishi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Okayama, Japan
| | | | | | | | | |
Collapse
|
40
|
Liu T, Huang Y, Likhotvorik RI, Keshvara L, Hoyt DG. Protein Never in Mitosis Gene A Interacting-1 (PIN1) regulates degradation of inducible nitric oxide synthase in endothelial cells. Am J Physiol Cell Physiol 2008; 295:C819-27. [PMID: 18650263 DOI: 10.1152/ajpcell.00366.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The peptidyl-proline isomerase Protein Never in Mitosis Gene A Interacting-1 (PIN1) increases the level or activity of several transcription factors that can induce the inducible nitric oxide (NO) synthase (iNOS). PIN1 can also regulate mRNA and protein turnover. Here, the effect of depletion of PIN1 on induction of iNOS by Escherichia coli endotoxin (LPS) and interferon-gamma (IFNgamma) in murine aortic endothelial cells (MAEC) was determined. Suppression of PIN1 by 85% with small hairpin RNA enhanced the induction of NO and iNOS protein by LPS-IFNgamma. There was no effect on induction of iNOS mRNA, suggesting a posttranscriptional effect. The enhanced levels of iNOS protein were functionally significant since LPS-IFNgamma was cytotoxic to MAEC lacking PIN1 but not MAEC harboring an inactive control construct, and because cytotoxicity was blocked by the NO synthase inhibitor N(omega)-nitro-L-arginine methyl ester. Consistent with posttranscriptional action, knockdown of PIN1 increased the stability of iNOS protein in cycloheximide-treated cells. Furthermore, loss of iNOS was blocked by the calpain inhibitor carbobenzoxy-valinyl-phenylalaninal but not by the selective proteasome inhibitor epoxomicin. Immunoprecipitation indicated that PIN1 can interact with iNOS. Pull down of iNOS with a wild-type glutathione-S-transferase-PIN1 fusion protein, but not with a mutant of the amino terminal phospho-(serine/threonine)-proline binding WW domain of PIN1, indicated that this domain mediates interaction. The results suggest that PIN1 associates with iNOS and can limit its induction by facilitating calpain-mediated degradation in MAEC.
Collapse
Affiliation(s)
- Tongzheng Liu
- Division of Pharmacology, The Ohio State University College of Pharmacy, 500 West Twelfth Ave., Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
41
|
Zhou Z, Gengaro P, Wang W, Wang XQ, Li C, Faubel S, Rivard C, Schrier RW. Role of NF-kappaB and PI 3-kinase/Akt in TNF-alpha-induced cytotoxicity in microvascular endothelial cells. Am J Physiol Renal Physiol 2008; 295:F932-41. [PMID: 18632801 DOI: 10.1152/ajprenal.00066.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The interaction of tumor necrosis factor (TNF)-alpha with the endothelium is a pivotal factor during endotoxemia. Inflammatory conditions are characterized by the activation of the transcription factor NF-kappaB and the expression of inflammatory mediators. Previous reports indicate that inhibition of NF-kappaB activation during sepsis may be beneficial to the microvasculature. In addition, the phosphatidylinositol-3-kinase/Akt signaling pathway (PI3-kinase/Akt) has been shown to be cytoprotective. In this study, we examined the effect of inhibition of NF-kappaB and PI3-kinase/Akt on cell viability, cytokine production, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) generation by TNF-alpha-treated cultured microvascular endothelial cells. TNF-alpha induced significant cytotoxicity and was associated with increased inflammatory cytokines and NO and increased expression of iNOS. The NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented these increases and significantly attenuated the TNF-alpha-induced cytotoxicity. TNF-alpha also caused PI3-kinase/Akt activation, which was further increased by PDTC and prevented by the PI3-kinase inhibitor, LY294002. Inhibition of PI3-kinase/Akt also significantly potentiated TNF-alpha-mediated cytotoxicity. LY294002 treatment resulted in the appearance of increased apoptosis, compatible with the known anti-apoptotic properties of PI3-kinase/Akt. The present results therefore demonstrate a cytotoxic effect of TNF-alpha in microvascular endothelial cells which can be attenuated by NF-kappaB inhibition. In addition, PI3-kinase/Akt activation during TNF-alpha exposure may represent a compensatory anti-necrotic and anti-apoptotic pathway. The cytoprotective effects of NF-kappaB inhibition and PI3-kinase/Akt activation may have potential implications in the treatment of endotoxemia and septic shock.
