1
|
Su YL, Larzábal M, Song H, Cheng T, Wang Y, Smith LY, Cataldi AA, Ow DW. Enterohemorrhagic Escherichia coli O157:H7 antigens produced in transgenic lettuce effective as an oral vaccine in mice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:214. [PMID: 37740735 DOI: 10.1007/s00122-023-04460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023]
Abstract
KEY MESSAGE Transgene with recombination sites to address biosafety concerns engineered into lettuce to produce EspB and γ-intimin C280 for oral vaccination against EHEC O157:H7. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a food-borne pathogen where ruminant farm animals, mainly bovine, serve as reservoirs. Bovine vaccination has been used to prevent disease outbreaks, and the current method relies on vaccines subcutaneously injected three times per year. Since EHEC O157:H7 colonizes mucosal surfaces, an oral vaccine that produces an IgA response could be more convenient. Here, we report on oral vaccination against EHEC O157:H7 in mice orally gavaged with transgenic lettuce that produces EHEC O157:H7 antigens EspB and γ-intimin C280. Younger leaves accumulated a higher concentration of antigens; and in unexpanded leaves of 30-day-old T2 plants, EspB and γ-intimin C280 were up to 32 and 51 μg/g fresh weight, respectively. Mice orally gavaged with lettuce powders containing < 3 µg antigens for 6 days showed a mucosal immune response with reduced colonization of EHEC O157:H7. This suggests that the transgenic lettuce has potential to be used for bovine vaccination. To promote the biosafety of crop plants producing medically relevant proteins, recombination sites were built into our transgenic lines that would permit optional marker removal by Cre-lox recombination, as well as transgene deletion in pollen by CinH-RS2 recombination. The ability to upgrade the transgenic lettuce by stacking additional antigen genes or replacing older genes with newer versions would also be possible through the combined use of Bxb-att and Cre-lox recombination systems.
Collapse
Affiliation(s)
- Yun-Lin Su
- Plant Gene Engineering Center; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Mariano Larzábal
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham, Argentina
| | - Huan Song
- Plant Gene Engineering Center; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Tianfang Cheng
- Plant Gene Engineering Center; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Yufang Wang
- Plant Gene Engineering Center; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China
| | - Libia Yael Smith
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham, Argentina
| | - Angel Adrian Cataldi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Hurlingham, Argentina
| | - David W Ow
- Plant Gene Engineering Center; Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement; Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, People's Republic of China.
| |
Collapse
|
2
|
Quinn C, Tomás-Cortázar J, Ofioritse O, Cosgrave J, Purcell C, McAloon C, Frost S, McClean S. GlnH, a Novel Antigen That Offers Partial Protection against Verocytotoxigenic Escherichia coli Infection. Vaccines (Basel) 2023; 11:175. [PMID: 36680019 PMCID: PMC9863631 DOI: 10.3390/vaccines11010175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) causes zoonotic infections, with potentially devastating complications, and children under 5 years old are particularly susceptible. Antibiotic treatment is contraindicated, and due to the high proportion of infected children that suffer from severe and life-changing complications, there is an unmet need for a vaccine to prevent VTEC infections. Bacterial adhesins represent promising candidates for the successful development of a vaccine against VTEC. Using a proteomic approach to identify bacterial proteins interacting with human gastrointestinal epithelial Caco-2 and HT-29 cells, we identified eleven proteins by mass spectrometry. These included a glutamine-binding periplasmic protein, GlnH, a member of the ABC transporter family. The glnH gene was identified in 13 of the 15 bovine and all 5 human patient samples tested, suggesting that it is prevalent. We confirmed that GlnH is involved in the host cell attachment of an O157:H7 prototype E. coli strain to gastrointestinal cells in vitro. Recombinant GlnH was expressed and purified prior to the immunisation of mice. When alum was used as an adjuvant, GlnH was highly immunogenic, stimulating strong serological responses in immunised mice, and it resulted in a modest reduction in faecal shedding but did not reduce colonisation. GlnH immunisation with a T-cell-inducing adjuvant (SAS) also showed comparable antibody responses and an IgG1/IgG2a ratio suggestive of a mixed Th1/Th2 response but was partially protective, with a 1.5-log reduction in colonisation of the colon and caecum at 7 days relative to the adjuvant only (p = 0.0280). It is clear that future VTEC vaccine developments should consider the contribution of adjuvants in addition to antigens. Moreover, it is likely that a combined cellular and humoral response may prove more beneficial in providing protective interventions against VTEC.
Collapse
Affiliation(s)
- Conor Quinn
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
- APC Ltd., Building 11, Cherrywood Business Park, Loughlinstown, D18 DH5 Co. Dublin, Ireland
| | - Julen Tomás-Cortázar
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| | - Oritsejolomi Ofioritse
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Joanne Cosgrave
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
| | - Claire Purcell
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Catherine McAloon
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Susanna Frost
- Children’s Health Ireland (CHI) at Tallaght, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4, Ireland
- UCD Conway Institute, University College Dublin, Belfield, Dublin 24, Ireland
| |
Collapse
|
3
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Molecular Lipopolysaccharide Di-Vaccine Protects from Shiga-Toxin Producing Epidemic Strains of Escherichia coli O157:H7 and O104:H4. Vaccines (Basel) 2022; 10:vaccines10111854. [DOI: 10.3390/vaccines10111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Shiga toxin-producing Escherichia coli (STEC) O157:H7 and O104:H4 strains are important causative agents of food-borne diseases such as hemorrhagic colitis and hemolytic–uremic syndrome, which is the leading cause of kidney failure and death in children under 5 years as well as in the elderly. Methods: the native E. coli O157:H7 and O104:H4 lipopolysaccharides (LPS) were partially deacylated under alkaline conditions to obtain apyrogenic S-LPS with domination of tri-acylated lipid A species—Ac3-S-LPS. Results: intraperitoneal immunization of BALB/c mice with Ac3-S-LPS antigens from E. coli O157:H7 and O104:H4 or combination thereof (di-vaccine) at single doses ranging from 25 to 250 µg induced high titers of serum O-specific IgG (mainly IgG1), protected animals against intraperitoneal challenge with lethal doses of homologous STEC strains (60–100% survival rate) and reduced the E. coli O157:H7 and O104:H4 intestinal colonization under an in vivo murine model (6–8-fold for monovalent Ac3-S-LPS and 10-fold for di-vaccine). Conclusions: Di-vaccine induced both systemic and intestinal anti-colonization immunity in mice simultaneously against two highly virulent human STEC strains. The possibility of creating a multivalent STEC vaccine based on safe Ac3-S-LPS seems to be especially promising due to a vast serotype diversity of pathogenic E. coli.
Collapse
|
5
|
Kewcharoenwong C, Sein MM, Nithichanon A, Khongmee A, Wessells KR, Hinnouho GM, Barffour MA, Kounnavong S, Hess SY, Stephensen CB, Lertmemongkolchai G. Daily preventive zinc supplementation increases the antibody response against pathogenic Escherichia coli in children with zinc insufficiency: a randomised controlled trial. Sci Rep 2022; 12:16084. [PMID: 36167891 PMCID: PMC9515173 DOI: 10.1038/s41598-022-20445-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Zinc deficiency impairs the antibody-mediated immune response and is common in children from lower-income countries. This study aimed to investigate the impact of different zinc supplementation regimens (7, 10 or 20 mg/day elemental zinc)—therapeutic dispersible zinc tablets (TZ), daily multiple micronutrient powder (MNP), daily preventive zinc tablets (PZ) and placebo powder (control)—and compare between baseline and endline antibody production against pathogenic Escherichia coli in Laotian children (aged 6–23 months). Fifty representative plasma samples of each treatment group were randomly selected from 512 children to determine anti-E. coli IgG antibody levels and avidity. Of the 200 children, 78.5% had zinc deficiency (plasma zinc concentration < 65 µg/dL) and 40% had anaemia before receiving zinc supplementation. aAfter receiving the TZ, MNP or PZ regimen, the plasma anti-E. coli IgG levels were significantly increased compared with baseline; the effect on the antibody level was more pronounced in children with zinc deficiency. Interestingly, there was increased anti-E. coli IgG avidity in the control and PZ groups. This study suggests that PZ might be the optimal zinc supplementation regimen to increase both the quantity and quality of antibody responses in children with zinc deficiency. Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT02428647 (NCT02428647, 29/04/2015).
Collapse
Affiliation(s)
| | - Myint Myint Sein
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Arnone Nithichanon
- Department of Microbiology, Faculty of Medicine, Research and Diagnostic Center for Emerging Infectious Diseases (RCEID), Khon Kaen University, Khon Kaen, Thailand
| | - Aranya Khongmee
- The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - K Ryan Wessells
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA, USA
| | - Guy-Marino Hinnouho
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA, USA.,Helen Keller International, Washington, DC, USA
| | - Maxwell A Barffour
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA, USA.,Public Health Program, College of Health and Human Services, Missouri State University, Springfield, MO, USA
| | - Sengchanh Kounnavong
- Lao Tropical and Public Health Institute, Vientiane, Lao People's Democratic Republic
| | - Sonja Y Hess
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA, USA
| | - Charles B Stephensen
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA, USA.,Agricultural Research Service, Western Human Nutrition Research Center, USDA, Davis, CA, USA
| | - Ganjana Lertmemongkolchai
- Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,The Centre for Research & Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
6
|
Angkeow JW, Monaco DR, Chen A, Venkataraman T, Jayaraman S, Valencia C, Sie BM, Liechti T, Farhadi PN, Funez-dePagnier G, Sherman-Baust CA, Wong MQ, Ruczinski I, Caturegli P, Sears CL, Simner PJ, Round JL, Duggal P, Laserson U, Steiner TS, Sen R, Lloyd TE, Roederer M, Mammen AL, Longman RS, Rider LG, Larman HB. Phage display of environmental protein toxins and virulence factors reveals the prevalence, persistence, and genetics of antibody responses. Immunity 2022; 55:1051-1066.e4. [PMID: 35649416 PMCID: PMC9203978 DOI: 10.1016/j.immuni.2022.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/17/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022]
Abstract
Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.
