1
|
Shi Q, Wang Q, Shen Y, Chen S, Gan S, Lin T, Song F, Ma Y. Escherichia coli LTB26 mutant enhances immune responses to rotavirus antigen VP8 in a mouse model. Mol Immunol 2024; 173:10-19. [PMID: 39004021 DOI: 10.1016/j.molimm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Adjuvant is a major supplementary component of vaccines to boost adaptive immune responses. To select an efficient adjuvant from the heat-labile toxin B subunit (LTB) of E. coli, four LTB mutants (numbered LTB26, LTB34, LTB57, and LTB85) were generated by multi-amino acid random replacement. Mice have been intranasally vaccinated with human rotavirus VP8 admixed. Among the four mutants, enzyme-linked immunosorbent assay (ELISA) revealed that LTB26 had enhanced mucosal immune adjuvanticity compared to LTB, showing significantly enhanced immune responses in both serum IgG and mucosal sIgA levels. The 3D modeling analysis suggested that the enhanced immune adjuvanticity of LTB26 might be due to the change of the first LTB α-helix to a β-sheet. The molecular mechanism was studied using transcriptomic and flow cytometric (FCM) analysis. The transcriptomic data demonstrated that LTB26 enhanced immune response by enhancing B cell receptor (BCR) and major histocompatibility complex (MHC) II+-related pathways. Furthermore, LTB26 promoted Th1 and Th2-type immune responses which were confirmed by detecting IFN-γ and IL-4 expression levels. Immunohistochemical analysis demonstrated that LTB26 enhanced both Th1 and Th2 type immunity. Therefore, LTB26 was a potent mucosal immune adjuvant meeting the requirement for use in human clinics in the future.
Collapse
Affiliation(s)
- Qinlin Shi
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Qiujuan Wang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yanxi Shen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijing Chen
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Sijie Gan
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - Fangzhou Song
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China
| | - Yongping Ma
- Department of Biochemistry and Molecular Biology, Basic Medical College, Molecular Medicine & Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No 1, Chongqing 400016, China.
| |
Collapse
|
2
|
Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-Dependent sRNA Sequence Supports Papillomavirus Vaccine Expression in Tobacco Chloroplasts. Metabolites 2023; 13:metabo13030315. [PMID: 36984756 PMCID: PMC10054877 DOI: 10.3390/metabo13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Human papillomavirus (HPV) infection is the leading cause of cervical cancer, and vaccination with HPV L1 capsid proteins has been successful in controlling it. However, vaccination coverage is not universal, particularly in developing countries, where 80% of all cervical cancer cases occur. Cost-effective vaccination could be achieved by expressing the L1 protein in plants. Various efforts have been made to produce the L1 protein in plants, including attempts to express it in chloroplasts for high-yield performance. However, manipulating chloroplast gene expression requires complex and difficult-to-control expression elements. In recent years, a family of nuclear-encoded, chloroplast-targeted RNA-binding proteins, the pentatricopeptide repeat (PPR) proteins, were described as key regulators of chloroplast gene expression. For example, PPR proteins are used by plants to stabilize and translate chloroplast mRNAs. Objectives: To demonstrate that a PPR target site can be used to drive HPV L1 expression in chloroplasts. Methods: To test our hypothesis, we used biolistic chloroplast transformation to establish tobacco lines that express two variants of the HPV L1 protein under the control of the target site of the PPR protein CHLORORESPIRATORY REDUCTION2 (CRR2). The transgenes were inserted into a dicistronic operon driven by the plastid rRNA promoter. To determine the effectiveness of the PPR target site for the expression of the HPV L1 protein in the chloroplasts, we analyzed the accumulation of the transgenic mRNA and its processing, as well as the accumulation of the L1 protein in the transgenic lines. Results: We established homoplastomic lines carrying either the HPV18 L1 protein or an HPV16B Enterotoxin::L1 fusion protein. The latter line showed severe growth retardation and pigment loss, suggesting that the fusion protein is toxic to the chloroplasts. Despite the presence of dicistronic mRNAs, we observed very little accumulation of monocistronic transgenic mRNA and no significant increase in CRR2-associated small RNAs. Although both lines expressed the L1 protein, quantification using an external standard suggested that the amounts were low. Conclusions: Our results suggest that PPR binding sites can be used to drive vaccine expression in plant chloroplasts; however, the factors that modulate the effectiveness of target gene expression remain unclear. The identification of dozens of PPR binding sites through small RNA sequencing expands the set of expression elements available for high-value protein production in chloroplasts.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Sara Dühnen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Anton Gauert
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Götz
- BioEnergy GmbH, Dietersberg 1, 92334 Berching, Germany
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-20-2093-49700
| |
Collapse
|
3
|
Guerrero Manriquez GG, Tuero I. Adjuvants: friends in vaccine formulations against infectious diseases. Hum Vaccin Immunother 2021; 17:3539-3550. [PMID: 34288795 DOI: 10.1080/21645515.2021.1934354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Infectious diseases represent a major cause of deaths worldwide. No vaccine or effective treatment exists nowadays, especially against intracellular pathogens. The increase in multiple drug and superbug antibiotic resistance strains, excessive medication, or misuse of drugs has prompted the search for other safe and effective alternatives. Consistent with this, adjuvants (Latin word "adjuvare": "help or aid") co-administered (Exo) in vaccines have emerged as a promising alternative to initiate and boost an innate, downstream signal that led to adaptative immune response. Nowadays, a promising model of strong immunogens and adjuvants at mucosal sites are the microbial bacterial toxins. Other adjuvants that are also used and might successfully replace aluminum salts in combination with nanotechnology are CpG-ODN, poly IC, type I IFNs, mRNA platforms. Therefore, in the present review, we focused to revisit the old to the new adjuvants compounds, the properties that make them friends in vaccine formulations against infectious diseases.
Collapse
Affiliation(s)
| | - I Tuero
- Faculty of Science and Phylosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
4
|
Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins. Braz J Microbiol 2021; 52:2499-2509. [PMID: 34244980 PMCID: PMC8270777 DOI: 10.1007/s42770-021-00567-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are responsible for diarrhea in humans as well as in farm animals. ETEC infections in newborn, suckling, and especially in post-weaning piglets are associated with reduced growth rate, morbidity, and mortality. ETEC express virulence factors as adhesin and enterotoxins that play a central role in the pathogenic process. Adhesins associated with pigs are of diverse type being either fimbrial or non-fimbrial. Enterotoxins belong to two groups: heat-labile (LT) and heat-stable (ST). Heterogeneity of ETEC strains encompass expression of various fimbriae (F4, F5, F6, F18, and F41) and enterotoxins (LT, STa, STb, and EAST1). In the late years, attempts to immunize animals against neonatal and post-weaning diarrhea were focused on the development of anti-adhesin strategies as this is the initial step of ETEC pathogenesis. Although those vaccines demonstrated some protection against ETEC infections, as enterotoxins are pivotal to the virulence of ETEC, a new generation of vaccinal molecules, which include adhesin and one or more enterotoxins, were recently tested. Some of these newly developed chimeric fusion proteins are intended to control as well human diarrhea as enterotoxins are more or less common with the ones found in pigs. As these could not be tested in the natural host (human), either a mouse or pig model was substituted to evaluate the protection efficacy. For the advancement of pig vaccine, mice were sometimes used for preliminary testing. This review summarizes advances in the anti-enterotoxin immunization strategies considered in the last 10 years.
Collapse
|
5
|
Saylor K, Gillam F, Lohneis T, Zhang C. Designs of Antigen Structure and Composition for Improved Protein-Based Vaccine Efficacy. Front Immunol 2020; 11:283. [PMID: 32153587 PMCID: PMC7050619 DOI: 10.3389/fimmu.2020.00283] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Today, vaccinologists have come to understand that the hallmark of any protective immune response is the antigen. However, it is not the whole antigen that dictates the immune response, but rather the various parts comprising the whole that are capable of influencing immunogenicity. Protein-based antigens hold particular importance within this structural approach to understanding immunity because, though different molecules can serve as antigens, only proteins are capable of inducing both cellular and humoral immunity. This fact, coupled with the versatility and customizability of proteins when considering vaccine design applications, makes protein-based vaccines (PBVs) one of today's most promising technologies for artificially inducing immunity. In this review, we follow the development of PBV technologies through time and discuss the antigen-specific receptors that are most critical to any immune response: pattern recognition receptors, B cell receptors, and T cell receptors. Knowledge of these receptors and their ligands has become exceptionally valuable in the field of vaccinology, where today it is possible to make drastic modifications to PBV structure, from primary to quaternary, in order to promote recognition of target epitopes, potentiate vaccine immunogenicity, and prevent antigen-associated complications. Additionally, these modifications have made it possible to control immune responses by modulating stability and targeting PBV to key immune cells. Consequently, careful consideration should be given to protein structure when designing PBVs in the future in order to potentiate PBV efficacy.
