1
|
Alarcón Navas SV, Pereira Cardeño EM, Martínez MF, Ortiz Suárez NF, David Castro A, Martínez-Vega RA, Navarro Rosado M, González CI, Rincón Cruz G. Virulence Profiles of Salmonella enterica Isolated from Three Food Matrices Collected from Retail Markets. Foodborne Pathog Dis 2024. [PMID: 39527021 DOI: 10.1089/fpd.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Salmonella enterica is one of the most common foodborne pathogens associated with the consumption of contaminated porcine, dairy, and avian products. Nontyphoidal Salmonella is a major cause of bacterial diarrhea, responsible for ∼150 million cases and 60,000 deaths annually. The main goal of this study was to determine the prevalence of Salmonella spp. and to establish the virulence profile (VP) from genes (avrA, invE, ssaD, sseF, ssaQ, ttrC) and plasmid genes (pefA, spvB, spvC) in isolates obtained from cheese, chicken, and pork sold in food markets in Barrancabermeja, Colombia. A survey was conducted on 100 samples each matrix. The detection of Salmonella spp. followed the ISO 6579:2017 standards modified, and isolates were confirmed using the invA gene. In addition, single polymerase chain reaction assays were developed to detect the nine virulence genes. Salmonella spp. was found in 62%, 32%, and 14% of pork, chicken, and cheese samples, respectively. A total of 277 isolates were biochemically, serologically, and molecularly compatible with Salmonella spp. The most representative serogroups were C and B. Forty-seven combinations of virulence gene were detected; 53.5% of the pork isolates, 46.2% of the cheese isolates, and 39% of the chicken isolates were distributed among VP1, VP2, and VP3 suggesting a higher pathogenic potential. In addition, seven isolates harbored plasmid-encoded virulence genes (spvB and spvC), which are associated with increased invasiveness. The results revealed a higher prevalence of Salmonella spp. in pork and chicken compared with other studies conducted in Colombia. The serogroups identified include serovars that more frequently affect humans Salmonella Enteriditis, Salmonella Newport, and Salmonella Typhimurium. The isolations have the majority of the virulence genes studied. These findings highlight the need to improve control measures and educate food handlers to minimize the presence of Salmonella spp. and its potential transmission.
Collapse
Affiliation(s)
- Sandy V Alarcón Navas
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Eliana M Pereira Cardeño
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - María F Martínez
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Alexander David Castro
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
- Centro de Investigaciones Santa Lucía, Instituto Universitario de la Paz, Barrancabermeja, Colombia
| | | | | | - Clara I González
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Giovanna Rincón Cruz
- Grupo de Inmunología y Epidemiología Molecular, Universidad Industrial de Santander, Bucaramanga, Colombia
- Escuela de Microbiología, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
2
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
3
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024:eesp00012023. [PMID: 38415623 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
4
|
Wójcicki M, Chmielarczyk A, Świder O, Średnicka P, Strus M, Kasperski T, Shymialevich D, Cieślak H, Emanowicz P, Kowalczyk M, Sokołowska B, Juszczuk-Kubiak E. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022; 11:1323. [PMID: 36365074 PMCID: PMC9692263 DOI: 10.3390/pathogens11111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/13/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. Fifty-three strains of Salmonella deposited in the Culture Collection of Industrial Microorganisms-Microbiological Resources Center (IAFB) were identified using molecular and proteomic analyses. Moreover, the genetic similarity of the tested strains was determined using the PFGE method. Main virulence genes were identified, and phenotypical antibiotic susceptibility profiles and prevalence of resistance genes were analyzed. Subsequently, the occurrence of the main mechanisms of β-lactam resistance was determined. Virulence genes, invA, fimA, and stn were identified in all tested strains. Phenotypic tests, including 28 antibiotics, showed that 50.9% of the strains were MDR. The tet genes associated with tetracyclines resistance were the most frequently identified genes. Concerning the genes associated with ESBL-producing Salmonella, no resistance to the TEM and CTX-M type was identified, and only two strains (KKP 1597 and KKP 1610) showed resistance to SHV. No strains exhibited AmpC-type resistance but for six Salmonella strains, the efflux-related resistance of PSE-1 was presented. The high number of resistant strains in combination with multiple ARGs in Salmonella indicates the possible overuse of antibiotics. Our results showed that it is necessary to monitor antimicrobial resistance profiles in all food chain links constantly and to implement a policy of proper antibiotic stewardship to contain or at least significantly limit the further acquisition of antibiotic resistance among Salmonella strains.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Tomasz Kasperski
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
5
|
Wang W, Chen J, Shao X, Huang P, Zha J, Ye Y. Occurrence and antimicrobial resistance of Salmonella isolated from retail meats in Anhui, China. Food Sci Nutr 2021; 9:4701-4710. [PMID: 34531984 PMCID: PMC8441314 DOI: 10.1002/fsn3.2266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Salmonella is considered one of the major foodborne pathogens associated with severe infections. Little attempt has been focused on the distribution of Salmonella in retail meats and the analysis of its phenotypic characteristics in Anhui Province. The aim of this study was to characterize the prevalence of Salmonella serovars, antimicrobial susceptibility, antimicrobial resistance genes, and virulence genes in Salmonella recovered from retail meats in Anhui, China. Out of the 120 samples collected from supermarket chains and open-air markets, 16 samples (13.3%) were positive for Salmonella, of which Salmonella enterica serovars Enteritidis and Typhimurium were the common serotypes. Significant differences in incidence were found between supermarket chains and open-air markets (p < 0.05). Overall, all 16 isolates were resistant to at least two tested antimicrobials, while 12 isolates showed multiple antimicrobial resistant phenotypes. High resistance was observed for ampicillin (87.5%), doxycycline (75.0%), and tetracycline (62.5%). The sul2 was detected in all isolates, and the aac(6')-Ib-cr (93.8%) and the tetA (81.3%) were predominant in 10 resistance genes conferring five classes of antimicrobials. In addition, the correlation between resistance phenotypes and genes of tetracyclines and aminoglycosides was more than 80%. Interestingly, all the Salmonella isolates contained the genes mogA, mgtC, sopB, and spvB, whereas the siiE was variably represented. The findings in this study showed high prevalence, antimicrobial resistance, and the existence of virulence genes, suggesting that effective measures are required to ensure microbial safety from retail meats.
Collapse
Affiliation(s)
- Wu Wang
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Jing Chen
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Xuefei Shao
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Pan Huang
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Jing Zha
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| | - Yingwang Ye
- Engineering Research Center of Bio‐processMinistry of EducationHefei University of TechnologyHefeiChina
- School of Food and Biological EngineeringHefei University of TechnologyHefeiChina
| |
Collapse
|
6
|
Zhao S, Li C, Hsu CH, Tyson GH, Strain E, Tate H, Tran TT, Abbott J, McDermott PF. Comparative Genomic Analysis of 450 Strains of Salmonella enterica Isolated from Diseased Animals. Genes (Basel) 2020; 11:genes11091025. [PMID: 32883017 PMCID: PMC7564550 DOI: 10.3390/genes11091025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Salmonella is a leading cause of bacterial infections in animals and humans. We sequenced a collection of 450 Salmonella strains from diseased animals to better understand the genetic makeup of their virulence and resistance features. The presence of Salmonella pathogenicity islands (SPIs) varied by serotype. S. Enteritidis carried the most SPIs (n = 15), while S. Mbandaka, S. Cerro, S. Meleagridis, and S. Havana carried the least (n = 10). S. Typhimurium, S. Choleraesuis, S. I 4,5,12:i:-, and S. Enteritidis each contained the spv operon on IncFII or IncFII-IncFIB hybrid plasmids. Two S. IIIa carried a spv operon with spvD deletion on the chromosome. Twelve plasmid types including 24 hybrid plasmids were identified. IncA/C was frequently associated with S. Newport (83%) and S. Agona (100%) from bovine, whereas IncFII (100%), IncFIB (100%), and IncQ1 (94%) were seen in S. Choleraesuis from swine. IncX (100%) was detected in all S. Kentucky from chicken. A total of 60 antimicrobial resistance genes (ARGs), four disinfectant resistances genes (DRGs) and 33 heavy metal resistance genes (HMRGs) were identified. The Salmonella strains from sick animals contained various SPIs, resistance genes and plasmid types based on the serotype and source of the isolates. Such complicated genomic structures shed light on the strain characteristics contributing to the severity of disease and treatment failures in Salmonella infections, including those causing illnesses in animals.