Collapse
Affiliation(s)
- Julia W Angkeow
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Monaco
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Thiagarajan Venkataraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cristian Valencia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brandon M Sie
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Liechti
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Payam N Farhadi
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - Gabriela Funez-dePagnier
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Cheryl A Sherman-Baust
- Laboratory of Molecular Biology and Immunology, NIH/National Institute on Aging, Baltimore, MD, USA
| | - May Q Wong
- BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, and Department of Molecular Microbiology & Immunology, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Patricia J Simner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - June L Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Uri Laserson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ranjan Sen
- Laboratory of Molecular Biology and Immunology, NIH/National Institute on Aging, Baltimore, MD, USA
| | - Thomas E Lloyd
- Department of Neurology, Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mario Roederer
- ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Regulations, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, NIH, Bethesda, MD, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Iannino F, Uriza PJ, Duarte CM, Pepe MV, Roset MS, Briones G. Development of a Salmonella-based oral vaccine to control intestinal colonization of Shiga-toxin-producing Escherichia coli (STEC) in animals. Vaccine 2022; 40:1065-1073. [DOI: 10.1016/j.vaccine.2022.01.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022]
|
8
|
Identification of CD4 + T cell epitopes from Staphylococcus aureus secretome using immunoinformatic prediction and molecular docking. BIOTECHNOLOGIA 2021; 102:43-54. [PMID: 36605712 PMCID: PMC9642919 DOI: 10.5114/bta.2021.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/25/2020] [Accepted: 10/23/2020] [Indexed: 01/09/2023] Open
Abstract
One major reason for the lack of clinical success of Staphylococcus aureus vaccine candidates is the inability of the antigens to develop a CD4+ T cell-mediated immune response. Hence, it is important to identify CD4+ T cell antigens from S. aureus. CD4+ T cells are activated following the presentation of epitopes derived from exogenous proteins on HLA class II molecules. Fifty-nine secretory proteins of S. aureus were analyzed computationally for the presence of HLA class II binding peptides. Fifteen-mer peptides were generated, and their binding to 26 HLA class II alleles was predicted. The structural feasibility of the peptides binding to HLA-II was studied using molecular docking. Of the 16,724 peptides generated, 6991 (41.8%) were predicted to bind to any one of the alleles with an IC50 value below 50 nM. Comparative sequence analysis revealed that only 545 of the strong binding peptides are non-self in the human system. Approximately 50% of the binding peptides were monoallele-specific. Moreover, approximately 95% of the predicted strong binding non-self peptides interacted with the binding groove of at least one HLA class II molecule with a glide score better than -10 kcal/mol. On the basis of the analysis of the strength of binding, non-self presentation in the human host, propensity to bind to a higher number of alleles, and energetically favorable interactions with HLA molecules, a set of 11 CD4+ T cell epitopes that can be used as vaccine candidates was identified.
Collapse
|
9
|
Fathi J, Ebrahimi F, Nazarian S, Hajizade A, Malekzadegan Y, Abdi A. Production of egg yolk antibody (IgY) against shiga-like toxin (stx) and evaluation of its prophylaxis potency in mice. Microb Pathog 2020; 145:104199. [DOI: 10.1016/j.micpath.2020.104199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/26/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
|
10
|
Hotinger JA, May AE. Antibodies Inhibiting the Type III Secretion System of Gram-Negative Pathogenic Bacteria. Antibodies (Basel) 2020; 9:antib9030035. [PMID: 32726928 PMCID: PMC7551047 DOI: 10.3390/antib9030035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
Pathogenic bacteria are a global health threat, with over 2 million infections caused by Gram-negative bacteria every year in the United States. This problem is exacerbated by the increase in resistance to common antibiotics that are routinely used to treat these infections, creating an urgent need for innovative ways to treat and prevent virulence caused by these pathogens. Many Gram-negative pathogenic bacteria use a type III secretion system (T3SS) to inject toxins and other effector proteins directly into host cells. The T3SS has become a popular anti-virulence target because it is required for pathogenesis and knockouts have attenuated virulence. It is also not required for survival, which should result in less selective pressure for resistance formation against T3SS inhibitors. In this review, we will highlight selected examples of direct antibody immunizations and the use of antibodies in immunotherapy treatments that target the bacterial T3SS. These examples include antibodies targeting the T3SS of Pseudomonas aeruginosa, Yersinia pestis, Escherichia coli, Salmonella enterica, Shigella spp., and Chlamydia trachomatis.
Collapse
|
11
|
Ye Y, Su W, Zhang J, Huang Y, Chen W, Huang Y. Development of a combined immunochromatographic lateral flow assay for accurate and rapid Escherichia coli O157:H7 detection. Lett Appl Microbiol 2020; 71:311-319. [PMID: 32293742 DOI: 10.1111/lam.13297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is an important pathogenic Bacterium that threatens human health. A convenient, sensitive and specific method for the E. coli O157:H7 detection is necessary. We developed two pairs of monoclonal antibodies through traditional hybridoma technology, one specifically against E. coli O157 antigen and the other specifically against E. coli H7 antigen. Using these two pairs of antibodies, we developed two rapid test kits to specifically detect E. coli O157 antigen and E. coli H7 antigen, respectively. The detection sensitivity for O157 positive E. coli is 1 × 103 CFU per ml and for H7 positive E. coli is 1 × 104 CFU per ml. Combining these two pairs of antibodies together, we developed a combo test strip that can specifically detect O157: H7, with a detection sensitivity of 1 × 104 CFU per ml, when two detection lines are visible to the naked eye. This is currently the only rapid detection reagent that specifically detects O157: H7 by simultaneously detecting O157 antigen and H7 antigens of E. coli. Our product has advantages of simplicity and precision, and can be a very useful on-site inspection tool for accurate and rapid detection of E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Y Ye
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - W Su
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Medical Laboratory, Beibei Maternal and Child Health Hospital, Chongqing, China
| | - J Zhang
- ArtronBioResearch Inc, Burnaby, BC, Canada
| | - Y Huang
- ArtronBioResearch Inc, Burnaby, BC, Canada
| | - W Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Y Huang
- Department of Infectious Disease, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Rastawicki W, Śmietańska K, Rokosz‐Chudziak N, Wołkowicz T. Antibody response to lipopolysaccharides and recombinant proteins of Shiga toxin (STX)‐producing
Escherichia coli
(STEC) in children with haemolytic uraemic syndrome in Poland. Lett Appl Microbiol 2020; 70:440-446. [DOI: 10.1111/lam.13295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- W. Rastawicki
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - K. Śmietańska
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - N. Rokosz‐Chudziak
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| | - T. Wołkowicz
- Department of Bacteriology and Biocontamination Control National Institute of Public Health – National Institute of Hygiene Warsaw Poland
| |
Collapse
|
13
|
Mühlen S, Dersch P. Treatment Strategies for Infections With Shiga Toxin-Producing Escherichia coli. Front Cell Infect Microbiol 2020; 10:169. [PMID: 32435624 PMCID: PMC7218068 DOI: 10.3389/fcimb.2020.00169] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/31/2020] [Indexed: 01/07/2023] Open
Abstract
Infections with Shiga toxin-producing Escherichia coli (STEC) cause outbreaks of severe diarrheal disease in children and the elderly around the world. The severe complications associated with toxin production and release range from bloody diarrhea and hemorrhagic colitis to hemolytic-uremic syndrome, kidney failure, and neurological issues. As the use of antibiotics for treatment of the infection has long been controversial due to reports that antibiotics may increase the production of Shiga toxin, the recommended therapy today is mainly supportive. In recent years, a variety of alternative treatment approaches such as monoclonal antibodies or antisera directed against Shiga toxin, toxin receptor analogs, and several vaccination strategies have been developed and evaluated in vitro and in animal models. A few strategies have progressed to the clinical trial phase. Here, we review the current understanding of and the progress made in the development of treatment options against STEC infections and discuss their potential.
Collapse
Affiliation(s)
- Sabrina Mühlen
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, Münster, Germany.,German Center for Infection Research (DZIF), Associated Site University of Münster, Münster, Germany
| |
Collapse
|
14
|
Schaut RG, Boggiatto PM, Loving CL, Sharma VK. Cellular and Mucosal Immune Responses Following Vaccination with Inactivated Mutant of Escherichia coli O157:H7. Sci Rep 2019; 9:6401. [PMID: 31024031 PMCID: PMC6483982 DOI: 10.1038/s41598-019-42861-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/29/2019] [Indexed: 12/15/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (O157) can cause mild to severe gastrointestinal disease in humans. Cattle are the primary reservoir for O157, which colonizes the intestinal tract without inducing any overt clinical symptoms. Parenteral vaccination can reduce O157 shedding in cattle after challenge and limit zoonotic transmission to humans, although the impact of vaccination and vaccine formulation on cellular and mucosal immune responses are undetermined. To better characterize the cattle immune response to O157 vaccination, cattle were vaccinated with either water-in-oil-adjuvanted, formalin-inactivated hha deletion mutant of Shiga toxin 2 negative (stx2-) O157 (Adj-Vac); non-adjuvanted (NoAdj-Vac); or non-vaccinated (NoAdj-NoVac) and peripheral T cell and mucosal antibody responses assessed. Cattle in Adj-Vac group had a higher percentage of O157-specific IFNγ producing CD4+ and γδ+ T cells in recall assays compared to the NoAdj-Vac group. Furthermore, O157-specific IgA levels detected in feces of the Adj-Vac group were significantly lower in NoAdj-Vac group. Extracts prepared only from Adj-Vac group feces blocked O157 adherence to epithelial cells. Taken together, these data suggest parenteral administration of adjuvanted, inactivated whole-cell vaccines for O157 can induce O157-specific cellular and mucosal immune responses that may be an important consideration for a successful vaccination scheme.
