1
|
Dissecting serotype-specific contributions to live oral cholera vaccine efficacy. Proc Natl Acad Sci U S A 2021; 118:2018032118. [PMID: 33558237 DOI: 10.1073/pnas.2018032118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The O1 serogroup of Vibrio cholerae causes pandemic cholera and is divided into the Ogawa and Inaba serotypes. The O-antigen is V. cholerae's immunodominant antigen, and the two serotypes, which differ by the presence or absence of a terminally methylated O-antigen, likely influence development of immunity to cholera and oral cholera vaccines (OCVs). However, there is no consensus regarding the relative immunological potency of each serotype, in part because previous studies relied on genetically heterogeneous strains. Here, we engineered matched serotype variants of a live OCV candidate, HaitiV, and used a germfree mouse model to evaluate the immunogenicity and protective efficacy of each vaccine serotype. By combining vibriocidal antibody quantification with single- and mixed-strain infection assays, we found that all three HaitiV variants-InabaV, OgawaV, and HikoV (bivalent Inaba/Ogawa)-were immunogenic and protective. None of the vaccine serotypes were superior across both of these vaccine metrics, suggesting that the impact of O1-serotype variation in OCV design, although detectable, is subtle. However, all three live vaccines significantly outperformed formalin-killed HikoV, supporting the idea that live OCV usage will bolster current cholera control practices. The potency of OCVs was found to be challenge strain-dependent, emphasizing the importance of appropriate strain selection for cholera challenge studies. Our findings and experimental approaches will be valuable for guiding the development of live OCVs and oral vaccines for additional pathogens.
Collapse
|
2
|
Akter A, Kelly M, Charles RC, Harris JB, Calderwood SB, Bhuiyan TR, Biswas R, Xu P, Kováč P, Qadri F, Ryan ET. Parenteral Vaccination with a Cholera Conjugate Vaccine Boosts Vibriocidal and Anti-OSP Responses in Mice Previously Immunized with an Oral Cholera Vaccine. Am J Trop Med Hyg 2021; 104:2024-2030. [PMID: 33872211 PMCID: PMC8176512 DOI: 10.4269/ajtmh.20-1511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Oral cholera vaccination protects against cholera; however, responses in young children are low and of short duration. The best current correlates of protection against cholera target Vibrio cholerae O-specific polysaccharide (anti-OSP), including vibriocidal responses. A cholera conjugate vaccine has been developed that induces anti-OSP immune responses, including memory B-cell responses. To address whether cholera conjugate vaccine would boost immune responses following oral cholera vaccination, we immunized mice with oral cholera vaccine Inaba CVD 103-HgR or buffer only (placebo) on day 0, followed by parenteral boosting immunizations on days 14, 42, and 70 with cholera conjugate vaccine Inaba OSP: recombinant tetanus toxoid heavy chain fragment or phosphate buffered saline (PBS)/placebo. Compared with responses in mice immunized with oral vaccine alone or intramuscular cholera conjugate vaccine alone, mice receiving combination vaccination developed significantly higher vibriocidal, IgM OSP-specific serum responses and OSP-specific IgM memory B-cell responses. A combined vaccination approach, which includes oral cholera vaccination followed by parenteral cholera conjugate vaccine boosting, results in increased immune responses that have been associated with protection against cholera. These results suggest that such an approach should be evaluated in humans.
Collapse
Affiliation(s)
- Aklima Akter
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Meagan Kelly
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Richelle C Charles
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jason B Harris
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,4Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,5Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Stephen B Calderwood
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Taufiqur R Bhuiyan
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Peng Xu
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kováč
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Firdausi Qadri
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Edward T Ryan
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts.,7Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
3
|
Selenium Nanoparticles Induce Potent Protective Immune Responses against Vibrio cholerae WC Vaccine in a Mouse Model. J Immunol Res 2021; 2020:8874288. [PMID: 33490291 PMCID: PMC7794041 DOI: 10.1155/2020/8874288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to evaluate the efficacy of selenium nanoparticle (an immune booster) and naloxone (an opioid receptor antagonist) as a new adjuvant in increasing immune responses against killed whole-cell Vibrio cholerae in a mouse cholera model. The Se NPs were synthesized and characterized by UV-visible, DLS, and zeta potential analysis. The SEM image confirmed the uniformity of spherical morphology of nanoparticle shape with 34 nm in size. The concentration of the Se NPs was calculated as 0.654 μg/ml in the ICP method. The cytotoxic activity of Se NPs on Caco-2 cells was assessed by the MTT assay and revealed 82.05% viability of cells after 24 h exposure with 100 μg/ml of Se NPs. Female BALB/C mice were orally immunized three times on days 0, 14, and 28, and challenge experiments were performed on immunized neonates with toxigenic V. cholerae. Administration of Se NP diet led to significant increase in V. cholerae-specific IgG and IgA responses in serum and saliva and caused protective immunity and 83.3% survival in challenge experiment against 1 LD50 V. cholerae in a group receiving diet of Se NPs compared with other groups including Dukoral vaccine. The IL-4 and IL-5 were significantly increased in response to WC+daily diet of Se NPs with or without naloxone. Naloxone proved no effect on IL-4 and IL-5 increase and is proposed as null in the cytokine and antibody production process. These results reveal that daily diet of Se NPs could efficiently induce immune cell effectors in both humoral and mucosal levels.