Collapse
Affiliation(s)
- Zhu Zhou
- Department of Medicine, University of Colorado at Denver and Health Sciences Center, Box B173, 4200 E 9th Ave., Denver, CO 80262, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Koide N, Morikawa A, Tumurkhuu G, Dagvadorj J, Hassan F, Islam S, Naiki Y, Mori I, Yoshida T, Yokochi T. Lipopolysaccharide and interferon-gamma enhance Fas-mediated cell death in mouse vascular endothelial cells via augmentation of Fas expression. Clin Exp Immunol 2007; 150:553-60. [PMID: 17900305 PMCID: PMC2219375 DOI: 10.1111/j.1365-2249.2007.03499.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The effect of interferon (IFN)-gamma and/or lipopolysaccharide (LPS) on Fas-mediated cell death with anti-Fas agonistic antibody in vascular endothelial cells was examined using a mouse END-D cell line. Anti-Fas agonistic antibody exhibited cytotoxic actions on END-D cells. Fas-mediated cell death was enhanced by LPS or IFN-gamma. The combination of IFN-gamma and LPS significantly enhanced cell death compared to IFN-gamma or LPS alone. IFN-gamma and LPS augmented cell surface expression of Fas, but not tumour necrosis factor (TNF) receptor 1. Inhibitors of p38 mitogen-activated protein kinase (MAPK) prevented augmentation of Fas expression in IFN-gamma and LPS-treated END-D cells. IFN-gamma and LPS-treated END-D cells did not become susceptible to TNF-alpha or nitric oxide-mediated cytotoxicity. IFN-gamma and LPS thus appear to augment selectively Fas expression via activation of p38 MAPK and enhance Fas-mediated cell death in END-D cells. Furthermore, administration of IFN-gamma and LPS into mice induced in vivo expression of Fas on vascular endothelial cells and Fas ligand (FasL) on peripheral blood leucocytes. The relationship between enhancement of Fas-mediated cell death by IFN-gamma and LPS and the development of vascular endothelial injury is discussed.
Collapse
Affiliation(s)
- N Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tumurkhuu G, Koide N, Dagvadorj J, Hassan F, Islam S, Naiki Y, Mori I, Yoshida T, Yokochi T. MnTBAP, a synthetic metalloporphyrin, inhibits production of tumor necrosis factor-α in lipopolysaccharide-stimulated RAW 264.7 macrophages cells via inhibiting oxidative stress-mediating p38 and SAPK/JNK signaling. ACTA ACUST UNITED AC 2007; 49:304-11. [PMID: 17227451 DOI: 10.1111/j.1574-695x.2006.00203.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antioxidants are able to inhibit inflammatory gene expression in response to lipopolysaccharide via down-regulating generation of intracellular reactive oxygen species (ROS) as second messengers. The effect of manganese (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), a synthetic metalloporphyrin with antioxidant activity, on tumor necrosis factor (TNF)-alpha production in lipopolysaccharide-stimulated RAW 264.7 macrophage cells was examined. MnTBAP prevented the generation of intracellular ROS in lipopolysaccharide-stimulated RAW 264.7 cells and further inhibited lipopolysaccharide-induced TNF-alpha production. MnTBAP exclusively prevented the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and stress-activated protein kinase (SAPK/JNK) whereas it did not affect the phosphorylation and activation of nuclear factor-kappaB and extracellular signal regulated kinase 1/2. MnTBAP was suggested to inhibit lipopolysaccharide-induced TNF-alpha production by the prevention of intracellular ROS generation and subsequent inactivation of p38 MAPK and SAPK/JNK.