Collapse
Affiliation(s)
- Robert G Schaut
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, Oak Ridge, TN, USA
| | - Paola M Boggiatto
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Infectious Bacterial Diseases Research Unit, Ames, IA, USA
| | - Crystal L Loving
- USDA-ARS, National Animal Disease Center, Ames, IA, USA.,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA
| | - Vijay K Sharma
- USDA-ARS, National Animal Disease Center, Ames, IA, USA. .,Food Safety and Enteric Pathogens Research Unit, Ames, IA, USA.
| |
Collapse
|
15
|
Caballero-Flores G, Sakamoto K, Zeng MY, Wang Y, Hakim J, Matus-Acuña V, Inohara N, Núñez G. Maternal Immunization Confers Protection to the Offspring against an Attaching and Effacing Pathogen through Delivery of IgG in Breast Milk. Cell Host Microbe 2019; 25:313-323.e4. [PMID: 30686564 DOI: 10.1016/j.chom.2018.12.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022]
Abstract
Owing to immature immune systems and impaired colonization resistance mediated by the microbiota, infants are more susceptible to enteric infections. Maternal antibodies can provide immunity, with maternal vaccination offering a protective strategy. We find that oral infection of adult females with the enteric pathogen Citrobacter rodentium protects dams and offspring against oral challenge. Parenteral immunization of dams with heat-inactivated C. rodentium reduces pathogen loads and mortality in offspring but not mothers. IgG, but not IgA or IgM, transferred through breast milk to the intestinal lumen of suckling offspring, coats the pathogen and reduces intestinal colonization. Protective IgG largely recognizes virulence factors encoded within the locus of enterocyte effacement (LEE) pathogenicity island, including the adhesin Intimin and T3SS filament EspA, which are major antigens conferring protection. Thus, pathogen-specific IgG in breast milk induced during maternal infection or immunization protects neonates against infection with an attaching and effacing pathogen.
Collapse
Affiliation(s)
- Gustavo Caballero-Flores
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kei Sakamoto
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melody Y Zeng
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yaqiu Wang
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Jill Hakim
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Violeta Matus-Acuña
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Hajizade A, Salmanian AH, Amani J, Ebrahimi F, Arpanaei A. EspA-loaded mesoporous silica nanoparticles can efficiently protect animal model against enterohaemorrhagic E. coli O157: H7. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1067-S1075. [PMID: 30638077 DOI: 10.1080/21691401.2018.1529676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, the application of mesoporous silica nanoparticles (MSNPs) loaded with recombinant EspA protein, an immunogen of enterohaemorrhagic E. coli, was investigated in the case of BALB/c mice immunization against the bacterium. MSNPs of 96.9 ± 15.9 nm in diameter were synthesized using template removing method. The immunization of mice was carried out orally and subcutaneously. Significant immune responses to the antigen were observed for the immunized mice when rEspA-loaded MSNPs were administered in both routes in comparison to that of the antigen formulated using a well-known adjuvant, i.e. Freund's. According to the titretitre of serum IL-4, the most potent humoral responses were observed when the mice were immunized subcutaneously with antigen-loaded MSNPs (244, 36 and 14 ng/dL of IL-4 in the serum of mice immunized subcutaneously or orally by antigen-loaded MSNPs, and subcutaneously by Freund's adjuvant formulated-antigen, respectively). However, the difference in serum IgG and serum IgA was not significant in mice subcutaneously immunized with antigen-loaded MSNPs and mice immunized with Freund's adjuvant formulated-antigen. Finally, the immunized mice were challenged orally by enterohaemorrhagic E. coli cells. The amount of bacterial shedding was significantly reduced in faecesfaeces of the animals immunized by antigen-loaded MSNPs in both subcutaneous and oral routes.
Collapse
Affiliation(s)
- Abbas Hajizade
- a Applied Biotechnology Research Centre , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Ali Hatef Salmanian
- b Agriculture Biotechnology Department , National Institute for Genetic Engineering and Biotechnology , Tehran , Iran
| | - Jafar Amani
- c Applied Microbiology Research Center, Systems Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Firouz Ebrahimi
- d Biology Research Centre , Imam Hossein University , Tehran , Iran
| | - Ayyoob Arpanaei
- e Department of Industrial and Environmental Biotechnology , National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
17
|
Da Silva WM, Bei J, Amigo N, Valacco MP, Amadio A, Zhang Q, Wu X, Yu T, Larzabal M, Chen Z, Cataldi A. Quantification of enterohemorrhagic Escherichia coli O157:H7 protein abundance by high-throughput proteome. PLoS One 2018; 13:e0208520. [PMID: 30596662 PMCID: PMC6312284 DOI: 10.1371/journal.pone.0208520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/19/2018] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a human pathogen responsible for diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). To promote a comprehensive insight into the molecular basis of EHEC O157:H7 physiology and pathogenesis, the combined proteome of EHEC O157:H7 strains, Clade 8 and Clade 6 isolated from cattle in Argentina, and the standard EDL933 (clade 3) strain has been analyzed. From shotgun proteomic analysis a total of 2,644 non-redundant proteins of EHEC O157:H7 were identified, which correspond approximately 47% of the predicted proteome of this pathogen. Normalized spectrum abundance factor analysis was performed to estimate the protein abundance. According this analysis, 50 proteins were detected as the most abundant of EHEC O157:H7 proteome. COG analysis showed that the majority of the most abundant proteins are associated with translation processes. A KEGG enrichment analysis revealed that Glycolysis / Gluconeogenesis was the most significant pathway. On the other hand, the less abundant detected proteins are those related to DNA processes, cell respiration and prophage. Among the proteins that composed the Type III Secretion System, the most abundant protein was EspA. Altogether, the results show a subset of important proteins that contribute to physiology and pathogenicity of EHEC O157:H7.
Collapse
Affiliation(s)
- Wanderson Marques Da Silva
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Jinlong Bei
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Natalia Amigo
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM (Mass Spectrometry Facility), Faculty of Exact and Natural Sciences, University of Buenos Aires and CONICET (National Research Council), Buenos Aires, Argentina
| | - Ariel Amadio
- Rafaela Experimental Station, National Institute of Agricultural Technology, Rafaela, Santa Fe, Argentina
| | - Qi Zhang
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Xiuju Wu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Ting Yu
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Mariano Larzabal
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
| | - Zhuang Chen
- AGRO-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences (GDAAS), Guangzhou, China
| | - Angel Cataldi
- Institute of Biotechnology, CICVyA, National Institute of Agricultural Technology, Hurlingham, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
18
|
Fingermann M, Avila L, De Marco MB, Vázquez L, Di Biase DN, Müller AV, Lescano M, Dokmetjian JC, Fernández Castillo S, Pérez Quiñoy JL. OMV-based vaccine formulations against Shiga toxin producing Escherichia coli strains are both protective in mice and immunogenic in calves. Hum Vaccin Immunother 2018; 14:2208-2213. [PMID: 29923791 PMCID: PMC6183318 DOI: 10.1080/21645515.2018.1490381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) can cause the severe Hemolytic Uremic Syndrome (HUS). Shiga toxins are protein toxins that bind and kill microvascular cells, damaging vital organs. No specific therapeutics or vaccines have been licensed for use in humans yet. The most common route of infection is by consumption of dairy or farm products contaminated with STEC. Domestic cattle colonized by STEC strains represent the main reservoir, and thus a source of contamination. Outer Membrane Vesicles (OMV) obtained after detergent treatment of gram-negative bacteria have been used over the past decades for producing many licensed vaccines. These nanoparticles are not only multi-antigenic in nature but also potent immunopotentiators and immunomodulators. Formulations based on chemical-inactivated OMV (OMVi) obtained from a virulent STEC strain (O157:H7 serotype) were found to protect against pathogenicity in a murine model and to be immunogenic in calves. These initial studies suggest that STEC-derived OMV has a potential for the formulation of both human and veterinary vaccines.
Collapse
Affiliation(s)
| | - Lucía Avila
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | - Luciana Vázquez
- b UOCCB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | - Mirta Lescano
- a INPB, ANLIS "Dr. Carlos G. Malbrán" , Buenos Aires , Argentina
| | | | | | | |
Collapse
|
19
|
Martorelli L, Garimano N, Fiorentino GA, Vilte DA, Garbaccio SG, Barth SA, Menge C, Ibarra C, Palermo MS, Cataldi A. Efficacy of a recombinant Intimin, EspB and Shiga toxin 2B vaccine in calves experimentally challenged with Escherichia coli O157:H7. Vaccine 2018; 36:3949-3959. [PMID: 29807709 DOI: 10.1016/j.vaccine.2018.05.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/30/2022]
Abstract
Escherichia coli O157:H7 is a zoonotic pathogen of global importance and the serotype of Shiga toxin-producing E.coli (STEC) most frequently associated with Hemolytic Uremic Syndrome (HUS) in humans. The main STEC reservoir is cattle. Vaccination of calves with the carboxy-terminal fraction of Intimin γ (IntC280) and EspB can reduce E.coli O157:H7 fecal shedding after experimental challenge. Shiga toxin (Stx) exerts local immunosuppressive effects in the bovine intestine and Stx2B fused to Brucella lumazine synthase (BLS-Stx2B) induces Stx2-neutralizing antibodies. To determine if an immune response against Stx could improve a vaccine's effect on fecal shedding, groups of calves were immunized with EspB + IntC280, with EspB + IntC280 + BLS-Stx2B, or kept as controls. At 24 days post vaccination calves were challenged with E.coli O157:H7. Shedding of E.coli O157:H7 was assessed in recto-anal mucosal swabs by direct plating and enrichment followed by immunomagnetic separation and multiplex PCR. Calves were euthanized 15 days after the challenge and intestinal segments were obtained to assess mucosal antibodies. Vaccination induced a significant increase of IntC280 and EspB specific antibodies in serum and intestinal mucosa in both vaccinated groups. Antibodies against Stx2B were detected in serum and intestinal mucosa of animals vaccinated with 3 antigens. Sera and intestinal homogenates were able to neutralize Stx2 verocytotoxicity compared to the control and the 2-antigens vaccinated group. Both vaccines reduced E.coli O157:H7 shedding compared to the control group. The addition of Stx2B to the vaccine formulation did not result in a superior level of protection compared to the one conferred by IntC280 and EspB alone. It remains to be determined if the inclusion of Stx2B in the vaccine alters E.coli O157:H7 shedding patterns in the long term and after recurrent low dose exposure as occurring in cattle herds.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Nicolás Garimano
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriela A Fiorentino
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Daniel A Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Sergio G Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Argentina
| | - Stefanie A Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Angel Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina.