Collapse
|
7
|
Lazdins A, Maurya AP, Miller CE, Kamruzzaman M, Liu S, Stephens ER, Lloyd GS, Haratianfar M, Chamberlain M, Haines AS, Kreft JU, Webber MA, Iredell J, Thomas CM. Potentiation of curing by a broad-host-range self-transmissible vector for displacing resistance plasmids to tackle AMR. PLoS One 2020; 15:e0225202. [PMID: 31940351 PMCID: PMC6961859 DOI: 10.1371/journal.pone.0225202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Plasmids are potent vehicles for spread of antibiotic resistance genes in bacterial populations and often persist in the absence of selection due to efficient maintenance mechanisms. We previously constructed non-conjugative high copy number plasmid vectors that efficiently displace stable plasmids from enteric bacteria in a laboratory context by blocking their replication and neutralising their addiction systems. Here we assess a low copy number broad-host-range self-transmissible IncP-1 plasmid as a vector for such curing cassettes to displace IncF and IncK plasmids. The wild type plasmid carrying the curing cassette displaces target plasmids poorly but derivatives with deletions near the IncP-1 replication origin that elevate copy number about two-fold are efficient. Verification of this in mini IncP-1 plasmids showed that elevated copy number was not sufficient and that the parB gene, korB, that is central to its partitioning and gene control system, also needs to be included. The resulting vector can displace target plasmids from a laboratory population without selection and demonstrated activity in a mouse model although spread is less efficient and requires additional selection pressure.
Collapse
Affiliation(s)
- Alessandro Lazdins
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anand Prakash Maurya
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Claire E. Miller
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Muhammad Kamruzzaman
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Shuting Liu
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Elton R. Stephens
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Georgina S. Lloyd
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mona Haratianfar
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Melissa Chamberlain
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Anthony S. Haines
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jan-Ulrich Kreft
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Mark. A. Webber
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| | - Jonathan Iredell
- University of Sydney, Centre for Infectious Disease & Microbiology, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Christopher M. Thomas
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, England, United Kingdom
| |
Collapse
|
8
|
Hsu CH, Li C, Hoffmann M, McDermott P, Abbott J, Ayers S, Tyson GH, Tate H, Yao K, Allard M, Zhao S. Comparative Genomic Analysis of Virulence, Antimicrobial Resistance, and Plasmid Profiles of Salmonella Dublin Isolated from Sick Cattle, Retail Beef, and Humans in the United States. Microb Drug Resist 2019; 25:1238-1249. [PMID: 31149890 PMCID: PMC11555760 DOI: 10.1089/mdr.2019.0045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Dublin is a host-adapted serotype associated with typhoidal disease in cattle. While rare in humans, it usually causes severe illness, including bacteremia. In the United States, Salmonella Dublin has become one of the most multidrug-resistant (MDR) serotypes. To understand the genetic elements that are associated with virulence and resistance, we sequenced 61 isolates of Salmonella Dublin (49 from sick cattle and 12 from retail beef) using the Illumina MiSeq and closed 5 genomes using the PacBio sequencing platform. Genomic data of eight human isolates were also downloaded from NCBI (National Center for Biotechnology Information) for comparative analysis. Fifteen Salmonella pathogenicity islands (SPIs) and a spv operon (spvRABCD), which encodes important virulence factors, were identified in all 69 (100%) isolates. The 15 SPIs were located on the chromosome of the 5 closed genomes, with each of these isolates also carrying 1 or 2 plasmids with sizes between 36 and 329 kb. Multiple antimicrobial resistance genes (ARGs), including blaCMY-2, blaTEM-1B, aadA12, aph(3')-Ia, aph(3')-Ic, strA, strB, floR, sul1, sul2, and tet(A), along with spv operons were identified on these plasmids. Comprehensive antimicrobial resistance genotypes were determined, including 17 genes encoding resistance to 5 different classes of antimicrobials, and mutations in the housekeeping gene (gyrA) associated with resistance or decreased susceptibility to fluoroquinolones. Together these data revealed that this panel of Salmonella Dublin commonly carried 15 SPIs, MDR/virulence plasmids, and ARGs against several classes of antimicrobials. Such genomic elements may make important contributions to the severity of disease and treatment failures in Salmonella Dublin infections in both humans and cattle.
Collapse
Affiliation(s)
- Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Patrick McDermott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Jason Abbott
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Sherry Ayers
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Gregory H. Tyson
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| | - Kuan Yao
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Marc Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
9
|
Futoma-Kołoch B, Bugla-Płoskońska G, Dudek B, Dorotkiewicz-Jach A, Drulis-Kawa Z, Gamian A. Outer Membrane Proteins of Salmonella as Potential Markers of Resistance to Serum, Antibiotics and Biocides. Curr Med Chem 2019; 26:1960-1978. [PMID: 30378478 DOI: 10.2174/0929867325666181031130851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 01/05/2023]
Abstract
Salmonellosis continues to be a significant worldwide health problem. Despite rapid progress in identifying mechanisms of Salmonella virulence and resistance to chemicals, our knowledge of these mechanisms remains limited. Furthermore, it appears that the resistance to antibiotics can be amplified by ubiquitous usage of the disinfectants (biocides), both by industry and by ordinary households. Salmonella, as other Gram-negative bacteria possess outer membrane proteins (OMPs), which participate in maintaining cell integrity, adapting to environment, and interacting with infected host. Moreover, the OMPs may also contribute to resistance to antibacterials. This review summarizes the role of OMPs in Salmonella serum resistance, antibiotics resistance and cross-resistance to biocides. Although collected data do not allow to assign OMPs as markers of the Salmonella susceptibility to the above-mentioned factors, some of these proteins retain a dominant presence in certain types of resistance.
Collapse
Affiliation(s)
- Bożena Futoma-Kołoch
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Agata Dorotkiewicz-Jach
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Zuzanna Drulis-Kawa
- Department of Pathogen Biology and Immunology, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63-77, 51-148 Wroclaw, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
10
|
Tolerance to benzalkonium chloride and antimicrobial activity of Butia odorata Barb. Rodr. extract in Salmonella spp. isolates from food and food environments. Food Res Int 2019; 116:652-659. [DOI: 10.1016/j.foodres.2018.08.092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/21/2018] [Accepted: 08/19/2018] [Indexed: 11/23/2022]
|
11
|
Iglesias MA, Kroning IS, Decol LT, de Melo Franco BDG, Silva WPD. Occurrence and phenotypic and molecular characterization of Listeria monocytogenes and Salmonella spp. in slaughterhouses in southern Brazil. Food Res Int 2017; 100:96-101. [DOI: 10.1016/j.foodres.2017.06.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/07/2017] [Accepted: 06/10/2017] [Indexed: 11/26/2022]
|
12
|
Fernandes FP, Voloski FLS, Ramires T, Haubert L, Reta GG, Mondadori RG, Silva WPD, Conceição RDCDSD, Duval EH. Virulence and antimicrobial resistance of Salmonella spp. and Escherichia coli in the beef jerky production line. FEMS Microbiol Lett 2017; 364:3746133. [DOI: 10.1093/femsle/fnx083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
|
13
|
Rowlands REG, Ristori CA, Ikuno AA, Barbosa ML, Jakabi M, Franco BDGDM. Prevalence of drug resistance and virulence features in Salmonella spp. isolated from foods associated or not with salmonellosis in Brazil. Rev Inst Med Trop Sao Paulo 2015; 56:461-7. [PMID: 25351537 PMCID: PMC4296863 DOI: 10.1590/s0036-46652014000600001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 04/24/2014] [Indexed: 12/20/2022] Open
Abstract
Salmonella is the most common etiological agent of cases and outbreaks of foodborne diarrheal illnesses. The emergence and spread of Salmonella spp., which has become multi-drug resistant and potentially more pathogenic, have increased the concern with this pathogen. In this study, 237 Salmonella spp., associated or not with foodborne salmonellosis in Brazil, belonging mainly to serotype Enteritidis, were tested for antimicrobial susceptibility and the presence of the virulence genes spvC, invA, sefA and pefA. Of the isolates, 46.8% were sensitive to all antimicrobials and 51.9% were resistant to at least one antimicrobial agent. Resistance to more than one antimicrobial agent was observed in 10.5% of the strains. The highest rates of resistance were observed for streptomycin (35.9%) and nalidixic acid (16.9%). No strain was resistant to cefoxitin, cephalothin, cefotaxime, amikacin, ciprofloxacin and imipenem. The invA gene was detected in all strains. Genes spvC and pefA were found in 48.1% and 44.3% of strains, respectively. The gene sefA was detected in 31.6% of the strains and only among S. Enteritidis. Resistance and virulence determinants were detected in Salmonella strains belonging to several serotypes. The high rates of antibiotic-resistance in strains isolated from poultry products demonstrate the potential risk associated with the consumption of these products and the need to ensure good food hygiene practices from farm to table to reduce the spread of pathogens relevant to public health.
