1
|
Javia BM, Gadhvi MS, Vyas SJ, Ghelani A, Wirajana N, Dudhagara DR. A review on L-methioninase in cancer therapy: Precision targeting, advancements and diverse applications for a promising future. Int J Biol Macromol 2024; 265:130997. [PMID: 38508568 DOI: 10.1016/j.ijbiomac.2024.130997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Cancer remains a global health challenge, demanding novel therapeutic options due to the debilitating side effects of conventional treatments on healthy tissues. The review highlights the potential of L-methioninase, a pyridoxal-5-phosphate (PLP)-dependent enzyme, as a promising avenue in alternative cancer therapy. L-methioninase offers a unique advantage, its ability to selectively target and inhibit the growth of cancer cells without harming healthy cells. This selectivity arises because tumor cells lack an essential enzyme called methionine synthase, which healthy cells use to make the vital amino acid L-methionine. Several sources harbor L-methioninase, including bacteria, fungi, plants, and protozoa. Future research efforts can explore and exploit this diverse range of sources to improve the therapeutic potential of L-methioninase in the fight against cancer. Despite challenges, research actively explores microbial L-methioninase for its anticancer potential. This review examines the enzyme's side effects, advancements in combination therapies, recombinant technologies, polymer conjugation and novel delivery methods like nanoparticles, while highlighting the success of oral administration in preclinical trials. Beyond its promising role in cancer therapy, L-methioninase holds potential applications in food science, antioxidants, and various health concerns like diabetes, cardiovascular issues, and neurodegenerative diseases. This review provides a piece of current knowledge and future prospects of L-methioninase, exploring its diverse therapeutic potential.
Collapse
Affiliation(s)
- Bhumi M Javia
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Megha S Gadhvi
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Suhas J Vyas
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India
| | - Anjana Ghelani
- Shree Ramkrishna Institute of Computer Education and Applied Sciences, Surat 395 001, Gujarat, India
| | - Nengah Wirajana
- Faculty of Mathematics and Natural Sciences, Udayana University, Jimbaran Campus, Kuta-Badung, Bali, Indonesia
| | - Dushyant R Dudhagara
- Department of Life Sciences, Bhakta Kavi Narsinh Mehta University, Khadiya, 362263 Junagadh, Gujarat, India.
| |
Collapse
|
2
|
Kaneda T, Watanabe M, Honda H, Yamamoto M, Inagaki T, Hironaka S. Fourier transform infrared spectroscopy and machine learning for Porphyromonas gingivalis detection in oral bacteria. ANAL SCI 2024; 40:691-699. [PMID: 38374487 DOI: 10.1007/s44211-023-00501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/21/2023] [Indexed: 02/21/2024]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus, is the primary pathogen in periodontitis. Herein, we cultivated strains of oral bacteria, including P. gingivalis and the oral commensal bacteria Actinomyces viscosus and Streptococcus mutans, and recorded the infrared absorption spectra of the gases released by the cultured bacteria at a resolution of 0.5 cm-1 within the wavenumber range of 500-7500 cm-1. From these spectra, we identified the infrared wavenumbers associated with characteristic absorptions in the gases released by P. gingivalis using a decision tree-based machine learning algorithm. Finally, we compared the obtained absorbance spectra of ammonia (NH3) and carbon monoxide (CO) using the HITRAN database. We observed peaks at similar positions in the P. gingivalis gases, NH3, and CO spectra. Our results suggest that P. gingivalis releases higher amounts of NH3 and CO than A. viscosus and S. mutans. Thus, combining Fourier transform infrared spectroscopy with machine learning enabled us to extract the specific wavenumber range that differentiates P. gingivalis from a vast dataset of peak intensity ratios. Our method distinguishes the gases from P. gingivalis from those of other oral bacteria and provides an effective strategy for identifying P. gingivalis in oral bacteria. Our proposed methodology could be valuable in clinical settings as a simple, noninvasive pathogen diagnosis technique.
Collapse
Affiliation(s)
- Tomomi Kaneda
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Masahiro Watanabe
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.
| | - Hidehiko Honda
- Faculty of Arts and Sciences, Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| | - Masato Yamamoto
- Faculty of Arts and Sciences, Fujiyoshida, Showa University, 4562, Kami-yoshida, Fuji-yoshida-shi, Yamanashi, 403-0005, Japan
| | - Takae Inagaki
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Shouji Hironaka
- Department of Hygiene and Oral Health, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
3
|
Hara T, Sakanaka A, Lamont RJ, Amano A, Kuboniwa M. Interspecies metabolite transfer fuels the methionine metabolism of Fusobacterium nucleatum to stimulate volatile methyl mercaptan production. mSystems 2024; 9:e0076423. [PMID: 38289043 PMCID: PMC10878106 DOI: 10.1128/msystems.00764-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/19/2023] [Indexed: 02/21/2024] Open
Abstract
The major oral odor compound methyl mercaptan (CH3SH) is strongly associated with halitosis and periodontitis. CH3SH production stems from the metabolism of polymicrobial communities in periodontal pockets and on the tongue dorsum. However, understanding of CH3SH-producing oral bacteria and their interactions is limited. This study aimed to investigate CH3SH production by major oral bacteria and the impact of interspecies interactions on its generation. Using a newly constructed large-volume anaerobic noncontact coculture system, Fusobacterium nucleatum was found to be a potent producer of CH3SH, with that production stimulated by metabolic interactions with Streptococcus gordonii, an early dental plaque colonizer. Furthermore, analysis of extracellular amino acids using an S. gordonii arginine-ornithine antiporter (ArcD) mutant demonstrated that ornithine excreted from S. gordonii is a key contributor to increased CH3SH production by F. nucleatum. Further study with 13C, 15N-methionine, as well as gene expression analysis, revealed that ornithine secreted by S. gordonii increased the demand for methionine through accelerated polyamine synthesis by F. nucleatum, leading to elevated methionine pathway activity and CH3SH production. Collectively, these findings suggest that interaction between S. gordonii and F. nucleatum plays a key role in CH3SH production, providing a new insight into the mechanism of CH3SH generation in oral microbial communities. A better understanding of the underlying interactions among oral bacteria involved in CH3SH generation can lead to the development of more appropriate prophylactic approaches to treat halitosis and periodontitis. An intervention approach like selectively disrupting this interspecies network could also offer a powerful therapeutic strategy.IMPORTANCEHalitosis can have a significant impact on the social life of affected individuals. Among oral odor compounds, CH3SH has a low olfactory threshold and halitosis is a result of its production. Recently, there has been a growing interest in the collective properties of oral polymicrobial communities, regarded as important for the development of oral diseases, which are shaped by physical and metabolic interactions among community participants. However, it has yet to be investigated whether interspecies interactions have an impact on the production of volatile compounds, leading to the development of halitosis. The present findings provide mechanistic insights indicating that ornithine, a metabolite excreted by Streptococcus gordonii, promotes polyamine synthesis by Fusobacterium nucleatum, resulting in a compensatory increase in demand for methionine, which results in elevated methionine pathway activity and CH3SH production. Elucidation of the mechanisms related to CH3SH production is expected to lead to the development of new strategies for managing halitosis.
Collapse
Affiliation(s)
- Takeshi Hara
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Advanced Technology Institute, Mandom Corporation, Osaka, Japan
| | - Akito Sakanaka
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Richard J. Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Atsuo Amano
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masae Kuboniwa
- Department of Preventive Density, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
4
|
Gao X, Yang F, Cheng J, Xu Z, Zang B, Li G, Xie X, Luo W. Emission of volatile sulphur compounds during swine manure composting: Source identification, odour mitigation and assessment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:129-137. [PMID: 36088860 DOI: 10.1016/j.wasman.2022.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to identify the sources of volatile sulphur compounds (VSCs) and evaluate their mitigation by ferric oxide (Fe2O3) during swine manure composting. Four chemicals, including l-cysteine, l-methionine, sodium sulphite, and sodium sulphate, were further added to simulate organic and inorganic sulphur-containing substances in swine manure to track VSC sources during composting. Results show that sulphur simulants induced the emission of six common VSCs, including methyl sulphide (Me2S), dimethyl sulphide (Me2SS), carbonyl sulphide (COS), carbon disulphide (CS2), methyl mercaptan (MeSH), and ethyl mercaptan (EtSH), during swine manure composting. Of them, COS, CS2, MeSH and Me2SS were predominantly contributed by the biodegradation of methionine and cysteine, while Me2S and EtSH were dominated by the reduction of sulphite and sulphate. Further Fe2O3 addition at 1.5 % of total wet weight of composting materials immobilized elemental sulphur and inhibited sulphate reduction to reduce the emission of VSCs by 46.7-80.9 %. Furthermore, odour assessment indicated that adding Fe2O3 into composting piles significantly reduced the odour intensity level to below 4, the odour value of VSCs by 47.1-81.3 %, and thus the non-carcinogenic risk by 68.4 %.
Collapse
Affiliation(s)
- Xingzu Gao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feiyu Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingwen Cheng
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bing Zang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China
| | - Xiaomin Xie
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sanya Institute of China Agricultural University, China Agricultural University, Sanya 572025, China.
| |
Collapse
|
5
|
Anufrieva NV, Morozova EA, Revtovich SV, Bazhulina NP, Timofeev V, Tkachev YV, Faleev N, Nikulin AD, Demidkina TV. Serine 339 in the Catalysis of γ- and β-Elimination Reactions. Acta Naturae 2022; 14:50-61. [PMID: 35923564 PMCID: PMC9307983 DOI: 10.32607/actanaturae.11242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
Serine 339 of the active site of Citrobacter freundii
methionine γ-lyase (MGL) is a conserved amino acid in most
pyridoxal 5’-phosphate-dependent enzymes of the cystathionine
β-lyase subclass, to which MGL belongs. The reaction mechanism of the
MGL-catalyzed γ-elimination reaction is poorly explored. We replaced
serine 339 with alanine using site-directed mutagenesis. The replacement of
serine 339 with alanine led to a significant (by two orders of magnitude)
decrease in efficiency in the catalysis of the γ- and β-elimination
reactions by the mutant form of the enzyme. The exchange rates of the C-α-
and C-β-protons in the amino acids in complexes consisting of the enzyme
and competitive inhibitors decreased by one-two orders of magnitude. The
spectral characteristics of the mutant form indicated that the replacement did
not lead to significant changes in the conformation and tautomerism of MGL
internal aldimine. We crystallized the holoenzyme and determined its spatial
structure at 1.7 E resolution. The replacement of serine 339 with alanine did
not affect the overall course of the polypeptide chain of the MGL subunit and
the tetrameric enzyme structure. An analysis of the obtained kinetic and
spectral data, as well as the known spatial structures of C. freundii
MGL, indicates that serine 339 is necessary for efficient catalysis of
γ- and β-elimination reactions at the stage of C-α-proton
abstraction from the external aldimine, the γ-elimination reaction at the
stages of coenzyme C4’-atom protonation, and C-β-proton abstraction
from a ketimine intermediate.