Collapse
|
4
|
Transient Intestinal Colonization by a Live-Attenuated Oral Cholera Vaccine Induces Protective Immune Responses in Streptomycin-Treated Mice. J Bacteriol 2020; 202:JB.00232-20. [PMID: 32540930 DOI: 10.1128/jb.00232-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023] Open
Abstract
Current mouse models for evaluating the efficacy of live oral cholera vaccines (OCVs) have important limitations. Conventionally raised adult mice are resistant to intestinal colonization by Vibrio cholerae, but germfree mice can be colonized and have been used to study OCV immunogenicity. However, germfree animals have impaired immune systems and intestinal physiology; also, live OCVs colonize germfree mice for many months, which does not mimic the clearance kinetics of live OCVs in humans. In this study, we leveraged antibiotic-treated, conventionally raised adult mice to study the effects of transient intestinal colonization by a live OCV V. cholerae strain. In a single-dose vaccination regimen, we found that HaitiV, a live-attenuated OCV candidate, was cleared by streptomycin-treated adult mice within 2 weeks after oral inoculation. This transient colonization elicited far stronger adaptive immune correlates of protection against cholera than did inactivated whole-cell HaitiV. Infant mice from HaitiV-vaccinated dams were also significantly more protected from choleric disease than pups from inactivated-HaitiV-vaccinated dams. Our findings establish the benefits of antibiotic-treated mice for live-OCV studies as well as their limitations and underscore the immunogenicity of HaitiV.IMPORTANCE Oral cholera vaccines (OCVs) are being deployed to combat cholera, but current killed OCVs require multiple doses and show little efficacy in young children. Live OCVs have the potential to overcome these limitations, but small-animal models for testing OCVs have shortcomings. We used an antibiotic treatment protocol for conventional adult mice to study the effects of short-term colonization by a single dose of HaitiV, a live-OCV candidate. Vaccinated mice developed vibriocidal antibodies against V. cholerae and delivered pups that were resistant to cholera, whereas mice vaccinated with inactivated HaitiV did not. These findings demonstrate HaitiV's immunogenicity and suggest that this antibiotic treatment protocol will be useful for evaluating the efficacy of live OCVs.
Collapse
|
5
|
Hosomi K, Kunisawa J. Impact of the intestinal environment on the immune responses to vaccination. Vaccine 2020; 38:6959-6965. [PMID: 32933791 DOI: 10.1016/j.vaccine.2020.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Vaccination has contributed greatly to the control of infectious diseases; however, regional and individual differences are occasionally observed in the efficacy of vaccination. As one explanation for these differences, much attention has focused on the intestinal environment constructed by the interaction of diet and the gut microbiota. The intestinal environment has several physiological effects on the host immune system, both locally and systemically, and consequently influences the efficacy of vaccination. In this review, we discuss the impact of the gut microbiota and dietary nutrients on systemic and oral vaccination as well as their applications in various strategies for immunoregulation, including use as vaccine adjuvants. This information could contribute to establishing methods of personalized vaccination that would optimize host immunity by changing the gut environment to maximize vaccine effects.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Japan; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Density, Osaka University, Japan; Graduate School of Medicine, Kobe University, Japan; Research Organization for Nano & Life Innovation, Waseda University, Japan.
