1
|
Montero DA, Vidal RM, Velasco J, George S, Lucero Y, Gómez LA, Carreño LJ, García-Betancourt R, O’Ryan M. Vibrio cholerae, classification, pathogenesis, immune response, and trends in vaccine development. Front Med (Lausanne) 2023; 10:1155751. [PMID: 37215733 PMCID: PMC10196187 DOI: 10.3389/fmed.2023.1155751] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Vibrio cholerae is the causative agent of cholera, a highly contagious diarrheal disease affecting millions worldwide each year. Cholera is a major public health problem, primarily in countries with poor sanitary conditions and regions affected by natural disasters, where access to safe drinking water is limited. In this narrative review, we aim to summarize the current understanding of the evolution of virulence and pathogenesis of V. cholerae as well as provide an overview of the immune response against this pathogen. We highlight that V. cholerae has a remarkable ability to adapt and evolve, which is a global concern because it increases the risk of cholera outbreaks and the spread of the disease to new regions, making its control even more challenging. Furthermore, we show that this pathogen expresses several virulence factors enabling it to efficiently colonize the human intestine and cause cholera. A cumulative body of work also shows that V. cholerae infection triggers an inflammatory response that influences the development of immune memory against cholera. Lastly, we reviewed the status of licensed cholera vaccines, those undergoing clinical evaluation, and recent progress in developing next-generation vaccines. This review offers a comprehensive view of V. cholerae and identifies knowledge gaps that must be addressed to develop more effective cholera vaccines.
Collapse
Affiliation(s)
- David A. Montero
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juliana Velasco
- Unidad de Paciente Crítico, Clínica Hospital del Profesor, Santiago, Chile
- Programa de Formación de Especialista en Medicina de Urgencia, Universidad Andrés Bello, Santiago, Chile
| | - Sergio George
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Yalda Lucero
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Pediatría y Cirugía Infantil, Hospital Dr. Roberto del Rio, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Leonardo A. Gómez
- Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Leandro J. Carreño
- Instituto Milenio de Inmunología e Inmunoterapia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Miguel O’Ryan
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Kaur D, Verma P, Singh M, Sharma A, Lata K, Mukhopadhaya A, Chattopadhyay K. Pore formation-independent cell death induced by a β-barrel pore-forming toxin. FASEB J 2022; 36:e22557. [PMID: 36125006 DOI: 10.1096/fj.202200788r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/16/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Abstract
Vibrio cholerae cytolysin (VCC) is a β-barrel pore-forming toxin (β-PFT). It exhibits potent hemolytic activity against erythrocytes that appears to be a direct outcome of its pore-forming functionality. However, VCC-mediated cell-killing mechanism is more complicated in the case of nucleated mammalian cells. It induces apoptosis in the target nucleated cells, mechanistic details of which are still unclear. Furthermore, it has never been explored whether the ability of VCC to trigger programmed cell death is stringently dependent on its pore-forming activity. Here, we show that VCC can evoke hallmark features of the caspase-dependent apoptotic cell death even in the absence of the pore-forming ability. Our study demonstrates that VCC mutants with abortive pore-forming hemolytic activity can trigger apoptotic cell death responses and cytotoxicity, similar to those elicited by the wild-type toxin. VCC as well as its pore formation-deficient mutants display prominent propensity to translocate to the target cell mitochondria and cause mitochondrial membrane damage. Therefore, our results for the first time reveal that VCC, despite being an archetypical β-PFT, can kill target nucleated cells independent of its pore-forming functionality. These findings are intriguing for a β-PFT, whose destination is generally expected to remain limited on the target cell membranes, and whose mode of action is commonly attributed to the membrane-damaging pore-forming ability. Taken together, our study provides critical new insights regarding distinct implications of the two important virulence functionalities of VCC for the V. cholerae pathogenesis process: hemolytic activity for iron acquisition and cytotoxicity for tissue damage by the bacteria.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India.,Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pratima Verma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arpita Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
3
|
Heterogeneous Growth Enhancement of Vibrio cholerae in the Presence of Different Phytoplankton Species. Appl Environ Microbiol 2022; 88:e0115822. [PMID: 36000870 PMCID: PMC9469713 DOI: 10.1128/aem.01158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a ubiquitously distributed human pathogen that naturally inhabits marine and estuarine ecosystems. Two serogroups are responsible for causing cholera epidemics, O1 and O139, but several non-O1 and non-O139 V. cholerae (NOVC) strains can induce cholera-like infections. Outbreaks of V. cholerae have previously been correlated with phytoplankton blooms; however, links to specific phytoplankton species have not been resolved. Here, the growth of a NOVC strain (S24) was measured in the presence of different phytoplankton species, alongside phytoplankton abundance and concentrations of dissolved organic carbon (DOC). During 14-day experiments, V. cholerae S24 was cocultured with strains of the axenic phytoplankton species Actinocyclus curvatulus, Cylindrotheca closterium, a Pseudoscourfieldia sp., and a Picochlorum sp. V. cholerae abundances significantly increased in the presence of A. curvatulus, C. closterium, and the Pseudoscourfieldia sp., whereas abundances significantly decreased in the Picochlorum sp. coculture. V. cholerae growth was significantly enhanced throughout the cogrowth experiment with A. curvatulus, whereas when grown with C. closterium and the Pseudoscourfieldia sp., growth only occurred during the late stationary phase of the phytoplankton growth cycle, potentially coinciding with a release of DOC from senescent phytoplankton cells. In each of these cases, significant correlations between phytoplankton-derived DOC and V. cholerae cell abundances occurred. Notably, the presence of V. cholerae also promoted the growth of A. curvatulus and Picochlorum spp., highlighting potential ecological interactions. Variations in abundances of NOVC identified here highlight the potential diversity in V. cholerae-phytoplankton ecological interactions, which may inform efforts to predict outbreaks of NOVC in coastal environments. IMPORTANCE Many environmental strains of V. cholerae do not cause cholera epidemics but remain a public health concern due to their roles in milder gastrointestinal illnesses. With emerging evidence that these infections are increasing due to climate change, determining the ecological drivers that enable outbreaks of V. cholerae in coastal environments is becoming critical. Links have been established between V. cholerae abundance and chlorophyll a levels, but the ecological relationships between V. cholerae and specific phytoplankton species are unclear. Our research demonstrated that an environmental strain of V. cholerae (serogroup 24) displays highly heterogenous interactions in the presence of different phytoplankton species with a relationship to the dissolved organic carbon released by the phytoplankton species. This research points toward the complexity of the interactions of environmental strains of V. cholerae with phytoplankton communities, which we argue should be considered in predicting outbreaks of this pathogen.
Collapse
|
4
|
Mondal AK, Sengupta N, Singh M, Biswas R, Lata K, Lahiri I, Dutta S, Chattopadhyay K. Glu289 residue in the pore-forming motif of Vibrio cholerae cytolysin is important for efficient β-barrel pore formation. J Biol Chem 2022; 298:102441. [PMID: 36055404 PMCID: PMC9520032 DOI: 10.1016/j.jbc.2022.102441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/19/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging β-barrel pore-forming toxin (β-PFT). Upon binding to the target membranes, VCC monomers first assemble into oligomeric pre-pore intermediates, and subsequently transform into transmembrane β-barrel pores. VCC harbors a designated pore-forming motif, which, during oligomeric pore formation, inserts into the membrane and generates a transmembrane β-barrel scaffold. It remains an enigma how the molecular architecture of the pore-forming motif regulates the VCC pore-formation mechanism. Here, we show that a specific pore-forming motif residue, E289, plays crucial regulatory roles in the pore-formation mechanism of VCC. We find that the mutation of E289A drastically compromises pore-forming activity, without affecting the structural integrity and membrane-binding potential of the toxin monomers. Although our single-particle cryo-EM analysis reveals wild type-like oligomeric β-barrel pore formation by E289A-VCC in the membrane, we demonstrate that the mutant shows severely delayed kinetics in terms of pore-forming ability that can be rescued with elevated temperature conditions. We find that the pore-formation efficacy of E289A-VCC appears to be more profoundly dependent on temperature as compared to that of the wild type toxin. Our results suggest that the E289A mutation traps membrane-bound toxin molecules in the pre-pore-like intermediate state that is hindered from converting into the functional β-barrel pores by a large energy barrier, thus highlighting the importance of this residue for the pore-formation mechanism of VCC.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Nayanika Sengupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Mahendra Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Rupam Biswas
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kusum Lata
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Indrajit Lahiri
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India
| | - Somnath Dutta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Manauli, Punjab, India.
| |
Collapse
|
5
|
Daboul J, Weghorst L, DeAngelis C, Plecha SC, Saul-McBeth J, Matson JS. Characterization of Vibrio cholerae isolates from freshwater sources in northwest Ohio. PLoS One 2020; 15:e0238438. [PMID: 32881972 PMCID: PMC7470319 DOI: 10.1371/journal.pone.0238438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/17/2020] [Indexed: 01/22/2023] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems worldwide, typically residing in coastal or brackish water. While more than 200 serogroups have been identified, only serogroups O1 and O139 have been associated with epidemic cholera. However, infections other than cholera can be caused by nonepidemic, non-O1/non-O139 V. cholerae strains, including gastroenteritis and extraintestinal infections. While V. cholerae can also survive in freshwater, that is typically only observed in regions of the world where cholera is endemic. We recently isolated V. cholerae from several locations in lakes and rivers in northwest Ohio. These isolates were all found to be non-O1/non-O139 V. cholerae strains, that would not cause cholera. However, these isolates contained a variety of virulence genes, including ctxA, rtxA, rtxC, hlyA, and ompU. Therefore, it is possible that some of these isolates have the potential to cause gastroenteritis or other infections in humans. We also investigated the relative motility of the isolates and their ability to form biofilms as this is important for V. cholerae survival in the environment. We identified one isolate that forms very robust biofilms, up to 4x that of our laboratory strains. Finally, we investigated the susceptibility of these isolates to a panel of antibiotics. We found that many of the isolates showed decreased susceptibility to some of the antibiotics tested, which could be of concern. While we do not know if these isolates are pathogenic to humans, increased surveillance to better understand the public health risk to the local community should be considered.