Collapse
Affiliation(s)
- N. V. Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - E. A. Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - S. V. Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N. P. Bazhulina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - V.P. Timofeev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - Ya. V. Tkachev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - N.G. Faleev
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Moscow, 119991 Russia
| | - A. D. Nikulin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - T. V. Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, 119991 Russia
| |
Collapse
|
6
|
Philipopoulos GP, Tat J, Chan A, Jiang J, Mukai D, Burney T, Doosty M, Mahon S, Patel HH, White CW, Brenner M, Lee J, Boss GR. Methyl mercaptan gas: mechanisms of toxicity and demonstration of the effectiveness of cobinamide as an antidote in mice and rabbits. Clin Toxicol (Phila) 2022; 60:615-622. [PMID: 34989638 PMCID: PMC9662850 DOI: 10.1080/15563650.2021.2017949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/03/2022]
Abstract
CONTEXT Methyl mercaptan (CH3SH) is a colorless, toxic gas with potential for occupational exposure and used as a weapon of mass destruction. Inhalation at high concentrations can result in dyspnea, hypoventilation, seizures, and death. No specific methyl mercaptan antidote exists, highlighting a critical need for such an agent. Here, we investigated the mechanism of CH3SH toxicity, and rescue from CH3SH poisoning by the vitamin B12 analog cobinamide, in mammalian cells. We also developed lethal CH3SH inhalation models in mice and rabbits, and tested the efficacy of intramuscular injection of cobinamide as a CH3SH antidote. RESULTS We found that cobinamide binds to CH3SH (Kd = 84 µM), and improved growth of cells exposed to CH3SH. CH3SH reduced cellular oxygen consumption and intracellular ATP content and activated the stress protein c-Jun N-terminal kinase (JNK); cobinamide reversed these changes. A single intramuscular injection of cobinamide (20 mg/kg) rescued 6 of 6 mice exposed to a lethal dose of CH3SH gas, while all six saline-treated mice died (p = 0.0013). In rabbits exposed to CH3SH gas, 11 of 12 animals (92%) treated with two intramuscular injections of cobinamide (50 mg/kg each) survived, while only 2 of 12 animals (17%) treated with saline survived (p = 0.001). CONCLUSION We conclude that cobinamide could potentially serve as a CH3SH antidote.
Collapse
Affiliation(s)
| | - John Tat
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - Jingjing Jiang
- Department of Medicine, University of California, San Diego, La Jolla, USA
| | - David Mukai
- Beckman Laser Institute, University of California, Irvine, USA
| | - Tanya Burney
- Beckman Laser Institute, University of California, Irvine, USA
| | - Melody Doosty
- Beckman Laser Institute, University of California, Irvine, USA
| | - Sari Mahon
- Beckman Laser Institute, University of California, Irvine, USA
| | - Hemal H. Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, La Jolla, USA
| | - Carl W. White
- Department of Pediatrics, University of Colorado, Aurora, CO, USA
| | - Matthew Brenner
- Beckman Laser Institute, University of California, Irvine, USA
| | - Jangwoen Lee
- Beckman Laser Institute, University of California, Irvine, USA
| | - Gerry R. Boss
- Department of Medicine, University of California, San Diego, La Jolla, USA
| |
Collapse
|
7
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
8
|
Okawa A, Handa H, Yasuda E, Murota M, Kudo D, Tamura T, Shiba T, Inagaki K. Characterization and application of l-methionine γ-lyase Q349S mutant enzyme with an enhanced activity toward l-homocysteine. J Biosci Bioeng 2021; 133:213-221. [PMID: 34953671 DOI: 10.1016/j.jbiosc.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
l-Methionine γ-lyse (MGL), a pyridoxal 5'-phosphate-dependent enzyme, catalyzes the α,γ-elimination of l-methionine (l-Met) and l-homocysteine (l-Hcy) to produce α-keto acids, thiols, and ammonia. Previously, various mutant enzymes of Pseudomonas putida MGL (PpMGL) were prepared to identify a homocysteine (Hcy)-specific enzyme that would assist the diagnosis of homocystinuria. Among the mutat enzymes the Q349S mutant exhibited high degradation activity toward l-Hcy. In the present study, PpMGL Q349S was characterized; the results suggested that it could be applied to determine the amount of l-Hcy. Compared to the wild-type PpMGL, specific activities of the Q349S mutant with l-Hcy and l-Met were 1.5 and 0.7 times, respectively. Additionally, we confirmed that l-Hcy in plasma samples could be accurately detected using the Q349S mutant by preincubating it with cysteine desulfurase (CsdA). Furthermore, we determined the X-ray crystal structure of PpMGL Q349S l-Met or l-Hcy complexes Michaelis complex, germinal diamine, and external aldimine at 2.25-2.40 Å. These 3D structures showed that the interaction partner of the β-hydroxyl group of Thr355 in the wild-type PpMGL was changed to the carboxyl group of the Hcy-PLP external aldimine in the Q349S mutant. The interaction of Ser349 and Arg375 was different between l-Met and l-Hcy recognition, indicating that it was important for the recognition of the carboxyl group of the substrate.
Collapse
Affiliation(s)
- Atsushi Okawa
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Haruhisa Handa
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Eri Yasuda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Masaki Murota
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | - Daizo Kudo
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.
| |
Collapse
|
9
|
Sá C, Matos D, Pires A, Cardoso P, Figueira E. Effects of volatile sulfur compounds on growth and oxidative stress of Rhizobium leguminosarum E20-8 exposed to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149478. [PMID: 34391142 DOI: 10.1016/j.scitotenv.2021.149478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 08/01/2021] [Indexed: 05/27/2023]
Abstract
Volatile sulfur compounds (VSCs) have been reported to be produced by many bacterial species. Depending on the compound, they can negatively influence some organisms (fungi, nematodes and insects) or promote plant growth. Some of these compounds have also been hypothesized to play a role in bacterial response to cadmium (Cd) induced stress. This study aimed to assess the potential effects of four VSCs (dimethyl sulfide - DMS, dimethyl disulfide - DMDS, dimethyl trisulfide - DMTS and methyl thioacetate - MTA) on the growth and oxidative status of Rhizobium sp. strain E20-8 via airborne exposure, in order to test the hypothesis that these volatile compounds can influence growth and tolerance to cadmium. Our results show that, overall, the tested compounds triggered similar antioxidant mechanisms in Rhizobium in the presence of Cd. The protective effect at the membrane level by DMDS and DMTS particularly demonstrates the antioxidant effect of these volatiles, with reductions of up to 50% (DMS) and 80% (DMTS) in lipid peroxidation levels. Due to the volatile nature of these compounds, the low concentrations tested (1 nM to 100 mM), and considering that they are released by bacteria and other organisms such as plants, it is possible that these effects also occur in the soil ecosystem.
Collapse
Affiliation(s)
- Carina Sá
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Matos
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Adília Pires
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cardoso
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Etelvina Figueira
- CESAM, Center for Environmental and Marine Studies & Department of Biology, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
10
|
Ikeda K, Kezuka Y, Nonaka T, Yonezawa T, Osawa M, Katoh E. Comprehensive Approach of 19F Nuclear Magnetic Resonance, Enzymatic, and In Silico Methods for Site-Specific Hit Selection and Validation of Fragment Molecules that Inhibit Methionine γ-Lyase Activity. J Med Chem 2021; 64:14299-14310. [PMID: 34582207 DOI: 10.1021/acs.jmedchem.1c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fragment-based screening using 19F NMR (19F-FS) is an efficient method for exploring seed and lead compounds for drug discovery. Here, we demonstrate the utility and merits of using 19F-FS for methionine γ-lyase-binding fragments, together with a 19F NMR-based competition and mutation assay, as well as enzymatic and in silico methods. 19F NMR-based assays provided useful information on binding between 19F-FS hit fragments and target proteins. Although the 19F-FS and enzymatic assay were weakly correlated, they show that the 19F-FS hit fragments contained compounds with inhibitory activity. Furthermore, we found that in silico calculations partially account for the differences in activity levels between the 19F-FS hits as per NMR analysis. A comprehensive approach combining the 19F-FS and other methods not only identified fragment hits but also distinguished structural differences in chemical groups with diverse activity levels.