| |
Collapse
|
6
|
Oral immunization with a probiotic cholera vaccine induces broad protective immunity against Vibrio cholerae colonization and disease in mice. PLoS Negl Trop Dis 2019; 13:e0007417. [PMID: 31150386 PMCID: PMC6561597 DOI: 10.1371/journal.pntd.0007417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
Oral cholera vaccines (OCVs) are being increasingly employed, but current killed formulations generally require multiple doses and lack efficacy in young children. We recently developed a new live-attenuated OCV candidate (HaitiV) derived from a Vibrio cholerae strain isolated during the 2010 Haiti cholera epidemic. HaitiV exhibited an unexpected probiotic-like activity in infant rabbits, preventing intestinal colonization and disease by wild-type V. cholerae before the onset of adaptive immunity. However, it remained unknown whether HaitiV would behave similarly to other OCVs to stimulate adaptive immunity against V. cholerae. Here, we orally immunized adult germ-free female mice to test HaitiV’s immunogenicity. HaitiV safely and stably colonized vaccinated mice and induced known adaptive immune correlates of cholera protection within 14 days of administration. Pups born to immunized mice were protected against lethal challenges of both homologous and heterologous V. cholerae strains. Cross-fostering experiments revealed that protection was not dependent on vaccine colonization in or transmission to the pups. These findings demonstrate the protective immunogenicity of HaitiV and support its development as a new tool for limiting cholera. Oral cholera vaccines are increasingly used as public health tools for prevention of cholera and curtailing the spread of outbreaks. However, current killed vaccines provide minimal protection in young children, who are especially susceptible to this diarrheal disease, and require ~7–14 days between vaccination and development of protective immunity. We recently created HaitiV, a live-attenuated oral cholera vaccine candidate derived from a clinical isolate from the Haiti cholera outbreak. Unexpectedly, HaitiV protected against cholera-like illness in infant rabbits within 24 hours of administration, before the onset of adaptive immunity. However, HaitiV’s capacity to stimulate adaptive immune responses against the cholera pathogen were not investigated. Here, we report that HaitiV induces immunological correlates of protection against cholera in adult germ-free mice and leads to protection against disease in their offspring. Protection against disease was transferable through the milk of the immunized mice and was not due to transmission or colonization of HaitiV in this model. Coupling the immunogenicity data presented here with our previous observation that HaitiV can protect from cholera prior to the induction of adaptive immunity, we propose that HaitiV may provide both rapid-onset short-term protection from disease while eliciting stable and long-lasting immunity against cholera.
Collapse
|
7
|
A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice. PLoS Negl Trop Dis 2015; 9:e0003881. [PMID: 26154421 PMCID: PMC4495926 DOI: 10.1371/journal.pntd.0003881] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). METHODOLOGY Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. PRINCIPLE FINDINGS Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. CONCLUSION We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.
Collapse
|
8
|
Alam MM, Bufano MK, Xu P, Kalsy A, Yu Y, Freeman YW, Sultana T, Rashu MR, Desai I, Eckhoff G, Leung DT, Charles RC, LaRocque RC, Harris JB, Clements JD, Calderwood SB, Qadri F, Vann WF, Kováč P, Ryan ET. Evaluation in mice of a conjugate vaccine for cholera made from Vibrio cholerae O1 (Ogawa) O-specific polysaccharide. PLoS Negl Trop Dis 2014; 8:e2683. [PMID: 24516685 PMCID: PMC3916310 DOI: 10.1371/journal.pntd.0002683] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Methodology Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. Principal Findings We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. Conclusion We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens. Cholera is a severe dehydrating diarrheal illness of humans caused by organisms Vibrio cholerae serogroups O1 or O139 serogroup organisms. Protective immunity against cholera is serogroup specific. Serogroup specificity in V. cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Unfortunately, children bear a large burden of cholera globally. Here we describe a novel cholera conjugate vaccine and show that it induces immune responses in mice, including memory responses, to OSP, the T cell-independent antigen that probably is the target of protective immunity to cholera. These responses were highest following immunization of the vaccine with a novel immunoadjuvant, dmLT. We also show that immunization of mice with this conjugate vaccine protects against challenge with wild-type V. cholerae. A protectively immunogenic cholera conjugate vaccine that induces long-term memory responses could have particular utility in young children who are most at risk of cholera.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Megan Kelly Bufano