Collapse
Affiliation(s)
- Kyle Saylor
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Frank Gillam
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- Locus Biosciences, Morrisville, NC, United States
| | - Taylor Lohneis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
- BioPharmaceutical Technology Department, GlaxoSmithKline, Rockville, MD, United States
| | - Chenming Zhang
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Wang C, Zhou H, Guo F, Yang B, Su X, Lin J, Xu F. Oral Immunization of Chickens with Lactococcus lactis Expressing cjaA Temporarily Reduces Campylobacter jejuni Colonization. Foodborne Pathog Dis 2019; 17:366-372. [PMID: 31718285 DOI: 10.1089/fpd.2019.2727] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Campylobacter jejuni is the leading cause of human foodborne enteritis worldwide. Poultry products are regarded as the main source of human campylobacteriosis. Strategies are being developed to reduce colonization of poultry by Campylobacter. The membrane transport protein CjaA was reported to stimulate mucosal immune responses, which can reduce the C. jejuni load in chickens. In this study, oral immunization of broilers with food-grade Lactococcus lactis NZ3900/pNZ8149 carrying the C. jejuni cjaA gene was examined for the ability to reduce colonization of broilers by Campylobacter. The Usp45 signal peptide and the Escherichia coli heat-labile enterotoxin B subunit (LTB) gene fragments were inserted into the upstream and downstream of the cjaA gene for secretory expression and immune enhancement, respectively. The cjaA gene and the fusion cjaA-ltb gene were both expressed in recombinant L. lactis, and the single cjaA gene was secretory expressed in the recombinant strain. Oral administration of two recombinant L. lactis strains expressing the cjaA gene and the fusion cjaA-ltb gene both stimulated specific anti-CjaA serum IgY responses significantly. While the average intestinal sIgA responses in these groups were higher compared with the control groups, they were not significantly different. Chicken challenge experiments showed that the colonization levels of C. jejuni in the groups provided oral immunization with two recombinant L. lactis-delivered CjaA strains were significantly lower than that of the control group at 5 d postinoculation, but there was no significant difference in C. jejuni colonization among all groups at 9 d. These results indicated that recombinant L. lactis with secretory expression of CjaA is a promising live vector vaccine against C. jejuni colonization of chickens. The immunization regimen requires further optimization to ideally stimulate detectable levels of intestinal sIgA to enhance the level of inhibition of C. jejuni colonization.
Collapse
Affiliation(s)
- Chuanwen Wang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongzhuan Zhou
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xia Su
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, Knoxville, Tennessee
| | - Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
7
|
Feng N, Guan W. Expression fusion immunogen by live attenuated Escherichia coli against enterotoxins infection in mice. Microb Biotechnol 2019; 12:946-961. [PMID: 31210426 PMCID: PMC6680629 DOI: 10.1111/1751-7915.13447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/07/2019] [Accepted: 05/20/2019] [Indexed: 11/27/2022] Open
Abstract
Previous epidemiological studies have shown that enterotoxins from enterotoxigenic Escherichia coli (ETEC) appear to be the most important causes of neonatal piglet and porcine post-weaning diarrhoea (PWD). Thus, it is necessary to develop an effective vaccine against ETEC infection. In the present study, the Kil cassette was inserted into the pseudogene yaiT by homologous recombination to create an attenuated E. coli double selection platform O142(yaiT-Kil). After that, PRPL-Kil was replaced with a fusion gene (LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) to establish oral vaccines O142(yaiT::LTA1-STa13 -STb-LTA2-LTB-STa13 -STb) (ER-T). Subsequently, BALB/c mice were orally immunized with ER-T. Results showed that serum IgG and faecal sIgA responded against all ETEC enterotoxins and induced F41 antibody in BALB/c mice by orogastrically inoculation with recombinant E. coli ER-T. Moreover, the determination of cellular immune response demonstrated that the stimulation index (SI) was significantly higher in immunized mice than in control mice, and a clear trend in the helper T-cell (Th) response was Th2-cell (IL-4) exceed Th1-cell (IFN-γ).Our results indicated that recombinant E. coli ER-T provides effective protection against ETEC infection.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Diarrhea/microbiology
- Diarrhea/prevention & control
- Diarrhea/veterinary
- Enterotoxigenic Escherichia coli/immunology
- Enterotoxins/antagonists & inhibitors
- Enterotoxins/genetics
- Enterotoxins/immunology
- Escherichia coli Infections/microbiology
- Escherichia coli Infections/prevention & control
- Escherichia coli Infections/veterinary
- Escherichia coli Vaccines/administration & dosage
- Escherichia coli Vaccines/immunology
- Feces/chemistry
- Immunity, Cellular
- Immunoglobulin A, Secretory/analysis
- Immunoglobulin G/blood
- Mice, Inbred BALB C
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Swine
- Swine Diseases/microbiology
- Swine Diseases/prevention & control
- Treatment Outcome
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Ni Feng
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| | - Weikun Guan
- College of Life Science and Resource EnvironmentYichun UniversityYichunChina
| |
Collapse
|
8
|
Kim BM, Kang TJ. Expression of B subunit of E. coli heat-labile enterotoxin in the progenies of transgenic tobacco bred by crossing nuclear- and chloroplast-transgenic lines. Protein Expr Purif 2019; 155:54-58. [PMID: 30468854 DOI: 10.1016/j.pep.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/18/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023]
Abstract
The B subunit of Escherichia coli heat-labile toxin (LTB) is a model antigen that induces a strong immune response upon oral administration and enhances immune responses to conjugated and co-administered antigens. We previously examined high expression levels of LTB in plants by chloroplast and synthetic LTB gene expression and found substantially higher expression levels of LTB, compared to nuclear LTB expression in wild-type plants. The 2.5% LTB protein of total soluble protein that was observed by chloroplast transformation was approximately 250-fold greater expression than that of LTB via nuclear genome integration. In addition, the amount of LTB protein found in transgenic tobacco leaves using a synthetic LTB gene was 2.2% of the total soluble plant protein, which was approximately 200-fold higher than that in plants with native LTB gene expression. The purpose of our experiment was to increase LTB levels in plants by crossing chloroplast-transformed and synthetic LTB transgenic lines produced previously to express higher LTB levels. LTB protein levels in the F1 transgenic tobacco plants was significantly higher (3.3%), compared to the 2.2% of chloroplast-transformed line or 2.8% of synthetic LTB gene line. Our results suggest that LTB expression was successfully enhanced in the F1 hybrid generation of transgenic tobacco plants.
Collapse
Affiliation(s)
- Bo-Mi Kim
- Department of Chemical Engineering, Wonkwang University, Iksan, 54538, South Korea
| | - Tae-Jin Kang
- Division of Biological Sciences, Wonkwang University, Iksan, 54538, South Korea.
| |
Collapse
|
9
|
Cunha CEPD, Moreira C, Rocha ADSR, Finger PF, Magalhães CG, Ferreira MRA, Dellagostin OA, Moreira ÂN, Conceição FR. Parenteral adjuvant potential of recombinant B subunit of Escherichia coli heat-labile enterotoxin. Mem Inst Oswaldo Cruz 2017; 112:812-816. [PMID: 29211241 PMCID: PMC5719549 DOI: 10.1590/0074-02760170133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/29/2017] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The B subunit of Escherichia coli heat-labile enterotoxin
(LTB) is a potent mucosal immune adjuvant. However, there is little
information about LTB's potential as a parenteral adjuvant. OBJECTIVES We aimed at evaluating and better understanding rLTB's potential as a
parenteral adjuvant using the fused R1 repeat of Mycoplasma
hyopneumoniae P97 adhesin as an antigen to characterise the
humoral immune response induced by this construct and comparing it to that
generated when aluminium hydroxide is used as adjuvant instead. METHODS BALB/c mice were immunised intraperitoneally with either rLTBR1 or
recombinant R1 adsorbed onto aluminium hydroxide. The levels of systemic
anti-rR1 antibodies (total Ig, IgG1, IgG2a, and IgA) were assessed by
enzyme-linked immunosorbent assay (ELISA). The ratio of IgG1 and IgG2a was
used to characterise a Th1, Th2, or mixed Th1/Th2 immune response. FINDINGS Western blot confirmed rR1, either alone or fused to LTB, remained antigenic;
anti-cholera toxin ELISA confirmed that LTB retained its activity when
expressed in a heterologous system. Mice immunised with the rLTBR1 fusion
protein produced approximately twice as much anti-rR1 immunoglobulins as
mice vaccinated with rR1 adsorbed onto aluminium hydroxide. Animals
vaccinated with either rLTBR1 or rR1 adsorbed onto aluminium hydroxide
presented a mixed Th1/Th2 immune response. We speculate this might be a
result of rR1 immune modulation rather than adjuvant modulation. Mice
immunised with rLTBR1 produced approximately 1.5-fold more serum IgA than
animals immunised with rR1 and aluminium hydroxide. MAIN CONCLUSIONS The results suggest that rLTB is a more powerful parenteral adjuvant than
aluminium hydroxide when administered intraperitoneally as it induced higher
antibody titres. Therefore, we recommend that rLTB be considered an
alternative adjuvant, even if different administration routes are
employed.