Collapse
Affiliation(s)
| | | | - Alice A Ikuno
- Immunology Laboratory, Biologico Institute, São Paulo, SP, Brazil
| | | | - Miyoko Jakabi
- Food Microbiology Laboratory, Adolfo Lutz Institute, São Paulo, SP, Brazil
| | | |
Collapse
|
14
|
Abed N, Grépinet O, Canepa S, Hurtado-Escobar GA, Guichard N, Wiedemann A, Velge P, Virlogeux-Payant I. Direct regulation of the pefI-srgC operon encoding the Rck invasin by the quorum-sensing regulator SdiA in Salmonella Typhimurium. Mol Microbiol 2014; 94:254-71. [PMID: 25080967 DOI: 10.1111/mmi.12738] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2014] [Indexed: 01/18/2023]
Abstract
One important step for the pathogenesis of Salmonella is its ability to penetrate host cells. Recently, a new entry system involving the outer membrane protein Rck has been characterized. Previous studies have shown that the pefI-srgC locus, which contains rck, was regulated by the temperature and SdiA, the transcriptional regulator of quorum sensing in Salmonella. To decipher the regulation of rck by SdiA, we first confirmed the operon organization of the pefI-srgC locus. Using plasmid-based transcriptional fusions, we showed that only the predicted distal promoter upstream of pefI, PefIP2, displays an SdiA- and acyl-homoserine lactones-dependent activity while the predicted proximal PefIP1 promoter exhibits a very low activity independent on SdiA in our culture conditions. A direct and specific interaction of SdiA with this PefIP2 region was identified using electrophoretic mobility shift assays and surface plasmon resonance studies. We also observed that Rck expression is negatively regulated by the nucleoid-associated H-NS protein at both 25°C and 37°C. This work is the first demonstration of a direct regulation of genes by SdiA in Salmonella and will help further studies designed to identify environmental conditions required for Rck expression and consequently contribute to better characterize the role of this invasin in vivo.
Collapse
Affiliation(s)
- Nadia Abed
- INRA, UMR1282 Infectiologie et Santé Publique, F-37380, Nouzilly, France; Université François Rabelais de Tours, UMR1282 Infectiologie et Santé Publique, F-37000, Tours, France; INRA, UMR7247 Physiologie de la Reproduction et des Comportements, F-37380, Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rossignol A, Roche SM, Virlogeux-Payant I, Wiedemann A, Grépinet O, Fredlund J, Trotereau J, Marchès O, Quéré P, Enninga J, Velge P. Deciphering why Salmonella Gallinarum is less invasive in vitro than Salmonella Enteritidis. Vet Res 2014; 45:81. [PMID: 25175996 PMCID: PMC4154518 DOI: 10.1186/s13567-014-0081-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/23/2014] [Indexed: 02/05/2023] Open
Abstract
Salmonella Gallinarum and Salmonella Enteritidis are genetically closely related however associated with different pathologies. Several studies have suggested that S. Gallinarum is less invasive in vitro than S. Enteritidis. In this study we confirm that the S. Gallinarum strains tested were much less invasive than the S. Enteritidis strains tested in cells of avian or human origin. In addition, the S. Gallinarum T3SS-1-dependent ability to invade host cells was delayed by two to three hours compared to S. Enteritidis, indicating that T3SS-1-dependent entry is less efficient in S. Gallinarum than S. Enteritidis. This was neither due to a decreased transcription of T3SS-1 related genes when bacteria come into contact with cells, as transcription of hilA, invF and sipA was similar to that observed for S. Enteritidis, nor to a lack of functionality of the S. Gallinarum T3SS-1 apparatus as this apparatus was able to secrete and translocate effector proteins into host cells. In contrast, genome comparison of four S. Gallinarum and two S. Enteritidis strains revealed that all S. Gallinarum genomes displayed the same point mutations in each of the main T3SS-1 effector genes sipA, sopE, sopE2, sopD and sopA.
Collapse
|
16
|
Capuano F, Mancusi A, Capparelli R, Esposito S, Proroga YT. Characterization of Drug Resistance and Virulotypes ofSalmonellaStrains Isolated from Food and Humans. Foodborne Pathog Dis 2013; 10:963-8. [DOI: 10.1089/fpd.2013.1511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
- Centro Pilota Tipizzazione Salmonelle (CePiTSa), c/o Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, Portici, Italy
| | - Andrea Mancusi
- Centro Interdipartimentale di Ricerche per la Gestione delle Risorse Idrobiologiche e per l'Acquacoltura (CRIAcq), Portici, Italy
| | | | - Salvatore Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
| | - Yolande T.R. Proroga
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
- Centro Pilota Tipizzazione Salmonelle (CePiTSa), c/o Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, Portici, Italy
| |
Collapse
|
17
|
Kiyonaka S, Kajimoto T, Sakaguchi R, Shinmi D, Omatsu-Kanbe M, Matsuura H, Imamura H, Yoshizaki T, Hamachi I, Morii T, Mori Y. Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells. Nat Methods 2013; 10:1232-8. [DOI: 10.1038/nmeth.2690] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/17/2013] [Indexed: 12/23/2022]
|
18
|
Vanden Bergh P, Frey J. Aeromonas salmonicida subsp. salmonicida in the light of its type-three secretion system. Microb Biotechnol 2013; 7:381-400. [PMID: 24119189 PMCID: PMC4229320 DOI: 10.1111/1751-7915.12091] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/27/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
Aeromonas salmonicida subsp. salmonicida is an important pathogen in salmonid aquaculture and is responsible for the typical furunculosis. The type-three secretion system (T3SS) is a major virulence system. In this work, we review structure and function of this highly sophisticated nanosyringe in A. salmonicida. Based on the literature as well as personal experimental observations, we document the genetic (re)organization, expression regulation, anatomy, putative functional origin and roles in the infectious process of this T3SS. We propose a model of pathogenesis where A. salmonicida induces a temporary immunosuppression state in fish in order to acquire free access to host tissues. Finally, we highlight putative important therapeutic and vaccine strategies to prevent furunculosis of salmonid fish.
Collapse
Affiliation(s)
- Philippe Vanden Bergh
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | |
Collapse
|
19
|
Studer N, Frey J, Vanden Bergh P. Clustering subspecies of Aeromonas salmonicida using IS630 typing. BMC Microbiol 2013; 13:36. [PMID: 23406017 PMCID: PMC3608246 DOI: 10.1186/1471-2180-13-36] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 11/17/2022] Open
Abstract
Background The insertion element IS630 found in Aeromonas salmonicida belongs to the IS630-Tc1-mariner superfamily of transposons. It is present in multiple copies and represents approximately half of the IS present in the genome of A. salmonicida subsp. salmonicida A449. Results By using High Copy Number IS630 Restriction Fragment Length Polymorphism (HCN-IS630-RFLP), strains of various subspecies of Aeromonas salmonicida showed conserved or clustering patterns, thus allowing their differentiation from each other. Fingerprints of A. salmonicida subsp. salmonicida showed the highest homogeneity while ‘atypical’ A. salmonicida strains were more heterogeneous. IS630 typing also differentiated A. salmonicida from other Aeromonas species. The copy number of IS630 in Aeromonas salmonicida ranges from 8 to 35 and is much lower in other Aeromonas species. Conclusions HCN-IS630-RFLP is a powerful tool for subtyping of A. salmonicida. The high stability of IS630 insertions in A. salmonicida subsp. salmonicida indicates that it might have played a role in pathoadaptation of A. salmonicida which has reached an optimal configuration in the highly virulent and specific fish pathogen A. salmonicida subsp. salmonicida.