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Yu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Wu Freeman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tania Sultana
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md. Rasheduzzaman Rashu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Ishaan Desai
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Grace Eckhoff
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Clements
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - W. F. Vann
- CBER, FDA, Laboratory of Bacterial Toxins, Bethesda, Maryland, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Transcutaneous immunization with a Vibrio cholerae O1 Ogawa synthetic hexasaccharide conjugate following oral whole-cell cholera vaccination boosts vibriocidal responses and induces protective immunity in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:594-602. [PMID: 22357651 DOI: 10.1128/cvi.05689-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A shortcoming of currently available oral cholera vaccines is their induction of relatively short-term protection against cholera compared to that afforded by wild-type disease. We were interested in whether transcutaneous or subcutaneous boosting using a neoglycoconjugate vaccine made from a synthetic terminal hexasaccharide of the O-specific polysaccharide of Vibrio cholerae O1 (Ogawa) coupled to bovine serum albumin as a carrier (CHO-BSA) could boost lipopolysaccharide (LPS)-specific and vibriocidal antibody responses and result in protective immunity following oral priming immunization with whole-cell cholera vaccine. We found that boosting with CHO-BSA with immunoadjuvantative cholera toxin (CT) or Escherichia coli heat-labile toxin (LT) following oral priming with attenuated V. cholerae O1 vaccine strain O395-NT resulted in significant increases in serum anti-V. cholerae LPS IgG, IgM, and IgA (P < 0.01) responses as well as in anti-Ogawa (P < 0.01) and anti-Inaba (P < 0.05) vibriocidal titers in mice. The LPS-specific IgA responses in stool were induced by transcutaneous (P < 0.01) but not subcutaneous immunization. Immune responses following use of CT or LT as an adjuvant were comparable. In a neonatal mouse challenge assay, immune serum from boosted mice was associated with 79% protective efficacy against death. Our results suggest that transcutaneous and subcutaneous boosting with a neoglycoconjugate following oral cholera vaccination may be an effective strategy to prolong protective immune responses against V. cholerae.
Collapse
|
10
|
Rollenhagen JE, Kalsy A, Saksena R, Sheikh A, Alam MM, Qadri F, Calderwood SB, Kovác P, Ryan ET. Transcutaneous immunization with a synthetic hexasaccharide-protein conjugate induces anti-Vibrio cholerae lipopolysaccharide responses in mice. Vaccine 2009; 27:4917-22. [PMID: 19563890 DOI: 10.1016/j.vaccine.2009.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 01/20/2023]
Abstract
Antibodies specific for Vibrio cholerae lipopolysaccaride (LPS) are common in humans recovering from cholera, and constitute a primary component of the vibriocidal response, a serum complement-mediated bacteriocidal response correlated with protection against cholera. In order to determine whether transcutaneous immunization (TCI) with a V. cholerae neoglycoconjugate (CHO-BSA) comprised of a synthetic terminal hexasaccharide of the O-specific polysaccharide of V. cholerae O1 (Ogawa) conjugated with bovine serum albumin (BSA) could induce anti-V. cholerae LPS and vibriocidal responses, we applied CHO-BSA transcutaneously in the presence or absence of the immune adjuvant cholera toxin (CT) to mice. Transcutaneously applied neoglycoconjugate elicited prominent V. cholerae specific LPS IgG responses in the presence of CT, but not IgM or IgA responses. CT applied on the skin induced strong IgG and IgA serum responses. TCI with neoglycoconjugate did not elicit detectable vibriocidal responses, protection in a mouse challenge assay, or stool anti-V. cholerae IgA responses, irrespective of the presence or absence of CT. Our results suggest that transcutaneously applied synthetic V. cholerae neoglycoconjugate is safe and immunogenic, but predominantly induces systemic LPS responses of the IgG isotype.