Collapse
Affiliation(s)
| | - Clóvis Moreira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | | | - Paula Fonseca Finger
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Carolina Georg Magalhães
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | | | - Odir Antônio Dellagostin
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Ângela Nunes Moreira
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Biotecnologia, Pelotas, RS, Brasil
| |
Collapse
|
10
|
Sharma M, Dash P, Sahoo PK, Dixit A. Th2-biased immune response and agglutinating antibodies generation by a chimeric protein comprising OmpC epitope (323–336) of Aeromonas hydrophila and LTB. Immunol Res 2017; 66:187-199. [DOI: 10.1007/s12026-017-8953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Zambrano LD, Priest JW, Ivan E, Rusine J, Nagel C, Kirby M, Rosa G, Clasen TF. Use of Serologic Responses against Enteropathogens to Assess the Impact of a Point-of-Use Water Filter: A Randomized Controlled Trial in Western Province, Rwanda. Am J Trop Med Hyg 2017; 97:876-887. [PMID: 28749764 PMCID: PMC5590594 DOI: 10.4269/ajtmh.16-1006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 05/29/2017] [Indexed: 12/28/2022] Open
Abstract
Diarrhea is a leading contributor to childhood morbidity and mortality in sub-Saharan Africa. Given the challenge of blinding most water, sanitation, and hygiene (WASH) interventions, diarrheal disease outcome measures in WASH intervention trials are subject to potential bias and misclassification. Using the platform of a cluster-randomized controlled trial of a household-based drinking water filter in western province, Rwanda, we assessed the impact of the drinking water filter on enteric seroconversion in young children as a health outcome and examined the association between serologic responses and caregiver-reported diarrhea. Among the 2,179 children enrolled in the trial, 189 children 6-12 months of age were enrolled in a nested serology study. These children had their blood drawn at baseline and 6-12 months after the intervention was distributed. Multiplex serologic assays for Giardia, Cryptosporidium, Entamoeba histolytica, norovirus, Campylobacter, enterotoxigenic Escherichia coli and Vibrio cholerae were performed. Despite imperfect uptake, receipt of the water filter was associated with a significant decrease in seroprevalence of IgG directed against Cryptosporidium parvum Cp17 and Cp23 (relative risk [RR]: 0.62, 95% confidence interval [CI]: 0.44-0.89). Serologic responses were positively associated with reported diarrhea in the previous 7 days for both Giardia intestinalis (RR: 1.94, 95% CI: 1.04-3.63) and C. parvum (RR: 2.21, 95% CI: 1.09-4.50). Serologic responses for all antigens generally increased in the follow-up round, rising sharply after 12 months of age. The water filter is associated with reduced serologic responses against C. parvum, a proxy for exposure and infection; therefore, serologic responses against protozoa may be a suitable health outcome measure for WASH trials among children with diarrhea.
Collapse
Affiliation(s)
- Laura Divens Zambrano
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Jeffrey W. Priest
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Zoonotic and Emerging Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Emil Ivan
- National Reference Laboratory, Rwanda Biomedical Center, Kigali, Rwanda
| | - John Rusine
- National Reference Laboratory, Rwanda Biomedical Center, Kigali, Rwanda
| | - Corey Nagel
- OHSU/PSU School of Public Health, Oregon Health and Science University, Portland, Oregon
| | - Miles Kirby
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ghislaine Rosa
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Thomas F. Clasen
- Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, Georgia
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
12
|
Bignon A, Watt AP, Linterman MA. Escherichia coli Heat-Labile Enterotoxin B Limits T Cells Activation by Promoting Immature Dendritic Cells and Enhancing Regulatory T Cell Function. Front Immunol 2017; 8:560. [PMID: 28555139 PMCID: PMC5430108 DOI: 10.3389/fimmu.2017.00560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
Treatments to limit T cell activation are essential for managing autoimmune and inflammatory disorders. The B subunit of Escherichia coli heat-labile enterotoxin (EtxB) is known to ameliorate inflammatory disease in vivo but the mechanism by which this is mediated is not well understood. Here, we show that following intranasal administration, EtxB acts on two key cellular regulators of T cell activation: regulatory T cells and dendritic cells (DCs). EtxB enhances the proliferation of lung regulatory T cells and doubles their suppressive function, likely through an increase in expression of the Treg effector molecule CTLA-4. EtxB supports the generation of interleukin-10-producing DCs that are unable to activate T cells. These data show, for the first time, that mucosal EtxB treatment limits T cells activation by acting jointly on two distinct types of immune cells.
Collapse
Affiliation(s)
- Alexandre Bignon
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Alan P Watt
- Xenovium Limited, Chesterford Research Park, Little Chesterford, UK
| | - Michelle A Linterman
- Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
13
|
Quantitative Proteomic Analysis of Escherichia coli Heat-Labile Toxin B Subunit (LTB) with Enterovirus 71 (EV71) Subunit VP1. Int J Mol Sci 2016; 17:ijms17091419. [PMID: 27618897 PMCID: PMC5037698 DOI: 10.3390/ijms17091419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
The nontoxic heat-labile toxin (LT) B subunit (LTB) was used as mucosal adjuvant experimentally. However, the mechanism of LTB adjuvant was still unclear. The LTB and enterovirus 71 (EV71) VP1 subunit (EVP1) were constructed in pET32 and expressed in E. coli BL21, respectively. The immunogenicity of purified EVP1 and the adjuvanticity of LTB were evaluated via intranasal immunization EVP1 plus LTB in Balb/c mice. In order to elucidate the proteome change triggered by the adjuvant of LTB, the proteomic profiles of LTB, EVP1, and LTB plus EVP1 were quantitatively analyzed by iTRAQ-LC-MS/MS (isobaric tags for relative and absolute quantitation; liquid chromatography-tandem mass spectrometry) in murine macrophage RAW264.7. The proteomic data were analyzed by bioinformatics and validated by western blot analysis. The predicted protein interactions were confirmed using LTB pull-down and the LTB processing pathway was validated by confocal microscopy. The results showed that LTB significantly boosted EVP1 specific systematic and mucosal antibodies. A total of 3666 differential proteins were identified in the three groups. Pathway enrichment of proteomic data predicted that LTB upregulated the specific and dominant MAPK (mitogen-activated protein kinase) signaling pathway and the protein processing in endoplasmic reticulum (PPER) pathway, whereas LTB or EVP1 did not significantly upregulate these two signaling pathways. Confocal microscopy and LTB pull-down assays confirmed that the LTB adjuvant was endocytosed and processed through endocytosis (ENS)-lysosomal-endoplasmic reticulum (ER) system.
Collapse
|
14
|
Zhang J, Fan HY, Zhang Z, Zhang J, Zhang J, Huang JN, Ye Y, Liao M. Recombinant baculovirus vaccine containing multiple M2e and adjuvant LTB induces T cell dependent, cross-clade protection against H5N1 influenza virus in mice. Vaccine 2016; 34:622-629. [DOI: 10.1016/j.vaccine.2015.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 10/19/2015] [Accepted: 12/15/2015] [Indexed: 12/01/2022]
|
15
|
Abstract
Heat-labile enterotoxins (LTs) of Escherichia coli are closely related to cholera toxin (CT), which was originally discovered in 1959 in culture filtrates of the gram-negative bacterium Vibrio cholerae. Several other gram-negative bacteria also produce enterotoxins related to CT and LTs, and together these toxins form the V. cholerae-E. coli family of LTs. Strains of E. coli causing a cholera-like disease were designated enterotoxigenic E. coli (ETEC) strains. The majority of LTI genes (elt) are located on large, self-transmissible or mobilizable plasmids, although there are instances of LTI genes being located on chromosomes or carried by a lysogenic phage. The stoichiometry of A and B subunits in holotoxin requires the production of five B monomers for every A subunit. One proposed mechanism is a more efficient ribosome binding site for the B gene than for the A gene, increasing the rate of initiation of translation of the B gene independently from A gene translation. The three-dimensional crystal structures of representative members of the LT family (CT, LTpI, and LTIIb) have all been determined by X-ray crystallography and found to be highly similar. Site-directed mutagenesis has identified many residues in the CT and LT A subunits, including His44, Val53, Ser63, Val97, Glu110, and Glu112, that are critical for the structures and enzymatic activities of these enterotoxins. For the enzymatically active A1 fragment to reach its substrate, receptor-bound holotoxin must gain access to the cytosol of target cells.