Collapse
Affiliation(s)
- Kazuyoshi Ikeda
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichiro Kezuka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Takamasa Nonaka
- Division of Structural Biology, Department of Pharmaceutical Sciences, School of Pharmacy, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan
| | - Tomoki Yonezawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masanori Osawa
- Division of Physics for Life Functions, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Etsuko Katoh
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
11
|
Ishikawa M, Murata T, Okamoto M, Miyanohara M, Yamashita M, Hanada N, Senpuku H, Shibuya K. Inhibitory effect of black cumin (Nigella sativa) seed essential oil on Fusobacterium nucleatum L-methionine-γ-lyase (L-methioninase) activity. FEMS Microbiol Lett 2021; 368:6246423. [PMID: 33885765 DOI: 10.1093/femsle/fnab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/14/2021] [Indexed: 12/28/2022] Open
Abstract
The enzyme L-methionine-γ-lyase is commonly found in a wide range of bacteria and catalyzes the α-elimination and γ-elimination of L-methionine to produce methyl mercaptan, α-ketobutyrate and ammonia. Black cumin seed essential oil (BC oil) reportedly exhibits deodorizing activity against methyl mercaptan. Therefore, we hypothesized that BC oil may also suppress methyl mercaptan production. In this study, we aimed to evaluate the inhibitory effect of BC oil on L-methionine-γ-lyase activity in Fusobacterium nucleatum. Recombinant L-methionine-γ-lyase was incubated under appropriate conditions with BC oil and its constituent thymoquinone. To analyze L-methionine-γ-lyase activity, α-ketobutyric acid and ammonia concentrations were determined. The concentrations of α-ketobutyric acid and ammonia were significantly decreased by 10 µg mL-1 of BC oil (P < 0.01) and 16.4 µg/mL of thymoquinone (P < 0.05). An enzyme kinetic assay showed a mixed inhibition pattern between L-methionine-γ-lyase and thymoquinone. In conclusion, BC oil not only had a deodorizing effect against methyl mercaptan but also an inhibitory effect on methyl mercaptan production through the suppression of L-methionine-γ-lyase activity. Thymoquinone may be mainly responsible for these effects of BC oil. Thus, application of natural BC oil may be adapted not only for medical use but also in other areas of life.
Collapse
Affiliation(s)
- Masao Ishikawa
- Laboratory for Oral Health Science, 370-7 Higashikoiso Oiso-Machi, Naka-Gun, Kanagawa 255-0004, Japan.,Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Takatoshi Murata
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Masaaki Okamoto
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Mayu Miyanohara
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Mamiko Yamashita
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Nobuhiro Hanada
- Department of Translational Research, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama 230-8501, Japan
| | - Hidenobu Senpuku
- National Institute of Infectious Diseases Department of Bacteriology I, 1-23-1 Toyama, Shinjuku-Ku, Tokyo 162-8640, Japan
| | - Koji Shibuya
- Laboratory for Oral Health Science, 370-7 Higashikoiso Oiso-Machi, Naka-Gun, Kanagawa 255-0004, Japan
| |
Collapse
|
12
|
Foo LH, Balan P, Pang LM, Laine ML, Seneviratne CJ. Role of the oral microbiome, metabolic pathways, and novel diagnostic tools in intra-oral halitosis: a comprehensive update. Crit Rev Microbiol 2021; 47:359-375. [PMID: 33653206 DOI: 10.1080/1040841x.2021.1888867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Halitosis or oral malodor is one of the most common reasons for the patients' visit to the dental clinic, ranking behind only dental caries and periodontitis. In the present times, where social and professional communications are becoming unavoidable, halitosis has become a concern of growing importance. Oral malodor mostly develops due to the putrefaction of substrates by the indigenous bacterial populations. Although culture-based studies have provided adequate information on halitosis, the high throughput omics technologies have amplified the resolution at which oral microbial community can be examined and has led to the detection of a broader range of taxa associated with intra-oral halitosis (IOH). These microorganisms are regulated by the interactions of their ecological processes. Thus to develop effective treatment strategies, it is important to understand the microbial basis of halitosis. In the current review, we provide an update on IOH in context to the role of the oral microbiome, metabolic pathways involved, and novel diagnostic tools, including breathomics. Understanding oral microbiota associated with halitosis from a broader ecological perspective can provide novel insights into one's oral and systemic health. Such information can pave the way for the emergence of diagnostic tools that can revolutionize the early detection of halitosis and various associated medical conditions.
Collapse
Affiliation(s)
- Lean Heong Foo
- Department of Restorative Dentistry, Periodontic Unit, National Dental Centre Singapore, Singapore, Singapore.,Oral Health ACP, Duke NUS Medical School, Singapore, Singapore
| | - Preethi Balan
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore.,Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| | - Li Mei Pang
- Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Chaminda Jayampath Seneviratne
- Oral Health ACP, Duke NUS Medical School, Singapore, Singapore.,Singapore Oral Microbiomics Initiative (SOMI), National Dental Research Institute Singapore (NDRIS), National Dental Centre Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Zong YW, Cheng L, Guo Q, Zhou XD, Ren B. [Research progress on the regulation of phenolic compounds of traditional Chinese herbs on oral microbes]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:319-323. [PMID: 32573142 PMCID: PMC7296369 DOI: 10.7518/hxkq.2020.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 10/19/2019] [Indexed: 02/05/2023]
Abstract
Phenolic compounds are widely found in natural Chinese medicinal plants and have excellent pharmacological properties, such as antioxidation and anti-inflammation. They are the main pharmacological components of many medicinal Chinese herbs. Oral microbiota, especially its composition and metabolism, is highly related to the balance of oral microecology and plays a key role in the occurrence and development of oral diseases. Recent studies have shown that phenolic compounds of traditional Chinese herbs can prevent and treat oral diseases, such as caries, periodontal disease, and oral mucosal infection, by regulating the composition, metabolites, and virulence of oral microorganisms. This review will summarize and discuss the regulation of phenolic compounds on oral microbes.
Collapse
Affiliation(s)
- Ya-Wen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Roslund K, Lehto M, Pussinen P, Groop PH, Halonen L, Metsälä M. On-line profiling of volatile compounds produced in vitro by pathogenic oral bacteria. J Breath Res 2019; 14:016010. [PMID: 31698353 DOI: 10.1088/1752-7163/ab5559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infections by oral pathogens are one of the most common health problems worldwide. Due to the intimate connection between exhaled breath and the oral cavity, breath analysis could potentially be used to diagnose these infections. However, little is known about the volatile emissions of important oral pathogens that are connected with gingivitis and periodontitis. In this study, we have performed in vitro headspace measurements on four important oral pathogens (P. gingivalis, T. forsythia, P. intermedia and P. nigrescens) using proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS). Some of the most abundant compounds produced by the bacteria include hydrogen sulphide, methanethiol, acetone, dimethylsulphide, isoprene, cyclopentanone and indole as tentatively assigned from the mass spectra. Several other abundant mass signals were recorded but the assignment of these is less certain. Some of the bacterial species can be separated from each other by the emitted volatile fingerprints. The results of this study can be used in potential development of a diagnostic breath test for oral infections. In addition, as several of the measured compounds are known to be toxic, the results point to an intriguing possibility of studying the connection between the bacterial virulence and the emitted volatile compounds.
Collapse
Affiliation(s)
- Kajsa Roslund
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
15
|
Ye W, Zhang Y, He M, Zhu C, Feng XP. Relationship of tongue coating microbiome on volatile sulfur compounds in healthy and halitosis adults. J Breath Res 2019; 14:016005. [DOI: 10.1088/1752-7163/ab47b4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Revtovich S, Morozova E, Kulikova V, Koval V, Anufrieva N, Nikulin A, Demidkina T. Sulfoxides of sulfur-containing amino acids are suicide substrates of Citrobacter freundii methionine γ-lyase. Structural bases of the enzyme inactivation. Biochimie 2019; 168:190-197. [PMID: 31711941 DOI: 10.1016/j.biochi.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/05/2019] [Indexed: 11/18/2022]
Abstract
Interactions of Citrobacter freundii methionine γ-lyase (MGL) with sulfoxides of typical substrates were investigated. It was found that sulfoxides are suicide substrates of the enzyme. The products of the β- and γ-elimination reactions of sulfoxides, thiosulfinates, oxidize three cysteine residues of the enzyme. Three-dimensional structures of MGL inactivated by dimethyl thiosulfinate and diethyl thiosulfinate were determined at 1.46 Å and 1.59 Å resolution. Analysis of the structures identified SH groups oxidized by thiosulfinates and revealed the structural bases of MGL inactivation. The extent of inactivation of MGL in the catalysis of the β-elimination reaction depends on the length of the «tail» at oxidized Cys115. Oxidation of Cys115 results in MGL incapable to catalyze the stage of methyl mercaptan elimination of the physiological reaction.
Collapse
Affiliation(s)
- Svetlana Revtovich
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia.
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Vasiliy Koval
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Natalya Anufrieva
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexei Nikulin
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Suzuki N, Yoneda M, Takeshita T, Hirofuji T, Hanioka T. Induction and inhibition of oral malodor. Mol Oral Microbiol 2019; 34:85-96. [PMID: 30927516 DOI: 10.1111/omi.12259] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/14/2019] [Accepted: 03/27/2019] [Indexed: 02/04/2023]
Abstract
Volatile sulfur compounds (VSCs) such as hydrogen sulfide (H2 S) and methyl mercaptan (CH3 SH) are the main components of oral malodor, and are produced as the end products of the proteolytic processes of oral microorganisms. The main pathway of proteolysis is the metabolism of sulfur-containing amino acids by gram-negative anaerobic bacteria. Gram-positive bacteria may promote VSC production by gram-negative anaerobes by cleaving sugar chains from glycoproteins and thus providing proteins. A large variety of bacteria within the oral microbiota are thought to be involved in the complex phenomenon of halitosis. Oral microbiota associated with a lack of oral malodor, oral microbiota associated with severe and H2 S-dominant oral malodor, and oral microbiota associated with severe and CH3 SH-dominant oral malodor have been distinguished through molecular approaches using the 16S rRNA gene. Pathological halitosis may primarily be addressed through treatment of causative diseases. In all cases, plaque control is the basis of oral malodor control, and dentifrices, mouthwashes, and functional foods play a supplementary role in addition to brushing. Recently, the use of natural ingredients in products tends to be favored due to the increase in antibiotic-resistant strains and the side effects of some chemical ingredients. In addition, probiotics and vaccines are expected to offer new strategies for improving the oral conditions through mechanisms other than antibacterial agents.