Collapse
Affiliation(s)
- Nicole Studer
- Institute of Veterinary Bacteriology, University of Bern, Länggassstrasse 122, Bern, Switzerland
| | | | | |
Collapse
|
20
|
Bolton DJ, Ivory C, McDowell D. A study of Salmonella in pigs from birth to carcass: Serotypes, genotypes, antibiotic resistance and virulence profiles. Int J Food Microbiol 2013; 160:298-303. [DOI: 10.1016/j.ijfoodmicro.2012.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/19/2012] [Accepted: 11/03/2012] [Indexed: 10/27/2022]
|
21
|
Brankatschk K, Blom J, Goesmann A, Smits T, Duffy B. Comparative genomic analysis of Salmonella enterica subsp. enterica serovar Weltevreden foodborne strains with other serovars. Int J Food Microbiol 2012; 155:247-56. [DOI: 10.1016/j.ijfoodmicro.2012.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/14/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022]
|
22
|
Tzeng JI, Chu CH, Chen SW, Yeh CM, Chiu CH, Chiou CS, Lin JH, Chu C. Reduction of Salmonella enterica serovar Choleraesuis carrying large virulence plasmids after the foot and mouth disease outbreak in swine in southern Taiwan, and their independent evolution in human and pig. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2011; 45:418-25. [PMID: 22209685 DOI: 10.1016/j.jmii.2011.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/20/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND/PURPOSE Salmonella enterica serovar Choleraesuis (S. Choleraesuis) is a highly invasive zoonotic pathogen that causes bacteremia in humans and pigs. The prevalence of S. Choleraesuis in man has gradually decreased since the outbreak of foot and mouth disease in pigs in 1997 in southern Taiwan. The goal of this study was to investigate the change in prevalence of S. Choleraesuis carrying the virulence plasmid (pSCV) in human and swine isolates collected in 1995-2005 and characterize these. METHODS 380 isolates were collected from human and swine blood samples. Large pSCVs were determined by PCR and Southern blot analysis. Antimicrobial susceptibility and resistance genes, and the phylogenetic association of these large pSCV were analyzed. RESULTS The number of isolates harboring the large pSCV was significantly reduced, and their prevalence differed between human and swine isolates. These large pSCVs were a recombinant of original 50-kb pSCV and R plasmid. In addition, some large pSCVs lacked two pSCV-specific deletion regions from pef to repC and from traT to samA. These large pSCVs carried the resistance genes bla(TEM,)aadA2, and sulI, as well as class I integrons of 0.65 and/or 1.9 kb in size, but were inconjugatible. Phylogenetic analysis demonstrated that the large pSCV evolves independently in human and swine isolates. CONCLUSION S. Choleraesuis with large pSCV was significantly reduced after the foot and mouth disease outbreak and may evolve in human and swine specific isolates.
Collapse
Affiliation(s)
- Jann-Inn Tzeng
- Department of Anesthesiology, Chi Mei Medical Center, Yong Kang City, Tainan, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Miniature inverted terminal repeat elements (MITEs) are nonautonomous mobile elements that have a significant impact on bacterial evolution. Here we characterize E622, a 611-bp virulence-associated MITE from Pseudomonas syringae, which contains no coding region but has almost perfect 168-bp inverted repeats. Using an antibiotic coupling assay, we show that E622 is transposable and can mobilize an antibiotic resistance gene contained between its borders. Its predicted parent element, designated TnE622, has a typical transposon structure with a three-gene operon, consisting of resolvase, integrase, and exeA-like genes, which is bounded by the same terminal inverted repeats as E622. A broader genome level survey of the E622/TnE622 inverted repeats identified homologs in Pseudomonas, Salmonella, Shewanella, Erwinia, Pantoea, and the cyanobacteria Nostoc and Cyanothece, many of which appear to encompass known virulence genes, including genes encoding toxins, enzymes, and type III secreted effectors. Its association with niche-specific genetic determinants, along with its persistence and evolutionary diversification, indicates that this mobile element family has played a prominent role in the evolution of many agriculturally and clinically relevant pathogenic bacteria.
Collapse
|
24
|
Bolton DJ, O'Neill CJ, Fanning S. A Preliminary Study of Salmonella, Verocytotoxigenic Escherichia coli/Escherichia coli O157 and Campylobacter on Four Mixed Farms. Zoonoses Public Health 2011; 59:217-28. [PMID: 21951421 DOI: 10.1111/j.1863-2378.2011.01438.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D J Bolton
- Ashtown Food Research Centre, Ashtown, Dublin, Ireland.
| | | | | |
Collapse
|
25
|
Dahshan H, Shahada F, Chuma T, Moriki H, Okamoto K. Genetic analysis of multidrug-resistant Salmonella enterica serovars Stanley and Typhimurium from cattle. Vet Microbiol 2010; 145:76-83. [DOI: 10.1016/j.vetmic.2010.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/23/2010] [Accepted: 02/25/2010] [Indexed: 11/16/2022]
|
26
|
Nógrády N, Imre A, Kostyák A, Tóth A, Nagy B. Molecular and pathogenic characterization of Salmonella enterica serovar Bovismorbificans strains of animal, environmental, food, and human origin in Hungary. Foodborne Pathog Dis 2010; 7:507-13. [PMID: 20001326 DOI: 10.1089/fpd.2009.0420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we characterized 110 strains of Salmonella enterica serovar Bovismorbificans contaminating environment, animals, food of animal origin, and human, to assess their significance along the food chain in Hungary. Additionally, five strains from Germany were tested for comparative purposes. Characterization involved antibiotic susceptibility testing, class 1 integron detection by polymerase chain reaction, plasmid profiling, virulotyping (using virulence gene-specific polymerase chain reactions), and pulsed-field gel electrophoresis. Pathogenic potential of selected strains was tested in orally infected 1-day-old specific pathogen-free chicks. Eighty-two percent of the strains were susceptible to the 16 antibiotics tested, and none of them had class 1 integron. A multidrug-resistant human isolate harbored a bla(SHV5)-type extended-spectrum beta-lactamase gene, first reported in this serotype. All the strains possessed avrA, ssaQ, mgtC, spi4, and sopB genes indicating the presence of Salmonella pathogenicity islands 1-5, respectively, missed the phage-related genes sopE and gipA, but retained the phage-related gene sodC1. An approximately 90 kb large plasmid was characteristic to 80% of the strains, all of which carried the spvC gene. In vivo colonization testing of four selected strains in 1-day-old chicks resulted in significantly reduced liver and spleen colonization ability as compared with the Salmonella Enteritidis control strain, whereas their caecal colonization ability differed less from that of Salmonella Enteritidis. Pulsed-field gel electrophoresis data revealed the dominance of two pulsotypes (C2 and C5) without any specific temporal, geographical, and/or source-related linkages. The results show that Salmonella Bovismorbificans studied here are less invasive than Salmonella Enteritidis, but they may colonize and persist in several animal species and successfully contaminate meat products of different animal origin in Hungary.
Collapse
Affiliation(s)
- Noémi Nógrády
- National Center for Epidemiology, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
27
|
Abstract
A key stage in determining the phenotype(s) conferred by a plasmid is its displacement, or 'curing,' to create a plasmid-free strain. However, many plasmids are very stable, not only because they contain multiple replicons, but also because they can encode post-segregational killing systems that reduce the viability of plasmid-free segregants. We have developed an efficient curing strategy that involves combining key regions of the replicons and the post-segregational killing loci into an unstable cloning vector carrying sacB, which confers sensitivity to sucrose. Targeting plasmids of both the F family of Escherichia coli and the broad-host-range IncP-1 family, we demonstrated displacement of susceptible resident plasmids from all clones tested. Growth on sucrose allowed the isolation of many clones without either plasmid. This strategy is highly efficient and avoids the stress of inducing and surviving the effects of post-segregational killing systems or other lethal gene products.