Collapse
|
16
|
Thiam F, Charpilienne A, Poncet D, Kohli E, Basset C. B subunits of cholera toxin and thermolabile enterotoxin of Escherichia coli have similar adjuvant effect as whole molecules on rotavirus 2/6-VLP specific antibody responses and induce a Th17-like response after intrarectal immunization. Microb Pathog 2015; 89:27-34. [PMID: 26318874 DOI: 10.1016/j.micpath.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to evaluate the adjuvant effect of the B subunits of cholera toxin (CT) and the thermolabile enterotoxin of Escherichia coli (LT) by the intrarectal route of immunization and compare them to the whole molecules CT and LT-R192G, a non toxic mutant of LT, using 2/6-VLP as an antigen, in mice. All molecules induced similar antigen specific antibody titers in serum and feces, whereas different T cell profiles were observed. CTB and LTB, conversely to CT and LT-R192G, did not induce detectable production of IL-2 by antigen specific T cells. Moreover, CTB, conversely to LT-R192G, CT and LTB, did not induce antigen specific CD4+CD25+Foxp3- and Foxp3+ T cells, thus showing different effects between the B subunits themselves. However, all molecules induced an antigen specific Th17 response. In conclusion, B subunits are potent adjuvants on B cell responses by the intrarectal route. Although their impact on T cell responses are different, all molecules induce a 2/6-VLP-specific Th17 T cell response that may play a major role in helping B cell responses and thus in adjuvanticity and protection.
Collapse
Affiliation(s)
- Fatou Thiam
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France
| | - Annie Charpilienne
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France
| | - Didier Poncet
- Virologie Moléculaire et Structurale, UMR CNRS 2472 INRA 1157, Gif/Yvette, France
| | - Evelyne Kohli
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France
| | - Christelle Basset
- Centre de Recherche Inserm UMR866 'Lipides, Nutrition, Cancer', Université de Bourgogne Franche-Comté, Dijon, France.
| |
Collapse
|
17
|
Ji J, Griffiths KL, Milburn PJ, Hirst TR, O'Neill HC. The B subunit of Escherichia coli heat-labile toxin alters the development and antigen-presenting capacity of dendritic cells. J Cell Mol Med 2015; 19:2019-31. [PMID: 26130503 PMCID: PMC4549052 DOI: 10.1111/jcmm.12599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/25/2015] [Indexed: 02/05/2023] Open
Abstract
Escherichia coli's heat-labile enterotoxin (Etx) and its non-toxic B subunit (EtxB) have been characterized as adjuvants capable of enhancing T cell responses to co-administered antigen. Here, we investigate the direct effect of intravenously administered EtxB on the size of the dendritic and myeloid cell populations in spleen. EtxB treatment appears to enhance the development and turnover of dendritic and myeloid cells from precursors within the spleen. EtxB treatment also gives a dendritic cell (DC) population with higher viability and lower activation status based on the reduced expression of MHC-II, CD80 and CD86. In this respect, the in vivo effect of EtxB differs from that of the highly inflammatory mediator lipopolysaccharide. In in vitro bone marrow cultures, EtxB treatment was also found to enhance the development of DC from precursors dependent on Flt3L. In terms of the in vivo effect of EtxB on CD4 and CD8 T cell responses in mice, the interaction of EtxB directly with DC was demonstrated following conditional depletion of CD11c(+) DC. In summary, all results are consistent with EtxB displaying adjuvant ability by enhancing the turnover of DC in spleen, leading to newly mature myeloid and DC in spleen, thereby increasing DC capacity to perform as antigen-presenting cells on encounter with T cells.
Collapse
Affiliation(s)
- Jing Ji
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kristin L Griffiths
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Peter J Milburn
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Timothy R Hirst
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Helen C O'Neill
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD 4229, Australia
| |
Collapse
|
18
|
Ondondo B, Faulkner L, Williams NA, Morgan AJ, Morgan DJ. The B subunit of Escherichia coli enterotoxin helps control the in vivo growth of solid tumors expressing the Epstein-Barr virus latent membrane protein 2A. Cancer Med 2015; 4:457-71. [PMID: 25641882 PMCID: PMC4380971 DOI: 10.1002/cam4.380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 01/23/2023] Open
Abstract
Latent membrane protein 2A (LMP2A) is expressed on almost all Epstein–Barr virus (EBV)-associated tumors and is a potential target for immunotherapeutic intervention and vaccination. However, LMP2A is not efficiently processed and presented on major histocompatibility antigens class I molecules to generate potent cytotoxic T-lymphocytes (CTL) responses capable of killing these tumors. The B subunit of Escherichia coli enterotoxin (EtxB), causes rapid internalization and processing of membrane-bound LMP2A on EBV-infected B cells, and facilitates loading of processed-LMP2A peptides onto MHC class I. This re-directed trafficking/delivery of LMP2A to the MHC class I machinery enhances recognition and killing by LMP2A-specific CTL in vitro. To test the potential of EtxB to enhance immune targeting of LMP2A expressed in solid tumors, we generated a murine tumor model (Renca-LMP2A), in which LMP2A is expressed as a transgenic neoantigen on a renal carcinoma (Renca) cell line and forms solid tumors when injected subcutaneously into BALB/c mice. The data show that in BALB/c mice which have only low levels of peripheral Kd-LMP2A-specific CD8+ T cells, merely a transient inhibition of tumor growth is achieved compared with naïve mice; suggesting that there is suboptimal LMP2A-specifc CTL recognition and poorly targeted tumor killing. However, importantly, treatment of these mice with EtxB led to a significant delay in the onset of tumor growth and significantly lower tumor volumes compared with similar mice that did not receive EtxB. Moreover, this remarkable effect of EtxB was achieved despite progressive reduction in tumor expression of LMP2A and MHC class I molecules. These data clearly demonstrate the potential efficacy of EtxB as a novel therapeutic agent that could render EBV-associated tumors susceptible to immune control.
Collapse
Affiliation(s)
- Beatrice Ondondo
- The Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, Oxfordshire OX3 7DQ, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Bhatia B, Solanki AK, Kaushik H, Dixit A, Garg LC. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: Expression, purification and characterization of the chimeric protein. Protein Expr Purif 2014; 102:38-44. [DOI: 10.1016/j.pep.2014.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
|
20
|
Nashar TO. The Quest for an HIV-1 Vaccine Adjuvant: Bacterial Toxins as New Potential Platforms. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2014; 5. [PMID: 27375924 PMCID: PMC4929853 DOI: 10.4172/2155-9899.1000225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While tremendous efforts are undergoing towards finding an effective HIV-1 vaccine, the search for an HIV-1 vaccine adjuvant lags behind and is understudied. More recently, however, efforts have focused on testing adjuvant formulations that can boost the immune response and generate broadly neutralizing antibodies to HIV-1 ENV (gp160). Despite this, there remain a number of challenges towards achieving this goal. These include safety of adjuvant formulations; stability of the incorporated antigens; maintenance of ENV immunogenicity; optimal inoculation sites; the effective combination of adjuvants; stability of ENV neutralizing epitopes in some adjuvant formulations; mucosal immunity; and long-term maintenance of the immune response. A new class of adjuvants for HIV-1 proteins is suggested to overcome many of the limitations of some other adjuvants. Type 1 (LT-I) and type 2 (LT-II) human E. coli enterotoxins (HLTs) and their non-toxic B-subunits derivatives are strong systemic and mucosal adjuvants and effective carriers for other proteins and epitopes. Their stable molecular structure in the presence of fused proteins and epitopes, and their ability to target surface receptors on antigen presenting cells make them ideal for the delivery of HIV-1 ENV or HIV other proteins. Importantly, unlike some other adjuvants, HLTs and derivatives have well-defined modes of immune system activation. The challenges in finding optimal HIV-1 vaccine adjuvant formulation and the important properties of HLTs are discussed.