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Masahiro Yoneda
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Toru Takeshita
- Section of Preventive and Public Health Dentistry, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan.,OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Takao Hirofuji
- Department of General Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Takashi Hanioka
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
18
|
Xin L, Zhou LQ, Liu L, Yuan YW, Zhang HT, Zeng F. METase promotes cell autophagy via promoting SNHG5 and suppressing miR-20a in gastric cancer. Int J Biol Macromol 2018; 122:1046-1052. [PMID: 30227213 DOI: 10.1016/j.ijbiomac.2018.09.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gastric cancer (GC) severely threatens human life, and METase seemed to inhibit tumor growth. However, the potential mechanism underlying it is still unclear. METHODS Both clinical tissues and cell lines were used in the present study. SNHG5 and miR-20a expressions were determined using real-time PCR. Western blot was performed to determine the expression of autophagy-related proteins. The interaction between miR-20a and SNHG5 was determined using luciferase reporter assay and RNA immunoprecipitation (RIP). RESULTS The expression of SNHG5 was decreased in GC tissues and cell lines. Overexpressed METase significantly promoted cell apoptosis and autophagy, as well as the expression of SNHG5. SNHG5 directly regulated the expression of miR-20a. GC cells transfected with pcDNA-SNHG5 significantly promoted cell apoptosis and autophagy, while the co-transfected with miR-20a mimic dramatically reversed the effects of pcDNA-SNHG5. Overexpressed METase significantly promoted cell autophagy, which was abolished by down-regulated SNHG5. CONCLUSION Overexpressed METase promoted cell apoptosis and autophagy via up-regulating the expression of SNHG5 and down-regulating miR-20a in GC.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hou-Ting Zhang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
19
|
Kondo Y, Sato K, Nagano K, Nishiguchi M, Hoshino T, Fujiwara T, Nakayama K. Involvement of PorK, a component of the type IX secretion system, in Prevotella melaninogenica pathogenicity. Microbiol Immunol 2018; 62:554-566. [PMID: 30028034 DOI: 10.1111/1348-0421.12638] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/27/2022]
Abstract
Prevotella melaninogenica is a gram-negative anaerobic commensal bacterium that resides in the human oral cavity and is isolated as a pathogen of suppurative diseases both inside and outside the mouth. However, little is known about the pathogenic factors of P. melaninogenica. The periodontal pathogens Porphyromonas gingivalis and Tanerella forsythia secrete virulence factors such as protease and bacterial cell surface proteins via a type IX secretion system (T9SS) that are involved in pathogenicity. P. melaninogenica also possesses all known orthologs of T9SS. In this study, a P. melaninogenica GAI 07411 mutant deficient in the orthologue of the T9SS-encoding gene, porK, was constructed. Hemagglutination and biofilm formation were decreased in the porK mutant. Furthermore, following growth on skim milk-containing medium, the diameters of the halos surrounding the porK mutant were smaller than those of the wild-type strain, suggesting a decrease in secretion of proteases outside the bacterium. To investigate this in detail, culture supernatants of wild-type and porK mutant strains were purified and compared by two-dimensional electrophoresis. In the mutant strain, fewer spots were detected, indicating fewer secreted proteins. In infection experiments, the mortality rate of mice inoculated with the porK mutant strain was significantly lower than in the wild-type strain. These results suggest that P. melaninogenica secretes potent virulence factors via the T9SS that contribute to its pathogenic ability.
Collapse
Affiliation(s)
- Yoshio Kondo
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Keiko Sato
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Miyuki Nishiguchi
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Tomonori Hoshino
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|
20
|
Han Z, Qi F, Wang H, Liu B, Shen X, Song C, Bao Z, Zhao X, Xu Y, Sun D. Emission characteristics of volatile sulfur compounds (VSCs) from a municipal sewage sludge aerobic composting plant. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:593-602. [PMID: 29907364 DOI: 10.1016/j.wasman.2018.05.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/10/2018] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
The emission of volatile sulfur compounds (VSCs) causing strong odors is a major problem in municipal sewage sludge composting plants (MSSACPs). Improving the knowledge on characteristics of VSCs emission in MSAACPs is of particular significance to elimate odors, but the studies conducted on-site to identify them are scarce. To this purpose, characteristics of VSCs emission were studied on-site from a MSSACP during different ambient temperatures corresponding with seasonal variations. Results reveal that (1) the total emission of VSCs which included methyl disulfide (DMDS), methyl sulfide (DMS), carbon disulfide, methyl mercaptan, and hydrogen sulfide (H2S) was 561.89 mg/dry kg in summer, 358.45 mg/dry kg in spring, and 215.52 mg/dry kg in winter, and the greatest amounts of VSCs were emitted during the mesophilic and pre-thermophilic phases; (2) although DMDS and DMS contributed the most towards total VSCs emissions during winter (81.93%), spring (82.55%), and summer (83.90%), their odor contributions were less than that of H2S; (3) in summer, the odor nuisance of total VSCs was higher than that in winter and spring; (4) sulfur loss in the form of VSCs emissions and total sulfur loss both increased with rising ambient temperatures during the sewage sludge aerobic composting. Results obtained in this study will be beneficial towards the elimation of odors released from MSSACPs.
Collapse
Affiliation(s)
- Zhangliang Han
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Baoxian Liu
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environment Monitoring Center, Beijing 100048, China
| | - Xiue Shen
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environment Monitoring Center, Beijing 100048, China
| | - Cheng Song
- Beijing Key Laboratory of Airborne Particulate Matter Monitoring Technology, Beijing Municipal Environment Monitoring Center, Beijing 100048, China
| | - Zhiyuan Bao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xufeng Zhao
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yangjie Xu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
21
|
Nakamura S, Shioya K, Hiraoka BY, Suzuki N, Hoshino T, Fujiwara T, Yoshinari N, Ansai T, Yoshida A. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation. Microbiology (Reading) 2018; 164:529-539. [DOI: 10.1099/mic.0.000640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Suguru Nakamura
- Department of Periodontology, Matsumoto Dental University, Shiojiri, Japan
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Koki Shioya
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | | | - Nao Suzuki
- Department of Preventive and Public Health Dentistry, Fukuoka Dental College, Fukuoka, Japan
| | - Tomonori Hoshino
- Department of Pediatric Dentistry, School of Dentistry, Meikai University, Saitama, Japan
| | - Taku Fujiwara
- Department of Pediatric Dentistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Nobuo Yoshinari
- Department of Periodontology, Matsumoto Dental University, Shiojiri, Japan
| | - Toshihiro Ansai
- Division of Community Oral Health Science, Department of Oral Health Promotion, Kyushu Dental University, Kitakyushu, Japan
| | - Akihiro Yoshida
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| |
Collapse
|
22
|
Akgul D, Abbott T, Eskicioglu C. Assessing iron and aluminum-based coagulants for odour and pathogen reductions in sludge digesters and enhanced digestate dewaterability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 598:881-888. [PMID: 28458205 DOI: 10.1016/j.scitotenv.2017.04.141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/26/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Anaerobic digestion (AD) is an effective way of recovering energy and nutrients from organic waste. However, several issues including the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in digester biogas, and long digestion times to achieve sufficient pathogen reductions can limit its wider adoption. In this study, Kemira™ PIX-311 (ferric chloride), PAX XL-6 (aluminum chloride hydroxide sulfate), and PAX XL-19 (polyaluminum chlorohydrate) were added to the digester feeds to evaluate the effects on digester stability, organic removal, VSCs formation in digester headspace, pathogen removal and sludge dewaterability. After preliminary dose trials, two different doses of PIX-311, PAX XL-19, and a 1:1 mixture of PIX-311 and PAX XL-19 were selected. PAX XL-6 was removed from further study as dosing significantly increased VSC levels and the PAX XL-6 dosed digester exhibited signs of instability. During the total operation period of 100days, addition of PIX-311, PAX XL-19, a combination of PIX-311, PAX XL-19 at concentrations of 4000 and 4500mg/kg total solids (TS) to digester feed did not lead to process instability. Biogas yields of all metal added digesters were similar to that of the control (no metal addition) digester. PIX-311 achieved up to a 93% reduction in biogas VSCs, 82% better fecal coliform inactivation and exhibited improved dewaterability over the control digester. The PAX XL-19 dosed digester showed modest reductions in biogas VSC concentrations, pathogen levels and improved dewaterability versus the control. Metal addition can be an effective way to control odours from VSCs, pathogens and to improve dewaterability during AD.
Collapse
Affiliation(s)
- Deniz Akgul
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia, Okanagan Campus, Kelowna, BC, Canada.
| |
Collapse
|
23
|
Suganya K, Govindan K, Prabha P, Murugan M. An extensive review on L-methioninase and its potential applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2017. [DOI: 10.1016/j.bcab.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Lin B, Tian G, Liu Y. Mechanistic insights into the γ-elimination reaction of l-methionine catalyzed by methionine γ-lyase (MGL). Theor Chem Acc 2017. [DOI: 10.1007/s00214-017-2140-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Sato D, Shiba T, Karaki T, Yamagata W, Nozaki T, Nakazawa T, Harada S. X-Ray snapshots of a pyridoxal enzyme: a catalytic mechanism involving concerted [1,5]-hydrogen sigmatropy in methionine γ-lyase. Sci Rep 2017; 7:4874. [PMID: 28687762 PMCID: PMC5501846 DOI: 10.1038/s41598-017-05032-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/19/2017] [Indexed: 11/30/2022] Open
Abstract
Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshots of l-methionine γ-lyase from Entamoeba histolytica (EhMGL), a PLP-enzyme catalyzing the γ-elimination reaction of methionine. Here, we suggest a catalytic mechanism of EhMGL by using the X-ray snapshots covering all stages of this multistep catalysis reaction. Initial formation of a Michaelis complex is followed by the migration of double bond from the C4′=Nα–Cα moiety in an intermediate PLP-methionine imine to C4′–Nα=Cα in pyridoxamine 5′-phosphate (PMP)-α,β-dehydromethionine imine without intervention of a putative quinonoid intermediate. The enzyme can facilitate the subsequent γ-elimination of methanethiol by the possible general acid-base catalysis of Tyr108 for the E1cB mechanism, enabling to form the ene-imine C4′–Nα=Cα–Cβ=Cγ structure with the s-cis conformation, which is prerequisite for the non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift to complete the catalytic cycle by releasing α-ketobutyrate. The mechanism based on the X-ray snapshots is consistent with the reactivity of MGL toward methionine analogues. The generality of such a mechanism involving non-enzymatic concerted reaction in other PLP enzymes is discussed.