Collapse
|
11
|
Rollenhagen JE, Kalsy A, Cerda F, John M, Harris JB, Larocque RC, Qadri F, Calderwood SB, Taylor RK, Ryan ET. Transcutaneous immunization with toxin-coregulated pilin A induces protective immunity against Vibrio cholerae O1 El Tor challenge in mice. Infect Immun 2006; 74:5834-9. [PMID: 16988262 PMCID: PMC1594919 DOI: 10.1128/iai.00438-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxin-coregulated pilin A (TcpA) is the main structural subunit of a type IV bundle-forming pilus of Vibrio cholerae, the cause of cholera. Toxin-coregulated pilus is involved in formation of microcolonies of V. cholerae at the intestinal surface, and strains of V. cholerae deficient in TcpA are attenuated and unable to colonize intestinal surfaces. Anti-TcpA immunity is common in humans recovering from cholera in Bangladesh, and immunization against TcpA is protective in murine V. cholerae models. To evaluate whether transcutaneously applied TcpA is immunogenic, we transcutaneously immunized mice with 100 mug of TcpA or TcpA with an immunoadjuvant (cholera toxin [CT], 50 mug) on days 0, 19, and 40. Mice immunized with TcpA alone did not develop anti-TcpA responses. Mice that received transcutaneously applied TcpA and CT developed prominent anti-TcpA immunoglobulin G (IgG) serum responses but minimal anti-TcpA IgA. Transcutaneous immunization with CT induced prominent IgG and IgA anti-CT serum responses. In an infant mouse model, offspring born to dams transcutaneously immunized either with TcpA and CT or with CT alone were challenged with 10(6) CFU (one 50% lethal dose) wild-type V. cholerae O1 El Tor strain N16961. At 48 h, mice born to females transcutaneously immunized with CT alone had 36% +/- 10% (mean +/- standard error of the mean) survival, while mice born to females transcutaneously immunized with TcpA and CT had 69% +/- 6% survival (P < 0.001). Our results suggest that transcutaneous immunization with TcpA and an immunoadjuvant induces protective anti-TcpA immune responses. Anti-TcpA responses may contribute to an optimal cholera vaccine.
Collapse
Affiliation(s)
- Julianne E Rollenhagen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Live, orally administered, attenuated vaccine strains of Vibrio cholerae have many theoretical advantages over killed vaccines. A single oral inoculation could result in intestinal colonization and rapid immune responses, obviating the need for repetitive dosing. Live V. cholerae organisms can also respond to the intestinal environment and immunological exposure to in vivo expressed bacterial products, which could result in improved immunological protection against wild-type V. cholerae infection. The concern remains that live oral cholera vaccines may be less effective among partially immune individuals in cholera endemic areas as pre-existing antibodies can inhibit live organisms and decrease colonization of the gut. A number of live oral cholera vaccines have been developed to protect against cholera caused by the classical and El Tor serotypes of V. cholerae O1, including CVD 103-HgR, Peru-15 and V. cholerae 638. A number of live oral cholera vaccines have also been similarly developed to protect against cholera caused by V. cholerae O139, including CVD 112 and Bengal-15. Live, orally administered, attenuated cholera vaccines are in various stages of development and evaluation.
Collapse
Affiliation(s)
- Edward T Ryan
- Massachusetts General Hospital Tropical & Geographic Medicine Center, Division of Infectious Diseases, Jackson 504 55 Fruit Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
13
|
Alam A, Larocque RC, Harris JB, Vanderspurt C, Ryan ET, Qadri F, Calderwood SB. Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse. Infect Immun 2005; 73:6674-9. [PMID: 16177344 PMCID: PMC1230955 DOI: 10.1128/iai.73.10.6674-6679.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has previously been shown that passage of Vibrio cholerae through the human intestine imparts a transient hyperinfectious phenotype that may contribute to the epidemic spread of cholera. The mechanism underlying this human-passaged hyperinfectivity is incompletely understood, in part due to inherent difficulties in recovering and studying organisms that are freshly passed in human stool. Here, we demonstrate that passage of V. cholerae through the infant mouse intestine leads to an equivalent degree of hyperinfectivity as passage through the human host. We have used this infant mouse model of host-passaged hyperinfectivity to characterize the timing and the anatomic location of the competitive advantage of mouse-passaged V. cholerae as well as the contribution of three type IV pili to the phenotype.