Collapse
Affiliation(s)
- Judy Daboul
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Logan Weghorst
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Cara DeAngelis
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Sarah C. Plecha
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Jessica Saul-McBeth
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| | - Jyl S. Matson
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, Ohio, United States of America
| |
Collapse
|
6
|
Hosseini N, Khanahmad H, Esfahani BN, Bandehpour M, Shariati L, Zahedi N, Kazemi B. Targeting of cholera toxin A ( ctxA) gene by zinc finger nuclease: pitfalls of using gene editing tools in prokaryotes. Res Pharm Sci 2020; 15:182-190. [PMID: 32582358 PMCID: PMC7306252 DOI: 10.4103/1735-5362.283818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 01/14/2023] Open
Abstract
Background and purpose: The study was launched to use zinc finger nuclease (ZFN) technology to disrupt the cholera toxin gene (ctxA) for inhibiting CT toxin production in Vibrio cholera (V. cholera). Experimental approach: An engineered ZFN was designed to target the catalytic site of the ctxA gene. The coding sequence of ZFN was cloned to pKD46, pTZ57R T/A vector, and E2-crimson plasmid and transformed to Escherichia coli (E. coli) Top10 and V. cholera. The efficiency of ZFN was evaluated by colony counting. Findings/Results: No expression was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting in transformed E. coli. The ctxA gene sequencing did not show any mutation. Polymerase chain reaction on pKD46-ZFN plasmid had negative results. Transformation of E. coli Top10 with T/A vectors containing whole ZFN sequence led to 7 colonies all of which contained bacteria with self-ligated vector. Transformation with left array ZFN led to 24 colonies of which 6 contained bacteria with self-ligated vector and 18 of them contained bacteria with vector/left array. Transformation of V. cholera with E2-crimson vectors containing whole ZFN did not produce any colonies. Transformation with left array vectors led to 17 colonies containing bacteria with vector/left array. Left array protein band was captured using western blot assay. Conclusions and implications: ZFN might have off target on bacterial genome causing lethal double-strand DNA break due to lack of non-homologous end joining (NHEJ) mechanism. It is recommended to develop ZFNs against bacterial genes, engineered packaging host with NHEJ repair system is essential.
Collapse
Affiliation(s)
- Nafiseh Hosseini
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Laleh Shariati
- Biosensor Research Center, Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nushin Zahedi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
7
|
Gao H, Xu J, Lu X, Li J, Lou J, Zhao H, Diao B, Shi Q, Zhang Y, Kan B. Expression of Hemolysin Is Regulated Under the Collective Actions of HapR, Fur, and HlyU in Vibrio cholerae El Tor Serogroup O1. Front Microbiol 2018; 9:1310. [PMID: 29971055 PMCID: PMC6018088 DOI: 10.3389/fmicb.2018.01310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022] Open
Abstract
The biotype El Tor of serogroup O1 and most of the non-O1/non-O139 strains of Vibrio cholerae can produce an extracellular pore-forming toxin known as cholera hemolysin (HlyA). Expression of HlyA has been previously reported to be regulated by the quorum sensing (QS) and the regulatory proteins HlyU and Fur, but lacks the direct evidence for their binding to the promoter of hlyA. In the present work, we showed that the QS regulator HapR, along with Fur and HlyU, regulates the transcription of hlyA in V. cholerae El Tor biotype. At the late mid-logarithmic growth phase, HapR binds to the three promoters of fur, hlyU, and hlyA to repress their transcription. At the early mid-logarithmic growth phase, Fur binds to the promoters of hlyU and hlyA to repress their transcription; meanwhile, HlyU binds to the promoter of hlyA to activate its transcription, but it manifests direct inhibition of its own gene. The highest transcriptional level of hlyA occurs at an OD600 value of around 0.6–0.7, which may be due to the subtle regulation of HapR, Fur, and HlyU. The complex regulation of HapR, Fur, and HlyU on hlyA would be beneficial to the invasion and pathogenesis of V. cholerae during the different infection stages.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jialiang Xu
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
8
|
Hossain ZZ, Farhana I, Tulsiani SM, Begum A, Jensen PKM. Transmission and Toxigenic Potential of Vibrio cholerae in Hilsha Fish ( Tenualosa ilisha) for Human Consumption in Bangladesh. Front Microbiol 2018. [PMID: 29515532 PMCID: PMC5826273 DOI: 10.3389/fmicb.2018.00222] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fish have been considered natural reservoirs of Vibrio cholerae, the deadly diarrheal pathogen. However, little is known about the role of fish in the transmission of V. cholerae from the Bay of Bengal to the households of rural and urban Bangladesh. This study analyzes the incidence and pathogenic potential of V. cholerae in Hilsha (Tenualosa ilisha), a commonly caught and consumed fish that exhibits a life cycle in both freshwater and marine environments in Bangladesh. During the period from October 2014 to October 2015, samples from the gills, recta, intestines, and scale swabs of a total of 48 fish were analyzed. The fish were collected both at local markets in the capital city Dhaka and directly from fishermen at the river. PCR analysis by targeting V. cholerae species-specific ompW gene revealed that 39 of 48 (81%) fish were positive in at least one of the sample types. Real-time PCR analysis demonstrated that the cholera-causing ctxA gene was detected in 20% (8 of 39) of V. cholerae-positive fish. A total of 158 V. cholerae isolates were obtained which were categorized into 35 genotypic groups. Altogether, 25 O1 and 133 non-O1/O139 strains were isolated, which were negative for the cholera toxin gene. Other pathogenic genes such as stn/sto, hlyA, chxA, SXT, rtxC, and HA-P were detected. The type three secretion system gene cluster (TTSS) was present in 18% (24 of 133) of non-O1/O139 isolates. The antibiotic susceptibility test revealed that the isolates conferred high resistance to sulfamethoxazole-trimethoprim and kanamycin. Both O1 and non-O1/O139 strains were able to accumulate fluid in rabbit ileal loops and caused distinctive cell death in HeLa cell. Multilocus sequence typing (MLST) showed clonal diversity among fish isolates with pandemic clones. Our data suggest a high prevalence of V. cholerae in Hilsha fish, which indicates that this fish could serve as a potential vehicle for V. cholerae transmission. Moreover, the indigenous V. cholerae strains isolated from Hilsha fish possess considerable virulence potential despite being quite diverse from current epidemic strains. This represents the first study of the population structure of V. cholerae associated with fish in Bangladesh.
Collapse
Affiliation(s)
- Zenat Z Hossain
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh.,Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Israt Farhana
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Suhella M Tulsiani
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| | - Anowara Begum
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Peter K M Jensen
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark.,Copenhagen Centre for Disaster Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Castillo D, Pérez-Reytor D, Plaza N, Ramírez-Araya S, Blondel CJ, Corsini G, Bastías R, Loyola DE, Jaña V, Pavez L, García K. Exploring the Genomic Traits of Non-toxigenic Vibrio parahaemolyticus Strains Isolated in Southern Chile. Front Microbiol 2018; 9:161. [PMID: 29472910 PMCID: PMC5809470 DOI: 10.3389/fmicb.2018.00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 01/24/2018] [Indexed: 01/30/2023] Open
Abstract
Vibrio parahaemolyticus is the leading cause of seafood-borne gastroenteritis worldwide. As reported in other countries, after the rise and fall of the pandemic strain in Chile, other post-pandemic strains have been associated with clinical cases, including strains lacking the major toxins TDH and TRH. Since the presence or absence of tdh and trh genes has been used for diagnostic purposes and as a proxy of the virulence of V. parahaemolyticus isolates, the understanding of virulence in V. parahaemolyticus strains lacking toxins is essential to detect these strains present in water and marine products to avoid possible food-borne infection. In this study, we characterized the genome of four environmental and two clinical non-toxigenic strains (tdh-, trh-, and T3SS2-). Using whole-genome sequencing, phylogenetic, and comparative genome analysis, we identified the core and pan-genome of V. parahaemolyticus of strains of southern Chile. The phylogenetic tree based on the core genome showed low genetic diversity but the analysis of the pan-genome revealed that all strains harbored genomic islands carrying diverse virulence and fitness factors or prophage-like elements that encode toxins like Zot and RTX. Interestingly, the three strains carrying Zot-like toxin have a different sequence, although the alignment showed some conserved areas with the zot sequence found in V. cholerae. In addition, we identified an unexpected diversity in the genetic architecture of the T3SS1 gene cluster and the presence of the T3SS2 gene cluster in a non-pandemic environmental strain. Our study sheds light on the diversity of V. parahaemolyticus strains from the southern Pacific which increases our current knowledge regarding the global diversity of this organism.
