1
|
Ravi D, Ntinopoulou E, Guetta N, Weier M, Vogel V, Spellerberg B, Sendi P, Gremlich S, Roger T, Giannoni E. Dysregulated monocyte-derived macrophage response to Group B Streptococcus in newborns. Front Immunol 2023; 14:1268804. [PMID: 38035076 PMCID: PMC10682703 DOI: 10.3389/fimmu.2023.1268804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading pathogen of neonatal sepsis. The host-pathogen interactions underlying the progression to life-threatening infection in newborns are incompletely understood. Macrophages are first line in host defenses against GBS, contributing to the initiation, amplification, and termination of immune responses. The goal of this study was to compare the response of newborn and adult monocyte-derived macrophages (MDMs) to GBS. Methods Monocytes from umbilical cord blood of healthy term newborns and from peripheral blood of healthy adult subjects were cultured with M-CSF to induce MDMs. M-CSF-MDMs, GM-CSF- and IFNγ-activated MDMs were exposed to GBS COH1, a reference strain for neonatal sepsis. Results GBS induced a greater release of IL-1β, IL-6, IL-10, IL-12p70 and IL-23 in newborn compared to adult MDMs, while IL-18, IL-21, IL-22, TNF, RANTES/CCL5, MCP-1/CCL2 and IL-8/CXCL8 were released at similar levels. MDM responses to GBS were strongly influenced by conditions of activation and were distinct from those to synthetic bacterial lipopeptides and lipopolysaccharides. Under similar conditions of opsonization, newborn MDMs phagocytosed and killed GBS as efficiently as adult MDMs. Discussion Altogether, the production of excessive levels of Th1- (IL-12p70), Th17-related (IL-1β, IL-6, IL-23) and anti-inflammatory (IL-10) cytokines is consistent with a dysregulated response to GBS in newborns. The high responsiveness of newborn MDMs may play a role in the progression of GBS infection in newborns, possibly contributing to the development of life-threatening organ dysfunction.
Collapse
Affiliation(s)
- Denho Ravi
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Erato Ntinopoulou
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nessim Guetta
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Manuela Weier
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Verena Vogel
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University of Ulm, Ulm, Germany
| | - Parham Sendi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Sandrine Gremlich
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Eric Giannoni
- Clinic of Neonatology, Department Mother-Woman-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Modulation of Production of Th1/Th2 Cytokines in Peripheral Blood Mononuclear Cells and Neutrophils by Hepatitis C Virus Infection in Chronically Infected Patients. Pathogens 2021; 10:pathogens10111519. [PMID: 34832674 PMCID: PMC8624222 DOI: 10.3390/pathogens10111519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022] Open
Abstract
This study investigated the influence of Hepatitis C virus (HCV) infection on the cytokine production profiles of the peripheral blood monoculear cells (PBMC) and neutrophils in chronically naïve HCV-infected patients. Seventy-five genotype-4 naïve HCV-infected patients (HCV+) and healthy subjects (HCV-) were enrolled. The neutrophils and the PBMC were separated by density gradient sedimentation and stimulated with a mitogen. The culture supernatants were evaluated for levels of IFN-α, IFN-γ, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12, and TNF-α using anti-cytokine antibody MACSPlex capture beads. The PBMC cytokine profiles of HCV+ patients showed significantly lower mean values for IFN-γ, IL-2, IL-6, IL-9, and IL-10 (p < 0.0001) as compared to HCV- subjects. In contrast, HCV+ patients showed higher mean levels of PBMC cytokine values for IL-5 and TNF-α (p < 0.0001). As for neutrophils, HCV+ patients showed significantly lower mean levels of IFN-α, IFN-γ, IL-2, IL-4, IL-6, IL-9, and IL-10 (p < 0.0001). In contrast, the neutrophils from HCV+ patients showed higher mean levels of IL-5, IL-12, and TNF-α (p < 0.0001). Th1-Th2 cytokine ratios suggested a lower Th1 bias in HCV+ subjects as compared to HCV- subjects. Our results suggest that chronic HCV infection brings about an immunomodulatory effect not only on neutrophils, but also to a lower extent on PBMCs.
Collapse
|
3
|
Fike AJ, Kumova OK, Carey AJ. Dissecting the defects in the neonatal CD8 + T-cell response. J Leukoc Biol 2019; 106:1051-1061. [PMID: 31260598 DOI: 10.1002/jlb.5ru0319-105r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
The neonatal period presents a complex scenario where the threshold of reactivity toward colonizing microbiota, maternal antigens, autoantigens, and pathogens must be carefully moderated and balanced. CD8+ T cells are critical for the response against intracellular bacteria and viruses, but this immune compartment maintains altered function relative to adult counterparts because of the unique challenges which infants face. Here, we review our current understanding of the factors which may promote the attenuation and altered function of the neonatal CD8+ T-cell response and potential avenues for future study. Specifically, we have focused on the neonatal CD8+ T-cell ontogeny, memory formation, TCR structure and repertoire, TCR inhibitory receptors, and the clinical implications of altered neonatal CD8+ T-cell function. Special emphasis has been placed on examining the response of preterm neonates relative to term neonates and adults.