Collapse
Affiliation(s)
- Ashfaqul Alam
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
14
|
Silva AJ, Mohan A, Benitez JA. Cholera vaccine candidate 638: intranasal immunogenicity and expression of a foreign antigen from the pulmonary pathogen Coccidioides immitis. Vaccine 2003; 21:4715-21. [PMID: 14585681 DOI: 10.1016/s0264-410x(03)00515-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vibrio cholerae strain 638 is a live genetically attenuated candidate cholera vaccine in which the CTXPhi prophage encoding cholera toxin has been deleted and hapA, encoding an extracellular Zn-dependent metalloprotease, was insertionally inactivated. Strain 638 was highly immunogenic when inoculated to adult Swiss mice by the intranasal route as judged by the induction of a strong serum vibriocidal antibody response. A side-by-side comparison of strain 638 with its isogenic hapA(+) precursor (strain 81) in the above model indicated that inactivation of hapA does not affect immunogenicity. The spherule-associated antigen 2/proline-rich antigen (Ag2/PRA) of Coccidioides immitis has been shown to protect mice against coccidioidomycosis to an extent dependent on the modes of antigen presentation and challenge with C. immitis arthrospores. In this work, we demonstrate the use of a live genetically attenuated V. cholerae strain to deliver Ag2/PRA. Ag2/PRA was expressed in 638 as a fusion protein with the Escherichia coli heat labile toxin B subunit leader peptide using the strong Tac promoter. The recombinant Ag2/PRA was efficiently expressed, processed and secreted to the periplasmic space. Intranasal immunizations of adult mice with strain 638 expressing Ag2/PRA induced serum vibriocidal antibody response to the vector strain and serum total IgG response to Ag2/PRA. Strain 638 expressing PRA could be recovered from trachea and lung up to 20h after immunization but was effectively cleared 72h post-inoculation.
Collapse
Affiliation(s)
- Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA 30310-1495, USA
| | | | | |
Collapse
|
15
|
Qadri F, Ryan ET, Faruque ASG, Ahmed F, Khan AI, Islam MM, Akramuzzaman SM, Sack DA, Calderwood SB. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: comparison to antibody-secreting cell responses and other immunological markers. Infect Immun 2003; 71:4808-14. [PMID: 12874365 PMCID: PMC165990 DOI: 10.1128/iai.71.8.4808-4814.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gut-derived lymphocytes transiently migrate through the peripheral circulation before homing back to mucosal sites and can be detected using an ELISPOT-based antibody secreting cell (ASC) assay. Alternatively, transiently circulating lymphocytes may be cultured in vitro, and culture supernatants may be assayed for antigen-specific responses (antibody in lymphocyte supernatant [ALS] assay). The ALS assay has not been validated extensively in natural mucosal infection, nor has the ALS response been compared to the ASC assay and other cholera-specific immunological responses. Accordingly, we examined immune responses in 30 adult patients with acute cholera in Bangladesh, compared with 10 healthy controls, measuring ALS-immunoglobulin A (IgA), ASC-IgA, and serum and fecal IgA responses to two potent Vibrio cholerae immunogens, the nontoxic B subunit of cholera toxin (CtxB) and lipopolysaccharide (LPS) and a weaker V. cholerae immunogen, the mannose-sensitive hemagglutinin (MSHA). We found significant increases of anti-CtxB, anti-LPS, and anti-MSHA IgA in supernatants of lymphocytes cultured 7 days after onset of cholera using the ALS assay. We found that ALS and ASC responses correlated extremely well; both had comparable sensitivities as the vibriocidal responses, and both procedures were more sensitive than fecal IgA measurements. An advantage of the ALS assay for studying mucosal immune responses is the ability to freeze antibodies in supernatants for subsequent evaluation; like the ASC assay, the ALS assay can distinguish recent from remote mucosal infection, a distinction that may be difficult to make in endemic settings using other procedures.
Collapse
Affiliation(s)
- Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh, Centre for Health and Population Research, Mohakhali, Dhaka 1212, Bangladesh.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
John M, Bridges EA, Miller AO, Calderwood SB, Ryan ET. Comparison of mucosal and systemic humoral immune responses after transcutaneous and oral immunization strategies. Vaccine 2002; 20:2720-6. [PMID: 12034098 DOI: 10.1016/s0264-410x(02)00208-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to compare the ability of transcutaneous and oral immunization strategies to induce mucosal and systemic immune responses, we inoculated mice transcutaneously with cholera toxin (CT) or the non-toxic B subunit of cholera toxin (CtxB), or orally with Peru2(pETR1), an attenuated vaccine strain of Vibrio cholerae expressing CtxB. In addition, we also evaluated dual immunization regimens (oral inoculation with transcutaneous boosting, and transcutaneous immunization with oral boosting) in an attempt to optimize induction of both mucosal and systemic immune responses. We found that transcutaneous immunization with purified CtxB or CT induces much more prominent systemic IgG anti-CtxB responses than does oral inoculation with a vaccine vector strain of V. cholerae expressing CtxB. In comparison, anti-CtxB IgA in serum, stool and bile were comparable in mice either transcutaneously or orally immunized. Overall, the most prominent systemic and mucosal anti-CtxB responses occurred in mice that were orally primed with Peru2(pETR1) and transcutaneously boosted with CT. Our results suggest that combination oral and transcutaneous immunization strategies may most prominently induce both mucosal and systemic humoral responses.