Collapse
Affiliation(s)
- Dan Sato
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoo Shiba
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tsuyoshi Karaki
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Wataru Yamagata
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takashi Nakazawa
- Department of Chemistry, Nara Women's University, Nara, 630-8506, Japan
| | - Shigeharu Harada
- Graduate School of Science and Technology, Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
26
|
Sato D, Shiba T, Yunoto S, Furutani K, Fukumoto M, Kudou D, Tamura T, Inagaki K, Harada S. Structural and mechanistic insights into homocysteine degradation by a mutant of methionine γ-lyase based on substrate-assisted catalysis. Protein Sci 2017; 26:1224-1230. [PMID: 28329912 DOI: 10.1002/pro.3158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
Abstract
Methionine γ-lyse (MGL) catalyzes the α, γ-elimination of l-methionine and its derivatives as well as the α, β-elimination of l-cysteine and its derivatives to produce α-keto acids, volatile thiols, and ammonia. The reaction mechanism of MGL has been characterized by enzymological studies using several site-directed mutants. The Pseudomonas putida MGL C116H mutant showed drastically reduced degradation activity toward methionine while retaining activity toward homocysteine. To understand the underlying mechanism and to discern the subtle differences between these substrates, we analyzed the crystal structures of the reaction intermediates. The complex formed between the C116H mutant and methionine demonstrated that a loop structure (Ala51-Asn64) in the adjacent subunit of the catalytic dimer cannot approach the cofactor pyridoxal 5'-phosphate (PLP) because His116 disrupts the interaction of Asp241 with Lys240, and the liberated side chain of Lys240 causes steric hindrance with this loop. Conversely, in the complex formed between C116H mutant and homocysteine, the thiol moiety of the substrate conjugated with PLP offsets the imidazole ring of His116 via a water molecule, disrupting the interaction of His116 and Asp241 and restoring the interaction of Asp241 with Lys240. These structural data suggest that the Cys116 to His mutation renders the enzyme inactive toward the original substrate, but activity is restored when the substrate is homocysteine due to substrate-assisted catalysis.
Collapse
Affiliation(s)
- Dan Sato
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Tomoo Shiba
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Shunsuke Yunoto
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Kazuo Furutani
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| | - Mitsuki Fukumoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Shigeharu Harada
- Department of Applied Biology, Graduate School of Science Technology, Kyoto Institute of Technology, Kyoto, 606-8585, Japan
| |
Collapse
|
27
|
Ramadhani A, Kawada-Matsuo M, Komatsuzawa H, Oho T. Recombinant Sox Enzymes from Paracoccus pantotrophus Degrade Hydrogen Sulfide, a Major Component of Oral Malodor. Microbes Environ 2017; 32:54-60. [PMID: 28260736 PMCID: PMC5371076 DOI: 10.1264/jsme2.me16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) is emitted from industrial activities, and several chemotrophs possessing Sox enzymes are used for its removal. Oral malodor is a common issue in the dental field and major malodorous components are volatile sulfur compounds (VSCs), including H2S and methyl mercaptan. Paracoccus pantotrophus is an aerobic, neutrophilic facultatively autotrophic bacterium that possesses sulfur-oxidizing (Sox) enzymes in order to use sulfur compounds as an energy source. In the present study, we cloned the Sox enzymes of P. pantotrophus GB17 and evaluated their VSC-degrading activities for the prevention of oral malodor. Six genes, soxX, soxY, soxZ, soxA, soxB, and soxCD, were amplified from P. pantotrophus GB17. Each fragment was cloned into a vector for the expression of 6×His-tagged fusion proteins in Escherichia coli. Recombinant Sox (rSox) proteins were purified from whole-cell extracts of E. coli using nickel affinity chromatography. The enzyme mixture was investigated for the degradation of VSCs using gas chromatography. Each of the rSox enzymes was purified to apparent homogeneity, as confirmed by SDS-PAGE. The rSox enzyme mixture degraded H2S in dose- and time-dependent manners. All rSox enzymes were necessary for degrading H2S. The H2S-degrading activities of rSox enzymes were stable at 25–80°C, and the optimum pH was 7.0. The amount of H2S produced by periodontopathic bacteria or oral bacteria collected from human subjects decreased after an incubation with rSox enzymes. These results suggest that the combination of rSox enzymes from P. pantotrophus GB17 is useful for the prevention of oral malodor.
Collapse
Affiliation(s)
- Atik Ramadhani
- Department of Preventive Dentistry, Kagoshima University Graduate School of Medical and Dental Sciences
| | | | | | | |
Collapse
|
28
|
Fujiwara N, Murakami K, Nakao M, Toguchi M, Yumoto H, Amoh T, Hirota K, Matsuo T, Sano S, Ozaki K, Miyake Y. Novel reuterin-related compounds suppress odour by periodontopathic bacteria. Oral Dis 2017; 23:492-497. [PMID: 28083982 DOI: 10.1111/odi.12638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/23/2016] [Accepted: 01/08/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Halitosis is caused by volatile sulphur compounds including methyl mercaptan (CH3 SH) in the oral cavity and is a serious problem that limits interpersonal social communication. The aim of study was to evaluate the effects of reuterin-related compounds (RRCs) on halitosis-related periodontopathic bacteria in vitro. MATERIALS AND METHODS RRC-01, RRC-02 and RRC-03 (32 and 64 μg ml-1 ) in culture media containing Fusobacterium nucleatum JCM8523 and Porphyromonas gingivalis ATCC33277 were used. The effects of RRCs on CH3 SH production and detectable odour by F. nucleatum and P. gingivalis were examined by CH3 SH production assay and organoleptic test, respectively. The number of bacterial cells was also measured using an ATP assay. In P. gingivalis treated with RRCs, the expression of mgl gene, which is responsible for CH3 SH production, was examined by qRT-PCR. RESULTS CH3 SH production and the score of detectable odour from F. nucleatum and P. gingivalis culture media containing RRCs were significantly lower than that without RRCs (P < 0.05). The expression of mgl gene in P. gingivalis was significantly downregulated by RRC-01 (P < 0.01), but not by RRC-02 or RRC-03. CONCLUSIONS RRCs are potent oral care products for preventing halitosis via reducing CH3 SH production.
Collapse
Affiliation(s)
- N Fujiwara
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - K Murakami
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - M Nakao
- Department of Molecular Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - M Toguchi
- Department of Molecular Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - H Yumoto
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Amoh
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - K Hirota
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - T Matsuo
- Department of Conservative Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - S Sano
- Department of Molecular Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima, Japan
| | - K Ozaki
- Department of Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Y Miyake
- Department of Oral Microbiology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
29
|
Stephen AS, Millhouse E, Sherry L, Aduse-Opoku J, Culshaw S, Ramage G, Bradshaw DJ, Burnett GR, Allaker RP. In Vitro Effect of Porphyromonas gingivalis Methionine Gamma Lyase on Biofilm Composition and Oral Inflammatory Response. PLoS One 2016; 11:e0169157. [PMID: 28033374 PMCID: PMC5199072 DOI: 10.1371/journal.pone.0169157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023] Open
Abstract
Methanethiol (methyl mercaptan) is an important contributor to oral malodour and periodontal tissue destruction. Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum are key oral microbial species that produce methanethiol via methionine gamma lyase (mgl) activity. The aim of this study was to compare an mgl knockout strain of P. gingivalis with its wild type using a 10-species biofilm co-culture model with oral keratinocytes and its effect on biofilm composition and inflammatory cytokine production. A P. gingivalis mgl knockout strain was constructed using insertion mutagenesis from wild type W50 with gas chromatographic head space analysis confirming lack of methanethiol production. 10-species biofilms consisting of Streptococcus mitis, Streptococcus oralis, Streptococcus intermedius, Fusobacterium nucleatum ssp polymorphum, Fusobacterium nucleatum ssp vincentii, Veillonella dispar, Actinomyces naeslundii, Prevotella intermedia and Aggregatibacter actinomycetemcomitans with either the wild type or mutant P. gingivalis were grown on Thermanox cover slips and used to stimulate oral keratinocytes (OKF6-TERT2), under anaerobic conditions for 4 and 24 hours. Biofilms were analysed by quantitative PCR with SYBR Green for changes in microbial ecology. Keratinocyte culture supernatants were analysed using a multiplex bead immunoassay for cytokines. Significant population differences were observed between mutant and wild type biofilms; V. dispar proportions increased (p<0.001), whilst A. naeslundii (p<0.01) and Streptococcus spp. (p<0.05) decreased in mutant biofilms. Keratinocytes produced less IL-8, IL-6 and IL-1α when stimulated with the mutant biofilms compared to wild type. Lack of mgl in P. gingivalis has been shown to affect microbial ecology in vitro, giving rise to a markedly different biofilm composition, with a more pro-inflammatory cytokine response from the keratinocytes observed. A possible role for methanethiol in biofilm formation and cytokine response with subsequent effects on oral malodor and periodontitis is suggested.