Collapse
|
28
|
Prevalence of Salmonella enterica in poultry and eggs in Uruguay during an epidemic due to Salmonella enterica serovar Enteritidis. J Clin Microbiol 2010; 48:2413-23. [PMID: 20484605 DOI: 10.1128/jcm.02137-09] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) is frequently associated with food-borne disease worldwide. Poultry-derived products are a major source. An epidemic of human infection with S. Enteritidis occurred in Uruguay, and to evaluate the extent of poultry contamination, we conducted a nationwide survey over 2 years that included the analysis of sera from 5,751 birds and 12,400 eggs. Serological evidence of infection with Salmonella group O:9 was found in 24.4% of the birds. All positive sera were retested with a gm flagellum-based enzyme-linked immunosorbent assay, and based on these results, the national prevalence of S. Enteritidis infection was estimated to be 6.3%. Salmonellae were recovered from 58 of 620 pools made up of 20 eggs each, demonstrating a prevalence of at least 1 in every 214 eggs. Surprisingly, the majority of the isolates were not S. Enteritidis. Thirty-nine isolates were typed as S. Derby, 9 as S. Gallinarum, 8 as S. Enteritidis, and 2 as S. Panama. Despite the highest prevalence in eggs, S. Derby was not isolated from humans in the period of analysis, suggesting a low capacity to infect humans. Microarray-based comparative genomic hybridization analysis of S. Derby and S. Enteritidis revealed more than 350 genetic differences. S. Derby lacked pathogenicity islands 13 and 14, the fimbrial lpf operon, and other regions encoding metabolic functions. Several of these regions are present not only in serovar Enteritidis but also in all sequenced strains of S. Typhimurium, suggesting that these regions might be related to the capacity of Salmonella to cause food-borne disease.
Collapse
|
29
|
FUTAGAWA-SAITO K, OKATANI AT, SAKURAI-KOMADA N, BA-THEIN W, FUKUYASU T. Epidemiological Characteristics of Salmonella enterica Serovar Typhimurium from Healthy Pigs in Japan. J Vet Med Sci 2010; 72:61-6. [DOI: 10.1292/jvms.09-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
| | | | - Naomi SAKURAI-KOMADA
- Center for Medical Sciences, School of Health Sciences, Ibaraki Prefectural University of Health Sciences
| | - William BA-THEIN
- Department of Animal Health 2, School of Veterinary Medicine, Azabu University
- Department of Microbiology and Immunology, Shantou University Medical College
| | - Tsuguaki FUKUYASU
- Department of Animal Health 2, School of Veterinary Medicine, Azabu University
| |
Collapse
|
30
|
Botteldoorn N, Van Coillie E, Goris J, Werbrouck H, Piessens V, Godard C, Scheldeman P, Herman L, Heyndrickx M. Limited genetic diversity and gene expression differences between egg- and non-egg-related Salmonella Enteritidis strains. Zoonoses Public Health 2009; 57:345-57. [PMID: 19486501 DOI: 10.1111/j.1863-2378.2008.01216.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Salmonella Enteritidis strains of egg- and non-egg-related origin were characterized molecularly to find markers correlated with the egg-contaminating property of Salmonella Enteritidis. Isolates were examined by random amplified polymorphic DNA (RAPD), plasmid profiling and phage typing. Furthermore, the presence of 30 virulence genes was tested by PCR. In genetic fingerprinting and gene content, only small differences between the strains were found and no correlation was observed with the origin (egg-related versus non-egg-related). A major RADP group was present in both egg- and non-egg-related strains, but other smaller RAPD groups were present as well in both categories of strains. Phage types PT4 and PT21 were predominant. Differential mRNA expression levels of fimA and agfA under conditions of growth simulating the conditions during egg formation were determined by real-time RT-PCR. Although differences in fimA and agfA expression levels were observed between the strains, these could not be correlated with the origin of the strains (egg-related versus non-egg-related). The highest expression levels of agfA and fimA were only found in two non-egg-related strains, which seemed to be correlated with the presence of a 93 kb plasmid instead of the 60 kb virulence plasmid. Our results seem to indicate only a limited role for at least type I fimbriae (encoded by fim operon) in egg contamination by Salmonella Enteritidis.
Collapse
Affiliation(s)
- N Botteldoorn
- Flemish Government, Institute for Agricultural and Fisheries Research (ILVO), Technology and Food Unit, Melle, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li-nong M, Hua-wei L. Rapid detection of Salmonella with virulence plasmid. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Hong SF, Chiu CH, Chu C, Feng Y, Ou JT. Complete nucleotide sequence of a virulence plasmid ofSalmonella entericaserovar Dublin and its phylogenetic relationship to the virulence plasmids of serovars Choleraesuis, Enteritidis and Typhimurium. FEMS Microbiol Lett 2008; 282:39-43. [DOI: 10.1111/j.1574-6968.2008.01096.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
33
|
Schlüter A, Krause L, Szczepanowski R, Goesmann A, Pühler A. Genetic diversity and composition of a plasmid metagenome from a wastewater treatment plant. J Biotechnol 2008; 136:65-76. [PMID: 18603322 DOI: 10.1016/j.jbiotec.2008.03.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 11/24/2022]
Abstract
Plasmid metagenome nucleotide sequence data were recently obtained from wastewater treatment plant (WWTP) bacteria with reduced susceptibility to selected antimicrobial drugs by applying the ultrafast 454-sequencing technology. The sequence dataset comprising 36,071,493 bases (346,427 reads with an average read length of 104 bases) was analysed for genetic diversity and composition by using a newly developed bioinformatic pipeline based on assignment of environmental gene tags (EGTs) to protein families stored in the Pfam database. Short amino acid sequences deduced from the plasmid metagenome sequence reads were compared to profile hidden Markov models underlying Pfam. Obtained matches evidenced that many reads represent genes having predicted functions in plasmid replication, stability and plasmid mobility which indicates that WWTP bacteria harbour genetically stabilised and mobile plasmids. Moreover, the data confirm a high diversity of plasmids residing in WWTP bacteria. The mobile organic peroxide resistance plasmid pMAC from Acinetobacter baumannii was identified as reference plasmid for the most abundant replication module type in the sequenced sample. Accessory plasmid modules encode different transposons, insertion sequences, integrons, resistance and virulence determinants. Most of the matches to Transposase protein families were identified for transposases similar to the one of the chromate resistance transposon Tn5719. Noticeable are hits to beta-lactamase protein families which suggests that plasmids from WWTP bacteria encode different enzymes possessing beta-lactam-hydrolysing activity. Some of the sequence reads correspond to antibiotic resistance genes that were only recently identified in clinical isolates of human pathogens. EGT analysis thus proofed to be a very valuable method to explore genetic diversity and composition of the present plasmid metagenome dataset.
Collapse
Affiliation(s)
- Andreas Schlüter
- Department of Genetics, Bielefeld University, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | |
Collapse
|
34
|
Adamczyk M, Dolowy P, Jonczyk M, Thomas CM, Jagura-Burdzy G. The kfrA gene is the first in a tricistronic operon required for survival of IncP-1 plasmid R751. MICROBIOLOGY-SGM 2006; 152:1621-1637. [PMID: 16735726 DOI: 10.1099/mic.0.28495-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The kfrA gene of the IncP-1 broad-host-range plasmids is the best-studied member of a growing gene family that shows strong linkage to the minimal replicon of many low-copy-number plasmids. KfrA is a DNA binding protein with a long, alpha-helical, coiled-coil tail. Studying IncP-1beta plasmid R751, evidence is presented that kfrA and its downstream genes upf54.8 and upf54.4 were organized in a tricistronic operon (renamed here kfrA kfrB kfrC), expressed from autoregulated kfrAp, that was also repressed by KorA and KorB. KfrA, KfrB and KfrC interacted and may have formed a multi-protein complex. Inactivation of either kfrA or kfrB in R751 resulted in long-term accumulation of plasmid-negative bacteria, whereas wild-type R751 itself persisted without selection. Immunofluorescence studies showed that KfrA(R751) formed plasmid-associated foci, and deletion of the C terminus of KfrA caused plasmid R751DeltaC2kfrA foci to disperse and mislocalize. Thus, the KfrABC complex may be an important component in the organization and control of the plasmid clusters that seem to form the segregating unit in bacterial cells. The studied operon is therefore part of the set of functions needed for R751 to function as an efficient vehicle for maintenance and spread of genes in Gram-negative bacteria.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Central Institute of Labour Protection, National Research Institute, 00-701 Warsaw, Czerniakowska 16, Poland
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Patrycja Dolowy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Michal Jonczyk
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| | - Christopher M Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Grazyna Jagura-Burdzy
- The Institute of Biochemistry and Biophysics, Polish Academy of Sciences (PAS), 02-106 Warsaw, Pawinskiego 5A, Poland
| |
Collapse
|
35
|
Chao L, Qiyu B, Fuping S, Ming S, Dafang H, Guiming L, Ziniu Y. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid 2006; 57:44-54. [PMID: 16901541 DOI: 10.1016/j.plasmid.2006.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Revised: 05/22/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
The complete nucleotide sequence of a large (67kb) cryptic plasmid pBMB67 from Bacillus thuringiensis strain YBT-1520 was determined. Of the 74 predicted open reading frames (ORFs), 25 (34%) were assigned putative functions, 18 (24%) encoded conserved hypothetical proteins, and 31 (42%) had no homology to any genes present in the current open databases. The ORFs with similar functions were organized in a modular structure; thus, the DNA sequence of pBMB67 could be functionally divided into three modules, including a 39kb transfer region encoding homologs of the Agrobacterium tumefaciens VirB/D4 system components VirB1, VirB4, VirB11, and VirD4, as well as homologs of Gram-positive conjugation proteins. We also found a potential operon that was analogous to the Rap-Phr cassettes from Bacillus subtilis, which are involved in cell-cell communication and transcriptional regulation. Thus, we suggest that pBMB67 is likely to be implicated in cell-cell signaling and plays a role in the regulation of several cellular processes, with the production of exoprotease being one of the candidates.