Collapse
Affiliation(s)
- Manohar John
- Tropical & Geographic Medicine Center, Division of Infectious Diseases, Jackson 504, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
17
|
Fullner KJ, Boucher JC, Hanes MA, Haines GK, Meehan BM, Walchle C, Sansonetti PJ, Mekalanos JJ. The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J Exp Med 2002; 195:1455-62. [PMID: 12045243 PMCID: PMC2193536 DOI: 10.1084/jem.20020318] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The contribution of accessory toxins to the acute inflammatory response to Vibrio cholerae was assessed in a murine pulmonary model. Intranasal administration of an El Tor O1 V. cholerae strain deleted of cholera toxin genes (ctxAB) caused diffuse pneumonia characterized by infiltration of PMNs, tissue damage, and hemorrhage. By contrast, the ctxAB mutant with an additional deletion in the actin-cross-linking repeats-in-toxin (RTX) toxin gene (rtxA) caused a less severe pathology and decreased serum levels of proinflammatory molecules interleukin (IL)-6 and murine macrophage inflammatory protein (MIP)-2. These data suggest that the RTX toxin contributes to the severity of acute inflammatory responses. Deletions within the genes for either hemagglutinin/protease (hapA) or hemolysin (hlyA) did not significantly affect virulence in this model. Compound deletion of ctxAB, hlyA, hapA, and rtxA created strain KFV101, which colonized the lung but induced pulmonary disease with limited inflammation and significantly reduced serum titers of IL-6 and MIP-2. 100% of mice inoculated with KFV101 survive, compared with 20% of mice inoculated with the ctxAB mutant. Thus, the reduced virulence of KFV101 makes it a prototype for multi-toxin deleted vaccine strains that could be used for protection against V. cholerae without the adverse effects of the accessory cholera toxins.
Collapse
Affiliation(s)
- Karla Jean Fullner
- Departments of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave., Morton 6-626, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- E T Ryan
- Tropical and Geographic Medicine Center, Travelers' Advice and Immunization Center, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
19
|
John M, Crean TI, Calderwood SB, Ryan ET. In vitro and in vivo analyses of constitutive and in vivo-induced promoters in attenuated vaccine and vector strains of Vibrio cholerae. Infect Immun 2000; 68:1171-5. [PMID: 10678922 PMCID: PMC97263 DOI: 10.1128/iai.68.3.1171-1175.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The optimal promoter for in vivo expression of heterologous antigens by live, attenuated vaccine vector strains of Vibrio cholerae is unclear; in vitro analyses of promoter activity may not accurately predict expression of antigens in vivo. We therefore introduced plasmids expressing the B subunit of cholera toxin (CtxB) under the control of a number of promoters into V. cholerae vaccine strain Peru2. We evaluated the tac promoter, which is constitutively expressed in V. cholerae, as well as the in vivo-induced V. cholerae heat shock htpG promoter and the in vivo-induced V. cholerae iron-regulated irgA promoter. The functionality of all promoters was confirmed in vitro. In vitro antigenic expression was highest in vaccine strains expressing CtxB under the control of the tac promoter (2 to 5 microgram/ml/unit of optical density at 600 nm [OD(600)]) and, under low-iron conditions, in strains containing the irgA promoter (5 microgram/ml/OD(600)). We orally inoculated mice with the various vaccine strains and used anti-CtxB immune responses as a marker for in vivo expression of CtxB. The vaccine strain expressing CtxB under the control of the tac promoter elicited the most prominent specific anti-CtxB responses in vivo (serum immunoglobulin G [IgG], P </= 0.05; serum IgA, P </= 0.05; stool IgA, P </= 0.05; bile IgA, P </= 0.05), despite the finding that the tac and irgA promoters expressed equivalent amounts of CtxB in vitro. Vibriocidal antibody titers were equivalent in all groups of animals. Our results indicate that in vitro assessment of antigen expression by vaccine and vector strains of V. cholerae may correlate poorly with immune responses in vivo and that of the promoters examined, the tac promoter may be best suited for expression from plasmids of at least certain heterologous antigens in such strains.
Collapse
Affiliation(s)
- M John
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|