Collapse
Affiliation(s)
- Adam J Fike
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ogan K Kumova
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Alison J Carey
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Bermick J, Gallagher K, denDekker A, Kunkel S, Lukacs N, Schaller M. Chorioamnionitis exposure remodels the unique histone modification landscape of neonatal monocytes and alters the expression of immune pathway genes. FEBS J 2019; 286:82-109. [PMID: 30565411 PMCID: PMC6326865 DOI: 10.1111/febs.14728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/24/2018] [Accepted: 12/08/2018] [Indexed: 12/13/2022]
Abstract
Chorioamnionitis is an intrauterine infection involving inflammation of the chorion, amnion, and placenta. It leads to a fetal systemic inflammatory response that can alter the transcription of neonatal immune genes. We have previously shown that neonatal monocytes gain the activating histone tail modification H3K4me3 at promoter sites of immunologically important genes as development progresses from preterm neonate to adult. In this study, we applied ChIP-seq and RNA-seq to evaluate the impact of chorioamnionitis on the neonatal monocyte H3K4me3 histone modification landscape over the course of fetal and neonatal immune system development. Chorioamnionitis exposure in neonatal monocytes resulted in a net increase in total monocyte H3K4me3, primarily in introns and intergenic regions. Immune gene expression was decreased in chorioamnionitis-exposed monocytes, with the majority of enriched transcripts falling into pathways that are not linked to the immune system. Over half of all neonatal monocyte H3K4me3 peaks, independent of their location, were associated with active gene transcription. Overall, chorioamnionitis exposure resulted in the global remodeling of the neonatal monocyte H3K4me3 landscape and changes in the expression of known immune genes. These changes resulted in a less robust inflammatory response upon exposure to a secondary challenge, which may explain why chorioamnionitis-exposed neonates have an increased risk of sepsis. DATABASE: ChIP-seq data for U30/O30/Term: GEO GSE81957 ChIP-seq data for U30C/O30C/TermC: GEO GSE111873 RNA-seq data for U/L/CU/CL: GEO GSE111927.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Michigan Medicine, Ann Arbor, Michigan
| | | | - Aaron denDekker
- Department of Surgery, Michigan Medicine, Ann Arbor, Michigan
| | - Steve Kunkel
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan
| | - Nicholas Lukacs
- Department of Pathology, Michigan Medicine, Ann Arbor, Michigan
| | | |
Collapse
|
5
|
Schneider A, Weier M, Herderschee J, Perreau M, Calandra T, Roger T, Giannoni E. IRF5 Is a Key Regulator of Macrophage Response to Lipopolysaccharide in Newborns. Front Immunol 2018; 9:1597. [PMID: 30050534 PMCID: PMC6050365 DOI: 10.3389/fimmu.2018.01597] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Infections are a leading cause of mortality and morbidity in newborns. The high susceptibility of newborns to infection has been associated with a limited capacity to mount protective immune responses. Monocytes and macrophages are involved in the initiation, amplification, and termination of immune responses. Depending on cues received from their environment, monocytes differentiate into M1 or M2 macrophages with proinflammatory or anti-inflammatory and tissue repair properties, respectively. The purpose of this study was to characterize differences in monocyte to macrophage differentiation and polarization between newborns and adults. Monocytes from umbilical cord blood of healthy term newborns and from peripheral blood of adult healthy subjects were exposed to GM-CSF or M-CSF to induce M1 or M2 macrophages. Newborn monocytes differentiated into M1 and M2 macrophages with similar morphology and expression of differentiation/polarization markers as adult monocytes, with the exception of CD163 that was expressed at sevenfold higher levels in newborn compared to adult M1 macrophages. Upon TLR4 stimulation, newborn M1 macrophages produced threefold to sixfold lower levels of TNF than adult macrophages, while production of IL-1-β, IL-6, IL-8, IL-10, and IL-23 was at similar levels as in adults. Nuclear levels of IRF5, a transcription factor involved in M1 polarization, were markedly reduced in newborns, whereas the NF-κB and MAP kinase pathways were not altered. In line with a functional role for IRF5, adenoviral-mediated IRF5 overexpression in newborn M1 macrophages restored lipopolysaccharide-induced TNF production. Altogether, these data highlight a distinct immune response of newborn macrophages and identify IRF5 as a key regulator of macrophage TNF response in newborns.