| |
Collapse
|
20
|
Immunization of pregnant cows with Shiga toxin-2 induces high levels of specific colostral antibodies and lactoferrin able to neutralize E. coli O157:H7 pathogenicity. Vaccine 2018; 36:1728-1735. [DOI: 10.1016/j.vaccine.2018.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/30/2018] [Accepted: 02/15/2018] [Indexed: 12/24/2022]
|
21
|
Hosseini ZS, Amani J, Baghbani Arani F, Nazarian S, Motamedi MJ, Shafighian F. Immunogenicity of the nanovaccine containing intimin recombinant protein in the BALB/c mice. Clin Exp Vaccine Res 2018; 7:51-60. [PMID: 29399580 PMCID: PMC5795045 DOI: 10.7774/cevr.2018.7.1.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022] Open
Abstract
Purpose Escherichia coli O157:H7 is one of the most important pathogens which create hemorrhagic colitis and hemolytic uremic syndrome in human. It is one of the most prevalent causes of diarrhea leading to death of many people every year. The first diagnosed gene in the locus of enterocyte effacement pathogenicity island is eae gene. The product of this gene is a binding protein called intimin belonging to the group of external membrane proteins regarded as a good stimulants of the immune system. Chitosan with its lipophilic property is an environmentally friendly agent able to return to the environment. Materials and Methods Intimin recombinant protein was expressed in pET28a vector with eae gene and purification was performed using Ni-NTA and finally the recombinant protein was approved through western blotting. This protein was encapsulated using chitosan nanoparticles and the size of nanoparticles was measured by Zetasizer. Intimin encapsulated was prescribed for three sessions among three groups of oral, injection, and oral-injection using Chitosan nanoparticles. Challenge was performed for all three groups with 108E. coli O157:H7 bacteria. Results Intimin produced by chitosan nanoparticles improves immunological responses through the adjuvant nature of chitosan nanoparticles. Chitosan may be used as a carrier for transportation of the prescribed vaccine. Among the mice, encapsulated intimin could be able to provide suitable titers of IgG and IgA by the aid of chitosan nanoparticles. Results of mice challenge showed that decreased the bacterial shedding significantly. Conclusion Results showed that the chitosan nanovaccine with intimin protein may be used as a suitable candidate vaccine against E. coli O157:H7.
Collapse
Affiliation(s)
- Zahra Sadat Hosseini
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fahimeh Baghbani Arani
- Department of Genetics and Biotechnology, School of Biological Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Shahram Nazarian
- Department of Biology, Faculty of Science, Imam Hossain University, Tehran, Iran
| | | | - Fatemeh Shafighian
- Pharmaceutical Sciences Branch, Pharmaceutical Sciences Research Center, Islamic Azad University (IAUPS), Tehran, Iran
| |
Collapse
|
22
|
Rastawicki W, Chróst A, Gielarowiec K. Development and evaluation of latex agglutination tests for the detection of human antibodies to the lipopolysaccharides of verocytotoxin-producing Escherichia coli (VTEC) serogroups O157 and non-O157. METHODS IN MICROBIOLOGY 2017; 140:74-76. [DOI: 10.1016/j.mimet.2017.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022]
|
23
|
Bose T, Venkatesh KV, Mande SS. Computational Analysis of Host-Pathogen Protein Interactions between Humans and Different Strains of Enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 2017; 7:128. [PMID: 28469995 PMCID: PMC5395655 DOI: 10.3389/fcimb.2017.00128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/28/2017] [Indexed: 01/18/2023] Open
Abstract
Serotype O157:H7, an enterohemorrhagic Escherichia coli (EHEC), is known to cause gastrointestinal and systemic illnesses ranging from diarrhea and hemorrhagic colitis to potentially fatal hemolytic uremic syndrome. Specific genetic factors like ompA, nsrR, and LEE genes are known to play roles in EHEC pathogenesis. However, these factors are not specific to EHEC and their presence in several non-pathogenic strains indicates that additional factors are involved in pathogenicity. We propose a comprehensive effort to screen for such potential genetic elements, through investigation of biomolecular interactions between E. coli and their host. In this work, an in silico investigation of the protein–protein interactions (PPIs) between human cells and four EHEC strains (viz., EDL933, Sakai, EC4115, and TW14359) was performed in order to understand the virulence and host-colonization strategies of these strains. Potential host–pathogen interactions (HPIs) between human cells and the “non-pathogenic” E. coli strain MG1655 were also probed to evaluate whether and how the variations in the genomes could translate into altered virulence and host-colonization capabilities of the studied bacterial strains. Results indicate that a small subset of HPIs are unique to the studied pathogens and can be implicated in virulence. This subset of interactions involved E. coli proteins like YhdW, ChuT, EivG, and HlyA. These proteins have previously been reported to be involved in bacterial virulence. In addition, clear differences in lineage and clade-specific HPI profiles could be identified. Furthermore, available gene expression profiles of the HPI-proteins were utilized to estimate the proportion of proteins which may be involved in interactions. We hypothesized that a cumulative score of the ratios of bound:unbound proteins (involved in HPIs) would indicate the extent of colonization. Thus, we designed the Host Colonization Index (HCI) measure to determine the host colonization potential of the E. coli strains. Pathogenic strains of E. coli were observed to have higher HCIs as compared to a non-pathogenic laboratory strain. However, no significant differences among the HCIs of the two pathogenic groups were observed. Overall, our findings are expected to provide additional insights into EHEC pathogenesis and are likely to aid in designing alternate preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Tungadri Bose
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services LimitedPune, India.,Department of Chemical Engineering, Indian Institute of Technology BombayMumbai, India
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology BombayMumbai, India
| | - Sharmila S Mande
- Bio-Sciences R&D Division, TCS Innovation Labs, Tata Consultancy Services LimitedPune, India
| |
Collapse
|
24
|
Lin R, Zhu B, Zhang Y, Bai Y, Zhi F, Long B, Li Y, Wu Y, Wu X, Fan H. Intranasal immunization with novel EspA-Tir-M fusion protein induces protective immunity against enterohemorrhagic Escherichia coli O157:H7 challenge in mice. Microb Pathog 2017; 105:19-24. [DOI: 10.1016/j.micpath.2017.01.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
|
25
|
Lin R, Zhang Y, Long B, Li Y, Wu Y, Duan S, Zhu B, Wu X, Fan H. Oral Immunization with Recombinant Lactobacillus acidophilus Expressing espA-Tir-M Confers Protection against Enterohemorrhagic Escherichia coli O157:H7 Challenge in Mice. Front Microbiol 2017; 8:417. [PMID: 28360900 PMCID: PMC5350096 DOI: 10.3389/fmicb.2017.00417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/27/2017] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) causes hemorrhagic colitis and the formation of characteristic attaching and effacing (A/E) lesions in humans. Given the severe sequelae of EHEC O157:H7 infection, it is critical to develop effective vaccines for human use. However, for achieving this goal many hurdles need to be addressed, such as the type or subset of antigens, adjuvant, and the delivery route. We developed a candidate vaccine by inserting the bivalent antigen espA-Tir-M composed of espA and the Tir central domain into Lactobacillus acidophilus. The recombinant L. acidophilus (LA-ET) was safe in a cell model and excluded EHEC O157:H7 from LoVo cells at rates of nearly 94 and 60% in exclusion and competition assays, respectively. LA-ET inhibited the induction of A/E lesions by EHEC O157:H7 cells in vitro. Oral immunization with LA-ET induced higher levels of specific mucosal and systemic antibody responses in mice. Moreover, LA-ET enhanced interferon-γ and interleukin-4 and -10 production, which was associated with mixed helper T (Th1/Th2) cell responses, and protected against EHEC O157:H7 colonization and infection in mice at a rate of 80%. Histopathological analyses revealed that orally administered LA-ET reduced or inhibited A/E lesions and toxin-induced systemic injury. These findings demonstrate that LA-ET induces both humoral and cellular immune responses in mice and is therefore a promising vaccine against EHEC O157:H7 infection.
Collapse
Affiliation(s)
- Ruqin Lin
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yiduo Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Beiguo Long
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yawen Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Yuhua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Siqin Duan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Bo Zhu
- The First School of Clinical Medicine, Southern Medical University Guangzhou, China
| | - Xianbo Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| | - Hongying Fan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University Guangzhou, China
| |
Collapse
|
26
|
Martorelli L, Garbaccio S, Vilte DA, Albanese AA, Mejías MP, Palermo MS, Mercado EC, Ibarra CE, Cataldi AA. Immune Response in Calves Vaccinated with Type Three Secretion System Antigens and Shiga Toxin 2B Subunit of Escherichia coli O157:H7. PLoS One 2017; 12:e0169422. [PMID: 28046078 PMCID: PMC5207737 DOI: 10.1371/journal.pone.0169422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 12/17/2016] [Indexed: 12/03/2022] Open
Abstract
Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.