Collapse
Affiliation(s)
- Abish S. Stephen
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Emma Millhouse
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Leighann Sherry
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Joseph Aduse-Opoku
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Shauna Culshaw
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | - Gordon Ramage
- Infection and Immunity Research Group, Dental School, University of Glasgow, Glasgow, United Kingdom
| | | | - Gary R. Burnett
- GlaxoSmithKline Consumer Healthcare, Weybridge, United Kingdom
| | - Robert P. Allaker
- Research Centre for Clinical & Diagnostic Oral Sciences, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
30
|
Engineered Citrobacter freundii methionine γ-lyase effectively produces antimicrobial thiosulfinates. Biochimie 2016; 128-129:92-8. [DOI: 10.1016/j.biochi.2016.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/13/2016] [Indexed: 11/20/2022]
|
31
|
Foo TC, Terentis AC, Venkatachalam KV. A continuous spectrophotometric assay and nonlinear kinetic analysis of methionine γ-lyase catalysis. Anal Biochem 2016; 507:21-6. [DOI: 10.1016/j.ab.2016.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/08/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
|
32
|
Holden MS, Black J, Lewis A, Boutrin MC, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonas gingivalis W83. JOURNAL OF NANOMATERIALS 2016; 2016:9605906. [PMID: 30245705 PMCID: PMC6146971 DOI: 10.1155/2016/9605906] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Advances in nanotechnology provide opportunities for the prevention and treatment of periodontal disease. While physicochemical properties of Ag containing nanoparticles (NPs) are known to influence the magnitude of their toxicity, it is thought that nanosilver can be made less toxic to eukaryotes by passivation of the NPs with a benign metal. Moreover, the addition of other noble metals to silver nanoparticles, in the alloy formulation, is known to alter the silver dissolution behavior. Thus, we synthesized glutathione capped Ag/Au alloy bimetallic nanoparticles (NPs) via the galvanic replacement reaction between maltose coated Ag NPs and chloroauric acid (HAuCl4) in 5% aqueous triblock F127 copolymer solution. We then compared the antibacterial activity of the Ag/Au NPs to pure Ag NPs on Porphyromonas gingivalis W83, a key pathogen in the development of periodontal disease. Only partially oxidized glutathione capped Ag and Ag/Au (Au:Ag≈0.2) NPs inhibited the planktonic growth of P. gingivalis W83. This effect was enhanced in the presence of hydrogen peroxide, which simulates the oxidative stress environment in the periodontal pocket during chronic inflammation.
Collapse
Affiliation(s)
- Megan S. Holden
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| | - Jason Black
- Northern Caribbean University, Manchester, Jamaica
| | | | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Elvin Walemba
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Theodore S. Sabir
- College of Arts and Sciences, Faulkner University,
Montgomery, AL 36109, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Christopher C. Perry
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
33
|
Revtovich S, Anufrieva N, Morozova E, Kulikova V, Nikulin A, Demidkina T. Structure of methionine γ-lyase from Clostridium sporogenes. Acta Crystallogr F Struct Biol Commun 2016; 72:65-71. [PMID: 26750487 PMCID: PMC4708053 DOI: 10.1107/s2053230x15023869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/11/2015] [Indexed: 11/10/2022] Open
Abstract
Methionine γ-lyase (MGL) is a pyridoxal 5'-phosphate-dependent enzyme that catalyzes the γ-elimination reaction of L-methionine. The enzyme is a promising target for therapeutic intervention in some anaerobic pathogens and has attracted interest as a potential cancer treatment. The crystal structure of MGL from Clostridium sporogenes has been determined at 2.37 Å resolution. The fold of the protein is similar to those of homologous enzymes from Citrobacter freundii, Entamoeba histolytica, Pseudomonas putida and Trichomonas vaginalis. A comparison of these structures revealed differences in the conformation of two flexible regions of the N- and C-terminal domains involved in the active-site architecture.
Collapse
Affiliation(s)
- Svetlana Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Natalya Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Elena Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Vitalia Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Alexey Nikulin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| | - Tatyana Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russian Federation
| |
Collapse
|
34
|
Selim M, Elshikh H, El-Hadedy D, Saad M, Eliwa E, Abdelraof M. l-Methioninase from some Streptomyces isolates I: Isolation, identification of best producers and some properties of the crude enzyme produced. J Genet Eng Biotechnol 2015; 13:129-137. [PMID: 30647576 PMCID: PMC6299813 DOI: 10.1016/j.jgeb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/10/2015] [Accepted: 08/25/2015] [Indexed: 11/28/2022]
Abstract
Among 60 isolates of Streptomyces tested; only 40 isolates were capable to utilize l-methionine as the only source of nitrogen in medium. In addition, 24 of these isolates could grow in medium amended with l-methionine as a source of nitrogen and carbon. Qualitative rapid plate assay test shows the ability of 18 of these isolates to grow with a pink color surrounding their colonial growth, while 6 of these isolates could grow and utilize l-methionine without any pink color around their colonial growth. Quantitative assay test shows the rate of l-methioninase production by all isolates tested. Permeabilization treatment including chemical and physical methods proved that l-methioninase was found to be extracellularly produced. The results also indicate that l-methioninase production was not correlated with growth rate or l-methionine consumption in medium. On the other hand, quantitative assay test shows that these six isolates were l-methioninase negative and failed to produce any amount of l-methioninase. In addition, results also show that isolates No. 4 and No. 60 were the most suitable for l-methioninase production, these two isolates were characterized and identified as Streptomyces sp. DMMMH 4 and Streptomyces sp. MDMMH 60 using 16S rRNA with accession No. in gene bank. Furthermore, optimal conditions for enzyme activity produced by the two isolates were established in relation to temperature, pH, reaction time and type of buffer used and its molarities.
Collapse
Affiliation(s)
- M.H. Selim
- Microbial Chemistry Dep., National Research Center (NRC), Giza, Egypt
| | - H.H. Elshikh
- Botany and Microbiology Dep., Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - D.E. El-Hadedy
- Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), 3 Ahmed Elzumor St., 8th Sector, Nasr City, Cairo, Egypt
| | - M.M. Saad
- Microbial Chemistry Dep., National Research Center (NRC), Giza, Egypt
| | - E. Eliwa
- Microbial Chemistry Dep., National Research Center (NRC), Giza, Egypt
| | - M. Abdelraof
- Microbial Chemistry Dep., National Research Center (NRC), Giza, Egypt
| |
Collapse
|
35
|
Abbott T, Eskicioglu C. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge. WASTE MANAGEMENT (NEW YORK, N.Y.) 2015; 46:449-458. [PMID: 26260964 DOI: 10.1016/j.wasman.2015.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/19/2015] [Accepted: 07/29/2015] [Indexed: 06/04/2023]
Abstract
Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets.
Collapse
Affiliation(s)
- Timothy Abbott
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| | - Cigdem Eskicioglu
- UBC Bioreactor Technology Group, School of Engineering, University of British Columbia Okanagan Campus, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
36
|
Tanda N, Hoshikawa Y, Ishida N, Sato T, Takahashi N, Hosokawa R, Koseki T. Oral malodorous gases and oral microbiota: From halitosis to carcinogenesis. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Anufrieva NV, Morozova EA, Kulikova VV, Bazhulina NP, Manukhov IV, Degtev DI, Gnuchikh EY, Rodionov AN, Zavilgelsky GB, Demidkina TV. Sulfoxides, Analogues of L-Methionine and L-Cysteine As Pro-Drugs against Gram-Positive and Gram-Negative Bacteria. Acta Naturae 2015; 7:128-35. [PMID: 26798500 PMCID: PMC4717258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The problem of resistance to antibiotics requires the development of new classes of broad-spectrum antimicrobial drugs. The concept of pro-drugs allows researchers to look for new approaches to obtain effective drugs with improved pharmacokinetic and pharmacodynamic properties. Thiosulfinates, formed enzymatically from amino acid sulfoxides upon crushing cells of genus Allium plants, are known as antimicrobial compounds. The instability and high reactivity of thiosulfinates complicate their use as individual antimicrobial compounds. We propose a pharmacologically complementary pair: an amino acid sulfoxide pro-drug and vitamin B6 - dependent methionine γ-lyase, which metabolizes it in the patient's body. The enzyme catalyzes the γ- and β-elimination reactions of sulfoxides, analogues of L-methionine and L-cysteine, which leads to the formation of thiosulfinates. In the present work, we cloned the enzyme gene from Clostridium sporogenes. Ionic and tautomeric forms of the internal aldimine were determined by lognormal deconvolution of the holoenzyme spectrum and the catalytic parameters of the recombinant enzyme in the γ- and β-elimination reactions of amino acids, and some sulfoxides of amino acids were obtained. For the first time, the possibility of usage of the enzyme for effective conversion of sulfoxides was established and the antimicrobial activity of thiosulfinates against Gram-negative and Gram-positive bacteria in situ was shown.
Collapse
Affiliation(s)
- N. V. Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - E. A. Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - V. V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - N. P. Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - I. V. Manukhov
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1 , Moscow, 117545, Russia
| | - D. I. Degtev
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1 , Moscow, 117545, Russia
| | - E. Yu. Gnuchikh
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1 , Moscow, 117545, Russia
| | - A. N. Rodionov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| | - G. B. Zavilgelsky
- State Research Institute of Genetics and Selection of Industrial Microorganisms, 1-st Dorozhniy pr., 1 , Moscow, 117545, Russia
| | - T. V. Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str., 32, Moscow, 119991, Russia
| |
Collapse
|
38
|
Abstract
Recent advances in molecular biology have facilitated analyses of the oral microbiome ("Who are they?"); however, its functions (e.g., metabolic activities) are poorly understood ("What are they doing?"). This review aims to summarize our current understanding of the metabolism of the oral microbiome. Saccharolytic bacteria-including Streptococcus, Actinomyces, and Lactobacillus species-degrade carbohydrates into organic acids via the Embden-Meyerhof-Parnas pathway and several of its branch pathways, resulting in dental caries, while alkalization and acid neutralization via the arginine deiminase system, urease, and so on, counteract acidification. Proteolytic/amino acid-degrading bacteria, including Prevotella and Porphyromonas species, break down proteins and peptides into amino acids and degrade them further via specific pathways to produce short-chain fatty acids, ammonia, sulfur compounds, and indole/skatole, which act as virulent and modifying factors in periodontitis and oral malodor. Furthermore, it is suggested that ethanol-derived acetaldehyde can cause oral cancer, while nitrate-derived nitrite can aid caries prevention and systemic health. Microbial metabolic activity is influenced by the oral environment; however, it can also modify the oral environment, enhance the pathogenicity of bacteria, and induce microbial selection to create more pathogenic microbiome. Taking a metabolomic approach to analyzing the oral microbiome is crucial to improving our understanding of the functions of the oral microbiome.