Collapse
Affiliation(s)
- Daniel Castillo
- Marine Biological Section, University of Copenhagen, Helsingør, Denmark
| | - Diliana Pérez-Reytor
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Nicolás Plaza
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Sebastián Ramírez-Araya
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
| | - Carlos J Blondel
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Roberto Bastías
- Laboratory of Microbiology, Institute of Biology, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Víctor Jaña
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Leonardo Pavez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile.,Departamento de Ciencias Químicas y Biológicas, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
10
|
Miyashita SI, Sagane Y, Suzuki T, Matsumoto T, Niwa K, Watanabe T. "Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity. Sci Rep 2016; 6:31043. [PMID: 27507612 PMCID: PMC4978960 DOI: 10.1038/srep31043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/12/2016] [Indexed: 01/26/2023] Open
Abstract
The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary “Non-Toxic” proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the “Non-Toxic” complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the “Non-Toxic” complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.
Collapse
Affiliation(s)
- Shin-Ichiro Miyashita
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Yoshimasa Sagane
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Tomonori Suzuki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | - Koichi Niwa
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| | - Toshihiro Watanabe
- Department of Food and Cosmetic Science, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri 099-2493, Japan
| |
Collapse
|
11
|
Mandal S, Chatterjee NS. Vibrio cholerae GbpA elicits necrotic cell death in intestinal cells. J Med Microbiol 2016; 65:837-847. [PMID: 27324251 DOI: 10.1099/jmm.0.000298] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vibrio choleraeN-acetylglucosamine-binding protein GbpA is a secretory protein that facilitates the initial adherence of bacteria in the human intestine. Until now, considerable progress in the characterization of GbpA has been done, yet little is known about its role in host response. Our present studies demonstrated that GbpA at the amount secreted in the intestine resulted in decreased cell viability, altered cell morphology, disruption of cell membrane integrity and damage of cellular DNA indicating necrotic cell death. We observed that GbpA exposure leads to mitochondrial dysfunction, characterized by accumulation of reactive oxygen species (ROS), depolarization of mitochondrial membrane potential and depletion of ATP pool in host cells. Additionally, the intra-cellular ROS, accumulated in response to GbpA, were found to induce the migration of NF-κB from cytoplasm into nucleus in host cells. Taken together, these results prompted us to conclude that GbpA orchestrates a necrotic response in host cells which may have implications in immune response.
Collapse
Affiliation(s)
- Sudipto Mandal
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | | |
Collapse
|
12
|
Abstract
After many years in the family Vibrionaceae, the genus Plesiomonas, represented by a single species, P. shigelloides, currently resides in the family Enterobacteriaceae, although its most appropriate phylogenetic position may yet to be determined. Common environmental reservoirs for plesiomonads include freshwater ecosystems and estuaries and inhabitants of these aquatic environs. Long suspected as being an etiologic agent of bacterial gastroenteritis, convincing evidence supporting this conclusion has accumulated over the past 2 decades in the form of a series of foodborne outbreaks solely or partially attributable to P. shigelloides. The prevalence of P. shigelloides enteritis varies considerably, with higher rates reported from Southeast Asia and Africa and lower numbers from North America and Europe. Reasons for these differences may include hygiene conditions, dietary habits, regional occupations, or other unknown factors. Other human illnesses caused by P. shigelloides include septicemia and central nervous system disease, eye infections, and a variety of miscellaneous ailments. For years, recognizable virulence factors potentially associated with P. shigelloides pathogenicity were lacking; however, several good candidates now have been reported, including a cytotoxic hemolysin, iron acquisition systems, and lipopolysaccharide. While P. shigelloides is easy to identify biochemically, it is often overlooked in stool samples due to its smaller colony size or relatively low prevalence in gastrointestinal samples. However, one FDA-approved PCR-based culture-independent diagnostic test system to detect multiple enteropathogens (FilmArray) includes P. shigelloides on its panel. Plesiomonads produce β-lactamases but are typically susceptible to many first-line antimicrobial agents, including quinolones and carbapenems.
Collapse
Affiliation(s)
- J Michael Janda
- Kern County Public Health Laboratory, Department of Public Health Services, Bakersfield, California, USA
| | - Sharon L Abbott
- Microbial Diseases Laboratory, California Department of Public Health, Richmond, California, USA
| | - Christopher J McIver
- Microbiology Department (SEALS), St. George Hospital, Kogarah, and School of Medical Sciences, University of New South Wales, NSW, Sydney, Australia
| |
Collapse
|
13
|
Benitez JA, Silva AJ. Vibrio cholerae hemagglutinin(HA)/protease: An extracellular metalloprotease with multiple pathogenic activities. Toxicon 2016; 115:55-62. [PMID: 26952544 DOI: 10.1016/j.toxicon.2016.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 01/22/2023]
Abstract
Vibrio cholerae of serogroup O1 and O139, the etiological agent of the diarrheal disease cholera, expresses the extracellular Zn-dependent metalloprotease hemagglutinin (HA)/protease also reported as vibriolysin. This enzyme is also produced by non-O1/O139 (non-cholera) strains that cause mild, sporadic illness (i.e. gastroenteritis, wound or ear infections). Orthologs of HA/protease are present in other members of the Vibrionaceae family pathogenic to humans and fish. HA/protease belongs to the M4 neutral peptidase family and displays significant amino acid sequence homology to Pseudomonas aeruginosa elastase (LasB) and Bacillus thermoproteolyticus thermolysin. It exhibits a broad range of potentially pathogenic activities in cell culture and animal models. These activities range from the covalent modification of other toxins, the degradation of the protective mucus barrier and disruption of intestinal tight junctions. Here we review (i) the structure and regulation of HA/protease expression, (ii) its interaction with other toxins and the intestinal mucosa and (iii) discuss the possible role(s) of HA/protease in the pathogenesis of cholera.
Collapse
Affiliation(s)
- Jorge A Benitez
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW Atlanta, GA, 30310, USA.
| |
Collapse
|
14
|
Khilwani B, Chattopadhyay K. Signaling beyond Punching Holes: Modulation of Cellular Responses by Vibrio cholerae Cytolysin. Toxins (Basel) 2015; 7:3344-58. [PMID: 26308054 PMCID: PMC4549754 DOI: 10.3390/toxins7083344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 01/20/2023] Open
Abstract
Pore-forming toxins (PFTs) are a distinct class of membrane-damaging cytolytic proteins that contribute significantly towards the virulence processes employed by various pathogenic bacteria. Vibrio cholerae cytolysin (VCC) is a prominent member of the beta-barrel PFT (beta-PFT) family. It is secreted by most of the pathogenic strains of the intestinal pathogen V. cholerae. Owing to its potent membrane-damaging cell-killing activity, VCC is believed to play critical roles in V. cholerae pathogenesis, particularly in those strains that lack the cholera toxin. Large numbers of studies have explored the mechanistic basis of the cell-killing activity of VCC. Consistent with the beta-PFT mode of action, VCC has been shown to act on the target cells by forming transmembrane oligomeric beta-barrel pores, thereby leading to permeabilization of the target cell membranes. Apart from the pore-formation-induced direct cell-killing action, VCC exhibits the potential to initiate a plethora of signal transduction pathways that may lead to apoptosis, or may act to enhance the cell survival/activation responses, depending on the type of target cells. In this review, we will present a concise view of our current understanding regarding the multiple aspects of these cellular responses, and their underlying signaling mechanisms, evoked by VCC.
Collapse
Affiliation(s)
- Barkha Khilwani
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences Indian Institute of Science Education and Research Mohali Sector 81, S. A. S. Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
15
|
Rai AK, Chattopadhyay K. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxinVibrio choleraecytolysin. Mol Microbiol 2015; 97:1051-62. [DOI: 10.1111/mmi.13084] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Affiliation(s)
- Anand Kumar Rai
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering; Department of Biological Sciences; Indian Institute of Science Education and Research (IISER) Mohali; Sector 81, SAS Nagar, Manauli Mohali Punjab 140306 India
| |
Collapse
|
16
|
Transmembrane oligomeric form of Vibrio cholerae cytolysin triggers TLR2/TLR6–dependent proinflammatory responses in monocytes and macrophages. Biochem J 2015; 466:147-61. [DOI: 10.1042/bj20140718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We show that the transmembrane oligomeric form of VCC evokes potent proinflammatory responses in the monocytes and macrophages of the innate immune system. VCC oligomer-induced proinflammatory responses depend critically on the TLR2/TLR6-dependent signalling pathways.