Collapse
Affiliation(s)
- Luisina Martorelli
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Sergio Garbaccio
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Daniel A. Vilte
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Adriana A. Albanese
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María P. Mejías
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Marina S. Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Elsa C. Mercado
- Instituto de Patobiología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Cristina E. Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Angel A. Cataldi
- Instituto de Biotecnología, Centro de Investigación en Ciencias Veterinarias y Agronómicas, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| |
Collapse
|
27
|
Contributions of EspA Filaments and Curli Fimbriae in Cellular Adherence and Biofilm Formation of Enterohemorrhagic Escherichia coli O157:H7. PLoS One 2016; 11:e0149745. [PMID: 26900701 PMCID: PMC4764202 DOI: 10.1371/journal.pone.0149745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/04/2016] [Indexed: 12/14/2022] Open
Abstract
In Escherichia coli O157:H7 (O157), the filamentous structure of the type III secretion system is produced from the polymerization of the EspA protein. EspA filaments are essential for O157 adherence to epithelial cells. In previous studies, we demonstrated that O157 hha deletion mutants showed increased adherence to HEp-2 cells and produced abundant biofilms. Transcriptional analysis revealed increased expression of espA as well as the csgA gene, which encodes curli fimbriae that are essential for biofilm formation. In the present study, we constructed hha espA, hha csgA, and hha csgA espA deletion mutants to determine the relative importance of EspA and CsgA in O157 adherence to HEp-2 cells and biofilm formation. In vitro adherence assays, conducted at 37°C in a tissue culture medium containing 0.1% glucose, showed that HEp-2 cell adherence required EspA because hha espA and hha csgA espA mutants adhered to HEp-2 cells at higher levels only when complemented with an espA-expressing plasmid. Biofilm assays performed at 28°C in a medium lacking glucose showed dependency of biofilm formation on CsgA; however EspA was not produced under these conditions. Despite production of detectable levels of EspA at 37°C in media supplemented with 0.1% glucose, the biofilm formation occurred independent of EspA. These results indicate dependency of O157 adherence to epithelial cells on EspA filaments, while CsgA promoted biofilm formation under conditions mimicking those found in the environment (low temperature with nutrient limitations) and in the digestive tract of an host animal (higher temperature and low levels of glucose).
Collapse
|
28
|
Riquelme-Neira R, Rivera A, Sáez D, Fernández P, Osorio G, del Canto F, Salazar JC, Vidal RM, Oñate A. Vaccination with DNA Encoding Truncated Enterohemorrhagic Escherichia coli (EHEC) Factor for Adherence-1 Gene (efa-1') Confers Protective Immunity to Mice Infected with E. coli O157:H7. Front Cell Infect Microbiol 2016; 5:104. [PMID: 26835434 PMCID: PMC4718977 DOI: 10.3389/fcimb.2015.00104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is the predominant causative agent of hemorrhagic colitis in humans and is the cause of haemolytic uraemic syndrome and other illnesses. Cattle have been implicated as the main reservoir of this organism. Here, we evaluated the immunogenicity and protective efficacy of a DNA vaccine encoding conserved sequences of truncated EHEC factor for adherence-1 (efa-1′) in a mouse model. Intranasal administration of plasmid DNA carrying the efa-1′ gene (pVAXefa-1′) into C57BL/6 mice elicited both humoral and cellular immune responses. In animals immunized with pVAXefa-1′, EHEC-secreted protein-specific IgM and IgG antibodies were detected in sera at day 45. Anti-EHEC-secreted protein sIgA was also detected in nasal and bronchoalveolar lavages. In addition, antigen-specific T-cell-proliferation, IL-10, and IFN-γ were observed upon re-stimulation with either heat-killed bacteria or EHEC-secreted proteins. Vaccinated animals were also protected against challenge with E. coli O157:H7 strain EDL933. These results suggest that DNA vaccine encoding efa-1′ have therapeutic potential in interventions against EHEC infections. This approach could lead to a new strategy in the production of vaccines that prevent infections in cattle.
Collapse
Affiliation(s)
- Roberto Riquelme-Neira
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Alejandra Rivera
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Darwin Sáez
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Pablo Fernández
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| | - Gonzalo Osorio
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Felipe del Canto
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Juan C Salazar
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Roberto M Vidal
- Microbiology and Mycology Program, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción Concepción, Chile
| |
Collapse
|
29
|
O'Ryan M, Vidal R, del Canto F, Carlos Salazar J, Montero D. Vaccines for viral and bacterial pathogens causing acute gastroenteritis: Part II: Vaccines for Shigella, Salmonella, enterotoxigenic E. coli (ETEC) enterohemorragic E. coli (EHEC) and Campylobacter jejuni. Hum Vaccin Immunother 2015; 11:601-19. [PMID: 25715096 DOI: 10.1080/21645515.2015.1011578] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Part II we discuss the following bacterial pathogens: Shigella, Salmonella (non-typhoidal), diarrheogenic E. coli (enterotoxigenic and enterohemorragic) and Campylobacter jejuni. In contrast to the enteric viruses and Vibrio cholerae discussed in Part I of this series, for the bacterial pathogens described here there is only one licensed vaccine, developed primarily for Vibrio cholerae and which provides moderate protection against enterotoxigenic E. coli (ETEC) (Dukoral(®)), as well as a few additional candidates in advanced stages of development for ETEC and one candidate for Shigella spp. Numerous vaccine candidates in earlier stages of development are discussed.
Collapse
Key Words
- CFU, colony-forming units
- CFs, colonization factors
- CT, cholera toxin
- CT-B cholera toxin B subunit
- Campylobacter
- CtdB, cytolethal distending toxin subunit B
- E. coli
- EHEC
- EPEC, enteropathogenic E. coli
- ETEC
- ETEC, enterotoxigenic E. coli
- GEMS, Global enterics multicenter study
- HUS, hemolytic uremic syndrome
- IM, intramuscular
- IgA, immunoglobulin A
- IgG, immunoglobulin G
- IgM, immunoglobulin M
- LEE, locus of enterocyte effacement
- LPS, lipopolysaccharide
- LT, heat labile toxin
- LT-B
- OMV, outer membrane vesicles
- ST, heat stable toxin
- STEC
- STEC, shigatoxin producing E. coli
- STh, human heat stable toxin
- STp, porcine heat stable toxin
- Salmonella
- Shigella
- Stx, shigatoxin
- TTSS, type III secretion system
- V. cholera
- WHO, World Health Organization
- acute diarrhea
- dmLT, double mutant heat labile toxin
- enteric pathogens
- enterohemorrhagic E. coli
- gastroenteritis
- heat labile toxin B subunit
- norovirus
- rEPA, recombinant exoprotein A of Pseudomonas aeruginosa
- rotavirus
- vaccines
Collapse
Affiliation(s)
- Miguel O'Ryan
- a Microbiology and Mycology Program; Institute of Biomedical Sciences; Faculty of Medicine; Universidad de Chile; Santiago, Chile
| | | | | | | | | |
Collapse
|
30
|
Novel fusion antigen displayed-bacterial ghosts vaccine candidate against infection of Escherichia coli O157:H7. Sci Rep 2015; 5:17479. [PMID: 26626573 PMCID: PMC4667225 DOI: 10.1038/srep17479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
Infection with Escherichia coli O157:H7 may develop into hemorrhagic colitis, or hemolytic uremic syndrome (HUS), which usually causes kidney failure or even death. The adhesion and toxins are the important virulent factors. In this study, a novel vaccine candidate rSOBGs was constructed based on the bacterial ghost (BG). rSOBGs maintained the integrity of cellular morphology and displayed the linear Stx2Am-Stx1B antigen on the surface of outer membrane. rSOBGs induced Stxs-specific IgA/IgG antibodies and stronger intimin-specific IgA/IgG antibodies effectively in sera in this study. In vivo, the rSOBGs provided the higher protection rate (52%) than native bacterial ghost-OBGs (12%) when challenged intragastricly with high dose (500 LD50) viable E. coli O157:H7. Meanwhile, the rSOBGs provided higher protection rate (73.33%) than OBGs when challenged with 2 LD50 even to 5 LD50 lysed E. coli O157:H7. In vitro, the rSOBGs-immunized sera possessed neutralizing activity to lysed pathogenic bacteria. Furthermore, the results of histopathology also displayed that the administration of rSOBGs have the ability to reduce or inhibit the adhesion lesions and toxins damages of organs. The novel vaccine candidate rSOBGs induced both anti-toxin and anti-adhesion immune protection, suggesting the possibility to prevent the infectious diseases caused by Escherichia coli O157:H7.
Collapse
|
31
|
Glutamate Limitation, BvgAS Activation, and (p)ppGpp Regulate the Expression of the Bordetella pertussis Type 3 Secretion System. J Bacteriol 2015; 198:343-51. [PMID: 26527639 DOI: 10.1128/jb.00596-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bordetella pertussis is a bacterium that is considered to be highly adapted to humans, and it has not been isolated from the environment. As this bacterium does not utilize sugars, the abundant supply of glutamate in Stainer Scholte (SS) medium enables B. pertussis to grow efficiently in liquid culture in vitro, and as such, SS medium is a popular choice for laboratory experiments. However, the concentration of glutamate in the in vivo niche of B. pertussis is quite low. We investigated the bacterial response to low concentrations of glutamate to elucidate bacterial physiology via the expression of the type 3 secretion system (T3SS), and we discuss its relationship to the Bvg mode in which the two-component regulator of pathogenesis (BvgAS) is activated. Glutamate limitation induced the expression of both the T3SS apparatus and effector genes at the transcriptional level. (p)ppGpp, a modulator of the stringent response, was necessary for maximum expression of the T3SS genes. These observations indicate that the expression of the T3SS is managed by nutrient starvation. In addition, the autoaggregation ability was high in the absence of glutamate and no autoaggregation was observed in glutamate-replete medium. Taken together, glutamate-limited conditions in Bvg(+) mode elicit the high expression of T3SS genes in B. pertussis and promotes its sessile form. IMPORTANCE Bordetella pertussis is a highly contagious pathogen that causes respiratory infectious disease. In spite of the increasing use of vaccination, the number of patients with pertussis is increasing. The proteins produced in vivo often are different from the protein profile under laboratory conditions; therefore, the development of conditions reflecting the host environment is important to understand native bacterial behavior. In the present study, we examined the effect of glutamate limitation, as its concentration in vivo is much lower than that in the culture medium currently used for B. pertussis experiments. As predicted, the T3SS was induced by glutamate limitation. These results are suggestive of the importance of regulation by nutrient conditions and in the pathogenicity of B. pertussis.