Collapse
Affiliation(s)
- Anina Schneider
- Clinic of Neonatology, Department of Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Manuela Weier
- Clinic of Neonatology, Department of Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jacobus Herderschee
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Eric Giannoni
- Clinic of Neonatology, Department of Woman-Mother-Child, Lausanne University Hospital, Lausanne, Switzerland
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
6
|
Csóka B, Németh ZH, Szabó I, Davies DL, Varga ZV, Pálóczi J, Falzoni S, Di Virgilio F, Muramatsu R, Yamashita T, Pacher P, Haskó G. Macrophage P2X4 receptors augment bacterial killing and protect against sepsis. JCI Insight 2018; 3:99431. [PMID: 29875325 PMCID: PMC5997389 DOI: 10.1172/jci.insight.99431] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 05/01/2018] [Indexed: 01/08/2023] Open
Abstract
The macrophage is a major phagocytic cell type, and its impaired function is a primary cause of immune paralysis, organ injury, and death in sepsis. An incomplete understanding of the endogenous molecules that regulate macrophage bactericidal activity is a major barrier for developing effective therapies for sepsis. Using an in vitro killing assay, we report here that the endogenous purine ATP augments the killing of sepsis-causing bacteria by macrophages through P2X4 receptors (P2X4Rs). Using newly developed transgenic mice expressing a bioluminescent ATP probe on the cell surface, we found that extracellular ATP levels increase during sepsis, indicating that ATP may contribute to bacterial killing in vivo. Studies with P2X4R-deficient mice subjected to sepsis confirm the role of extracellular ATP acting on P2X4Rs in killing bacteria and protecting against organ injury and death. Results with adoptive transfer of macrophages, myeloid-specific P2X4R-deficient mice, and P2rx4 tdTomato reporter mice indicate that macrophages are essential for the antibacterial, antiinflammatory, and organ protective effects of P2X4Rs in sepsis. Pharmacological targeting of P2X4Rs with the allosteric activator ivermectin protects against bacterial dissemination and mortality in sepsis. We propose that P2X4Rs represent a promising target for drug development to control bacterial growth in sepsis and other infections.
Collapse
Affiliation(s)
- Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Zoltán H. Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA
- Department of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Ildikó Szabó
- Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, USC, Los Angeles, California, USA
| | - Zoltán V. Varga
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - János Pálóczi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Rieko Muramatsu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Pál Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA
| |
Collapse
|
7
|
Lemieux MW, Sonzogni-Desautels K, Ndao M. Lessons Learned from Protective Immune Responses to Optimize Vaccines against Cryptosporidiosis. Pathogens 2017; 7:pathogens7010002. [PMID: 29295550 PMCID: PMC5874728 DOI: 10.3390/pathogens7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.
Collapse
Affiliation(s)
- Maxime W Lemieux
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| | - Karine Sonzogni-Desautels
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Faculty of Agricultural and Environmental Sciences, Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada.
| | - Momar Ndao
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada.
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
8
|
Walkovich K, Connelly JA. Primary immunodeficiency in the neonate: Early diagnosis and management. Semin Fetal Neonatal Med 2016; 21:35-43. [PMID: 26776073 DOI: 10.1016/j.siny.2015.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many primary immunodeficiencies (PIDs) manifest in the neonatal period but can be challenging to diagnose and manage optimally. In part, the difficulty stems from the natural immaturity of the neonatal immune system that may mask immune deficits and/or complicate interpretation of clinical findings and laboratory assays. The great diversity of PIDs--from innate immune system defects to those that impact the humoral and/or cellular components of the adaptive immune system--and the rapid rate at which new PIDs are being discovered makes it challenging for practitioners to stay current. Moreover, recent appreciation for immune deficiencies that lead to autoinflammation and autoimmunity have broadened the spectrum of neonatal PID, adding additional complexity to an already intricate field. This article serves to highlight the deficiencies in the neonatal immune system, while providing a review of the more common PIDs that present in the neonate and guidelines for diagnosis and supportive care.
Collapse
Affiliation(s)
- Kelly Walkovich
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | - James A Connelly
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Carey AJ, Tan CK, Mirza S, Irving-Rodgers H, Webb RI, Lam A, Ulett GC. Infection and cellular defense dynamics in a novel 17β-estradiol murine model of chronic human group B streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation. THE JOURNAL OF IMMUNOLOGY 2014; 192:1718-31. [PMID: 24453257 DOI: 10.4049/jimmunol.1202811] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (10(6)-10(7) CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.
Collapse
Affiliation(s)
- Alison J Carey
- School of Medical Sciences, Griffith Health Institute, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Ma Z, Zhang H, Yi L, Fan H, Lu C. Microarray analysis of the effect of Streptococcus equi subsp. zooepidemicus M-like protein in infecting porcine pulmonary alveolar macrophage. PLoS One 2012; 7:e36452. [PMID: 22567158 PMCID: PMC3342272 DOI: 10.1371/journal.pone.0036452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/04/2012] [Indexed: 11/27/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus), which belongs to Lancefield group C streptococci, is an important pathogen of domesticated species, causing septicemia, meningitis and mammitis. M-like protein (SzP) is an important virulence factor of S. zooepidemicus and contributes to bacterial infection and antiphagocytosis. To increase our knowledge of the mechanism of SzP in infection, we profiled the response of porcine pulmonary alveolar macrophage (PAM) to infection with S. zooepidemicus ATCC35246 wild strain (WD) and SzP-knockout strain (KO) using the Roche NimbleGen Porcine Genome Expression Array. We found SzP contributed to differential expression of 446 genes, with upregulation of 134 genes and downregulation of 312 genes. Gene Ontology category and KEGG pathway were analyzed for relationships among differentially expressed genes. These genes were represented in a variety of functional categories, including genes involved in immune response, regulation of chemokine production, signal transduction and regulation of apoptosis. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR on 12 representative genes. The data will contribute to understanding of SzP mediated mechanisms of S. zooepidemicus pathogenesis.