Collapse
Affiliation(s)
- N Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
39
|
Ao M, Miyauchi M, Furusho H, Inubushi T, Kitagawa M, Nagasaki A, Sakamoto S, Kozai K, Takata T. Dental Infection of Porphyromonas gingivalis Induces Preterm Birth in Mice. PLoS One 2015; 10:e0137249. [PMID: 26322971 PMCID: PMC4556457 DOI: 10.1371/journal.pone.0137249] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Epidemiological studies have revealed a link between dental infection and preterm birth or low birth weight (PTB/LBW), however, the underlying mechanisms remain unclear. Progress in understanding the associated mechanisms has been limited in part by lack of an animal model for chronic infection-induced PTB/LBW, mimicking pregnancy under conditions of periodontitis. We aimed to establish a mouse model of chronic periodontitis in order to investigate the link between periodontitis and PTB/LBW. METHODS To establish chronic inflammation beginning with dental infection, we surgically opened mouse (female, 8 weeks old) 1st molar pulp chambers and directly infected with w83 strain Porphyromonas gingivalis (P.g.), a keystone periodontal pathogen. Mating was initiated at 6 wks post-infection, by which time dental granuloma tissue had developed and live P.g. was cultured from extracted tooth root, which serves as a persistent source of P.g. The gestational day (gd) and birth weight were recorded during for P.g.-infected and control mice, and serum and placental tissues were collected at gd 15 to evaluate the systemic and local conditions during pregnancy. RESULTS Dental infection with P.g. significantly increased circulating TNF-α (2.5-fold), IL-17 (2-fold), IL-6 (2-fold) and IL-1β (2-fold). The P.g.-infected group delivered at gd 18.25 vs. gd 20.45 in the non-infected control (NC) group (p < 0.01), and pups exhibited LBW compared to controls (p < 0.01). P.g. was localized to placental tissues by immunohistochemistry and PCR, and defects in placental tissues of P.g. infected mice included premature rupture of membrane, placental detachment, degenerative changes in trophoblasts and endothelial cells, including necrotic areas. P.g. infection caused significantly increased numbers of polymorphonuclear leukocytes (PMNLs) and macrophages in placental tissues, associated with increased local expression of pro-inflammatory mediators including TNF-α and COX-2. Further placental tissue damage was indicated in P.g. infected mice by decreased CD-31 in endothelial cells, increased expression of 8OHdG, an indicator of oxidative DNA damage, and cleaved caspase-3, a marker of apoptosis. In vitro, P.g. lipopolysaccharide significantly increased expression of COX-2, IL-8 and TNF-α, in HTR-8 trophoblasts in an NF-κB-dependent fashion. CONCLUSIONS Our novel mouse model supports previous epidemiological studies signifying dental infection as predisposing factor for PTB/LBW. We demonstrate PTB and LBW in infected mice, translocation of P.g to placental tissues, increased circulating and local pro-inflammatory markers, and the capability of P.g. LPS to directly induce cytokine production in trophoblasts, in vitro. These findings further underscore the importance of local and systemic infections and inflammation during pregnancy and suggest that prevention and/or elimination of dental infections such as marginal or periapical periodontitis before pregnancy may have a beneficial effect on PTB/LBW.
Collapse
Affiliation(s)
- Min Ao
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Atsuhiro Nagasaki
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Shinichi Sakamoto
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734–8553, Japan
- * E-mail:
| |
Collapse
|
40
|
Nakano M, Shin K, Wakabayashi H, Yamauchi K, Abe F, Hironaka S. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production. J Med Microbiol 2015; 64:1244-1252. [PMID: 26242770 DOI: 10.1099/jmm.0.000150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The main components of oral malodour have been identified as volatile sulfur compounds (VSCs), including hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH). The lactoperoxidase (LPO) system (consisting of LPO, glucose oxidase, glucose and thiocyanate) was previously shown to exhibit antimicrobial activities against some oral bacteria in vitro and suppressive effects on VSCs in mouth air in a clinical trial. Here, we examined the in vitro effects of the LPO system on the activities of the bacterial lyases involved in the production of VSCs by oral anaerobes. The exposure of crude bacterial extracts of Fusobacterium nucleatum and Porphyromonas gingivalis or purified methionine γ-lyase to the LPO system resulted in the inactivation of their lyase activities through l-cysteine and l-methionine, which was linked to the production of H(2)S and CH(3)SH, respectively. The exposure of living F. nucleatum and P. gingivalis cells to the LPO system resulted in the suppression of cell numbers and lyase activities. The inactivation of the crude bacterial extracts of F. nucleatum and purified methionine γ-lyase by the LPO system was partly recovered by the addition of DTT. Therefore, the LPO system may inactivate bacterial lyases including methionine γ-lyase by reacting with the free cysteine residues of lyases. These results suggested that the LPO system suppresses the production of VSCs not only through its antimicrobial effects, but also by its inactivating effects on the bacterial lyases of F. nucleatum and P. gingivalis.
Collapse
Affiliation(s)
- Manabu Nakano
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Kouichirou Shin
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Hiroyuki Wakabayashi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Koji Yamauchi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd, 5-1-83 Higashihara, Zama, Kanagawa 252-8583, Japan
| | - Shouji Hironaka
- Department of Special Needs Dentistry, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
41
|
Ouhara K, Iwasaki Y, Kajiya M, Savitri IJ, Kitagawa M, Tokunaga N, Shintani T, Ogawa I, Hino T, Fujita T, Shiba H, Kurihara H. The differential expression of mgl mRNA by Porphyromonas gingivalis affects the production of methyl mercaptan. Oral Dis 2015; 21:626-33. [PMID: 25703825 DOI: 10.1111/odi.12326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/16/2022]
Abstract
OBJECTIVE A large number of individuals have halitosis. The total amount of volatile sulfur compounds, which are the main cause of halitosis, has been correlated with periodontitis following bacterial infection. In this study, Porphyromonas gingivalis (Pg), a major periodontopathogenic bacterium, was isolated from patients with halitosis by the amplification of 16S rRNA, and the ability of isolated Pg to produce methyl mercaptan (CH3 SH) was determined to clarify the relationship between halitosis and Pg infection. MATERIALS AND METHODS CH3 SH concentrations were measured in patients using Oral Chroma. The production of CH3 SH by Pg standard and clinical strains was also measured in vitro. Real-time PCR was performed to compare the expression of mgl mRNA (which encoded l-methionine-a-deamino-g-mercaptomethane-lyase) among the Pg strains. The production of CH3 SH and the expression of mgl mRNA were also determined to assess the effects of oriental medicine. RESULTS The production of CH3 SH and the expression of mgl mRNA strongly correlated with each other in the presence of l-methionine. The expression of mgl mRNA by Pg W83 was strongly inhibited by magnoliaceae. CONCLUSION The production of CH3 SH was correlated with the expression of mgl. Furthermore, the oriental medicine, magnoliaceae, may represent a potential treatment for halitosis.
Collapse
Affiliation(s)
- K Ouhara
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Y Iwasaki
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - M Kajiya
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - I J Savitri
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - M Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - N Tokunaga
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - T Shintani
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - I Ogawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - T Hino
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - T Fujita
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Shiba
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Kurihara
- Division of Applied Life Sciences, Department of Periodontal Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
42
|
Kudou D, Yasuda E, Hirai Y, Tamura T, Inagaki K. Molecular cloning and characterization of l-methionine γ-lyase from Streptomyces avermitilis. J Biosci Bioeng 2015; 120:380-3. [PMID: 25817696 DOI: 10.1016/j.jbiosc.2015.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 11/27/2022]
Abstract
A pyridoxal 5'-phosphate-dependent methionine γ-lyase (MGL) was cloned from Streptomyces avermitilis catalyzed the degradation of methionine to α-ketobutyrate, methanethiol, and ammonia. The sav7062 gene (1,242 bp) was corresponded to 413 amino acid residues with a molecular mass of 42,994 Da. The deduced amino acid sequence showed a high degree of similarity to those of other MGL enzymes. The sav7062 gene was overexpressed in Escherichia coli. The enzyme was purified to homogeneity and exhibited the MGL catalytic activities. We cloned the enzyme that has the MGL activity in Streptomyces for the first time.
Collapse
Affiliation(s)
- Daizou Kudou
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Eri Yasuda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Yoshiyuki Hirai
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Takashi Tamura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| | - Kenji Inagaki
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Tsushima-naka 1-1-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan.
| |
Collapse
|
43
|
Song H, Xu R, Guo Z. Identification and characterization of a methionine γ-lyase in the calicheamicin biosynthetic cluster of Micromonospora echinospora. Chembiochem 2014; 16:100-9. [PMID: 25404066 DOI: 10.1002/cbic.201402489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Indexed: 11/07/2022]
Abstract
CalE6 is a previously uncharacterized protein involved in the biosynthesis of calicheamicins in Micromonospora echinospora. It is a pyridoxal-5'-phosphate-dependent enzyme and exhibits high sequence homology to cystathionine γ-lyases and cystathionine γ-synthases. However, it was found to be active towards methionine and to convert this amino acid into α-ketobutyrate, ammonium, and methanethiol. The crystal structure of the cofactor-bound holoenzyme was resolved at 2.0 Å; it contains two active site residues, Gly105 and Val322, specific for methionine γ-lyases. Modeling of methionine into the active site allows identification of the active site residues responsible for substrate recognition and catalysis. These findings support that CalE6 is a putative methionine γ-lyase producing methanethiol as a building block in biosynthesis of calicheamicins.