Collapse
|
32
|
In J, Foulke-Abel J, Zachos NC, Hansen AM, Kaper JB, Bernstein HD, Halushka M, Blutt S, Estes MK, Donowitz M, Kovbasnjuk O. Enterohemorrhagic Escherichia coli reduce mucus and intermicrovillar bridges in human stem cell-derived colonoids. Cell Mol Gastroenterol Hepatol 2015; 2:48-62.e3. [PMID: 26855967 PMCID: PMC4740923 DOI: 10.1016/j.jcmgh.2015.10.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Enterohemorrhagic E. coli (EHEC) causes over 70,000 episodes of foodborne diarrhea annually in the USA. The early sequence of events which precede life-threatening hemorrhagic colitis and hemolytic uremic syndrome are not fully understood due to the initial asymptomatic phase of the disease and the lack of a suitable animal model. The aim of this study was to determine the initial molecular events in the interaction between EHEC and human colonic epithelium. METHODS Human colonoids derived from adult proximal colonic stem cells were developed into monolayers to study EHEC-epithelial interactions. Monolayer confluency and differentiation were monitored by transepithelial electrical resistance (TER) measurements. The monolayers were apically infected with EHEC and the progression of epithelial damage over time was assessed using biochemical and imaging approaches. RESULTS Human colonoid cultures recapitulate the differential protein expression patterns characteristic of the crypt and surface colonocytes. Mucus-producing differentiated colonoid monolayers are preferentially colonized by EHEC. Upon colonization, EHEC forms characteristic attaching and effacing lesions on the apical surface of colonoid monolayers. Mucin 2, a main component of colonic mucus, and protocadherin 24 (PCDH24), a microvillar resident protein, are targeted by EHEC at early stages of infection. The EHEC secreted serine protease, EspP, initiates brush border damage through PCDH24 reduction. CONCLUSIONS Human colonoid monolayers are a relevant pathophysiological model which allows the study of early molecular events during enteric infections. Colonoid monolayers provide access to both apical and basolateral surfaces, thus providing an advantage over 3D cultures to study host-pathogen interactions in a controllable and tractable manner. EHEC reduces colonic mucus and affects the brush border cytoskeleton in the absence of commensal bacteria.
Collapse
Affiliation(s)
- Julie In
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Jennifer Foulke-Abel
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Nicholas C. Zachos
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Anne-Marie Hansen
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - James B. Kaper
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Harris D. Bernstein
- Genetics and Biochemistry Branch, National Institutes of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland
| | - Marc Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sarah Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Mark Donowitz
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland
| | - Olga Kovbasnjuk
- Department of Medicine, Division of Gastroenterology and Hepatology, Johns Hopkins University, School of Medicine, Baltimore, Maryland,Correspondence Address correspondence to: Olga Kovbasnjuk, PhD, Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 943 Ross Research Building, 720 Rutland Avenue, Baltimore, Maryland 21205.Division of Gastroenterology and HepatologyJohns Hopkins University School of Medicine943 Ross Research Building720 Rutland AvenueBaltimoreMaryland 21205
| |
Collapse
|
33
|
Ghunaim H, Desin TS. Potential Impact of Food Safety Vaccines on Health Care Costs. Foodborne Pathog Dis 2015; 12:733-40. [PMID: 26111256 DOI: 10.1089/fpd.2014.1924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Foodborne pathogens continue to cause several outbreaks every year in many parts of the world. Among the bacterial pathogens involved, Shiga toxin-producing Escherichia coli, Campylobacter jejuni, and nontyphoidal Salmonella species cause a significant number of human infections worldwide, resulting in a huge annual economic burden that amounts to millions of dollars in health care costs. Human infections are primarily caused by the consumption of contaminated food. Vaccination of food-producing animals is an attractive, cost-effective strategy to lower the levels of these pathogens that will ultimately result in a safer food supply and fewer human infections. However, producers are often reluctant to routinely vaccinate animals against these pathogens since they do not cause any detectable clinical symptoms. This review highlights recent approaches used to develop effective food safety vaccines and the potential impact these vaccines might have on health care costs.
Collapse
Affiliation(s)
- Haitham Ghunaim
- 1 Department of Health Sciences, College of Arts and Science, Qatar University , Doha, Qatar
| | - Taseen S Desin
- 2 Basic Sciences Department, College of Science & Health Professions, King Saud bin Abdulaziz University for Health Sciences , Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Impact of Infection Dose and Previous Serum Antibodies against the Locus of Enterocyte Effacement Proteins on Escherichia coli O157:H7 Shedding in Calves following Experimental Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:290679. [PMID: 26167480 PMCID: PMC4475743 DOI: 10.1155/2015/290679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 11/26/2022]
Abstract
Escherichia coli O157:H7 is the main causative agent of haemolytic uremic syndrome. Cattle are the main reservoir of these bacteria, and have been shown to develop immune response to colonization. Our aim was to investigate the faecal shedding pattern of E. coli O157:H7 in calves challenged intragastrically with either 108 or 1010 CFU, as well as the ability of specific preexisting antibodies to reduce shedding of the pathogen. Shedding was analysed by direct counting as well as enrichment of rectoanal mucosal swabs. Statistical analysis was performed using a linear model for repeated measures with and without the inclusion of preexisting antibodies against the carboxy-terminal fraction of intimin-γ (γ-intimin C280) as a covariable. Results suggest that there is a statistical difference in the area under the shedding curves between both doses for 14 as well as 28 days after challenge (p = 0.0069 and 0.0209, resp.). This difference is increased when the prechallenge antibodies are taken into account (p = 0.0056 and 0.0185). We concluded that the bacterial dose influences shedding on calves experimentally challenged and that preexisting antibodies against E. coli O157:H7 γ-intimin C280 could partially reduce faecal excretion.
Collapse
|
35
|
Kudva IT, Krastins B, Torres AG, Griffin RW, Sheng H, Sarracino DA, Hovde CJ, Calderwood SB, John M. The Escherichia coli O157:H7 cattle immunoproteome includes outer membrane protein A (OmpA), a modulator of adherence to bovine rectoanal junction squamous epithelial (RSE) cells. Proteomics 2015; 15:1829-42. [PMID: 25643951 PMCID: PMC4456246 DOI: 10.1002/pmic.201400432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 11/18/2014] [Accepted: 01/20/2015] [Indexed: 12/20/2022]
Abstract
Building on previous studies, we defined the repertoire of proteins comprising the immunoproteome (IP) of Escherichia coli O157:H7 (O157) cultured in DMEM supplemented with norepinephrine (O157 IP), a β-adrenergic hormone that regulates E. coli O157 gene expression in the gastrointestinal tract, using a variation of a novel proteomics-based platform proteome mining tool for antigen discovery, called "proteomics-based expression library screening" (PELS; Kudva et al., 2006). The E. coli O157 IP (O157-IP) comprised 91 proteins, and included those identified previously using proteomics-based expression library screening, and also proteins comprising DMEM and bovine rumen fluid proteomes. Outer membrane protein A (OmpA), a common component of the above proteomes, and reportedly a contributor to E. coli O157 adherence to cultured HEp-2 epithelial cells, was interestingly found to be a modulator rather than a contributor to E. coli O157 adherence to bovine rectoanal junction squamous epithelial cells. Our results point to a role for yet to be identified members of the O157-IP in E. coli O157 adherence to rectoanal junction squamous epithelial cells, and additionally implicate a possible role for the outer membrane protein A regulator, TdcA, in the expression of such adhesins. Our observations have implications for the development of efficacious vaccines for preventing E. coli O157 colonization of the bovine gastrointestinal tract.
Collapse
Affiliation(s)
- Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit National Animal Disease Center Agricultural Research Service U.S. Department of Agriculture Ames, Iowa. 50010
| | - Bryan Krastins
- Harvard Partners Center For Genetics and Genomics 65 Landsdowne Street Cambridge, Massachusetts 02139
| | - Alfredo G. Torres
- Departments of Microbiology and Immunology, and Pathology University of Texas Medical Branch Galveston, Texas 77555-1070
| | - Robert W. Griffin
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
| | - Haiqing Sheng
- Department of Microbiology, Molecular Biology, and Biochemistry University of Idaho, Moscow, Idaho 83844-3052
| | - David A. Sarracino
- Harvard Partners Center For Genetics and Genomics 65 Landsdowne Street Cambridge, Massachusetts 02139
| | - Carolyn J. Hovde
- Department of Microbiology, Molecular Biology, and Biochemistry University of Idaho, Moscow, Idaho 83844-3052
| | - Stephen B. Calderwood
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
- Department of Medicine Harvard Medical School Boston, Massachusetts 02114
- Department of Microbiology and Immunobiology Harvard Medical School Boston, Massachusetts 02114
| | - Manohar John
- Division of Infectious Diseases Massachusetts General Hospital Boston, Massachusetts 02114
- Department of Medicine Harvard Medical School Boston, Massachusetts 02114
- Department of Microbiology and Immunobiology Harvard Medical School Boston, Massachusetts 02114
| |
Collapse
|
36
|
Gutiérrez-Preciado A, Torres AG, Merino E, Bonomi HR, Goldbaum FA, García-Angulo VA. Extensive Identification of Bacterial Riboflavin Transporters and Their Distribution across Bacterial Species. PLoS One 2015; 10:e0126124. [PMID: 25938806 PMCID: PMC4418817 DOI: 10.1371/journal.pone.0126124] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022] Open
Abstract
Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.