Collapse
Affiliation(s)
- Zhe Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Hui Zhang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
- * E-mail:
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|
11
|
Tissières P, Ochoda A, Dunn-Siegrist I, Drifte G, Morales M, Pfister R, Berner M, Pugin J. Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLoS One 2012; 7:e32863. [PMID: 22427899 PMCID: PMC3299693 DOI: 10.1371/journal.pone.0032863] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. METHODOLOGY/PRINCIPAL FINDINGS We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Gram-positive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-γ. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-γ. CONCLUSION/SIGNIFICANCE Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressively matures in the last three months in utero. Ex vivo treatment of leukocytes from premature neonates with interferon-γ reversed their innate immune responses deficiency to bacteria. These data represent a promising proof-of-concept to treat premature newborns at the time of delivery with pharmacological agents aimed at maturing innate immune responses in order to prevent neonatal sepsis.
Collapse
Affiliation(s)
- Pierre Tissières
- Division of Intensive Care, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Méhes L, Taskó S, Székely A, Tóth Á, Ungvári E, Erdei I, Dombrádi Z, Szabó J, Maródi L. Phagocytosis and intracellular killing of heterogeneous vancomycin-intermediate Staphylococcus aureus strains. J Med Microbiol 2011; 61:198-203. [PMID: 21959204 DOI: 10.1099/jmm.0.029421-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Risk factors for invasive infections by heterogeneous vancomycin-intermediate Staphylococcus aureus (hVISA) may involve resistance to opsonophagocytosis and bacterial killing. hVISA strains typically have a thickened cell wall with altered peptidoglycan cross-linking. To determine whether hVISA may be endowed with an increased resistance to phagocytosis, this study assessed the characteristics of uptake and killing by granulocytes of three hVISA strains. All isolates were analysed by multilocus sequence typing and staphylococcal chromosome cassette mec typing. One of the strains belonged to the Hungarian meticillin-resistant S. aureus (MRSA) clone ST239-MRSA-III and the other two to the New York/Japan MRSA clone ST5-MRSA-II. In the presence of 10 % normal serum, the extent of phagocytosis and killing by blood granulocytes was equivalent for hVISA, MRSA and meticillin-sensitive S. aureus (MSSA) strains. Using granulocytes and serum from one patient who survived hVISA infection, the rate of phagocytosis and killing was also found to be comparable to that by control cells in the presence of 10 % serum. However, phagocytosis and killing of hVISA and MRSA (ATCC 25923) strains by normal granulocytes was markedly decreased in the presence of low concentrations (1 and 2.5 %) of serum from the patient who survived hVISA infection compared with that found with normal human serum. These data suggest that hVISA and MRSA isolates may be more resistant to opsonophagocytosis and bacterial killing than MSSA isolates, at least in some cases.
Collapse
Affiliation(s)
- Leonóra Méhes
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Szilvia Taskó
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Annamária Székely
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Ákos Tóth
- Department of Bacteriology, National Center for Epidemiology, Budapest, Hungary
| | - Erika Ungvári
- Department of Phage and Molecular Typing, National Center for Epidemiology, Budapest, Hungary
| | - Irén Erdei
- Department of Dermatology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Zsuzsanna Dombrádi
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Judit Szabó
- Department of Medical Microbiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - László Maródi
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Yu HR, Kuo HC, Huang HC, Kuo HC, Chen TY, Huang LT, Tain YL, Chen CC, Sheen JM, Lin IC, Ou CY, Hsu TY, Jheng YJ, Yang KD. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11:3491-500. [PMID: 21751377 DOI: 10.1002/pmic.201100123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gille C, Leiber A, Mundle I, Spring B, Abele H, Spellerberg B, Hartmann H, Poets CF, Orlikowsky TW. Phagocytosis and postphagocytic reaction of cord blood and adult blood monocyte after infection with green fluorescent protein-labeled Escherichia coli and group B Streptococci. CYTOMETRY PART B-CLINICAL CYTOMETRY 2009; 76:271-84. [PMID: 19288547 DOI: 10.1002/cyto.b.20474] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Neonatal sepsis is characterized by an excessive inflammatory response induced by immune cells (monocytes). We investigated the initial stage of monocyte-pathogen interaction, i.e. bacterial ingestion and degradation at the single-cell level, by comparing a new flow cytometric procedure with culture methods. We also examined the hypothesis that, in terms of phagocytosis-induced cell death (PICD), phenotype, or cytokine production, cord blood monocytes (CBMO) differ from monocytes derived from adults (peripheral blood monocytes, PBMO). METHODS Phagocytosis and intracellular degradation were assessed by means of flow cytometry and bacterial cultures of green fluorescent protein-labeled group B Streptococci (GBS) and Escherichia coli. The production of reactive oxygen species (ROS) was measured through luminol-enhanced chemiluminescence. Apoptosis, phenotype, and cytokine production were assessed through flow cytometry. RESULTS Flow cytometry and bacterial cultures showed no difference between phagocytosis and degradation of GBS and E. coli by PBMO and CBMO. A high correlation between both methods was observed. No difference in ROS production was evident. In comparison with PBMO, CBMO apoptosis was lower after exposure to GBS and E. coli. Similarities were found between nonapoptotic monocytes and pro-inflammatory monocytes. CONCLUSIONS PICD is lower in CBMO during the early stages of monocyte-pathogen interaction. Our results emphasize that monocyte apoptosis has a potential role in tailoring the immune response in neonatal sepsis.