Collapse
Affiliation(s)
- Toufic O Nashar
- College of Veterinary Medicine, Nursing & Allied Health, Department of Pathobiology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
21
|
Leney AC, Fan X, Kitova EN, Klassen JS. Nanodiscs and Electrospray Ionization Mass Spectrometry: A Tool for Screening Glycolipids Against Proteins. Anal Chem 2014; 86:5271-7. [DOI: 10.1021/ac4041179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aneika C. Leney
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xuxin Fan
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Alberta Glycomics Centre
and Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
22
|
Bagheri S, Mousavi Gargari SL, Rasooli I, Nazarian S, Alerasol M. A CssA, CssB and LTB chimeric protein induces protection against Enterotoxigenic Escherichia coli. Braz J Infect Dis 2014; 18:308-14. [PMID: 24389278 PMCID: PMC9427529 DOI: 10.1016/j.bjid.2013.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Objectives Enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhea in children under 5, is an important agent for traveler's diarrhea. Heat-labile enterotoxin (LT) and colonization factors (CFs) are two main virulence mechanisms in ETEC. CS6 is one of the most prevalent CFs consisting of two structural subunits viz., CssA, CssB, necessary for attachment to the intestinal cells. Methods In the present research, a chimeric trivalent protein composed of CssB, CssA and LTB was constructed. The chimeric gene was synthesized with codon bias of E. coli for enhanced expression of the protein. Recombinant proteins were expressed and purified. Mice were immunized with the recombinant protein. The antibody titer and specificity of the immune sera were analyzed by ELISA and Western blotting. Efficiency of the immune sera against ETEC was evaluated. Results Antibody induction was followed by immunization of mice with the chimeric protein. Pretreatment of the ETEC cells with immunized animal antisera remarkably decreased their adhesion to Caco-2 cells. Discussion The results indicate efficacy of the recombinant chimeric protein as an effective immunogen, which induces strong humoral response as well as protection against ETEC adherence and toxicity.
Collapse
|
23
|
Paul M, Ma JKC. Plant-made immunogens and effective delivery strategies. Expert Rev Vaccines 2014; 9:821-33. [DOI: 10.1586/erv.10.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Kaushik H, Deshmukh S, Mathur DD, Tiwari A, Garg LC. Recombinant expression of in silico identified Bcell epitope of epsilon toxin of Clostridium perfringens in translational fusion with a carrier protein. Bioinformation 2013; 9:617-21. [PMID: 23904738 PMCID: PMC3725002 DOI: 10.6026/97320630009617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
UNLABELLED Epsilon toxin secreted by Clostridium perfringens types B and D has been directly implicated as the causative agent of fatal enterotoxemia in domestic animals. The aim of the present study is to use in silico approach for identification of B-cell epitope(s) of epsilon toxin, and its expression in fusion with a carrier protein to analyze its potential as vaccine candidate(s). Using different computational analyses and bioinformatics tools, a number of antigenic determinant regions of epsilon toxin were identified. One of the B cell epitopes of epsilon toxin comprising the region (amino acids 40-62) was identified as a promising antigenic determinant. This Etx epitope (Etx40-62) was cloned and expressed as a translational fusion with B-subunit of heat labile enterotoxin (LTB) of E. coli in a secretory expression system. Similar to the native LTB, the recombinant fusion protein retained the ability to pentamerize and bind to GM1 ganglioside receptor of LTB. The rLTB.Etx40-62 could be detected both with anti-Etx and anti-LTB antisera. The rLTB.Etx40-62 fusion protein thus can be evaluated as a potential vaccine candidate against C. perfringens. ABBREVIATIONS aa - amino acid(s), Etx - epsilon toxin of Clostridium perfringens, LTB - B-subunit of heat labile enterotoxin of E. coli.
Collapse
Affiliation(s)
- Himani Kaushik
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Sachin Deshmukh
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
- Authors equally contributed
| | - Deepika Dayal Mathur
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| | - Archana Tiwari
- School of Biotechnololgy, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP – 462036, India
| | - Lalit C Garg
- Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi – 110067, India
| |
Collapse
|
25
|
Chaudhari AA, Lee JH. Evaluation of the adjuvant effect of Salmonella-based Escherichia coli heat-labile toxin B subunits on the efficacy of a live Salmonella-delivered avian pathogenic Escherichia coli vaccine. Avian Pathol 2013; 42:365-72. [PMID: 23815619 DOI: 10.1080/03079457.2013.811466] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The present study evaluated the adjuvant effect of live attenuated salmonella organisms expressing the heat-labile toxin of Escherichia coli B subunit (LTB) on the efficacy of an avian pathogenic Escherichia coli (APEC) vaccine. The Asd(+) (aspartate semialdehyde dehydrogenase) plasmid pMMP906 containing the LTB gene was introduced into a Salmonella enterica Typhimurium strain lacking the lon, cpxR and asd genes to generate the adjuvant strain. Live recombinant Salmonella-delivered APEC vaccine candidates were used for this study. The birds were divided into three groups: group A, non-vaccinated controls; group B, immunized with vaccine candidates only; and group C, immunized with vaccine candidates and the LTB strain. The immune responses were measured and the birds were challenged at 21 days of age with a virulent APEC strain. Group C showed a significant increase in plasma IgG and intestinal IgA levels and a significantly higher lymphocyte proliferation response compared with the other groups. Upon challenge with the virulent APEC strain, group C showed effective protection whereas group B did not. We also attempted to optimize the effective dose of the adjuvant. The birds were immunized with the vaccine candidates together with 1×10⁷ or 1×10⁸ colony-forming units of the LTB strain and were subsequently challenged at 3 weeks of age. The 1×10⁷ colony-forming units of the LTB strain showed a greater adjuvant effect with increased levels of serum IgG, intestinal IgA and a potent lymphocyte proliferation response, and yielded higher protection against challenge. Overall, the LTB strain increased the efficacy of the Salmonella -delivered APEC vaccine, indicating that vaccination for APEC along with the LTB strain appears to increase the efficacy for protection against colibacillosis in broiler chickens.
Collapse
Affiliation(s)
- Atul A Chaudhari
- College of Veterinary Medicine, Chonbuk National University, Jeonju, Republic of Korea
| | | |
Collapse
|
26
|
Bibolini MJ, Julia Scerbo M, Peinetti N, Roth GA, Monferran CG. The hybrid between the ABC domains of synapsin and the B subunit of Escherichia coli heat-labile toxin ameliorates experimental autoimmune encephalomyelitis. Cell Immunol 2012; 280:50-60. [DOI: 10.1016/j.cellimm.2012.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 10/25/2012] [Accepted: 11/09/2012] [Indexed: 10/27/2022]
|
27
|
Waheed MT, Thönes N, Müller M, Hassan SW, Gottschamel J, Lössl E, Kaul HP, Lössl AG. Plastid expression of a double-pentameric vaccine candidate containing human papillomavirus-16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:651-60. [PMID: 21447051 DOI: 10.1111/j.1467-7652.2011.00612.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Human papillomavirus (HPV) causes cervical cancer in women worldwide, which is currently prevented by vaccines based on virus-like particles (VLPs). However, these vaccines have certain limitations in their availability to developing countries, largely due to elevated costs. Concerning the highest burden of disease in resource-poor countries, development of an improved mucosal and cost-effective vaccine is a necessity. As an alternative to VLPs, capsomeres have been shown to be highly immunogenic and can be used as vaccine candidate. Furthermore, coupling of an adjuvant like Escherichia coli heat-labile enterotoxin subunit B (LTB) to an antigen can increase its immunogenicity and reduce the costs related to separate co-administration of adjuvants. Our study demonstrates the expression of two pentameric proteins: the modified HPV-16 L1 (L1_2xCysM) and LTB as a fusion protein in tobacco chloroplasts. Homoplasmy of the transplastomic plants was confirmed by Southern blotting. Western blot analysis showed that the LTB-L1 fusion protein was properly expressed in the plastids and the recombinant protein was estimated to accumulate up to 2% of total soluble protein. Proper folding and display of conformational epitopes for both LTB and L1 in the fusion protein was confirmed by GM1-ganglioside binding assay and antigen capture ELISA, respectively. However, all transplastomic lines showed chlorosis, male sterility and growth retardation, which persisted in the ensuing four generations studied. Nevertheless, plants reached maturity and produced seeds by pollination with wild-type plants. Taken together, these results pave the way for the possible development of a low-cost adjuvant-coupled vaccine with potentially improved immunogenicity against cervical cancer.
Collapse
Affiliation(s)
- Mohammad T Waheed
- Department of Applied Plant Sciences and Plant Biotechnology (DAPP), University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Oloomi M, Bouzari S. Assessment of immune response of the B subunit of Shiga toxin fused to AAF adhesin of enteroaggregative Escherichia coli. Microb Pathog 2011; 50:155-8. [PMID: 21238566 DOI: 10.1016/j.micpath.2011.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 11/15/2010] [Accepted: 01/06/2011] [Indexed: 11/28/2022]
Abstract
Shiga toxin is a member of AB toxin family and is composed of an A subunit which mediated toxicity and a homopentameric protein responsible for toxin binding and internalization into target cells. Another group of diarrheagenic Escherichia coli, enteroaggregative E. coli (EAEC) is a group of E. coli with aggregative adherence to epithelial cells, which play an important role in its pathogenesis. In the present investigation, the immune response of recombinant hybrid peptide composed of B subunit of Shiga toxin (StxB) and Aggregative Adherence Fimbriae (AAF) of EAEC (B-AAF/I, B-AAF/II) that elicited protective response was further characterized. The assessment of IgG subclasses (IgG1 and IgG2a) and cytokine production by these peptides indicated that although the hybrid peptides could induce immune response, but two adhesins behave differently in this regard. Lymphocyte proliferation assay and IFN-γ production were highly significant for B-AAF/II. Overall, based on the data obtained from this study it seems that mixed population of Th1-Th2 type of immune responses were induced by these hybrid peptides, which probably lead to observed protective response. In the present study, it is shown that the two hybrid peptides i.e. B-AAF/I and B-AAF/II, could be a promising strategy to make more effective and powerful vaccine.