Collapse
Affiliation(s)
- Ana Gutiérrez-Preciado
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Alfredo Gabriel Torres
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | - Víctor Antonio García-Angulo
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- Centro de Genómica y Bioinformática, Universidad Mayor, Campus Huechuraba, Santiago, Chile
- * E-mail:
| |
Collapse
|
37
|
Kamada N, Sakamoto K, Seo SU, Zeng MY, Kim YG, Cascalho M, Vallance BA, Puente JL, Núñez G. Humoral Immunity in the Gut Selectively Targets Phenotypically Virulent Attaching-and-Effacing Bacteria for Intraluminal Elimination. Cell Host Microbe 2015; 17:617-27. [PMID: 25936799 DOI: 10.1016/j.chom.2015.04.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/11/2015] [Accepted: 04/01/2015] [Indexed: 01/12/2023]
Abstract
Virulence factors expressed by enteric bacteria are pivotal for pathogen colonization and induction of intestinal disease, but the mechanisms by which host immunity regulates pathogen virulence are largely unknown. Here we show that specific antibody responses are required for downregulation of virulence gene expression in Citrobacter rodentium, an enteric pathogen that models human infections with attaching-and-effacing bacteria. In the absence of antibodies against the pathogen, phenotypically virulent C. rodentium, accumulated and infected the epithelium and subsequently invaded the lamina propia, causing host lethality. IgG induced after infection recognized virulence factors and bound virulent bacteria within the intestinal lumen, leading to their engulfment by neutrophils, while phenotypically avirulent pathogens remained in the intestinal lumen and were eventually outcompeted by the microbiota. Thus, the interplay of the innate and adaptive immune system selectively targets virulent C. rodentium in the intestinal lumen to promote pathogen eradication and host survival.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Kei Sakamoto
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sang-Uk Seo
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Yun-Gi Kim
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marilia Cascalho
- Department of Surgery and Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bruce A Vallance
- Division of Gastroenterology, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Abstract
Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics.
Collapse
Affiliation(s)
- Brian D. McWilliams
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| |
Collapse
|
39
|
Copado R, Arzola C, Epps SVR, Rodriguez-Almeida F, Ruiz O, Rodriguez-Muela C, Castillo YC, Corral-Luna A, Salinas J. Effect of repeated suboptimal chlorate treatment on ruminal and fecal bacterial diversity. J Food Prot 2014; 77:1588-92. [PMID: 25198852 DOI: 10.4315/0362-028x.jfp-14-140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The minimal effective dose of sodium chlorate as an intervention to reduce the carriage of pathogenic bacteria in food-producing animals has not been clearly established. The effect of low-level oral chlorate administration to ewes was assessed by comparing the diversity of prominent bacterial populations in their gastrointestinal tract. Twelve lactating crossed Pelibuey and Blackbelly-Dorper ewes (average body weight, 65 kg) were randomly assigned (four per treatment) to receive a control treatment (TC; consisting of 3 g of NaCl per animal per day) or one of two chlorate treatments (T3 or T9; consisting of 1.8 or 5.4 g of NaClO3 per animal per day, respectively). Treatments were administered twice daily via oral gavage for 5 days. Ruminal and fecal samples were collected daily, starting 3 days before and ending 6 days after treatment, and were subjected to denaturing gradient gel electrophoresis of the 16S rRNA gene sequence amplified from total population DNA. For ruminal microbes, percent similarity coefficients (SCs) between groups varied from 23.0 to 67.5% and from 39.4 to 43.3% during pretreatment and treatment periods, respectively. During the treatment period, SCs within groups ranged from 39.4 to 90.3%, 43.3 to 86.7%, and 67.5 to 92.4% for TC, T3, and T9, respectively. For fecal microbes, SCs between groups varied from 38.0 to 85.2% and 38.0 to 94.2% during pretreatment and treatment periods, respectively. SCs for fecal populations during treatment were most varied for TC (38.0 to 67.9%), intermediate for T9 (75.6 to 92.0%), and least varied for T3 (80.6 to 90.6%). Heterogeneity within and between groups provided no evidence of an effect of chlorate treatment on ruminal or fecal microbial populations.
Collapse
Affiliation(s)
- R Copado
- Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon 66451, Mexico
| | - C Arzola
- Autonomous University of Chihuahua, Chihuahua 31203, Mexico.
| | - S V R Epps
- Department of Veterinary Integrative Bioscience, Texas A&M University, College Station, Texas 77843, USA
| | | | - O Ruiz
- Autonomous University of Chihuahua, Chihuahua 31203, Mexico
| | | | | | | | - J Salinas
- Autonomous University of Tamaulipas, Ciudad Victoria, Tamaulipas 87000, Mexico
| |
Collapse
|
40
|
Immunoproteomic analysis to identify Shiga toxin-producing Escherichia coli outer membrane proteins expressed during human infection. Infect Immun 2014; 82:4767-77. [PMID: 25156722 DOI: 10.1128/iai.02030-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is the etiologic agent of acute diarrhea, dysentery, and hemolytic-uremic syndrome (HUS). There is no approved vaccine for STEC infection in humans, and antibiotic use is contraindicated, as it promotes Shiga toxin production. In order to identify STEC-associated antigens and immunogenic proteins, outer membrane proteins (OMPs) were extracted from STEC O26:H11, O103, O113:H21, and O157:H7 strains, and commensal E. coli strain HS was used as a control. SDS-PAGE, two-dimensional-PAGE analysis, Western blot assays using sera from pediatric HUS patients and controls, and matrix-assisted laser desorption ionization-tandem time of flight analyses were used to identify 12 immunogenic OMPs, some of which were not reactive with control sera. Importantly, seven of these proteins have not been previously reported to be immunogenic in STEC strains. Among these seven proteins, OmpT and Cah displayed IgG and IgA reactivity with sera from HUS patients. Genes encoding these two proteins were present in a majority of STEC strains. Knowledge of the antigens produced during infection of the host and the immune response to those antigens will be important for future vaccine development.
Collapse
|
41
|
Oral immunization with Lactococcus lactis-expressing EspB induces protective immune responses against Escherichia coli O157:H7 in a murine model of colonization. Vaccine 2014; 32:3909-16. [DOI: 10.1016/j.vaccine.2014.05.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/01/2014] [Accepted: 05/15/2014] [Indexed: 01/30/2023]
|
42
|
Physiopathological effects of Escherichia coli O157:H7 inoculation in weaned calves fed with colostrum containing antibodies to EspB and Intimin. Vaccine 2014; 32:3823-9. [DOI: 10.1016/j.vaccine.2014.04.073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 11/22/2022]
|
43
|
Arzola C, Copado R, Epps SVRP, Rodriguez-Almeida F, Ruiz-Barrera O, Rodriguez-Muela C, Corral-Luna A, Castillo-Castillo Y, Diaz-Plascencia D. Effects of repeated-low level sodium chlorate administration on ruminal and fecal coliforms in sheep. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2014; 49:966-970. [PMID: 25310812 DOI: 10.1080/03601234.2014.951585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Abstract The objective of this study was to evaluate the efficacy of oral sodium chlorate administration on reducing total coliform populations in ewes. A 30% sodium chlorate product or a sodium chloride placebo was administered to twelve lactating Dorper X Blackbelly or Pelibuey crossbred ewes averaging 65 kg body weight. The ewes were adapted to diet and management. Ewes were randomly assigned (4/treatment) to one of three treatments which were administered twice daily by oral gavage for five consecutive days: a control (TC) consisting of 3 g sodium chloride/animal/d, a T3 treatment consisting of 1.8 g of sodium chlorate/animal/d, and a T9 treatment consisting of 5.4 g sodium chlorate/animal/d; the latter was intended to approximate a lowest known effective dose. Ruminal samples collected by stomach tube and freshly voided fecal samples were collected daily beginning 3 days before treatment initiation and for 6 days thereafter. Contents were cultured quantitatively to enumerate total coliforms. There were no significant differences in total coliform numbers (log10 cfu/g) in the feces between treatments (P = 0.832). There were differences (P < 0.02) in ruminal coliform counts (log10 cfu/mL) between treatments (4.1, 4.3 and 5.0 log10/mL contents in TC, T3 and T9 Treatments, respectively) which tended to increase from the beginning of treatment until the 5th day of treatment (P < 0.05). Overall, we did not obtain the expected results with oral administration of sodium chloride at the applied doses. By comparing the trends in coliform populations in the rumen contents in all treatments, there was an increase over the days. The opposite trend occurred in the feces, due mainly to differences among rumen contents and feces in ewes administered the T9 treatment (P = 0.06). These results suggest that the low chlorate doses used here were suboptimal for the control of coliforms in the gastrointestinal tract of ewes.
Collapse
Affiliation(s)
- Claudio Arzola
- a College of Animal Science and Ecology , Autonomous University of Chihuahua , Chihuahua , Chih. , Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gavilanes-Parra S, Mendoza-Hernández G, Chávez-Berrocal ME, Girón JA, Orozco-Hoyuela G, Manjarrez-Hernández A. Identification of secretory immunoglobulin A antibody targets from human milk in cultured cells infected with enteropathogenic Escherichia coli (EPEC). Microb Pathog 2013; 64:48-56. [PMID: 24036180 DOI: 10.1016/j.micpath.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 12/27/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to inject effectors into host cells and alter cellular physiology. The aim of the present study was to identify targets of human secretory immunoglobulin A (sIgA) antibodies from the proteins delivered by EPEC into HEp-2 cells after infection. Bacterial proteins delivered into EPEC-infected cells were obtained in sub-cellular fractions (cytoplasmic, membrane, and cytoskeleton) and probed with sIgA antibodies from human milk and analyzed by Western blotting. These sIgA antibodies reacted with Tir and EspB in the cytoplasmic and membrane fractions, and with intimin in the membrane fraction mainly. The sIgA also identified an EPEC surface-associated Heat-shock protein 70 (Hsp70) in HEp-2 cells infected with EPEC. Purified Hsp70 from EPEC was able to bind to HEp-2 cells, suggesting adhesive properties in this protein. EspC secreted to the medium reacted strongly with the sIgA antibodies. An EPEC 115 kDa protein, unrelated to the EspC protein, was detected in the cytoplasm of infected HEp-2 cells, suggesting that this is a new protein translocated by EPEC. The results suggest that there is a strong host antibody response to Tir and intimin, which are essential proteins for attaching and effacing (A/E) pathogen mediated disease.