Collapse
Affiliation(s)
- Liu Chao
- State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbe Pesticides, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Chu C, Chiu CH. Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. Microbes Infect 2006; 8:1931-6. [PMID: 16713725 DOI: 10.1016/j.micinf.2005.12.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 12/28/2005] [Indexed: 11/24/2022]
Abstract
Among more than 2,500 serovars, eight contain a virulence plasmid, including medically important Salmonella enterica serovars Choleraesuis, Dublin, Enteritidis, and Typhimurium. These serovar-specific virulence plasmids vary in size, but all contain the spv operon, which plays a role in the expression of the virulence. Genetically, these virulence plasmids are likely derived from a common ancestral plasmid possessing virulence-related genes and loci. Based on the analysis of the available DNA sequences of the plasmids, the phylogenetic path may be split into two: pSPV (virulence plasmid of S. Gallinarum-Pullorum) acquires an incompatibility-related locus that differs from that of the others. At some point, pSCV (virulence plasmid of S. Choleraesuis) and pSDV (virulence plasmid of S. Dublin) lose oriT by recombination or simply by deletion, making the two unable to be mobilized. On the other hand, pSEV (virulence plasmid of S. Enteritidis) also loses some DNA by deletion but not as extensively as pSCV, and therefore pSEV is closest to pSTV (virulence plasmid of S. Typhimurium) both genetically and biologically. The pSTV shows the least alternation during the evolution. There are two types of pSDV. pSDVu recombines with non-virulence 36.6-kb plasmid to acquire additional incompatibility trait to form pSDVr. Recent reports indicated that S. Choleraesuis and S. Typhimurium could generate different types of hybrid plasmids, which consisted of the serovar-specific virulence plasmid and an array of resistance gene cassettes. The recombination gives Salmonella a survival advantage in an unfavorable drug environment. The integration of resistance genes and additional replicons into a Salmonella virulence plasmid constitutes a new and interesting example of plasmid evolution and poses a serious threat to public health.
Collapse
Affiliation(s)
- Chishih Chu
- Department of Applied Microbiology, National Chiayi University, Chiayi, Taiwan
| | | |
Collapse
|
37
|
Namimatsu T, Asai T, Osumi T, Imai Y, Sato S. Prevalence of the virulence plasmid in Salmonella Typhimurium isolates from pigs. J Vet Med Sci 2006; 68:187-8. [PMID: 16520545 DOI: 10.1292/jvms.68.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To determine the prevalence of the virulence plasmid in Salmonella Typhimurium isolates from pigs in Japan, a total of 106 porcine isolates were subjected to PCR amplification for the detection of the virulence plasmid. Out of the isolates of S. Typhimurium, 38 (35.8%) harbored the virulence plasmid. The presence of the virulence plasmid was widely observed in the isolates from systemically infected pigs (92.0%, 23/25), compared with diarrheic (18.8%, 12/64) and apparently healthy pigs (17.6%, 3/17) (P<0.01).
Collapse
|
38
|
Yu H, Wang J, Ye J, Tang P, Chu C, Hu S, Chiu CH. Complete nucleotide sequence of pSCV50, the virulence plasmid of Salmonella enterica serovar Choleraesuis SC-B67. Plasmid 2006; 55:145-51. [PMID: 16257053 DOI: 10.1016/j.plasmid.2005.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Revised: 08/30/2005] [Accepted: 09/02/2005] [Indexed: 11/18/2022]
Abstract
We carried out comparative analysis on the sequences of two 50-kb virulence plasmids of Salmonella enterica serovar Choleraesuis strains SC-B67 (pSCV50) and RF-1 (pKDSC50). The two plasmids share over 99% sequence similarity. Ninety-two nucleotide variations at 42 sites were detected between the two plasmids; pSCV50 contains 24 nucleotide substitutions, 6 deletions, and 62 insertions, compared to pKDSC50. Two regions in pSCV50 appeared to be more susceptible to changes: one is the non-virulence-associated transfer region (27.5-33.0 K) and the other a function-unknown region (9.0-10.5 K). We re-annotated pSCV50 using more advanced tools and the up-to-date databases and corrected the inaccurate annotation in pKDSC50. The results indicate that virulence-related genes on the 50-kb plasmid are under negative selection, suggesting that they play important roles in the expression of virulence during the process of infection, while other genes in this plasmid tend to evolve neutrally.
Collapse
Affiliation(s)
- Hong Yu
- James D. Watson Institute of Genome Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
39
|
van Asten AJAM, van Dijk JE. Distribution of "classic" virulence factors among Salmonella spp. ACTA ACUST UNITED AC 2006; 44:251-9. [PMID: 15907446 DOI: 10.1016/j.femsim.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Revised: 01/27/2005] [Accepted: 02/02/2005] [Indexed: 11/16/2022]
Abstract
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.
Collapse
Affiliation(s)
- Alphons J A M van Asten
- Department of Pathobiology, Division Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, P.O. Box 80.158, 3508TD, Utrecht, The Netherlands.
| | | |
Collapse
|
40
|
Imre A, Olasz F, Kiss J, Nagy B. A novel transposon-based method for elimination of large bacterial plasmids. Plasmid 2006; 55:235-41. [PMID: 16439018 DOI: 10.1016/j.plasmid.2005.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/16/2005] [Accepted: 11/19/2005] [Indexed: 11/20/2022]
Abstract
Elimination or modification of large plasmids of bacteria is often an essential step in functional analysis of these replicons. However, the conventional plasmid-curing procedures such as ethidium bromide and heat treatment are insufficient in many cases. For instance, curing of the large virulence plasmid of Salmonella Enteritidis 2,102 has failed when these treatments were applied. To overcome the difficulties, a two-step transposon-based curing method has been developed. First, a Tn10-based transposable unit carrying a Km(R) marker gene and the joined IS30 ends transposes from a replication deficient conjugative plasmid into the target replicon. Then, the inducible IS30 transposase, using the highly reactive joined IS30 ends, mediates deletions or gives rise to the loss of the target plasmid. The efficiency of the method has been monitored by the frequency of Km(S) colonies after induction of IS30 transposase, and it was shown that the Km(S) phenotype often accompanied the complete loss of the virulence plasmid or the formation of deletion derivatives. The procedure has been successfully applied also in removing the large virulence plasmid from enterotoxigenic Escherichia coli (ETEC O147), suggesting that the transposon-based method can be a useful tool for eliminating native plasmids in several bacteria.