Collapse
|
17
|
Vibrio cholerae Cytolysin: Structure–Function Mechanism of an Atypical β-Barrel Pore-Forming Toxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 842:109-25. [DOI: 10.1007/978-3-319-11280-0_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Preeprem S, Mittraparp-arthorn P, Bhoopong P, Vuddhakul V. Isolation and characterization of Vibrio cholerae isolates from seafood in Hat Yai City, Songkhla, Thailand. Foodborne Pathog Dis 2014; 11:881-6. [PMID: 25188839 DOI: 10.1089/fpd.2014.1772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Seafood has been identified as an important source of Vibrio cholerae in Thailand, especially in the Southern coastal region. In this study, we isolated and characterized V. cholerae from seafood obtained from several markets in Hat Yai city, Southern Thailand. A total of 100 V. cholerae isolates were obtained from 55 of 125 seafood samples. The dominant serotype was non-O1/non-O139. Polymerase chain reaction (PCR) analysis was used to detect the presence of pathogenesis-related genes. The stn/sto and hlyA El Tor virulence genes were detected in 20% and 96% of the isolates, respectively. None of the isolates were positive for the ctxA, tcpA, zot, and ace genes. Only 6% of the isolates carried the T3SS gene (vcsV2); however, the majority of the isolates (96%) carried the T6SS gene (vasH). Representative isolates (n=35) that exhibited various virulence gene patterns were randomly selected and analyzed for their hemolytic activity, antibiotic susceptibility, biofilm formation, and genotype. Hemolytic activity using sheep red blood cells was detected in only one of the hlyA-negative isolates. Apart from ampicillin, all isolates were pansusceptible to five test antibiotics. Biofilm production was observed in most of the isolates, and there was no difference in the presence of a biofilm between the smooth and rugose isolates. Using the enterobacterial repetitive intergenic consensus-PCR method, clonal relationships were observed among the isolates that exhibited identical virulence gene patterns.
Collapse
Affiliation(s)
- Sutima Preeprem
- 1 Department of Microbiology, Faculty of Science and Food Safety and Health Research Unit, Prince of Songkla University , Hat Yai, Songkhla, Thailand
| | | | | | | |
Collapse
|
19
|
Karlsen C, Vanberg C, Mikkelsen H, Sørum H. Co-infection of Atlantic salmon (Salmo salar), by Moritella viscosa and Aliivibrio wodanis, development of disease and host colonization. Vet Microbiol 2014; 171:112-21. [PMID: 24745624 DOI: 10.1016/j.vetmic.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/27/2014] [Accepted: 03/08/2014] [Indexed: 11/19/2022]
Abstract
Two species of bacteria are repeatedly isolated from farmed fish with winter-ulcer disease. Moritella viscosa is the aetiological agent of the disease; the significance of Aliivibrio wodanis is uncertain but has not been related to the primary pathogenesis. A cell culture infection model showed that A. wodanis adhered to, but did not invade the fish cells. Exposure to culture supernatant of A. wodanis caused the fish cells to vacoulate, retract, round up and detach from the surface, and rearrange the actin filaments of the cytoskeleton. These observations suggest that the bacterium secretes toxins into the extracellular environment. Any pathologic effect of A. wodanis and the effect of co-culturing with M. viscosa was studied in Atlantic salmon (Salmo salar) bath challenged with; only M. viscosa or only A. wodanis or both bacteria together. Both M. viscosa and A. wodanis were re-isolated from external surfaces and internal organs from live and deceased co-infected fish. It is further hypothesized that A. wodanis colonization might influence the progression of a M. viscosa infection. This is to our knowledge the first study that reproduces field observations where both bacteria infect Atlantic salmon.
Collapse
Affiliation(s)
- Christian Karlsen
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Christin Vanberg
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | | | - Henning Sørum
- Department of Food Safety and Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
20
|
Ikigai H, Otsuru H, Yamamoto K, Shimamura T. Structural Requirements of Cholesterol for Binding toVibrio choleraeHemolysin. Microbiol Immunol 2013; 50:751-7. [PMID: 17053310 DOI: 10.1111/j.1348-0421.2006.tb03848.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.
Collapse
Affiliation(s)
- Hajime Ikigai
- Department of Chemistry and Biochemistry, Suzuka National College of Technology, Suzuka, Mie 510-0294, Japan.
| | | | | | | |
Collapse
|
21
|
Dutta S, Banerjee KK, Ghosh AN. Cryo-electron microscopy reveals the membrane insertion mechanism of V. cholerae hemolysin. J Biomol Struct Dyn 2013; 32:1434-42. [PMID: 24102290 DOI: 10.1080/07391102.2013.823564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vibrio cholerae hemolysin (HlyA) is a 65 kDa pore-forming toxin which causes lysis of target eukaryotic cells by forming heptameric channels in the plasma membrane. Deletion of the 15 kDa C-terminus β-prism carbohydrate-binding domain generates a 50 kDa truncated variant (HlyA50) with 1000-fold-reduced pore-forming activity. Previously, we showed by cryo-electron microscopy that the two toxin oligomers have central channels, but the 65 kDa toxin oligomer is a seven-fold symmetric structure with bowl-, ring-, and arm-like domains, whereas the 50 kDa oligomer is an asymmetric jar-like heptamer. In the present study, we determined three-dimensional(3D) structures of HlyA and HlyA50 in presence of erythrocyte stroma and observed that interaction of the 65 kDa toxin with the stroma induced a significant decrease in the height of the β-barrel oligomer with a change in conformation of the ring- and arm-like domains of HlyA. These features were absent in interaction of HlyA50 with stroma. We propose that this conformational transition is critical for membrane-insertion of the toxin.
Collapse
Affiliation(s)
- Somnath Dutta
- a Division of Electron Microscopy , National Institute of Cholera and Enteric Diseases , P-33, C.I.T. Road, Scheme-XM, Beleghata, Kolkata , 700010 , India
| | | | | |
Collapse
|
22
|
Structural and functional importance of outer membrane proteins in Vibrio cholerae flagellum. J Microbiol 2012; 50:631-7. [DOI: 10.1007/s12275-012-2116-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/17/2012] [Indexed: 12/19/2022]
|
23
|
Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, LeClerc JE, Cinar HN. Genomic analysis of immune response against Vibrio cholerae hemolysin in Caenorhabditis elegans. PLoS One 2012; 7:e38200. [PMID: 22675448 PMCID: PMC3364981 DOI: 10.1371/journal.pone.0038200] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Vibrio cholerae cytolysin (VCC) is among the accessory V. cholerae virulence factors that may contribute to disease pathogenesis in humans. VCC, encoded by hlyA gene, belongs to the most common class of bacterial toxins, known as pore-forming toxins (PFTs). V. cholerae infects and kills Caenorhabditis elegans via cholerae toxin independent manner. VCC is required for the lethality, growth retardation and intestinal cell vacuolation during the infection. However, little is known about the host gene expression responses against VCC. To address this question we performed a microarray study in C. elegans exposed to V. cholerae strains with intact and deleted hlyA genes. Many of the VCC regulated genes identified, including C-type lectins, Prion-like (glutamine [Q]/asparagine [N]-rich)-domain containing genes, genes regulated by insulin/IGF-1-mediated signaling (IIS) pathway, were previously reported as mediators of innate immune response against other bacteria in C. elegans. Protective function of the subset of the genes up-regulated by VCC was confirmed using RNAi. By means of a machine learning algorithm called FastMEDUSA, we identified several putative VCC induced immune regulatory transcriptional factors and transcription factor binding motifs. Our results suggest that VCC is a major virulence factor, which induces a wide variety of immune response- related genes during V. cholerae infection in C. elegans.
Collapse
Affiliation(s)
- Surasri N. Sahu
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Jada Lewis
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Isha Patel
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Serdar Bozdag
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeong H. Lee
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Kyungpook National University (KNU), Daegu, South Korea
| | - Joseph E. LeClerc
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Hediye Nese Cinar
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail:
| |
Collapse
|
24
|
Neutrophils are essential for containment of Vibrio cholerae to the intestine during the proinflammatory phase of infection. Infect Immun 2012; 80:2905-13. [PMID: 22615254 DOI: 10.1128/iai.00356-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cholera is classically considered a noninflammatory diarrheal disease, in comparison to invasive enteric organisms, although there is a low-level proinflammatory response during early infection with Vibrio cholerae and a strong proinflammatory reaction to live attenuated vaccine strains. Using an adult mouse intestinal infection model, this study examines the contribution of neutrophils to host defense to infection. Nontoxigenic El Tor O1 V. cholerae infection is characterized by the upregulation of interleukin-6 (IL-6), IL-10, and macrophage inflammatory protein 2 alpha in the intestine, indicating an acute innate immune response. Depletion of neutrophils from mice with anti-Ly6G IA8 monoclonal antibody led to decreased survival of mice. The role of neutrophils in protection of the host is to limit the infection to the intestine and control bacterial spread to extraintestinal organs. In the absence of neutrophils, the infection spread to the spleen and led to increased systemic levels of IL-1β and tumor necrosis factor alpha, suggesting the decreased survival in neutropenic mice is due to systemic shock. Neutrophils were found not to contribute to either clearance of colonizing bacteria or to alter the local immune response. However, when genes for secreted accessory toxins were deleted, the colonizing bacteria were cleared from the intestine, and this clearance is dependent upon neutrophils. Thus, the requirement for accessory toxins in virulence is negated in neutropenic mice, which is consistent with a role of accessory toxins in the evasion of innate immune cells in the intestine. Overall, these data support that neutrophils impact disease progression and suggest that neutrophil effectiveness can be manipulated through the deletion of accessory toxins.