Collapse
Affiliation(s)
- Ch Gille
- Department of Neonatology, University Children's Hospital, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wennekamp J, Henneke P. Induction and termination of inflammatory signaling in group B streptococcal sepsis. Immunol Rev 2009; 225:114-27. [PMID: 18837779 DOI: 10.1111/j.1600-065x.2008.00673.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SUMMARY Group B streptococcus (GBS) is part of the normal genital and gastrointestinal flora in healthy humans. However, GBS is a major cause of sepsis and meningitis in newborn infants in the Western world and an important pathogen in many developing countries. The dissection of the host response to GBS may increase the general understanding of innate immunity in sepsis, because newborn infants lack a sufficient adaptive response. Inflammatory signal induction in macrophages by GBS seems largely preserved in newborn infants, as shown both in vitro and in vivo. The engagement of Toll-like receptor 2 (TLR2) by lipoproteins and a myeloid differentiation factor 88 (MyD88)--dependent pathway induced by GBS cell wall are both important in this context. TLR2 activation of microglia by GBS induces neuronal damage, which might account for the high morbidity of GBS meningitis. At the same time, TLR2 mediates activation-induced cell death (AICD), a process involved in the containment of inflammation. In newborn infants, AICD and anti-bacterial polymorphonuclear leukocyte activity appears to be compromised. Accordingly, neonatal aberrations in the pathogen-specific negative control of inflammatory signaling are likely to contribute to excessive inflammation and neurological sequelae in GBS sepsis and meningitis.
Collapse
Affiliation(s)
- Julia Wennekamp
- Centre for Pediatrics and Adolescent Medicine, University Medical Centre, Freiburg, Germany
| | | |
Collapse
|
16
|
Szabó J, Dobay O, Erdős M, Borbély Á, Rozgonyi F, Maródi L. Recurrent infection with genetically identical pneumococcal isolates in a patient with interleukin-1 receptor-associated kinase-4 deficiency. J Med Microbiol 2007; 56:863-865. [PMID: 17510276 DOI: 10.1099/jmm.0.47046-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interleukin-1 receptor-associated kinase (IRAK)-4 deficiency is a rare primary immunodeficiency disorder characterized by severe, invasive infections with Streptococcus pneumoniae. Using the PFGE technique a genetic linkage was found between two S. pneumoniae serotype 14 isolates causing arthritis and meningitis at 3 and 5(1/2) years of age, respectively, in a boy with IRAK-4 deficiency. This finding suggested that patients with IRAK-4 deficiency may harbour persistent strains of pneumococci. Alternatively, reinfection with strains from close contacts of the patient might cause recurrent invasive disease. It is proposed that eradication of pneumococci from the nasopharynx, and immunization of household contacts may prevent recurrent infection in IRAK-4-deficient patients.
Collapse
Affiliation(s)
- Judit Szabó
- Department of Medical Microbiology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | - Orsolya Dobay
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Melinda Erdős
- Department of Infectious and Paediatric Immunology, Medical and Health Science Centre, University of Debrecen, Nagyerdei Krt 98, Debrecen H-4032, Hungary
| | - Ágnes Borbély
- Department of Medical Microbiology, Medical and Health Science Centre, University of Debrecen, Debrecen, Hungary
| | - Ferenc Rozgonyi
- Institute of Medical Microbiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Maródi
- Department of Infectious and Paediatric Immunology, Medical and Health Science Centre, University of Debrecen, Nagyerdei Krt 98, Debrecen H-4032, Hungary
| |
Collapse
|
17
|
Velilla PA, Rugeles MT, Chougnet CA. Defective antigen-presenting cell function in human neonates. Clin Immunol 2006; 121:251-9. [PMID: 17010668 PMCID: PMC1764492 DOI: 10.1016/j.clim.2006.08.010] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 08/02/2006] [Accepted: 08/21/2006] [Indexed: 01/07/2023]
Abstract
Immaturity of the immune system has been suggested as an underlying factor for the high rate of morbidity and mortality from infections in newborns. Functional impairment of neonatal T cells is frequently quoted as the main underlying mechanism for such immaturity. However, recent studies suggest that neonatal antigen-presenting cells (APCs) also exhibit functional alterations, which could lead to secondary defects of adaptive T-cell responses. In this review, we summarize what is known on the functionality of APC at birth and during early childhood. Compared to adults, neonatal APCs display markers of immaturity and produce low levels of cytokines. Multiple factors could be involved in neonatal APC alteration, such as intrinsic immaturity, defective interaction between APCs and T cells and regulatory T-cell-mediated inhibition. Characterization of the relative contribution of each mechanism is clearly needed to better understand the functional capability of the neonatal immune system.