Collapse
Affiliation(s)
- Ariel Imre
- Veterinary Medical Research Institute of Hungarian Academy of Sciences, H-1143 Budapest, Hungária St. 21, Hungary
| | | | | | | |
Collapse
|
41
|
Wallis TS, Barrow PA. Salmonella Epidemiology and Pathogenesis in Food-Producing Animals. EcoSal Plus 2005; 1. [PMID: 26443521 DOI: 10.1128/ecosalplus.8.6.2.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Indexed: 06/05/2023]
Abstract
This review reviews the pathogenesis of different phases of Salmonella infections. The nature of Salmonella infections in several domesticated animal species is described to highlight differences in the epidemiology and pathogenesis of salmonellosis in different hosts. The biology of Salmonella serovar host specificity is discussed in the context of our current understanding of the molecular basis of pathogenesis and the potential impact of different virulence determinants on Salmonella natural history. The ability to colonize the intestine, as evidenced by the shedding of relatively large numbers of bacteria in the feces over a long period, is shared unequally by Salmonella serovars. Studies probing the molecular basis of Salmonella intestinal colonization have been carried out by screening random transposon mutant banks of serovar Typhimurium in a range of avian and mammalian species. It is becoming increasingly clear that Salmonella pathogenicity island 2 (SPI2) is a major virulence factor during infection of food-producing animals, including cattle and poultry. The prevalence of Salmonella serovars in domestic fowl varies in different countries and with time. Although chickens are the natural hosts of serovars Gallinarum and Pullorum, natural outbreaks caused by these serovars in turkeys, guinea fowl, and other avian species have been described. There are two possible explanations to account for the apparent host specificity of certain Salmonella serovars. Environmental factors may increase exposure of particular animal species to certain serovars. Alternatively, there are genetic differences between these serovars, which allow them to survive and/or grow in specific niches only found within ruminants or pigs.
Collapse
Affiliation(s)
- Timothy S Wallis
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, United Kingdom
| | - Paul A Barrow
- Division of Microbiology, Institute for Animal Health, Compton Laboratory, Berkshire RG20 7NN, United Kingdom
| |
Collapse
|
42
|
Morales CA, Porwollik S, Frye JG, Kinde H, McClelland M, Guard-Bouldin J. Correlation of phenotype with the genotype of egg-contaminating Salmonella enterica serovar Enteritidis. Appl Environ Microbiol 2005; 71:4388-99. [PMID: 16085829 PMCID: PMC1183325 DOI: 10.1128/aem.71.8.4388-4399.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 02/21/2005] [Indexed: 01/01/2023] Open
Abstract
The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37 degrees C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25 degrees C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25 degrees C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37 degrees C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.
Collapse
Affiliation(s)
- Cesar A Morales
- Egg Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, 950 College Station Rd., Athens, GA 30605, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bishop AL, Baker S, Jenks S, Fookes M, Gaora PO, Pickard D, Anjum M, Farrar J, Hien TT, Ivens A, Dougan G. Analysis of the hypervariable region of the Salmonella enterica genome associated with tRNA(leuX). J Bacteriol 2005; 187:2469-82. [PMID: 15774890 PMCID: PMC1065210 DOI: 10.1128/jb.187.7.2469-2482.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The divergence of Salmonella enterica and Escherichia coli is estimated to have occurred approximately 140 million years ago. Despite this evolutionary distance, the genomes of these two species still share extensive synteny and homology. However, there are significant differences between the two species in terms of genes putatively acquired via various horizontal transfer events. Here we report on the composition and distribution across the Salmonella genus of a chromosomal region designated SPI-10 in Salmonella enterica serovar Typhi and located adjacent to tRNA(leuX). We find that across the Salmonella genus the tRNA(leuX) region is a hypervariable hot spot for horizontal gene transfer; different isolates from the same S. enterica serovar can exhibit significant variation in this region. Many P4 phage, plasmid, and transposable element-associated genes are found adjacent to tRNA(leuX) in both Salmonella and E. coli, suggesting that these mobile genetic elements have played a major role in driving the variability of this region.
Collapse
Affiliation(s)
- Anne L Bishop
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Szczepanowski R, Krahn I, Linke B, Goesmann A, Pühler A, Schlüter A. Antibiotic multiresistance plasmid pRSB101 isolated from a wastewater treatment plant is related to plasmids residing in phytopathogenic bacteria and carries eight different resistance determinants including a multidrug transport system. MICROBIOLOGY-SGM 2005; 150:3613-3630. [PMID: 15528650 DOI: 10.1099/mic.0.27317-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ten different antibiotic resistance plasmids conferring high-level erythromycin resistance were isolated from an activated sludge bacterial community of a wastewater treatment plant by applying a transformation-based approach. One of these plasmids, designated pRSB101, mediates resistance to tetracycline, erythromycin, roxythromycin, sulfonamides, cephalosporins, spectinomycin, streptomycin, trimethoprim, nalidixic acid and low concentrations of norfloxacin. Plasmid pRSB101 was completely sequenced and annotated. Its size is 47 829 bp. Conserved synteny exists between the pRSB101 replication/partition (rep/par) module and the pXAC33-replicon from the phytopathogen Xanthomonas axonopodis pv. citri. The second pRSB101 backbone module encodes a three-Mob-protein type mobilization (mob) system with homology to that of IncQ-like plasmids. Plasmid pRSB101 is mobilizable with the help of the IncP-1alpha plasmid RP4 providing transfer functions in trans. A 20 kb resistance region on pRSB101 is located within an integron-containing Tn402-like transposon. The variable region of the class 1 integron carries the genes dhfr1 for a dihydrofolate reductase, aadA2 for a spectinomycin/streptomycin adenylyltransferase and bla(TLA-2) for a so far unknown Ambler class A extended spectrum beta-lactamase. The integron-specific 3'-segment (qacEDelta1-sul1-orf5Delta) is connected to a macrolide resistance operon consisting of the genes mph(A) (macrolide 2'-phosphotransferase I), mrx (hydrophobic protein of unknown function) and mphR(A) (regulatory protein). Finally, a putative mobile element with the tetracycline resistance genes tetA (tetracycline efflux pump) and tetR was identified upstream of the Tn402-specific transposase gene tniA. The second 'genetic load' region on pRSB101 harbours four distinct mobile genetic elements, another integron belonging to a new class and footprints of two more transposable elements. A tripartite multidrug (MDR) transporter consisting of an ATP-binding-cassette (ABC)-type ATPase and permease, and an efflux membrane fusion protein (MFP) of the RND-family is encoded between the replication/partition and the mobilization module. Homologues of the macrolide resistance genes mph(A), mrx and mphR(A) were detected on eight other erythromycin resistance-plasmids isolated from activated sludge bacteria. Plasmid pRSB101-like repA amplicons were also obtained from plasmid-DNA preparations of the final effluents of the wastewater treatment plant indicating that pRSB101-like plasmids are released with the final effluents into the environment.
Collapse
Affiliation(s)
- Rafael Szczepanowski
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Irene Krahn
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Burkhard Linke
- Center for Biotechnology (CeBiTec), Bioinformatics Resource Facility, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Alexander Goesmann
- Center for Biotechnology (CeBiTec), Bioinformatics Resource Facility, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Andreas Schlüter
- Fakultät für Biologie, Lehrstuhl für Genetik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
45
|
Haneda T, Okada N, Miki T, Danbara H. Sequence analysis and characterization of sulfonamide resistance plasmid pRF-1 from Salmonella enterica serovar Choleraesuis. Plasmid 2005; 52:218-24. [PMID: 15518878 DOI: 10.1016/j.plasmid.2004.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 07/08/2004] [Indexed: 12/01/2022]
Abstract
The nucleotide sequence of a small plasmid, designated pRF-1, isolated from Salmonella enterica serovar Choleraesuis, was determined. We identified seven open reading frames (ORFs) encoded by 6066 nucleotides with a total G + C content of 53.6%. Analysis of the complete nucleotide sequence revealed a replicon of pRF-1 to have high similarity to the p15A origin of replication, with a possible cer-like region. ORF1, which is composed of 816 nucleotides, shows a high degree of similarity to dihydropteroate synthetase encoded by the sulII gene from plasmids in several enteropathogenic bacteria, which functions as the sulfonamide resistance determinant. In fact, Salmonella and Escherichia coli strains carrying pRF-1 were found to show strong resistance to sulfathiazole, suggesting that orf1 is a functional gene. Four of seven ORFs were found to encode putative proteins of unknown function.