Collapse
|
25
|
Abstract
Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains.
Collapse
|
26
|
Characters of homogentisate oxygenase gene mutation and high clonality of the natural pigment-producing Vibrio cholerae strains. BMC Microbiol 2011; 11:109. [PMID: 21592381 PMCID: PMC3114702 DOI: 10.1186/1471-2180-11-109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Some microorganisms can produce pigments such as melanin, which has been associated with virulence in the host and with a survival advantage in the environment. In Vibrio cholerae, studies have shown that pigment-producing mutants are more virulent than the parental strain in terms of increased UV resistance, production of major virulence factors, and colonization. To date, almost all of the pigmented V. cholerae strains investigated have been induced by chemicals, culture stress, or transposon mutagenesis. However, during our cholera surveillance, some nontoxigenic serogroup O139 strains and one toxigenic O1 strain, which can produce pigment steadily under the commonly used experimental growth conditions, were obtained in different years and from different areas. The genes VC1344 to VC1347, which correspond to the El Tor strain N16961 genome and which comprise an operon in the tyrosine catabolic pathway, have been confirmed to be associated with a pigmented phenotype. In the present study, we investigated the mechanism of pigment production in these strains. RESULTS Sequencing of the VC1344, VC1345, VC1346, and VC1347 genes in these pigmented strains suggested that a deletion mutation in the homogentisate oxygenase gene (VC1345) may be associated with the pigmented phenotype, and gene complementation confirmed the role of this gene in pigment production. An identical 15-bp deletion was found in the VC1345 gene of all six O139 pigment-producing strains examined, and a 10-bp deletion was found in the VC1345 gene of the O1 strain. Strict sequence conservation in the VC1344 gene but higher variance in the other three genes of this operon were observed, indicating the different stress response functions of these genes in environmental adaption and selection. On the basis of pulsed-field gel electrophoresis typing, the pigment-producing O139 strains showed high clonality, even though they were isolated in different years and from different regions. Additionally all these O139 strains belong to the rb4 ribotype, which contains the O139 strains isolated from diarrheal patients, although these strains are cholera toxin negative. CONCLUSION Dysfunction of homogentisate oxygenase (VC1345) causes homogentisate accumulation and pigment formation in naturally pigmented strains of V. cholerae. The high clonality of these strains may correlate to an environmental survival advantage in the V. cholerae community due to their pigment production, and may imply a potential protective function of melanin in environmental survival of such strains.
Collapse
|
27
|
Cinar HN, Kothary M, Datta AR, Tall BD, Sprando R, Bilecen K, Yildiz F, McCardell B. Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans. PLoS One 2010; 5:e11558. [PMID: 20644623 PMCID: PMC2903476 DOI: 10.1371/journal.pone.0011558] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/09/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cholera toxin (CT) and toxin-co-regulated pili (TCP) are the major virulence factors of Vibrio cholerae O1 and O139 strains that contribute to the pathogenesis of disease during devastating cholera pandemics. However, CT and TCP negative V. cholerae strains are still able to cause severe diarrheal disease in humans through mechanisms that are not well understood. METHODOLOGY/PRINCIPAL FINDINGS To determine the role of other virulence factors in V. cholerae pathogenesis, we used a CT and TCP independent infection model in the nematode Caenorhabditis elegans and identified the hemolysin A (hlyA) gene as a factor responsible for animal death and developmental delay. We demonstrated a correlation between the severity of infection in the nematode and the level of hemolytic activity in the V. cholerae biotypes. At the cellular level, V. cholerae infection induces formation of vacuoles in the intestinal cells in a hlyA dependent manner, consistent with the previous in vitro observations. CONCLUSIONS/SIGNIFICANCE Our data strongly suggest that HlyA is a virulence factor in C. elegans infection leading to lethality and developmental delay presumably through intestinal cytopathic changes.
Collapse
Affiliation(s)
- Hediye Nese Cinar
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Ou G, Rompikuntal PK, Bitar A, Lindmark B, Vaitkevicius K, Wai SN, Hammarström ML. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease. PLoS One 2009; 4:e7806. [PMID: 19907657 PMCID: PMC2771358 DOI: 10.1371/journal.pone.0007806] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 10/10/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s) to induce interleukin-8 (IL-8) production by human intestinal epithelial cells. The aim was to identify the secreted component(s) of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV. METHODOLOGY/PRINCIPAL FINDINGS Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC) were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-alpha (TNF-alpha) secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis. CONCLUSIONS/SIGNIFICANCE We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-alpha in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.
Collapse
Affiliation(s)
- Gangwei Ou
- Department of Clinical Microbiology/Immunology, Umeå University, Umeå, Sweden
| | | | - Aziz Bitar
- Department of Clinical Microbiology/Immunology, Umeå University, Umeå, Sweden
| | - Barbro Lindmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - Sun Nyunt Wai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
29
|
Campoy E, Colombo MI. Autophagy in intracellular bacterial infection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1465-77. [DOI: 10.1016/j.bbamcr.2009.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 12/24/2022]
|
30
|
The Vibrio cholerae flagellar regulatory hierarchy controls expression of virulence factors. J Bacteriol 2009; 191:6555-70. [PMID: 19717600 DOI: 10.1128/jb.00949-09] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a motile bacterium responsible for the disease cholera, and motility has been hypothesized to be inversely regulated with virulence. We examined the transcription profiles of V. cholerae strains containing mutations in flagellar regulatory genes (rpoN, flrA, flrC, and fliA) by utilizing whole-genome microarrays. Results revealed that flagellar transcription is organized into a four-tiered hierarchy. Additionally, genes with proven or putative roles in virulence (e.g., ctx, tcp, hemolysin, and type VI secretion genes) were upregulated in flagellar regulatory mutants, which was confirmed by quantitative reverse transcription-PCR. Flagellar regulatory mutants exhibit increased hemolysis of human erythrocytes, which was due to increased transcription of the thermolabile hemolysin (tlh). The flagellar regulatory system positively regulates transcription of a diguanylate cyclase, CdgD, which in turn regulates transcription of a novel hemagglutinin (frhA) that mediates adherence to chitin and epithelial cells and enhances biofilm formation and intestinal colonization in infant mice. Our results demonstrate that the flagellar regulatory system modulates the expression of nonflagellar genes, with induction of an adhesin that facilitates colonization within the intestine and repression of virulence factors maximally induced following colonization. These results suggest that the flagellar regulatory hierarchy facilitates correct spatiotemporal expression patterns for optimal V. cholerae colonization and disease progression.
Collapse
|
31
|
Ottaviani D, Leoni F, Rocchegiani E, Santarelli S, Masini L, Di Trani V, Canonico C, Pianetti A, Tega L, Carraturo A. Prevalence and virulence properties of non-O1 non-O139 Vibrio cholerae strains from seafood and clinical samples collected in Italy. Int J Food Microbiol 2009; 132:47-53. [DOI: 10.1016/j.ijfoodmicro.2009.03.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 02/05/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022]
|
32
|
Debellis L, Diana A, Arcidiacono D, Fiorotto R, Portincasa P, Altomare DF, Spirlì C, de Bernard M. The Vibrio cholerae cytolysin promotes chloride secretion from intact human intestinal mucosa. PLoS One 2009; 4:e5074. [PMID: 19333391 PMCID: PMC2659442 DOI: 10.1371/journal.pone.0005074] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Accepted: 03/05/2009] [Indexed: 12/02/2022] Open
Abstract
Background The pathogenicity of the Vibrio cholerae strains belonging to serogroup O1 and O139 is due to the production of virulence factors such as cholera toxin (CT) and the toxin-coregulated pilus (TCP). The remaining serogroups, which mostly lack CT and TCP, are more frequently isolated from aquatic environmental sources than from clinical samples; nevertheless, these strains have been reported to cause human disease, such as sporadic outbreaks of watery diarrhoea and inflammatory enterocolitis. This evidence suggested the possibility that other virulence factor(s) than cholera toxin might be crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea, but their nature remains unknown. VCC, the hemolysin produced by virtually all Vibrio cholerae strains, has been proposed as a possible candidate, though a clear-cut demonstration attesting VCC as crucial in the pathogenesis of Vibrio cholerae-induced diarrhoea is still lacking. Methodology/Principal Findings Electrophysiological parameters and paracellular permeability of stripped human healthy colon tissues, obtained at subtotal colectomy, mounted in Ussing chamber were studied in the presence or absence of VCC purified from culture supernatants of V. cholerae O1 El Tor strain. Short circuit current (ISC) and transepithelial resistance (RT) were measured by a computerized voltage clamp system. The exposure of sigmoid colon specimens to 1 nM VCC resulted in an increase of ISC by 20.7%, with respect to the basal values, while RT was reduced by 12.3%. Moreover, increase in ISC was abolished by bilateral Cl− reduction. Conclusion/Significance Our results demonstrate that VCC, by forming anion channels on the apical membrane of enterocytes, triggers an outward transcellular flux of chloride. Such an ion movement, associated with the outward movement of Na+ and water, might be responsible for the diarrhoea caused by the non-toxigenic strains of Vibrio cholerae.