Collapse
Affiliation(s)
- Sandra Gavilanes-Parra
- Departamento de Salud Publica, Facultad de Medicina, Universidad Nacional Autónoma de México, D. F. 04510, Mexico
| | | | | | | | | | | |
Collapse
|
45
|
Identification and characterization of RibN, a novel family of riboflavin transporters from Rhizobium leguminosarum and other proteobacteria. J Bacteriol 2013; 195:4611-9. [PMID: 23935051 DOI: 10.1128/jb.00644-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rhizobia are symbiotic bacteria able to invade and colonize the roots of legume plants, inducing the formation of nodules, where bacteria reduce atmospheric nitrogen (N2) to ammonia (NH3). Riboflavin availability influences the capacity of rhizobia to survive in the rhizosphere and to colonize roots. In this study, we identified the RL1692 gene of Rhizobium leguminosarum downstream of a flavin mononucleotide (FMN) riboswitch. RL1692 encodes a putative transmembrane permease with two EamA domains. The presence of an FMN riboswitch regulating a transmembrane protein is usually observed in riboflavin transporters, suggesting that RL1692 may be involved in riboflavin uptake. The product of RL1692, which we named RibN, is conserved in members of the alpha-, beta-, and gammaproteobacteria and shares no significant identity with any riboflavin transporter previously identified. In this work, we show that RibN is localized in the membrane cellular fraction and its expression is downregulated by riboflavin. By heterologous expression in a Brucella abortus mutant auxotrophic for riboflavin, we demonstrate that RibN possesses flavin transport activity. Similarly, we also demonstrate that RibN orthologues from Ochrobactrum anthropi and Vibrio cholerae (which lacks the FMN riboswitch) are able to transport riboflavin. An R. leguminosarum ribN null mutant exhibited lower nodule occupancy levels in pea plants during symbiosis assays. Thus, we propose that RibN and its homologues belong to a novel family of riboflavin transporters. This work provides the first experimental description of riboflavin transporters in Gram-negative bacteria.
Collapse
|
46
|
Advances in the development of enterohemorrhagic Escherichia coli vaccines using murine models of infection. Vaccine 2013; 31:3229-35. [PMID: 23707170 DOI: 10.1016/j.vaccine.2013.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/22/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) strains are food borne pathogens with importance in public health. EHEC colonizes the large intestine and causes diarrhea, hemorrhagic colitis and in some cases, life-threatening hemolytic-uremic syndrome (HUS) due to the production of Shiga toxins (Stx). The lack of effective clinical treatment, sequelae after infection and mortality rate in humans supports the urgent need of prophylactic approaches, such as development of vaccines. Shedding from cattle, the main EHEC reservoir and considered the principal food contamination source, has prompted the development of licensed vaccines that reduce EHEC colonization in ruminants. Although murine models do not fully recapitulate human infection, they are commonly used to evaluate EHEC vaccines and the immune/protective responses elicited in the host. Mice susceptibility differs depending of the EHEC inoculums; displaying different mortality rates and Stx-mediated renal damage. Therefore, several experimental protocols have being pursued in this model to develop EHEC-specific vaccines. Recent candidate vaccines evaluated include those composed of virulence factors alone or as fused-subunits, DNA-based, attenuated bacteria and bacterial ghosts. In this review, we summarize progress in the design and testing of EHEC vaccines and the use of different strategies for the evaluation of novel EHEC vaccines in the murine model.
Collapse
|
47
|
Rabinovitz BC, Gerhardt E, Tironi Farinati C, Abdala A, Galarza R, Vilte DA, Ibarra C, Cataldi A, Mercado EC. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J Dairy Sci 2012; 95:3318-26. [PMID: 22612965 DOI: 10.3168/jds.2011-5093] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 02/05/2012] [Indexed: 01/09/2023]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of intestinal disease and hemolytic uremic syndrome, a serious systemic complication that particularly affects children. Cattle are primary reservoirs for EHEC O157:H7 and the main source of infection for humans. Vaccination of cattle with different combinations of bacterial virulence factors has shown efficacy in decreasing EHEC O157:H7 shedding. It is, therefore, important to demonstrate whether vaccination of pregnant cows with EHEC O157:H7 induces high titers of transferable antibodies to avoid early colonization of calves by the bacteria. In this study we evaluated the ability of EspA, EspB, the C-terminal fragment of 280 amino acids of γ-intimin (γ-intimin C₂₈₀) and inactivated Shiga toxin (Stx) 2 proteins to induce specific antibodies in colostrum and their passive transference to colostrum-fed calves. Friesian pregnant cows immunized by the intramuscular route mounted significantly high serum and colostrum IgG responses against EspB and γ-intimin C₂₈₀ that were efficiently transferred to their calves. Antibodies to EspB and γ-intimin C₂₈₀ were detected in milk samples of vaccinated cows at d 40 postparturition. Significant Stx2-neutralizing titers were also observed in colostrum from Stx2-vaccinated cows and sera from colostrum-fed calves. The results presented showed that bovine colostrum with increased levels of antibodies against EHEC O157:H7 may be obtained by systemic immunization of pregnant cows, and that these specific antibodies are efficiently transferred to newborn calves by feeding colostrum. Hyperimmune colostrum and milk may be an alternative to protect calves from early colonization by EHEC O157:H7 and a possible key source of antibodies to block colonization and toxic activity of this bacterium.
Collapse
Affiliation(s)
- B C Rabinovitz
- Instituto de Patobiología, Instituto Nacional de Tecnología Agropecuaria-INTA, Nicolás Repetto y De los Reseros, 1686 Hurlingham, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains. Appl Environ Microbiol 2012; 78:7706-19. [PMID: 22923406 DOI: 10.1128/aem.02157-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Curli are adhesive fimbriae of Enterobactericaeae and are involved in surface attachment, cell aggregation, and biofilm formation. We reported previously that curli-producing (C(+)) variants of E. coli O157:H7 (EcO157) were much more acid sensitive than their corresponding curli-deficient (C(-)) variants; however, this difference was not linked to the curli fimbriae per se. Here, we investigated the underlying molecular basis of this phenotypic divergence. We identified large deletions in the rcsB gene of C(+) variants isolated from the 1993 U.S. hamburger-associated outbreak strains. rcsB encodes the response regulator of the RcsCDB two-component signal transduction system, which regulates curli biogenesis negatively but acid resistance positively. Further comparison of stress fitness revealed that C(+) variants were also significantly more sensitive to heat shock but were resistant to osmotic stress and oxidative damage, similar to C(-) variants. Transcriptomics analysis uncovered a large number of differentially expressed genes between the curli variants, characterized by enhanced expression in C(+) variants of genes related to biofilm formation, virulence, catabolic activity, and nutrient uptake but marked decreases in transcription of genes related to various types of stress resistance. Supplying C(+) variants with a functional rcsB restored resistance to heat shock and acid challenge in cells but blocked curli production, confirming that inactivation of RcsB in C(+) variants was the basis of fitness segregation within the EcO157 population. This study provides an example of how genome instability of EcO157 promotes intrapopulation diversification, generating subpopulations carrying an array of distinct phenotypes that may confer the pathogen with survival advantages in diverse environments.
Collapse
|
49
|
Ferreira Oliveira A, Almeida Cardoso S, Bruno dos Reis Almeida F, Licursi de Oliveira L, Pitondo-Silva A, Gomes Soares S, Seixas Hanna E. Oral immunization with attenuated Salmonella vaccine expressing Escherichia coli O157:H7 intimin gamma triggers both systemic and mucosal humoral immunity in mice. Microbiol Immunol 2012; 56:513-22. [DOI: 10.1111/j.1348-0421.2012.00477.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kudva IT, Griffin RW, Krastins B, Sarracino DA, Calderwood SB, John M. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells. BMC Microbiol 2012; 12:103. [PMID: 22691138 PMCID: PMC3420319 DOI: 10.1186/1471-2180-12-103] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/12/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In this study, we present evidence that proteins encoded by the Locus of Enterocyte Effacement (LEE), considered critical for Escherichia coli O157 (O157) adherence to follicle-associated epithelial (FAE) cells at the bovine recto-anal junction (RAJ), do not appear to contribute to O157 adherence to squamous epithelial (RSE) cells also constituting this primary site of O157 colonization in cattle. RESULTS Antisera targeting intimin-γ, the primary O157 adhesin, and other essential LEE proteins failed to block O157 adherence to RSE cells, when this pathogen was grown in DMEM, a culture medium that enhances expression of LEE proteins. In addition, RSE adherence of a DMEM-grown-O157 mutant lacking the intimin protein was comparable to that seen with its wild-type parent O157 strain grown in the same media. These adherence patterns were in complete contrast to that observed with HEp-2 cells (the adherence to which is mediated by intimin-γ), assayed under same conditions. This suggested that proteins other than intimin-γ that contribute to adherence to RSE cells are expressed by this pathogen during growth in DMEM. To identify such proteins, we defined the proteome of DMEM-grown-O157 (DMEM-proteome). GeLC-MS/MS revealed that the O157 DMEM-proteome comprised 684 proteins including several components of the cattle and human O157 immunome, orthologs of adhesins, hypothetical secreted and outer membrane proteins, in addition to the known virulence and LEE proteins. Bioinformatics-based analysis of the components of the O157 DMEM proteome revealed several new O157-specific proteins with adhesin potential. CONCLUSION Proteins other than LEE and intimin-γ proteins are involved in O157 adherence to RSE cells at the bovine RAJ. Such proteins, with adhesin potential, are expressed by this human pathogen during growth in DMEM. Ongoing experiments to evaluate their role in RSE adherence should provide both valuable insights into the O157-RSE interactions and new targets for more efficacious anti-adhesion O157 vaccines.
Collapse
Affiliation(s)
- Indira T Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, 50010, USA
| | - Robert W Griffin
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
| | - Bryan Krastins
- Harvard Partners Center for Genetics and Genomics, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
- Present Address: Thermo-Fisher Scientific, Cambridge, Massachusetts, 02139, USA
| | - David A Sarracino
- Harvard Partners Center for Genetics and Genomics, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
- Present Address: Thermo-Fisher Scientific, Cambridge, Massachusetts, 02139, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Manohar John
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, 02114, USA
- Present Address: Pathovacs Inc., Ames, Iowa, 50010, USA
| |
Collapse
|