Collapse
Affiliation(s)
- Haigang Song
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong)
| | | | | |
Collapse
|
44
|
Kuznetsov NA, Faleev NG, Kuznetsova AA, Morozova EA, Revtovich SV, Anufrieva NV, Nikulin AD, Fedorova OS, Demidkina TV. Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors. J Biol Chem 2014; 290:671-81. [PMID: 25398880 DOI: 10.1074/jbc.m114.586511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | | | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Alexei D Nikulin
- the Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090,
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| |
Collapse
|
45
|
Morozova EA, Revtovich SV, Anufrieva NV, Kulikova VV, Nikulin AD, Demidkina TV. Alliin is a suicide substrate ofCitrobacter freundiimethionine γ-lyase: structural bases of inactivation of the enzyme. ACTA ACUST UNITED AC 2014; 70:3034-42. [DOI: 10.1107/s1399004714020938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/19/2014] [Indexed: 11/10/2022]
Abstract
The interaction ofCitrobacter freundiimethionine γ-lyase (MGL) and the mutant form in which Cys115 is replaced by Ala (MGL C115A) with the nonprotein amino acid (2R)-2-amino-3-[(S)-prop-2-enylsulfinyl]propanoic acid (alliin) was investigated. It was found that MGL catalyzes the β-elimination reaction of alliin to form 2-propenethiosulfinate (allicin), pyruvate and ammonia. The β-elimination reaction of alliin is followed by the inactivation and modification of SH groups of the wild-type and mutant enzymes. Three-dimensional structures of inactivated wild-type MGL (iMGL wild type) and a C115A mutant form (iMGL C115A) were determined at 1.85 and 1.45 Å resolution and allowed the identification of the SH groups that were oxidized by allicin. On this basis, the mechanism of the inactivation of MGL by alliin, a new suicide substrate of MGL, is proposed.
Collapse
|
46
|
Ao M, Miyauchi M, Inubushi T, Kitagawa M, Furusho H, Ando T, Ayuningtyas NF, Nagasaki A, Ishihara K, Tahara H, Kozai K, Takata T. Infection with Porphyromonas gingivalis exacerbates endothelial injury in obese mice. PLoS One 2014; 9:e110519. [PMID: 25334003 PMCID: PMC4204882 DOI: 10.1371/journal.pone.0110519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 09/16/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A number of studies have revealed a link between chronic periodontitis and cardiovascular disease in obese patients. However, there is little information about the influence of periodontitis-associated bacteria, Porphyromonas gingivalis (Pg), on pathogenesis of atherosclerosis in obesity. METHODS In vivo experiment: C57BL/6J mice were fed with a high-fat diet (HFD) or normal chow diet (CD), as a control. Pg was infected from the pulp chamber. At 6 weeks post-infection, histological and immunohistochemical analysis of aortal tissues was performed. In vitro experiment: hTERT-immortalized human umbilical vein endothelial cells (HuhT1) were used to assess the effect of Pg/Pg-LPS on free fatty acid (FFA) induced endothelial cells apoptosis and regulation of cytokine gene expression. RESULTS Weaker staining of CD31 and increased numbers of TUNEL positive cells in aortal tissue of HFD mice indicated endothelial injury. Pg infection exacerbated the endothelial injury. Immunohistochemically, Pg was detected deep in the smooth muscle of the aorta, and the number of Pg cells in the aortal wall was higher in HFD mice than in CD mice. Moreover, in vitro, FFA treatment induced apoptosis in HuhT1 cells and exposure to Pg-LPS increased this effect. In addition, Pg and Pg-LPS both attenuated cytokine production in HuhT1 cells stimulated by palmitate. CONCLUSIONS Dental infection of Pg may contribute to pathogenesis of atherosclerosis by accelerating FFA-induced endothelial injury.
Collapse
Affiliation(s)
- Min Ao
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshihiro Inubushi
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masae Kitagawa
- Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima University, Hiroshima, Japan
| | - Hisako Furusho
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toshinori Ando
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nurina Febriyanti Ayuningtyas
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Atsuhiro Nagasaki
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Hidetoshi Tahara
- Department of Cellular and Molecular Biology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
47
|
He X, Slupsky CM. Metabolic fingerprint of dimethyl sulfone (DMSO2) in microbial-mammalian co-metabolism. J Proteome Res 2014; 13:5281-92. [PMID: 25245235 DOI: 10.1021/pr500629t] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is growing awareness that intestinal microbiota alters the energy harvesting capacity of the host and regulates metabolism. It has been postulated that intestinal microbiota are able to degrade unabsorbed dietary components and transform xenobiotic compounds. The resulting microbial metabolites derived from the gastrointestinal tract can potentially enter the circulation system, which, in turn, affects host metabolism. Yet, the metabolic capacity of intestinal microbiota and its interaction with mammalian metabolism remains largely unexplored. Here, we review a metabolic pathway that integrates the microbial catabolism of methionine with mammalian metabolism of methanethiol (MT), dimethyl sulfide (DMS), and dimethyl sulfoxide (DMSO), which together provide evidence that supports the microbial origin of dimethyl sulfone (DMSO2) in the human metabolome. Understanding the pathway of DMSO2 co-metabolism expends our knowledge of microbial-derived metabolites and motivates future metabolomics-based studies on ascertaining the metabolic consequences of intestinal microbiota on human health, including detoxification processes and sulfur xenobiotic metabolism.
Collapse
Affiliation(s)
- Xuan He
- Department of Nutrition, Department of Food Science and Technology, One Shields Avenue , University of California, Davis, Davis, California 95616, United States
| | | |
Collapse
|
48
|
Detection of volatile malodorous compounds in breath: current analytical techniques and implications in human disease. Bioanalysis 2014; 6:357-76. [PMID: 24471956 DOI: 10.4155/bio.13.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For the last few decades intense scientific research has been placed on the relationship between trace substances found in exhaled breath such as volatile organic compounds (VOC) and a wide range of local or systemic diseases. Although currently there is no general consensus, results imply that VOC have a different profile depending on the organ or disease that generates them. The association between a specific pathology and exhaled breath odor is particularly evident in patients with medical conditions such as liver, renal or oral diseases. In other cases the unpleasant odors can be associated with the whole body and have a genetic underlying cause. The present review describes the current advances in identifying and quantifying VOC used as biomarkers for a number of systemic diseases. A special focus will be placed on volatiles that characterize unpleasant breath 'fingerprints' such as fetor hepaticus; uremic fetor; fetor ex ore or trimethylaminuria.
Collapse
|
49
|
An L, Pookhao N, Jiang H, Xu J. Statistical approach of functional profiling for a microbial community. PLoS One 2014; 9:e106588. [PMID: 25198674 PMCID: PMC4157783 DOI: 10.1371/journal.pone.0106588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/31/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Metagenomics is a relatively new but fast growing field within environmental biology and medical sciences. It enables researchers to understand the diversity of microbes, their functions, cooperation, and evolution in a particular ecosystem. Traditional methods in genomics and microbiology are not efficient in capturing the structure of the microbial community in an environment. Nowadays, high-throughput next-generation sequencing technologies are powerfully driving the metagenomic studies. However, there is an urgent need to develop efficient statistical methods and computational algorithms to rapidly analyze the massive metagenomic short sequencing data and to accurately detect the features/functions present in the microbial community. Although several issues about functions of metagenomes at pathways or subsystems level have been investigated, there is a lack of studies focusing on functional analysis at a low level of a hierarchical functional tree, such as SEED subsystem tree. RESULTS A two-step statistical procedure (metaFunction) is proposed to detect all possible functional roles at the low level from a metagenomic sample/community. In the first step a statistical mixture model is proposed at the base of gene codons to estimate the abundances for the candidate functional roles, with sequencing error being considered. As a gene could be involved in multiple biological processes the functional assignment is therefore adjusted by utilizing an error distribution in the second step. The performance of the proposed procedure is evaluated through comprehensive simulation studies. Compared with other existing methods in metagenomic functional analysis the new approach is more accurate in assigning reads to functional roles, and therefore at more general levels. The method is also employed to analyze two real data sets. CONCLUSIONS metaFunction is a powerful tool in accurate profiling functions in a metagenomic sample.
Collapse
Affiliation(s)
- Lingling An
- Department of Agricultural & Biosystems Engineering, University of Arizona, Tucson, Arizona, United States of America
- Interdisciplinary Programs in Statistics, University of Arizona, Tucson, Arizona, United States of America
| | - Nauromal Pookhao
- Department of Agricultural & Biosystems Engineering, University of Arizona, Tucson, Arizona, United States of America
| | - Hongmei Jiang
- Department of Statistics, Northwestern University, Evanston, Illinois, United States of America
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
50
|
L-methionase: a therapeutic enzyme to treat malignancies. BIOMED RESEARCH INTERNATIONAL 2014; 2014:506287. [PMID: 25250324 PMCID: PMC4164312 DOI: 10.1155/2014/506287] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Cancer is an increasing cause of mortality and morbidity throughout the world. L-methionase has potential application against many types of cancers. L-Methionase is an intracellular enzyme in bacterial species, an extracellular enzyme in fungi, and absent in mammals. L-Methionase producing bacterial strain(s) can be isolated by 5,5′-dithio-bis-(2-nitrobenzoic acid) as a screening dye. L-Methionine plays an important role in tumour cells. These cells become methionine dependent and eventually follow apoptosis due to methionine limitation in cancer cells. L-Methionine also plays an indispensable role in gene activation and inactivation due to hypermethylation and/or hypomethylation. Membrane transporters such as GLUT1 and ion channels like Na2+, Ca2+, K+, and Cl− become overexpressed. Further, the α-subunit of ATP synthase plays a role in cancer cells growth and development by providing them enhanced nutritional requirements. Currently, selenomethionine is also used as a prodrug in cancer therapy along with enzyme methionase that converts prodrug into active toxic chemical(s) that causes death of cancerous cells/tissue. More recently, fusion protein (FP) consisting of L-methionase linked to annexin-V has been used in cancer therapy. The fusion proteins have advantage that they have specificity only for cancer cells and do not harm the normal cells.
Collapse
|