Collapse
Affiliation(s)
- Mana Oloomi
- Molecular Biology Unit, Pasteur Institute of Iran, Pasteur Ave, Tehran 13164, Iran
| | | |
Collapse
|
29
|
Salimian J, Salmanian AH, Khalesi R, Mohseni M, Moazzeni SM. Antibody against recombinant heat labile enterotoxin B subunit (rLTB) could block LT binding to ganglioside M1 receptor. IRANIAN JOURNAL OF MICROBIOLOGY 2010; 2:120-7. [PMID: 22347560 PMCID: PMC3279785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Enterotoxigenic Escherichia coli (ETEC) is one of the most common agents of diarrhea among other bacterial agents. Designing and producing vaccine against these bacteria is one of the major purposes of World Health Organization (WHO). Due to presence of diverse clones of ETEC strains in the world, the use of global vaccines for ETEC infection is controversial. B subunit of heat labile toxin (LTB) was introduced as a vaccine candidate molecule by several investigators. The expression of LTB gene isolated from a local bacterial strain and investigation of its immunological property was the objective of this study. MATERIALS AND METHODS LTB gene was isolated from a local isolated ETEC, cloned and expressed using pET28a expression vector. For LTB gene expression, the three main expression parameters (IPTG concentration, time and temperature of induction) were investigated. The recombinant protein was purified (>95%) with Ni-NTA column using 6XHis-tag and used as an antigen in ELISA test. RESULTS The immunological analyses showed production of high titer of specific antibody in immunized mice. Anti LTB Antibody could bind to whole toxin and neutralize the toxin through inhibition of its binding to the Ganglioside M1 receptor. CONCLUSION The recombinant LTB protein is a highly immunogenic molecule. Considering the LTB role in ETEC pathogenesis, it can be taken into account as one of the most important components of vaccines against local ETEC.
Collapse
Affiliation(s)
- J Salimian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
| | - AH Salmanian
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - R Khalesi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
| | - M Mohseni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
| | - SM Moazzeni
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University
| |
Collapse
|
30
|
Liu D, Wang X, Ge J, Liu S, Li Y. Comparison of the immune responses induced by oral immunization of mice with Lactobacillus casei-expressing porcine parvovirus VP2 and VP2 fused to Escherichia coli heat-labile enterotoxin B subunit protein. Comp Immunol Microbiol Infect Dis 2010; 34:73-81. [PMID: 20226529 PMCID: PMC7112623 DOI: 10.1016/j.cimid.2010.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/16/2010] [Indexed: 11/27/2022]
Abstract
The major structural protein VP2 of porcine parvovirus (PPV) was used as the model parvovirus antigen, which has been expressed in Lactobacillus casei fusing with Escherichia coli heat-labile enterotoxin B subunit (LTB) as mucosal adjuvant. The VP2-LTB DNA fragment was cloned into vector pPG611 or pPG612 to generated inducible surface-displayed and secretion expression systems based on xylose promoter, designated as rLc:pPG611-VP2-LTB (recombinant L. casei) and rLc:pPG612-VP2-LTB, respectively. Expression of the fusion protein was verified by SDS-PAGE, Western blot immunofluorescence and electron microscopy. It was observed that the level of IgG or sIgA from mice orally immunized with VP2-LTB was higher than that from mice received VP2 and negative control, which demonstrated significantly statistically different. Especially, the titer of IgG or sIgA in mice immunized with rLc:pPG612-VP2-LTB is the highest in this study. In summary, LTB as mucosal adjuvant was able to effectively facilitate induction of mucosal and systemic immunity by L. casei-expressing VP2 fusion protein.
Collapse
Affiliation(s)
- Diqiu Liu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, PR China.
| | | | | | | | | |
Collapse
|
31
|
Huy NX, Kim YS, Jun SC, Jin Z, Park SM, Yang MS, Kim TG. Production of a heat-labile enterotoxin B subunit-porcine epidemic diarrhea virus-neutralizing epitope fusion protein in transgenic lettuce ( Lactuca sativa). BIOTECHNOL BIOPROC E 2010; 14:731-737. [PMID: 32218676 PMCID: PMC7091058 DOI: 10.1007/s12257-009-3012-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/26/2009] [Indexed: 11/28/2022]
Abstract
Plant-based vaccines have been produced in transgenic plants including tobacco, potatoes, corn, and rice. However, these plants are not suitable for administration without cooking. To overcome this obstacle, a fusion gene encoding the synthetic enterotoxigenic Escherichia coli heat-labile enterotoxin B subunit genetically fused with a synthetic neutralizing epitope of porcine epidemic diarrhea virus (sLTB-sCOE) was introduced into lettuce cells (Lactuca sativa) by Agrobacterium-mediated transformation methods. The integration and expression of the sLTB-sCOE fusion gene was confirmed in transgenic lettuce by genomic DNA PCR amplification and Northern blot analysis, respectively. Synthesis and assembly of the LTB-COE fusion protein into oligomeric structures with pentamer size were observed in transgenic plant extracts by Western blot analysis with anti-LTB or anti-COE antibodies. The binding of plantproduced LTB-COE to intestinal epithelial cell membrane glycolipid receptors was confirmed by GM1-ganglioside enzyme-linked immunosorbent assay (GM1-ELISA). Based on the ELISA results, LTB-COE fusion protein made up about 0.026∼0.048% of the total soluble protein in the transgenic lettuce leaf tissues. The synthesis and assembly of LTB-COE monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of using uncooked edible plant-based vaccines for mucosal immunization.
Collapse
Affiliation(s)
- Nguyen-Xuan Huy
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Young-Sook Kim
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Sang-Chel Jun
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Zhewu Jin
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Seung-Moon Park
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Moon-Sik Yang
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| | - Tae-Geum Kim
- Division of Biological Sciences and the Research Center for Bioactive Materials, Chonbuk National University, Jeonju, 561-756 Korea
| |
Collapse
|
32
|
Expression and Immunogenicity of Enterotoxigenic Escherichia coli Heat-Labile Toxin B Subunit in Transgenic Rice Callus. Mol Biotechnol 2009; 44:14-21. [DOI: 10.1007/s12033-009-9200-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/11/2009] [Indexed: 10/20/2022]
|
33
|
Effective CD8+ T cell priming and tumor protection by enterotoxin B subunit-conjugated peptides targeted to dendritic cells. Vaccine 2009; 27:5252-8. [DOI: 10.1016/j.vaccine.2009.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/08/2009] [Accepted: 06/14/2009] [Indexed: 11/21/2022]
|
34
|
Chen CG, Lu YT, Lin M, Savelyeva N, Stevenson FK, Zhu D. Amplification of immune responses against a DNA-delivered idiotypic lymphoma antigen by fusion to the B subunit of E. coli heat labile toxin. Vaccine 2009; 27:4289-96. [DOI: 10.1016/j.vaccine.2009.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/27/2009] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
|
35
|
Zhang GG, Li DX, Zhang HH, Zeng YM, Chen L. Enhancement of mucosal immune response against the M2eHBc+ antigen in mice with the fusion expression products of LTB and M2eHBc+ through mucosal immunization route. Vet Res Commun 2009; 33:735-47. [PMID: 19462253 DOI: 10.1007/s11259-009-9222-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 04/02/2009] [Indexed: 11/25/2022]
Abstract
M2e is the external domain of M2 protein, a conservative transmembrane protein of the avian influenza A virus. Previous research had shown that the vaccine of the formation particle of M2e and hepatitis B virus core antigen (HBcAg) can fully protect mice against a lethal H5N1 subtype avian influenza virus (AIV) infection. As an effective approach against mucosal tissue infectious agent, mucosal vaccination requires effective and safe adjuvants. Here we have first fused two M2e peptide to the N terminal and the major immunodominant region (MIR) of the HBcAg protein simultaneously to create a fusion gene, named as M2eHBc+, and then inserted B subunit of Escherichia coli heat labile enterotoxin (LTB) into the N terminal of M2eHBc+ to construct the second fusion gene, named as LBM2eHBc+. These two fusion genes can be efficiently expressed in Escherichia coli cell and the yield peptide can self-assemble into virus-like particles (VLP). The mice immunization with two types of the purified particles by intranasal dropping and oral routes revealed that LTB can significantly enhance the mucosal immune responses of mice to co-expression M2eHBc+ particle form antigen.