Collapse
Affiliation(s)
- Lucantonio Debellis
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | - Anna Diana
- Department of General and Environmental Physiology, University of Bari, Bari, Italy
| | | | - Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, United States of America
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Internal and Public Medicine, University Medical School, Bari, Italy
| | - Donato Francesco Altomare
- Department of Emergency and Organ Transplantation, General Surgery and Liver Transplantation Units, University of Bari, Policlinico, Bari, Italy
| | - Carlo Spirlì
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, Connecticut, United States of America
| | - Marina de Bernard
- Venetian Institute of Molecular Medicine, Padua, Italy
- Department of Biology, University of Padua, Padua, Italy
- * E-mail:
| |
Collapse
|
33
|
Identification and characterization of a repeat-in-toxin gene cluster in Vibrio anguillarum. Infect Immun 2008; 76:2620-32. [PMID: 18378637 DOI: 10.1128/iai.01308-07] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio anguillarum is the causative agent of vibriosis in fish. Hemolysins of V. anguillarum have been considered virulence factors during infection. One hemolysin gene, vah1, has been previously identified but does not account for all hemolytic activity. The mini-Tn10Km mutagenesis performed with a vah1 mutant resulted in a hemolysin-negative mutant. The region surrounding the mutation was cloned and sequenced, revealing a putative rtx operon with six genes (rtxACHBDE), where rtxA encodes an exotoxin, rtxC encodes an RtxA activator, rtxH encodes a conserved hypothetical protein, and rtxBDE encode the ABC transporters. Single mutations in rtx genes did not result in a hemolysin-negative phenotype. However, strains containing a mutation in vah1 and a mutation in an rtx gene resulted in a hemolysin-negative mutant, demonstrating that the rtx operon is a second hemolysin gene cluster in V. anguillarum M93Sm. Reverse transcription-PCR analysis revealed that the rtxC and rtxA genes are cotranscribed, as are the rtxBDE genes. Additionally, Vah1 and RtxA each have cytotoxic activity against Atlantic salmon kidney (ASK) cells. Single mutations in vah1 or rtxA attenuate the cytotoxicity of V. anguillarum M93Sm. A vah1 rtxA double mutant is no longer cytotoxic. Moreover, Vah1 and RtxA each have a distinct cytotoxic effect on ASK cells, Vah1 causes cell vacuolation, and RtxA causes cell rounding. Finally, wild-type and mutant strains were tested for virulence in juvenile Atlantic salmon. Only strains containing an rtxA mutation had reduced virulence, suggesting that RtxA is a major virulence factor for V. anguillarum.
Collapse
|
34
|
Vibrio cholerae cytolysin is essential for high enterotoxicity and apoptosis induction produced by a cholera toxin gene-negative V. cholerae non-O1, non-O139 strain. Microb Pathog 2008; 44:118-28. [DOI: 10.1016/j.micpath.2007.08.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 08/10/2007] [Indexed: 12/21/2022]
|
35
|
Arcidiacono D, Odom S, Frossi B, Rivera J, Paccani SR, Baldari CT, Pucillo C, Montecucco C, de Bernard M. The Vibrio cholerae cytolysin promotes activation of mast cell (T helper 2) cytokine production. Cell Microbiol 2007; 10:899-907. [PMID: 18005391 DOI: 10.1111/j.1462-5822.2007.01092.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many strains of Vibrio cholerae produce a cytolysin (VCC) that forms oligomeric transmembrane pores responsible for vacuolization of several cell types in culture. Here we suggest that VCC could contribute to the T helper 2 (Th2) response seen in the natural infection; acting through TLR2, VCC enhances mast cells secretion of IL-4, IL-6 and TNF-alpha by 330-, 290- and 550-fold respectively. Moreover, VCC-induced cytokine production is dependent on increased cytosolic Ca(2+) and on the presence of the Src family kinases Lyn and Fyn, known to be required for FcepsilonRI-dependent activation of mast cells. These findings strongly suggest that VCC has a pro-inflammatory activity promoting a Th2-type immune profile.
Collapse
Affiliation(s)
- Diletta Arcidiacono
- Department of Biomedical Sciences, University of Padua, Via G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Olivier V, Haines GK, Tan Y, Satchell KJF. Hemolysin and the multifunctional autoprocessing RTX toxin are virulence factors during intestinal infection of mice with Vibrio cholerae El Tor O1 strains. Infect Immun 2007; 75:5035-42. [PMID: 17698573 PMCID: PMC2044521 DOI: 10.1128/iai.00506-07] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The seventh cholera pandemic that started in 1961 was caused by Vibrio cholerae O1 strains of the El Tor biotype. These strains produce the pore-forming toxin hemolysin, a characteristic used clinically to distinguish classical and El Tor biotypes. Even though extensive in vitro data on the cytolytic activities of hemolysin exist, the connection of hemolysin to virulence in vivo is not well characterized. To study the contribution of hemolysin and other accessory toxins to pathogenesis, we utilized the model of intestinal infection in adult mice sensitive to the actions of accessory toxins. In this study, we showed that 4- to 6-week-old streptomycin-fed C57BL/6 mice were susceptible to intestinal infection with El Tor strains, which caused rapid death at high doses. Hemolysin had the predominant role in lethality, with a secondary contribution by the multifunctional autoprocessing RTX (MARTX) toxin. Cholera toxin and hemagglutinin/protease did not contribute to lethality in this model. Rapid death was not caused by increased dissemination due to a damaged epithelium since the numbers of CFU recovered from spleens and livers 6 h after infection did not differ between mice inoculated with hemolysin-expressing strains and those infected with non-hemolysin-expressing strains. Although accessory toxins were linked to virulence, a strain defective in the production of accessory toxins was still immunogenic since mice immunized with a multitoxin-deficient strain were protected from a subsequent lethal challenge with the wild type. These data suggest that hemolysin and MARTX toxin contribute to vaccine reactogenicity but that the genes for these toxins can be deleted from vaccine strains without affecting vaccine efficacy.
Collapse
Affiliation(s)
- Verena Olivier
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
37
|
González-Rodríguez N, Santos JA, Otero A, García-López ML. Cell-associated hemolytic activity in environmental strains of Plesiomonas shigelloides expressing cell-free, iron-influenced extracellular hemolysin. J Food Prot 2007; 70:885-90. [PMID: 17477257 DOI: 10.4315/0362-028x-70.4.885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hemolysis is a means of providing pathogenic bacteria with heme iron in vivo. In a previous work, iron-influenced hemolytic activity against sheep erythrocytes was detected in cell-free supernatants, but not in the cell fraction of two environmental Plesiomonas shigelloides strains incubated without shaking. Both strains have the hugA gene, which encodes an outer membrane receptor required for heme iron utilization. The present study was undertaken to investigate the expression of a second hemolytic activity detected during aerated incubation in normal and iron-depleted tryptone soya broth (id-TSB). An agar overlay procedure and doubling dilution titrations were employed to detect the hemolytic activity against several erythrocyte species. The kinetics of growth and hemolytic activity were assayed at 35 degrees C in aerated normal and id-TSB and salmon extract. Overlaid colonies showed a cell-associated beta-hemolytic activity within 4 h. For aerated cell-free supernatants, titers above 16 were not attained until 30 to 48 h of incubation; the best activity was noted with dog and mouse erythrocytes. After 24 h of aerated incubation, sonicated cells yielded high hemolytic activity against dog erythrocytes without activity in supernatants, but after 48 h, only 28 to 30% of the total activity remained cell associated. The hemolytic factor was released in broths during the death phase. Hemolytic activity was not detected in fish extract. This and other studies suggest that P. shigelloides may produce at least two hemolytic factors, their expression and detection being influenced by environmental growth conditions and testing procedures. The overlay assay appears to be the best routine method for detecting hemolytic activity in P. shigelloides.