Collapse
Affiliation(s)
- Gantsetseg Tumurkhuu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Sepsis is the systemic immune response to severe bacterial infection. The innate immune recognition of bacterial and viral products is mediated by a family of transmembrane receptors known as Toll-like receptors (TLRs). In endothelial cells, exposure to lipopolysaccharide (LPS), a major cell wall constituent of Gram-negative bacteria, results in endothelial activation through a receptor complex consisting of TLR4, CD14 and MD2. Recruitment of the adaptor protein myeloid differentiation factor (MyD88) initiates an MyD88-dependent pathway that culminates in the early activation of nuclear factor-kappaB (NF-kappaB) and the mitogen-activated protein kinases. In parallel, a MyD88-independent pathway results in a late-phase activation of NF-kappaB. The outcome is the production of various proinflammatory mediators and ultimately cellular injury, leading to the various vascular sequelae of sepsis. This review will focus on the signaling pathways initiated by LPS binding to the TLR4 receptor in endothelial cells and the coordinated regulation of this pathway.
Collapse
Affiliation(s)
- Shauna M Dauphinee
- Department of Medical Biophysics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | |
Collapse
|
45
|
Vega-Ostertag M, Casper K, Swerlick R, Ferrara D, Harris EN, Pierangeli SS. Involvement of p38 MAPK in the up-regulation of tissue factor on endothelial cells by antiphospholipid antibodies. ACTA ACUST UNITED AC 2005; 52:1545-54. [PMID: 15880836 DOI: 10.1002/art.21009] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the intracellular mechanism involved in the up-regulation of tissue factor (TF) on endothelial cells (ECs) by antiphospholipid antibodies (aPL), we examined the effects of aPL on the transcription, expression, and function of TF, the expression of interleukin-6 (IL-6) and IL-8, the induction of inducible nitric oxide synthase (iNOS), and the phosphorylation of p38 MAPK on human umbilical vein ECs (HUVECs). METHODS Cultured HUVECs were treated with IgG aPL (from patients with antiphospholipid syndrome [APS]) or with control IgG (from normal human serum). Phorbol myristate acetate (PMA) and bacterial lipopolysaccharide (LPS) were used as positive controls. TF expression was determined on the surface of HUVECs using an enzyme-linked immunosorbent assay (ELISA). TF activity was determined with the use of a chromogenic assay in cell lysates, and TF messenger RNA (mRNA) was determined by real-time quantitative polymerase chain reaction. Phosphorylation of p38 MAPK and induction of iNOS were determined by Western blotting, and levels of IL-6 and IL-8 were determined by ELISA. RESULTS PMA, LPS, and aPL significantly increased the expression of TF compared with controls. This up-regulation was significantly inhibited by SB203580 (a specific inhibitor of p38 MAPK) and by MG132 (a specific inhibitor of NF-kappaB). TF activity was significantly increased by treatment with IgG aPL and this effect was also inhibited by SB203580. Incubation of HUVECs with aPL increased TF mRNA 2-15-fold; these effects were abrogated by SB203580. IgG aPL induced significant phosphorylation of p38 MAPK and produced iNOS on HUVECs in a time-dependent manner. Treatment with IgG aPL also induced increased expression of IL-6 and IL-8 on HUVECs. CONCLUSION Our data show that aPL induces significant increases in TF transcription, function, and expression, in IL-6 and IL-8 up-regulation, and in iNOS expression on HUVECs and that these processes involve phosphorylation of p38 MAPK and activation of NF-kappaB. Understanding intracellular events in aPL-mediated EC activation may help in designing new targeted therapies for thrombosis in APS.