Collapse
Affiliation(s)
- Guo-guang Zhang
- The Key Laboratory of Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | | | | | | | | |
Collapse
|
36
|
Domingos M, Andrade R, Barbaro K, Borges M, Lewis D, New R. Influence of the A and B subunits of cholera toxin (CT) and Escherichia coli toxin (LT) on TNF-α release from macrophages. Toxicon 2009; 53:570-7. [DOI: 10.1016/j.toxicon.2008.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 11/26/2022]
|
37
|
Donaldson DS, Williams NA. Bacterial toxins as immunomodulators. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 666:1-18. [PMID: 20054971 DOI: 10.1007/978-1-4419-1601-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial toxins are the causative agent at pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immunomodulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.
Collapse
Affiliation(s)
- David S Donaldson
- Department of Cellular and Molecular Medicine, School of Medicine Sciences, University of Bristol, Bristol, UK
| | | |
Collapse
|
38
|
Kosaki H, Wolt JD, Wang K, Coats JR. Subacute effects of maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on the Springtail, Folsomia candida , and the earthworm, Eisenia fetida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11342-11347. [PMID: 19012409 DOI: 10.1021/jf802355a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The ecotoxicological effects of transgenic maize-expressed vaccine protein, Escherichia coli heat-labile enterotoxin subunit B (LTB), on two soil invertebrates were studied under laboratory settings. After being reared for 28 days on LTB-maize-treated soils, no apparent mortality of the springtail, Folsomia candida , or the earthworm, Eisenia fetida , was observed at levels well above conservatively projected estimated environmental concentrations. Therefore, it is concluded that there would be no acutely toxic effect of LTB to these species. As for the subacute effect, no significant differences of F. candida mean reproduction and E. fetida mean growth were observed between LTB-maize-treated samples and non-GM-maize-treated controls. In addition, no LTB was detected in the E. fetida whole-body extraction assay, which indicates there was no tendency for bioaccumulation. On the basis of these observations, it is predicted that any adverse effects of LTB-maize on F. candida and E. fetida would be minimal, if any.
Collapse
Affiliation(s)
- Hirofumi Kosaki
- Department of Entomology, Biosafety Institute for Genetically Modified Agricultural Products, Iowa State University, Ames, 50011, USA
| | | | | | | |
Collapse
|
39
|
da Silva Ramos Rocha A, Conceição FR, Grassmann AA, Lagranha VL, Dellagostin OA. B subunit ofEscherichia coliheat-labile enterotoxin as adjuvant of humoral immune response in recombinant BCG vaccination. Can J Microbiol 2008; 54:677-86. [DOI: 10.1139/w08-056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a nontoxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. In this paper, the effect of LTB on the humoral immune response to recombinant BCG (rBCG) vaccination was evaluated. Isogenic mice were immunized with rBCG expressing the R1 repeat region of the P97 adhesin of Mycoplasma hyopneumoniae alone (rBCG/R1) or fused to LTB (rBCG/LTBR1). Anti-R1 systemic antibody levels (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgA) were measured by ELISA using recombinant R1 as antigen. With the exception of IgM, LTB doubled the anti-R1 antibody levels in rBCG vaccination. The IgG1/IgG2a mean ratio showed that both rBCG/LTBR1 and rBCG/R1 induced a mixed Th1/Th2 immune response. Interestingly, anti-R1 serum IgA was induced only by rBCG/LTBR1. These results demonstrate that LTB has an adjuvant effect on the humoral immune response to recombinant antigens expressed in BCG.
Collapse
Affiliation(s)
- Andréa da Silva Ramos Rocha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - André Alex Grassmann
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Valeska Lizzi Lagranha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Odir Antônio Dellagostin
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
40
|
Julia Scerbo M, Bibolini MJ, Barra JL, Roth GA, Monferran CG. Expression of a bioactive fusion protein of Escherichia coli heat-labile toxin B subunit to a synapsin peptide. Protein Expr Purif 2008; 59:320-6. [PMID: 18400513 DOI: 10.1016/j.pep.2008.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/15/2008] [Accepted: 02/27/2008] [Indexed: 11/30/2022]
Abstract
The B subunit of Escherichia coli heat-labile toxin (LTB) may function as an efficient carrier molecule for the delivery of genetically coupled antigens across the mucosal barrier. We constructed vectors for the expression of LTB and LTBSC proteins. LTBSC is a fusion protein that comprises the amino acid sequence from the C-domain of rat synapsin fused to the C-terminal end of LTB. Both constructions have a coding sequence for a 6His-tag fused in-frame. LTBSC was expressed in E. coli as inclusion bodies. The inclusion bodies were isolated and purified by Ni2+-chelating affinity chromatography under denaturing condition. Purified LTBSC was diluted in several refolding buffers to gain a soluble and biologically active protein. Refolded LTBSC assembled as an active oligomer which binds to the GM1 receptor in an enzyme-linked immunosorbent assay (ELISA). Soluble LTB in the E. coli lysate was also purified by Ni2+-chelating affinity chromatography and the assembled pentamer was able to bind with high affinity to GM1 in vitro. LTBSC and LTB were fed to rats and the ability to induce antigen-specific tolerance was tested. LTBSC inhibited the specific delayed-type hypersensitivity (DTH) response and induced decreased antigen-specific in vivo and in vitro cell proliferation more efficiently than LTB. Thus, the novel hybrid molecule LTBSC when orally delivered was able to elicit a systemic immune response. These results suggest that LTBSC could be suitable for exploring further therapeutic treatment of autoimmune inflammatory diseases involving antigens from central nervous system.
Collapse
Affiliation(s)
- M Julia Scerbo
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | | | | | | |
Collapse
|
41
|
Synthesis and assembly ofEscherichia coli heat-labile enterotoxin B subunit in transgenic rice (Oryza sativa L.). BIOTECHNOL BIOPROC E 2007. [DOI: 10.1007/bf02931085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Moravec T, Schmidt MA, Herman EM, Woodford-Thomas T. Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine. Vaccine 2007; 25:1647-57. [PMID: 17188785 DOI: 10.1016/j.vaccine.2006.11.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 10/30/2006] [Accepted: 11/02/2006] [Indexed: 11/16/2022]
Abstract
The B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.4% of the total seed protein at maturity and was stable in desiccated seed. LTB-soybean extracts administered orally to mice induced both systemic IgG and IgA, and mucosal IgA antibody responses, and was particularly efficacious when used in a parenteral prime-oral gavage boost immunization strategy. Sera from immunized mice blocked ligand binding in vitro and immunized mice exhibited partial protection against LT challenge. Moreover, soybean-expressed LTB stimulated the antibody response against a co-administered antigen by 500-fold. These results demonstrate the utility of soybean as an efficient production platform for vaccines that can be used for oral delivery.
Collapse
Affiliation(s)
- Tomas Moravec
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, United States
| | | | | | | |
Collapse
|
43
|
Kim TG, Kim MY, Kim BG, Kang TJ, Kim YS, Jang YS, Arntzen CJ, Yang MS. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expr Purif 2007; 51:22-7. [PMID: 16919472 DOI: 10.1016/j.pep.2006.05.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/30/2006] [Accepted: 05/31/2006] [Indexed: 11/26/2022]
Abstract
Escherichia coli heat-labile enterotoxin B subunit (LTB) strongly induces immune responses and can be used as an adjuvant for co-administered antigens. Synthetic LTB (sLTB) based on optimal codon usage by plants was introduced into lettuce cells (Lactuca sativa) by Agrobacterium tumefaciens-mediated transformation methods. The sLTB gene was detected in the genomic DNA of transgenic lettuce leaf cells by PCR DNA amplification. Synthesis and assembly of the sLTB protein into oligomeric structures of pentameric size was observed in transgenic plant extracts using Western blot analysis. The binding of sLTB pentamers to intestinal epithelial cell membrane glycolipid receptors was confirmed by G(M1)-ganglioside enzyme-linked immunosorbent assay (G(M1)-ELISA). Based on the results of ELISA, sLTB protein comprised approximately 1.0-2.0% of total soluble protein in transgenic lettuce leaf tissues. The synthesis and assembly of sLTB monomers into biologically active oligomers in transgenic lettuce leaf tissues demonstrates the feasibility of the use of edible plant-based vaccines consumed in the form of raw plant materials to induce mucosal immunity.