Collapse
Affiliation(s)
- Paula A Velilla
- Group Immunovirology, Biogenesis Corporation, University of Antioquia, Medellín, A.A. 1226 Colombia
| | | | | |
Collapse
|
18
|
Mapletoft JW, Oumouna M, Townsend HG, Gomis S, Babiuk LA, van Drunen Littel-van den Hurk S. Formulation with CpG oligodeoxynucleotides increases cellular immunity and protection induced by vaccination of calves with formalin-inactivated bovine respiratory syncytial virus. Virology 2006; 353:316-23. [PMID: 16828832 DOI: 10.1016/j.virol.2006.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 04/04/2006] [Accepted: 06/02/2006] [Indexed: 11/24/2022]
Abstract
Vaccination of calves with formalin-inactivated bovine respiratory syncytial virus (FI-BRSV) induces low levels of cellular immunity that may not be protective. Since inactivated and subunit vaccines formulated with CpG oligodeoxynucleotides (ODNs) have been shown to induce cellular immune responses, we studied the ability of a FI-BRSV vaccine formulated with CpG ODN to elicit cellular immunity against BRSV. Neonatal calves were immunized with FI-BRSV, FI-BRSV formulated with CpG ODN or medium and challenged with BRSV after two immunizations. Calves vaccinated with FI-BRSV formulated with CpG ODN developed increased numbers of IFN-gamma secreting cells in the peripheral blood and broncho-tracheal lymph nodes and enhanced BRSV-specific serum IgG2 in comparison to FI-BRSV immunized animals. Calves that received the FI-BRSV vaccine formulated with CpG ODN also experienced a reduction in the amount of BRSV in the lung tissue. Based on these observations, CpG ODN appears to be a suitable candidate adjuvant for inactivated BRSV vaccines.
Collapse
Affiliation(s)
- John W Mapletoft
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | | | | | | | | | |
Collapse
|
19
|
Gille C, Spring B, Tewes L, Poets CF, Orlikowsky T. A new method to quantify phagocytosis and intracellular degradation using green fluorescent protein-labeled Escherichia coli: comparison of cord blood macrophages and peripheral blood macrophages of healthy adults. Cytometry A 2006; 69:152-4. [PMID: 16479601 DOI: 10.1002/cyto.a.20222] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Interactions between innate and adaptive immune functions in neonatal macrophages (MPhi) are still unclear. We therefore established a method to quantify bacterial phagocytosis and intracellular degradation, using green fluorescent protein (GFP)-labeled Escherichia coli in combination with phenotypic analysis. The kinetics of the proportion of phagocyting MPhi, phagocytosed bacteria per MPhi, and bacterial degradation were comparable for cord blood MPhi of term neonates and MPhi of healthy adults. Phenotyping revealed CD14 and CD16 to be down-modulated within minutes. GFP-labeled E. coli may be useful tools to further study MPhi subpopulations and determinants of phagocytosis in cord blood MPhi.
Collapse
Affiliation(s)
- Christian Gille
- University Children's Hospital, Department of Neonatology, 72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- László Maródi
- Department of Infectious and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Nagyerdei Krt. 98, H-4012 Debrecen, Hungary.
| |
Collapse
|
21
|
Maródi L. Innate cellular immune responses in newborns. Clin Immunol 2005; 118:137-44. [PMID: 16377252 DOI: 10.1016/j.clim.2005.10.012] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 09/28/2005] [Accepted: 10/03/2005] [Indexed: 02/06/2023]
Abstract
Innate immunity assures the first line of defense against pathogenic microorganisms. Innate immune responses induced by bacteria, fungi, or viral replication are triggered by granulocytes, monocytes, macrophages, dentritic cells, and natural killer cells. Neonatal deficiency of innate cellular immunity includes a decreased production of interferons, IL-12/IL-23, and IL-18, and other proinflammatory cytokines, an impaired type-1 response of macrophages to IFN-gamma, the most potent macrophage-activating agent in vivo, and to lipopolysaccharide, the primary constituent of the outer membrane of Gram-negative bacteria. An increasing body of evidence suggests impaired responses of neonatal monocytes and macrophages to multiple TLR ligands. This review will discuss recent advances in understanding innate cellular immunity in human neonates, with respect to selected aspects of immune functions that may be related to increased susceptibility to infections. Components of TLR signaling and the immune consequence that may result from neonatal deficiencies will be highlighted. A better understanding of innate immunity can make the development of techniques possible by which physicians more accurately tailor prevention and treatment of neonatal infections.