Collapse
Affiliation(s)
- Nieves González-Rodríguez
- Department of Food Hygiene and Food Technology, Veterinary Faculty, University of Ledn, E-24071-León, Spain
| | | | | | | |
Collapse
|
38
|
Gutierrez MG, Saka HA, Chinen I, Zoppino FCM, Yoshimori T, Bocco JL, Colombo MI. Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proc Natl Acad Sci U S A 2007; 104:1829-34. [PMID: 17267617 PMCID: PMC1794277 DOI: 10.1073/pnas.0601437104] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is the unique, regulated mechanism for the degradation of organelles. This intracellular process acts as a prosurvival pathway during cell starvation or stress and is also involved in cellular response against specific bacterial infections. Vibrio cholerae is a noninvasive intestinal pathogen that has been studied extensively as the causative agent of the human disease cholera. V. cholerae illness is produced primarily through the expression of a potent toxin (cholera toxin) within the human intestine. Besides cholera toxin, this bacterium secretes a hemolytic exotoxin termed V. cholerae cytolysin (VCC) that causes extensive vacuolation in epithelial cells. In this work, we explored the relationship between the vacuolation caused by VCC and the autophagic pathway. Treatment of cells with VCC increased the punctate distribution of LC3, a feature indicative of autophagosome formation. Moreover, VCC-induced vacuoles colocalized with LC3 in several cell lines, including human intestinal Caco-2 cells, indicating the interaction of the large vacuoles with autophagic vesicles. Electron microscopy analysis confirmed that the vacuoles caused by VCC presented hallmarks of autophagosomes. Additionally, biochemical evidence demonstrated the degradative nature of the VCC-generated vacuoles. Interestingly, autophagy inhibition resulted in decreased survival of Caco-2 cells upon VCC intoxication. Also, VCC failed to induce vacuolization in Atg5-/- cells, and the survival response of these cells against the toxin was dramatically impaired. These results demonstrate that autophagy acts as a cellular defense pathway against secreted bacterial toxins.
Collapse
Affiliation(s)
- Maximiliano Gabriel Gutierrez
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Hector Alex Saka
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología–CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | - Isabel Chinen
- Servicio de Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, Administración Nacional de Laboratorios e Institutos de Salud “Dr. Carlos G. Malbrán,” 1281 Buenos Aires, Argentina; and
| | - Felipe C. M. Zoppino
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Tamotsu Yoshimori
- Department of Cell Genetics, National Institute of Genetics, Yata 1111 Mishima, Shizuoka 455-8540, Japan
| | - Jose Luis Bocco
- Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología–CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
- To whom correspondence may be addressed. E-mail:
or
| | - María Isabel Colombo
- *Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología–Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
39
|
Agu CA, Klein R, Schwab S, König-Schuster M, Kodajova P, Ausserlechner M, Binishofer B, Bläsi U, Salmons B, Günzburg WH, Hohenadl C. The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. J Gene Med 2006; 8:229-41. [PMID: 16170834 DOI: 10.1002/jgm.833] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The potential use of gene therapy for cancer treatment is being intensively studied. One approach utilises the expression of genes encoding cytotoxic proteins. Such proteins can affect cellular viability, for example by inhibiting the translation machinery or disturbing membrane integrity. The bacteriophage Lambda (lambda)-holin protein is known to form a lesion in the cytoplasmic membrane of E. coli, triggering bacterial cell lysis and thereby enabling the release of new bacteriophage particles. The aim of this study was to evaluate whether the lambda-holin protein has a cytotoxic impact on eukaryotic cells and whether it holds potential as a new therapeutic protein for cancer gene therapy. METHODS To explore this possibility, stably transfected human cell lines were established that harbour a tetracycline (Tet)-inducible system for controlled expression of the lambda-holin gene. The effect of the lambda-holin protein on eukaryotic cells was studied in vitro by applying several viability assays. We also investigated the effect of lambda-holin gene expression in vivo using a human breast cancer cell tumour xenograft as well as a syngeneic mammary adenocarcinoma mouse model. RESULTS The lambda-holin-encoding gene was inducibly expressed in eukaryotic cells in vitro. Expression led to a substantial reduction of cell viability of more than 98%. In mouse models, lambda-holin-expressing tumour cell xenografts revealed significantly reduced growth rates in comparison to xenografts not expressing the lambda-holin gene. CONCLUSIONS The lambda-holin protein is cytotoxic for eukaryotic cells in vitro and inhibits tumour growth in vivo suggesting potential therapeutic use in cancer gene therapy.
Collapse
Affiliation(s)
- Chukwuma A Agu
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Pantano S, Montecucco C. A molecular model of the Vibrio cholerae cytolysin transmembrane pore. Toxicon 2005; 47:35-40. [PMID: 16330061 DOI: 10.1016/j.toxicon.2005.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/31/2005] [Accepted: 09/22/2005] [Indexed: 01/05/2023]
Abstract
The cytotoxic activity of some of the most pathogenic strains of Vibrio cholerae is associated with a cytolysin protein (VCC), which forms oligomeric transmembrane pores and changes the permeability of intestinal cells. We present here a model structure of the transmembrane pore of VCC based on sequence comparison with other pore-forming toxins. VCC is suggested to form a transmembrane beta-barrel pore with a relatively large trans vestibule region. Calculations of the electrostatic profile within the pore lumen provide a rationale for the low conductance and selectivity of the VCC ion channel.
Collapse
Affiliation(s)
- Sergio Pantano
- Venetian Institute of Molecular Medicine (VIMM),Via Orus 2, 35129, Padova, Italy.
| | | |
Collapse
|
41
|
Figueiredo SCDA, Neves-Borges AC, Coelho A. The neuraminidase gene is present in the non-toxigenic Vibrio cholerae Amazonia strain: a different allele in comparison to the pandemic strains. Mem Inst Oswaldo Cruz 2005; 100:563-9. [PMID: 16302067 DOI: 10.1590/s0074-02762005000600010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuraminidase gene, nanH, is present in the O1, non-toxigenic Vibrio cholerae Amazonia strain. Its location has been assigned to a 150 kb NotI DNA fragment, with the use of pulsed-field gel electrophoresis and DNA hybridization. This NotI fragment is positioned inside 630 kb SfiI and 1900 kb I-CeuI fragments of chromosome 1. Association of the pathogenicity island VPI-2, carrying nanH and other genes, with toxigenic strains has been described by other authors. The presence of nanH in a non-toxigenic strain is an exception to this rule. The Amazonia strain nanH was sequenced (Genbank accession No. AY825932) and compared to available V. cholerae sequences. The sequence is different from those of pandemic strains, with 72 nucleotide substitutions. This is the first description of an O1 strain with a different nanH allele. The most variable domain of the Amazonia NanH is the second lectin wing, comprising 13 out of 17 amino acid substitutions. Based on the presence of nanH in the same region of the genome, and similarity of the adjacent sequences to VPI-2 sequences, it is proposed that the pathogenicity island VPI-2 is present in this strain.
Collapse
|
42
|
Sánchez J, Holmgren J. Virulence factors, pathogenesis and vaccine protection in cholera and ETEC diarrhea. Curr Opin Immunol 2005; 17:388-98. [PMID: 15963708 DOI: 10.1016/j.coi.2005.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/03/2005] [Indexed: 11/18/2022]
Abstract
Recent work has provided new insights into the pathogenesis of the potentially life-threatening diarrheas caused by Vibrio cholerae and enterotoxigenic Escherichia coli (ETEC): a new mechanism (post-translational degradation), which is involved in the control of cholera toxin expression, has been discovered. Recent evidence also suggests that vibrios upregulate cholera toxin expression in response to intestinal fluid components, and enterotoxin-carrying bacterial outer membrane vesicles might have a function in ETEC pathogenesis. An important role of the environment is supported by the correlation between cholera incidence and elevated sea surface temperature, which supports the notion that the zooplankton is a V. cholerae reservoir. Additionally, environmental lytic cholera phages could influence cholera seasonality by 'terminating' the seasonal epidemic. Finally, the strong herd immunity elicited by an oral cholera vaccine indicates that cholera vaccination could have a significant public health impact.
Collapse
Affiliation(s)
- Joaquín Sánchez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP62210, Cuernavaca, Morelos, Mexico
| | | |
Collapse
|
43
|
Rodkhum C, Hirono I, Crosa JH, Aoki T. Four novel hemolysin genes of Vibrio anguillarum and their virulence to rainbow trout. Microb Pathog 2005; 39:109-19. [PMID: 16126365 DOI: 10.1016/j.micpath.2005.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Accepted: 06/24/2005] [Indexed: 10/25/2022]
Abstract
Four nucleotide sequences showing homology to known hemolysin genes were cloned and sequenced from V. anguillarum strain H775-3. The four genes, vah2, vah3, vah4 and vah5, have open reading frames encoding polypeptides of 291, 690, 200 and 585 amino acid residues, respectively, with predicted molecular masses of 33, 75, 22 and 66KDa, respectively. VAH2 is most closely related to a putative hemolysin of Vibrio vulnificus YJ016 (89% identity). VAH3 is most closely related to a hemolysin-related protein in Vibrio cholerae O1 (68% identity). VAH4 is most closely related to a thermostable hemolysin in V. cholerae O1 (72% identity). VAH5 is most closely related to a putative hemolysin in V. cholerae O1 (73% identity). The purified hemolysin proteins showed hemolytic activities against erythrocyte of fish, sheep and rabbit. Four strains of V. anguillarum mutants were constructed, each deficient in one of the hemolysin genes. Each mutant was less virulent than V. anguillarum H775-3 to juvenile rainbow trout (Oncorhynchus mykiss), indicating that each hemolysin gene contributes to the virulence of V. anguillarum H775-3.