Collapse
Affiliation(s)
- Tae-Geum Kim
- Division of Biological Sciences and Research Center for Bioactive Materials, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Conceição FR, Moreira AN, Dellagostin OA. A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine 2006; 24:5734-43. [PMID: 16730864 DOI: 10.1016/j.vaccine.2006.04.036] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 04/25/2006] [Accepted: 04/25/2006] [Indexed: 01/12/2023]
Abstract
Swine mycoplasmal pneumonia (SMP), caused by fastidious bacterium Mycoplasma hyopneumoniae, is the most important respiratory disease in swine breeding. The commonly used vaccines to control this disease consist of inactivated whole cells (bacterins), whose production cost is high and the efficiency is limited. The objective of this study was to develop and to evaluate in BALB/c mice a recombinant subunit vaccine (rLTBR1) containing the R1 region of P97 adhesin of M. hyopneumoniae (R1) fused to the B subunit of the heat-labile enterotoxin of Escherichia coli (LTB). rLTBR1 formed functional oligomers that presented high affinity to GM1 ganglioside. Mice inoculated with rLTBR1 by intranasal (IN) or intramuscular (IM) route produced high levels of anti-R1 systemic and mucosal antibodies (IgA), which recognized the native P97. On the other hand, mice inoculated with the inactivated whole cell vaccine did not produce anti-R1 antibodies. The administration route influenced the modulation of the immune response by LTB, showing that IM rLTBR1 induced Th2-biased immune responses and IN rLTBR1 induced Th1-biased immune responses. rLTBR1 administrated by IN route also induced IFN-gamma secretion by lymphocytes. rLTBR1 may constitute a new strategy for preventing infection by M. hyopneumoniae and may have potential for developing vaccines against other infectious diseases as well.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/immunology
- Animals
- Antibodies, Bacterial/blood
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/immunology
- Enterotoxins/genetics
- Enterotoxins/immunology
- Enterotoxins/metabolism
- Escherichia coli/immunology
- Escherichia coli/metabolism
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/immunology
- Escherichia coli Proteins/metabolism
- Female
- Immunoglobulin A/blood
- Immunoglobulin A/metabolism
- Interferon-gamma/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mycoplasma hyopneumoniae/immunology
- Mycoplasma hyopneumoniae/metabolism
- Pneumonia of Swine, Mycoplasmal/immunology
- Pneumonia of Swine, Mycoplasmal/prevention & control
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Repetitive Sequences, Nucleic Acid
- T-Lymphocytes/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
|
45
|
Ola TO, Williams NA. Protection of non-obese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit. Immunology 2006; 117:262-70. [PMID: 16423062 PMCID: PMC1782208 DOI: 10.1111/j.1365-2567.2005.02294.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Autoimmune diabetes in the non-obese diabetic (NOD) mouse is associated with development of inflammation around the islets at around 4-5 weeks of age, which may be prolonged until frank diabetes begins to occur around 12 weeks of age. Although many interventions can halt disease progression if administration coincides with the beginning of the anti-beta cell response, very few are able to prevent diabetes development once insulitis is established. Here we describe a strategy which blocks cellular infiltration of islets and prevents diabetes. Intranasal treatment with the B-subunit of Escherichia coli heat labile enterotoxin (EtxB), a protein that binds GM1 ganglioside (as well as GD1b, asialo-GM1 and lactosylceramide with lower affinities), protected NOD mice from developing diabetes in a receptor-binding dependent manner. Protection was associated with a significant reduction in the number of macrophages, CD4(+) T cells, B cells, major histocompatibility complex class II(+) cells infiltrating the islets. Despite this, treated mice showed increased number of interleukin-10(+) cells in the pancreas, and a decrease in both T helper 1 (Th1) and Th2 cytokine production in the pancreatic lymph node. Disease protection was also transferred with CD4(+) splenocytes from treated mice. Taken together, these results demonstrated that EtxB is a potent immune modulator capable of blocking diabetes.
Collapse
Affiliation(s)
- Thomas O Ola
- University of Bristol, Department of Pathology and Microbiology, School of Medical Sciences, University Walk, UK.
| | | |
Collapse
|
46
|
Enhanced immunization after intranasal coadministration of Escherichia coli heat-labile enterotoxin B subunit and human papillomavirus 16-L1 DNA vaccine. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200603010-00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
Abstract
Delivery of vaccines to mucosal surfaces can elicit humoral and cell-mediated responses of the mucosal and systemic immune systems, evoke less pain and discomfort than parenteral delivery, and eliminate needle-associated risks. Transgenic plants are an ideal means by which to produce oral vaccines, as the rigid walls of the plant cell protect antigenic proteins from the acidic environment of the stomach, enabling intact antigen to reach the gut associated lymphoid tissue. In the past few years, new techniques (such as chloroplast transformation and food processing) have improved antigen concentration in transgenic plants. In addition, adjuvants and targeting proteins have increased the immunogenicity of mucosally administered plant-made vaccines. These studies have moved plant-made vaccines closer to the development phase.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Chlamydomonas reinhardtii/cytology
- Chlamydomonas reinhardtii/genetics
- Chlamydomonas reinhardtii/metabolism
- Gene Expression/genetics
- Humans
- Immunity, Mucosal/immunology
- Legislation, Drug
- Mice
- Plant Structures/genetics
- Plant Structures/growth & development
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Tissue Culture Techniques
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/metabolism
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/biosynthesis
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/biosynthesis
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- M Manuela Rigano
- The Biodesign Institute at Arizona State University, School of Life Sciences, Arizona State University, Tempe, 85287, USA
| | | |
Collapse
|
48
|
Czinn SJ, Nedrud JG. Peptic Ulcers and Gastritis. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Matoba N, Magérus A, Geyer BC, Zhang Y, Muralidharan M, Alfsen A, Arntzen CJ, Bomsel M, Mor TS. A mucosally targeted subunit vaccine candidate eliciting HIV-1 transcytosis-blocking Abs. Proc Natl Acad Sci U S A 2004; 101:13584-9. [PMID: 15347807 PMCID: PMC518798 DOI: 10.1073/pnas.0405297101] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A vaccine that would engage the mucosal immune system against a broad range of HIV-1 subtypes and prevent epithelial transmission is highly desirable. Here we report fusing the mucosal targeting B subunit of cholera toxin to the conserved galactosylceramide-binding domain (including the ELDKWA-neutralizing epitope) of the HIV-1 gp41 envelope protein, which mediates the transcytosis of HIV-1 across the mucosal epithelia. Chimeric protein expressed in bacteria or plants assembled into oligomers that were capable of binding galactosyl-ceramide and G(M1) gangliosides. Mucosal (intranasal) administration in mice of the purified chimeric protein followed by an i.p. boost resulted in transcytosis-neutralizing serum IgG and mucosal IgA responses and induced immunological memory. Plant production of mucosally targeted immunogens could be particularly useful for immunization programs in developing countries, where desirable product traits include low cost of manufacture, heat stability, and needle-free delivery.
Collapse
Affiliation(s)
- Nobuyuki Matoba
- School of Life Sciences and Biodesign Institute, P.O. Box 874501, Arizona State University, Tempe, AZ 85287-4501, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chou SF. Production and purification of monoclonal and polyclonal antibodies against cholera toxin. ACTA ACUST UNITED AC 2004; 23:258-61. [PMID: 15319074 DOI: 10.1089/1536859041651376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to produce monoclonal and polyclonal antibodies against cholera toxin (CT). Hyperimmune ICR mice produced polyclonal antibodies (PAbs) after injection with 0.5 mL of pristane and were injected with NS-1 myeloma cells 2 weeks later. Hyperimmune Balb/c mice were used for the production of monoclonal antibodies (MAbs). After these mice were immunized four times and given a final boost, their spleen cells were collected and fused with NS-1 myeloma cells under the presence of PEG 1500. The fused cells were then selected in the hypoxanthine, aminopterin, and thymidine (HAT)-RPMIX medium. Anti-CT antibody-secreting hybridoma cell lines with high titer were cloned by enzyme-linked immunosorbent assay (ELISA) and then subcloned by limiting dilution in 15% fetal bovine serum (FBS) HT-RPMIX medium. Eleven murine hybridoma producing anti-CT MAbs were obtained and designated CT-A2, CT-B4, CT-B11, CT-C7, CT-D7, CT-E8, CT-F4, CT-F2, CT-F8, CT-E3, CT-E6. Isotypes of MAbs were identified as IgM heavy chain and all were lambda light chain. Hitrap rProtein A and Hitrap IgM purification columns were used for the purification of PAbs and MAbs, respectively.
Collapse
Affiliation(s)
- Shu-Fen Chou
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan, Republic of China.
| |
Collapse
|