Collapse
Affiliation(s)
- Takeshi Haneda
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | |
Collapse
|
46
|
Chiu CH, Tang P, Chu C, Hu S, Bao Q, Yu J, Chou YY, Wang HS, Lee YS. The genome sequence of Salmonella enterica serovar Choleraesuis, a highly invasive and resistant zoonotic pathogen. Nucleic Acids Res 2005; 33:1690-8. [PMID: 15781495 PMCID: PMC1069006 DOI: 10.1093/nar/gki297] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Salmonella enterica serovar Choleraesuis (S.Choleraesuis), a highly invasive serovar among non-typhoidal Salmonella, usually causes sepsis or extra-intestinal focal infections in humans. S.Choleraesuis infections have now become particularly difficult to treat because of the emergence of resistance to multiple antimicrobial agents. The 4.7 Mb genome sequence of a multidrug-resistant S.Choleraesuis strain SC-B67 was determined. Genome wide comparison of three sequenced Salmonella genomes revealed that more deletion events occurred in S.Choleraesuis SC-B67 and S.Typhi CT18 relative to S.Typhimurium LT2. S.Choleraesuis has 151 pseudogenes, which, among the three Salmonella genomes, include the highest percentage of pseudogenes arising from the genes involved in bacterial chemotaxis signal-transduction pathways. Mutations in these genes may increase smooth swimming of the bacteria, potentially allowing more effective interactions with and invasion of host cells to occur. A key regulatory gene of TetR/AcrR family, acrR, was inactivated through the introduction of an internal stop codon resulting in overexpression of AcrAB that appears to be associated with ciprofloxacin resistance. While lateral gene transfer providing basic functions to allow niche expansion in the host and environment is maintained during the evolution of different serovars of Salmonella, genes providing little overall selective benefit may be lost rapidly. Our findings suggest that the formation of pseudogenes may provide a simple evolutionary pathway that complements gene acquisition to enhance virulence and antimicrobial resistance in S.Choleraesuis.
Collapse
Affiliation(s)
- Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Children's Hospital Taoyuan, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nishio M, Okada N, Miki T, Haneda T, Danbara H. Identification of the outer-membrane protein PagC required for the serum resistance phenotype in Salmonella enterica serovar Choleraesuis. Microbiology (Reading) 2005; 151:863-873. [PMID: 15758232 DOI: 10.1099/mic.0.27654-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Serum resistance is a crucial virulence factor for the development of systemic infections, including bacteraemia, by many pathogenic bacteria. Salmonella enterica serovar Choleraesuis is an important enteric pathogen that causes serious systemic infections in swine and humans. Here, it was found that, when introduced into Escherichia coli, a recombinant plasmid carrying the pagC gene from a plasmid-based genomic library of S. enterica serovar Choleraesuis conferred a high-level resistance to the bactericidal activity of pooled normal swine serum. The resistance was equal to the level conferred by rck, a gene encoding a 17 kDa outer-membrane protein which promotes the serum resistance phenotype in S. enterica serovar Typhimurium. Insertional mutagenesis of the cloned pagC gene generated a mutation that resulted in the loss of the serum resistance phenotype in E. coli. When this mutation was introduced into the chromosome of S. enterica serovar Choleraesuis by homology recombination with the wild-type allele, the resulting strain could not produce PagC, and it showed a decreased level of resistance to complement-mediated killing. The mutation could be restored by introduction of the intact pagC gene on a plasmid, but not by introduction of the point-mutated pagC gene. In addition, PagC was able to promote serum resistance in the S. enterica serovar Choleraesuis LPS mutant strain, which is highly sensitive to serum killing. Although PagC is not thought to confer serum resistance directly, these results strongly suggest that PagC is an important outer-membrane protein that plays an important role in the serum resistance of S. enterica serovar Choleraesuis.
Collapse
Affiliation(s)
- Miki Nishio
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsuyoshi Miki
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hirofumi Danbara
- Department of Microbiology, School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
48
|
Fluit AC. Towards more virulent and antibiotic-resistantSalmonella? ACTA ACUST UNITED AC 2005; 43:1-11. [PMID: 15607630 DOI: 10.1016/j.femsim.2004.10.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 10/21/2004] [Indexed: 11/20/2022]
Abstract
Salmonella are well-known pathogens. Virulence determinants can be present on the chromosome, usually encoded on pathogenicity islands, or on plasmids and bacteriophages. Antibiotic resistance determinants usually are encoded on plasmids, but can also be present on the multidrug resistance region of Salmonella Genomic Island 1 (SGI1). Virulence plasmids show a remarkable diversity in the combination of virulence factors they encode, which appears to adapt them to specific hosts and the ability to cause gastroenteritidis or systemic disease. The appearance of plasmids with two replicons may help to extend the host range of these plasmids and thereby increase the virulence of previously non- or low pathogenic serovars. Antibiotic resistance among Salmonella is also increasing. This increase is not only in the percentage isolates resistant to a particular antibiotic, but also the development of resistance against newer antibiotics. The increased occurrence of integrons is particularly worrying. Integrons can harbour a varying set of antibiotic resistance encoding gene cassettes. Gene cassettes can be exchanged between integrons. Although the gene cassettes currently present in Salmonella integrons encode for older antibiotics (however, some still frequently used) gene cassettes encoding resistance against the newest antibiotics has been documented in Enterobacteriaceae. Furthermore, beta-lactamases with activity against broad-spectrum cephalosporins, which are often used in empiric therapy, have been found associated with integrons. So, empiric treatment of Salmonella infections becomes increasingly more difficult. The most worrisome finding is that virulence and resistance plasmids form cointegrates. These newly formed plasmids can be selected by antibiotic pressure and thereby for virulence factors. Taken together these trends may lead to more virulent and antibiotic-resistant Salmonella.
Collapse
Affiliation(s)
- Ad C Fluit
- Eijkman-Winkler Institute, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Ginalski K, Kinch L, Rychlewski L, Grishin NV. BOF: a novel family of bacterial OB-fold proteins. FEBS Lett 2004; 567:297-301. [PMID: 15178340 DOI: 10.1016/j.febslet.2004.04.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 04/19/2004] [Indexed: 11/22/2022]
Abstract
Using top-of-the-line fold recognition methods, we assigned an oligonucleotide/oligosaccharide-binding (OB)-fold structure to a family of previously uncharacterized hypothetical proteins from several bacterial genomes. This novel family of bacterial OB-fold (BOF) proteins present in a number of pathogenic strains encompasses sequences of unknown function from DUF388 (in Pfam database) and COG3111. The BOF proteins can be linked evolutionarily to other members of the OB-fold nucleic acid-binding superfamily (anticodon-binding and single strand DNA-binding domains), although they probably lack nucleic acid-binding properties as implied by the analysis of the potential binding site. The presence of conserved N-terminal predicted signal peptide indicates that BOF family members localize in the periplasm where they may function to bind proteins, small molecules, or other typical OB-fold ligands. As hypothesized for the distantly related OB-fold containing bacterial enterotoxins, the loss of nucleotide-binding function and the rapid evolution of the BOF ligand-binding site may be associated with the presence of BOF proteins in mobile genetic elements and their potential role in bacterial pathogenicity.
Collapse
Affiliation(s)
- Krzysztof Ginalski
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA.
| | | | | | | |
Collapse
|
50
|
Chiu CH, Su LH, Chu C. Salmonella enterica serotype Choleraesuis: epidemiology, pathogenesis, clinical disease, and treatment. Clin Microbiol Rev 2004; 17:311-22. [PMID: 15084503 PMCID: PMC387403 DOI: 10.1128/cmr.17.2.311-322.2004] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Nontyphoid Salmonella strains are important causes of reportable food-borne infection. Among more than 2,000 serotypes, Salmonella enterica serotype Choleraesuis shows the highest predilection to cause systemic infections in humans. The most feared complication of serotype Cholearesuis bacteremia in adults is the development of mycotic aneurysm, which previously was almost uniformally fatal. The advances in diagnostic techniques, surgical care, and antimicrobial therapy have greatly improved the survival of these patients. However, the recent emergence of serotype Choleraesuis that is resistant to ampicillin, chloramphenicol, trimethoprim-sulfamethoxazole, and, notably, fluoroquinolone antibiotics has aroused concern about the use of these agents for the empirical treatment of systemic infection caused by this organism. In view of the serious implications of the situation, the chain of transmission and mechanism of resistance should be carefully studied to reduce the spread of infection and threat to human health. To date, there are no vaccines available to prevent serotype Choleraesuis infections in humans. The availability, in the near future, of the genome sequence of serotype Cholearesuis will facilitate the development of effective vaccines as well as the discovery of new targets for novel antimicrobial agents.
Collapse
Affiliation(s)
- Cheng-Hsun Chiu
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | | | | |
Collapse
|