Collapse
Affiliation(s)
- Channarong Rodkhum
- Laboratory of Genome Science, Graduate school of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan, 4-5-7, Minato, Tokyo 1088477, Japan
| | | | | | | |
Collapse
|
44
|
Comparative genomic analysis of vibrio cholerae el tor preseventh and seventh pandemic strains isolated in various periods. RUSS J GENET+ 2005. [DOI: 10.1007/pl00022109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Comparative genomic analysis of Vibrio cholerae El Tor preseventh and seventh pandemic strains isolated in various periods. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
de Bernard M, Cappon A, Del Giudice G, Rappuoli R, Montecucco C. The multiple cellular activities of the VacA cytotoxin of Helicobacter pylori. Int J Med Microbiol 2004; 293:589-97. [PMID: 15149036 DOI: 10.1078/1438-4221-00299] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Helicobacter pylori has elaborated a unique set of virulence factors that allow it to colonize the stomach wall. These factors include urease, helicoidal shape, flagella, adhesion and pro-inflammatory molecules. Here we discuss the molecular and cellular mechanisms of action of the vacuolating cytotoxin VacA. Its activities are discussed in terms of tissue alterations which promote the release of nutrients necessary to the growth and survival of the bacterium in its nutrient-poor ecological niche. This toxin also shows some pro-inflammatory and immunosuppressive activities which may be functional to the establishment of a chronic type of inflammation.
Collapse
Affiliation(s)
- Marina de Bernard
- Dipartimento di Scienze Biomediche, Università di Padova, Istituto Veneto di Medicina Molecolare, Padova, Italy
| | | | | | | | | |
Collapse
|
47
|
Istivan TS, Coloe PJ, Fry BN, Ward P, Smith SC. Characterization of a haemolytic phospholipase A2 activity in clinical isolates of Campylobacter concisus. J Med Microbiol 2004; 53:483-493. [PMID: 15150326 DOI: 10.1099/jmm.0.45554-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A membrane-bound, haemolytic phospholipase A(2) (PLA(2)) activity was detected in clinical strains of Campylobacter concisus isolated from children with gastroenteritis. The clinical strains were assigned into two molecular groups (genomospecies) based on PCR amplification of their 23S rDNA. This calcium-dependent, heat-stable, haemolytic PLA(2) activity was detected in strains from both genomospecies. A crude haemolysin extract (CHE) was initially prepared from cellular outer-membrane proteins of these isolates and was further fractionated by ultrafiltration. The haemolytic activity of the extracted fraction (R30) was retained by ultrafiltration using a 30 kDa molecular mass cut-off filter, and was designated haemolysin extract (HE). Both CHE and HE had PLA(2) activity and caused stable vacuolating and cytolytic effects on Chinese hamster ovary cells in tissue culture. Primers for the conserved region of pldA gene (phospholipase A gene) from Campylobacter coli amplified a gene region of 460 bp in all tested isolates, confirming the presence of a homologous PLA gene sequence in C. concisus. The detection of haemolytic PLA(2) activity in C. concisus indicates the presence of a potential virulence factor in this species and supports the hypothesis that C. concisus is a possible opportunistic pathogen.
Collapse
Affiliation(s)
- Taghrid S Istivan
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Peter J Coloe
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Benjamin N Fry
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Peter Ward
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| | - Stuart C Smith
- Department of Biotechnology and Environmental Biology, RMIT University, PO Box 71, Bundoora, Victoria 3083, Australia 2Microbiology Department, Royal Children's Hospital, Melbourne, Australia 3School of Health Sciences, Deakin University, Melbourne, Australia
| |
Collapse
|
48
|
Zhou X, Gao DQ, Michalski J, Benitez JA, Kaper JB. Induction of interleukin-8 in T84 cells by Vibrio cholerae. Infect Immun 2004; 72:389-97. [PMID: 14688120 PMCID: PMC343975 DOI: 10.1128/iai.72.1.389-397.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The induction of interleukin-8 (IL-8) in vitro has been suggested to correlate with the reactogenicity of Vibrio cholerae vaccine candidates. V. cholerae vaccine candidate 638, a hemagglutinin protease/hap-defective strain, was recently reported to be well tolerated in human volunteers, suggesting a role for Hap in reactogenicity. We examined the role of hap in the induction of IL-8 in intestinal epithelial T84 cells. Wild-type V. cholerae strains 3038 and C7258 and a vaccine candidate strain, JBK70, induced levels of IL-8 similar to those of their isogenic hap mutants. Supernatant containing Hap did not stimulate IL-8 production at a variety of concentrations tested, suggesting that Hap itself does not induce IL-8 production. Furthermore, supernatant from CVD115, which had deletions of hap and rtxA (encoding repeats in toxin) and was derived from a reactogenic strain, CVD110, induced IL-8 production in T84 cells in a dose-dependent manner. The IL-8-stimulating activity of CVD115 culture supernatants was growth phase dependent and was strongest in stationary phase cultures. This IL-8 stimulator(s) was resistant to heat treatment but sensitive to proteinase. Protease activity in vitro did not correlate with the reactogenicity of V. cholerae vaccine candidates. Our data suggest that Hap is not an IL-8 inducer in T84 cells and that the IL-8 stimulator in the supernatant of V. cholerae culture may play a role in reactogenicity.
Collapse
Affiliation(s)
- Xin Zhou
- Center for Vaccine Development and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
49
|
Falcón R, Carbonell GV, Figueredo PMS, Butião F, Saridakis HO, Pelayo JS, Yano T. Intracellular vacuolation induced by culture filtrates of Plesiomonas shigelloides isolated from environmental sources. J Appl Microbiol 2003; 95:273-8. [PMID: 12859758 DOI: 10.1046/j.1365-2672.2003.01983.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Potential virulence factors produced by culture filtrates of Plesiomonas shigelloides isolated from water were investigated. METHODS AND RESULTS Culture filtrates of P. shigelloides strains were assayed for cytotoxic activity in CHO (Chinese hamster ovary), Vero (African green monkey kidney), HeLa (human cervix), HT29 (human epithelial intestinal) and SK6 (swine epithelial kidney) cells. Microscopic analyses revealed intensive cytoplasmic vacuolation including cell rounding and swelling, with gradual destruction of the monolayer in filtrate-treated cells. Neutral red assays showed that CHO, HeLa and Vero cells were the most sensitive to the vacuolating activity, which was evident within 30 min of culture filtrate exposure. This activity was inactived by heating at 56 degrees C for 15 min and partially neutralized by antiserum to the cytotoxin of Aeromonas hydrophila. All P. shigelloides strains had a cell-associated haemolysin in the agar plate assay. Three isolates were found to produce a cell-free haemolytic activity at 37 degrees C. In the suckling mouse test, two P. shigelloides culture supernatants were positive for enterotoxic activity. CONCLUSIONS P. shigelloides culture filtrates isolated from aquatic environment cause intracellular vacuolation on mammalian cells, and produce haemolytic and enterotoxic activities. SIGNIFICANCE AND IMPACT OF THE STUDY This work revealed the presence of putative virulence factors that could be associated with human infections involving Plesiomonas strains.
Collapse
Affiliation(s)
- R Falcón
- Departamento de Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
50
|
Pichel M, Rivas M, Chinen I, Martín F, Ibarra C, Binsztein N. Genetic diversity of Vibrio cholerae O1 in Argentina and emergence of a new variant. J Clin Microbiol 2003; 41:124-34. [PMID: 12517837 PMCID: PMC149600 DOI: 10.1128/jcm.41.1.124-134.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genetic diversity of Vibrio cholerae O1 strains from Argentina was estimated by random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE). Twenty-nine isolates carrying the virulence genes ctxA, zot, ace, and tcpA appeared to represent a single clone by both typing methods; while 11 strains lacking these virulence genes exhibited several heterogeneous RAPD and PFGE patterns. Among the last group, a set of isolates from the province Tucumán showed a single RAPD pattern and four closely related PFGE profiles. These strains, isolated from patients with diarrhea, did not produce the major V. cholerae O1 virulence determinants, yet cell supernatants of these isolates caused a heat-labile cytotoxic effect on Vero and Y-1 cells and elicited significant variations on the water flux and short-circuit current in human small intestine mounted in an Ussing chamber. All these effects were completely abolished by incubation with a specific antiserum against El Tor hemolysin, suggesting that this virulence factor was responsible for the toxic activity on both the epithelial cells and the small intestine specimens and may hence be involved in the development of diarrhea. We propose "Tucumán variant" as the designation for this new cluster of cholera toxin-negative V. cholerae O1 strains.
Collapse
Affiliation(s)
- Mariana Pichel
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas, ANLIS Dr. Carlos G. Malbrán, Ministerio de Salud, 1281 Capital Federal, Argentina
| | | | | | | | | | | |
Collapse
|