Collapse
Affiliation(s)
- László Maródi
- Department of Infectiology and Pediatric Immunology, Medical and Health Science Center, University of Debrecen, Nagyerdei Krt. 98, H-4012 Debrecen, Hungary.
| |
Collapse
|
22
|
Henneke P, Morath S, Uematsu S, Weichert S, Pfitzenmaier M, Takeuchi O, Müller A, Poyart C, Akira S, Berner R, Teti G, Geyer A, Hartung T, Trieu-Cuot P, Kasper DL, Golenbock DT. Role of Lipoteichoic Acid in the Phagocyte Response to Group BStreptococcus. THE JOURNAL OF IMMUNOLOGY 2005; 174:6449-55. [PMID: 15879147 DOI: 10.4049/jimmunol.174.10.6449] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Group B Streptococcus (GBS) cell walls potently activate phagocytes by a largely TLR2-independent mechanism. In contrast, the cell wall component lipoteichoic acid (LTA) from diverse Gram-positive bacterial species has been shown to engage TLR2. In this study we examined the role of LTA from GBS in phagocyte activation and the requirements for TLR-LTA interaction. Using cells from knockout mice and genetic complementation in epithelial cells we found that highly pure LTA from both GBS and Staphylococcus aureus interact with TLR2 and TLR6, but not TLR1, in contrast to previous reports. Furthermore, NF-kappaB activation by LTA required the integrity of two putative PI3K binding domains within TLR2 and was inhibited by wortmannin, indicating an essential role for PI3K in cellular activation by LTA. However, LTA from GBS proved to be a relatively weak stimulus of phagocytes containing approximately 20% of the activity observed with LTA from Staphylococcus aureus. Structural analysis by nuclear magnetic resonance spectrometry revealed important differences between LTA from GBS and S. aureus, specifically differences in glycosyl linkage, in the glycolipid anchor and a lack of N-acetylglucosamine substituents of the glycerophosphate backbone. Furthermore, GBS expressing LTA devoid of d-alanine residues, that are essential within immune activation by LTA, exhibited similar inflammatory potency as GBS with alanylated LTA. In conclusion, LTA from GBS is a TLR2/TLR6 ligand that might contribute to secreted GBS activity, but does not contribute significantly to GBS cell wall mediated macrophage activation.
Collapse
MESH Headings
- Alanine/genetics
- Alanine/metabolism
- Animals
- Cell Line
- Cells, Cultured
- Cytokines/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/metabolism
- Lipopolysaccharides/pharmacology
- Macrophage Activation/genetics
- Macrophage Activation/immunology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/microbiology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutagenesis, Site-Directed
- NF-kappa B/metabolism
- Peptidoglycan/pharmacology
- Receptors, Cell Surface/deficiency
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/immunology
- Streptococcus agalactiae/genetics
- Streptococcus agalactiae/immunology
- Streptococcus agalactiae/metabolism
- Teichoic Acids/chemistry
- Teichoic Acids/metabolism
- Teichoic Acids/pharmacology
- Toll-Like Receptor 2
- Toll-Like Receptor 6
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Philipp Henneke
- Zentrum für Kinderheilkunde und Jugendmedizin, Albert-Ludwigs Universität Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Kazuhisa Yamazaki
- Department of Oral Biological Science, Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | | |
Collapse
|
24
|
Orlikowsky TW, Spring B, Dannecker GE, Niethammer D, Poets CF, Hoffmann MK. Expression and regulation of B7 family molecules on macrophages (MPhi) in preterm and term neonatal cord blood and peripheral blood of adults. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2003; 53:40-7. [PMID: 12717690 DOI: 10.1002/cyto.b.10033] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Macrophage (MPhi) receptors of the B7 family (CD80, CD86) play a crucial role in T cell activation: the lack of costimulation leads to anergy or apoptosis of reactive T cells. MPhi may differentiate into different subsets, the balance of which defines MPhi-dependent T cell reactions. The aim of this study was to examine neonatal and adult T cell response with respect to the costimulatory MPhi-potential in order to identify molecular predictors for the neonatal immune defense. METHODS MPhi from peripheral blood (PBMPhi) or cord blood (CBMPhi) were stimulated with interferon-gamma (IFN-gamma), cyclic adenosine monophosphate (cAMP), CD40 ligand (CD40L), or alphaCD3. RESULTS As compared to PBMPhi, CBMPhi showed a significantly decreased upregulation of CD80 and/or CD86 after stimulation with IFN-gamma, cAMP, CD40L, and alphaCD3. Accordingly, the proliferative T cell response was impaired in the presence of CBMPhi. The fraction of T cells that underwent cell death was higher, and blast formation was significantly lower than that observed in the presence of PBMPhi. CONCLUSIONS CBMPhi, as compared to PBMPhi, delivered fewer costimulatory but more cytotoxic signals to T cells. These observations suggest that MPhi are one factor explaining the suboptimal immune defense of neonates and their increased susceptibility to infection. Using the costimulatory MPhi-potential as a predictor for immune responses requires a separate reference value system in neonatology.