Collapse
|
46
|
Huang H, Rose JL, Hoyt DG. p38 Mitogen-activated protein kinase mediates synergistic induction of inducible nitric-oxide synthase by lipopolysaccharide and interferon-gamma through signal transducer and activator of transcription 1 Ser727 phosphorylation in murine aortic endothelial cells. Mol Pharmacol 2004; 66:302-11. [PMID: 15266021 DOI: 10.1124/mol.66.2.302] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) can be produced in large amounts by up-regulation of inducible NO synthase (iNOS). iNOS is induced in many cell types by pro-inflammatory agents, such as bacterial lipopolysaccharide (LPS) and cytokines. Overproduction by endothelial cells (EC) may contribute to vascular diseases. In contrast to macrophages, murine aortic endothelial cells (MAEC) produced no NO in response to either LPS or interferon gamma (IFNgamma), whereas combined treatment was highly synergistic. In this study, we investigated the mechanisms of synergy in MAEC. LPS activated p38 mitogen-activated protein kinase (MAPK), whereas IFNgamma activated Janus kinase and signal transducer and activator of transcription-1 (STAT1). Both pathways were required for iNOS induction because herbimycin A, a tyrosine kinase inhibitor, and 4-(4-fluorophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole. HCl (SB202190), a p38 MAPKalpha/beta inhibitor, each blocked induction. LPS increased the phosphorylation of STAT1alpha at serine 727 in IFNgamma-treated MAEC. SB202190, but not 2'-amino-3'-methoxyflavone (PD98059), an inhibitor of p44/p42 MAPK activation, abolished the phosphorylation and induction of iNOS. SB202190 did not affect tyrosine 701 phosphorylation or nuclear translocation of STAT1. However, STAT1-DNA binding activity was reduced by SB202190. Although LPS stimulated the DNA binding activity of nuclear factor kappaB and activating protein-1, combined treatment with IFNgamma did not enhance activation, and SB202190 did not inhibit it. The results indicate that p38 MAPKalpha and/or beta are required for the synergistic induction of iNOS by LPS and IFNgamma in MAEC. Furthermore, the synergistic induction is associated with phosphorylation of STAT1alpha serine 727 in MAEC. This observation may explain potentially beneficial effects of p38 MAPK inhibitors in vascular inflammatory diseases.
Collapse
Affiliation(s)
- Hong Huang
- Division of Pharmacology, The Ohio State University College of Pharmacy, and the Dorothy M. Davis Heart and Lung Research Institute, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
47
|
Morikawa A, Koide N, Sugiyama T, Mu MM, Hassan F, Islam S, Ito H, Mori I, Yoshida T, Yokochi T. The enhancing action of d-galactosamine on lipopolysaccharide-induced nitric oxide production in RAW 264.7 macrophage cells. ACTA ACUST UNITED AC 2004; 41:211-8. [PMID: 15196570 DOI: 10.1016/j.femsim.2004.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/25/2004] [Accepted: 03/12/2004] [Indexed: 11/18/2022]
Abstract
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.
Collapse
Affiliation(s)
- Akiko Morikawa
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Advances in our understanding of the molecular mechanisms involved in the constitutive and regulated expression of endothelial nitric oxide synthase (eNOS) mRNA expression present a new level of complexity to the study of endothelial gene regulation in health and disease. Recent studies highlight the contribution of both transcription and RNA stability to net steady-state mRNA levels of eNOS in vascular endothelium, introducing a new paradigm to gene regulation in the injured blood vessel. Constitutive eNOS expression is dependent on basal transcription machinery in the core promoter, involving positive and negative protein–protein and protein–DNA interactions. Chromatin-based mechanisms and epigenetic events also regulate expression of eNOS at the transcriptional level in a cell-restricted fashion. Although constitutively active, important physiological and pathophysiologic stimuli alter eNOS gene transcription rates. For instance, eNOS transcription rates increase in response to lysophosphatidylcholine, shear stress, and TGF-β, among others. Under basal conditions, eNOS mRNA is extremely stable. Surprisingly, posttranscriptional mechanisms have emerged as important regulatory pathways in the observed decreases in eNOS expression in some settings. In models of inflammation, proliferation/injury, oxidized low-density lipoprotein treatment, and hypoxia, eNOS mRNA destabilization plays a significant role in the rapid downregulation of eNOS mRNA levels.
Collapse
Affiliation(s)
- Sharon C Tai
- Renal Division and Department of Medicine, St. Michael's Hospital and University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
49
|
WU FENG, CEPINSKAS GEDIMINAS, WILSON JOHNX, TYML KAREL. Nitric Oxide Attenuates but Superoxide Enhances iNOS Expression in Endotox in- and IFNγ-Stimulated Skeletal Muscle Endothelial Cells. Microcirculation 2001. [DOI: 10.1111/j.1549-8719.2001.tb00188.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|