Collapse
|
25
|
|
26
|
Maródi L, Goda K, Palicz A, Szabó G. Cytokine receptor signalling in neonatal macrophages: defective STAT-1 phosphorylation in response to stimulation with IFN-gamma. Clin Exp Immunol 2001; 126:456-60. [PMID: 11737062 PMCID: PMC1906234 DOI: 10.1046/j.1365-2249.2001.01693.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2001] [Indexed: 11/20/2022] Open
Abstract
We reported earlier that neonatal monocyte-derived macrophages (MDM) could not be fully activated with IFN-gamma, a finding that could not be attributed to lower expression of IFN-gamma receptors on the neonatal cells. In this study we explored elements of IFN-gamma R-mediated signalling in cord monocytes and MDM. Intracellular expression of STAT-1 was analysed by flow cytometry. We have assessed phosphorylation of STAT-1 by using MoAbs that distinguish native and phosphorylated forms of STAT-1 on a discrete cell basis. Using MoAbs against the native form of STAT-1 revealed comparable expression of this protein in cord and adult cells (both monocytes and MDM). However, STAT-1 phosphorylation in response to IFN-gamma was significantly decreased in neonatal monocytes (P < 0.05) and MDM (P < 0.01) compared to adult cells (n > 5 for each). These data suggest deficient cytokine-receptor signalling in neonatal mononuclear phagocytes exposed to IFN-gamma. We propose that decreased STAT-1 phosphorylation and activation may represent developmental immaturity and may contribute to the unique susceptibility of neonates to infections by intracellular pathogens.
Collapse
Affiliation(s)
- L Maródi
- Department of Infectology and Paediatric Immunology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
27
|
Cheng Q, Carlson B, Pillai S, Eby R, Edwards L, Olmsted SB, Cleary P. Antibody against surface-bound C5a peptidase is opsonic and initiates macrophage killing of group B streptococci. Infect Immun 2001; 69:2302-8. [PMID: 11254587 PMCID: PMC98159 DOI: 10.1128/iai.69.4.2302-2308.2001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2000] [Accepted: 01/08/2001] [Indexed: 11/20/2022] Open
Abstract
The capsular polysaccharides of group B streptococci (GBS) are a primary focus of vaccine development. Immunogenicity and long-lasting protection are best achieved by conjugating polysaccharides to a T-cell-dependent protein antigen. Streptococcal C5a peptidase (SCPB) is a conserved surface protein that is expressed by all streptococcal serotypes tested to date, and it is a possible carrier protein that could itself induce a protective immune response. Clearance of GBS from lungs, mucosal surfaces, or blood probably depends on the opsonophagocytic response of tissue-specific macrophages and polymorphonuclear leukocytes (PMNs). In this study, we examined the potential of antibody directed against SCPB from a serotype II strain to enhance the capacity of mouse bone marrow macrophages (from primary cultures) and human PMNs in whole blood to kill GBS in vitro. Our experiments demonstrated that Streptococcus serotypes Ia, Ib, II, III, and V, preopsonized with anti-SCPB antibody, were killed more rapidly by cultured macrophages and PMNs in whole blood than were nonopsonized GBS. The increased rate of killing was accompanied by an increased macrophage oxidative burst. Furthermore, opsonization was serotype transparent. Immunization with SCPB conjugated to capsular polysaccharide type III produced polysaccharide-specific antibodies. It is interesting that this antiserum promoted serotype-independent killing of streptococci. These data support the use of SCPB in a GBS polysaccharide conjugate vaccine. SCPB not only enhanced the immunogenicity of polysaccharide components of the vaccine, but it might also induce additional serotype-independent protective antibodies.
Collapse
Affiliation(s)
- Q Cheng
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Spellberg B, Edwards JE. Type 1/Type 2 immunity in infectious diseases. Clin Infect Dis 2001; 32:76-102. [PMID: 11118387 DOI: 10.1086/317537] [Citation(s) in RCA: 590] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2000] [Revised: 08/02/2000] [Indexed: 12/17/2022] Open
Abstract
T helper type 1 (Th1) lymphocytes secrete secrete interleukin (IL)-2, interferon-gamma, and lymphotoxin-alpha and stimulate type 1 immunity, which is characterized by intense phagocytic activity. Conversely, Th2 cells secrete IL-4, IL-5, IL-9, IL-10, and IL-13 and stimulate type 2 immunity, which is characterized by high antibody titers. Type 1 and type 2 immunity are not strictly synonymous with cell-mediated and humoral immunity, because Th1 cells also stimulate moderate levels of antibody production, whereas Th2 cells actively suppress phagocytosis. For most infections, save those caused by large eukaryotic pathogens, type 1 immunity is protective, whereas type 2 responses assist with the resolution of cell-mediated inflammation. Severe systemic stress, immunosuppression, or overwhelming microbial inoculation causes the immune system to mount a type 2 response to an infection normally controlled by type 1 immunity. In such cases, administration of antimicrobial chemotherapy and exogenous cytokines restores systemic balance, which allows successful immune responses to clear the infection.
Collapse
Affiliation(s)
- B Spellberg
- Department of Internal Medicine, Harbor-University of California Los Angeles Medical Center, Torrance, CA 90509, USA.
| | | |
Collapse
|