1
|
Lee YJ, Cao D, Subhadra B, De Castro C, Speciale I, Inzana TJ. Relationship between capsule production and biofilm formation by Mannheimia haemolytica, and establishment of a poly-species biofilm with other Pasteurellaceae. Biofilm 2024; 8:100223. [PMID: 39492819 PMCID: PMC11530854 DOI: 10.1016/j.bioflm.2024.100223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
Mannheimia haemolytica is one of the bacterial agents responsible for bovine respiratory disease (BRD). The capability of M. haemolytica to form a biofilm may contribute to the development of chronic BRD infection by making the bacteria more resistant to host innate immunity and antibiotics. To improve therapy and prevent BRD, a greater understanding of the association between M. haemolytica surface components and biofilm formation is needed. M. haemolytica strain 619 (wild-type) made a poorly adherent, low-biomass biofilm. To examine the relationship between capsule and biofilm formation, a capsule-deficient mutant of wild-type M. haemolytica was obtained following mutagenesis with ethyl methanesulfonate to obtain mutant E09. Loss of capsular polysaccharide (CPS) in mutant E09 was supported by transmission electron microscopy and Maneval's staining. Mutant E09 attached to polyvinyl chloride plates more effectively, and produced a significantly denser and more uniform biofilm than the wild-type, as determined by crystal violet staining, scanning electron microscopy, and confocal laser scanning microscopy with COMSTAT analysis. The biofilm matrix of E09 contained predominately protein and significantly more eDNA than the wild-type, but not a distinct exopolysaccharide. Furthermore, treatment with DNase I significantly reduced the biofilm content of both the wild-type and E09 mutant. DNA sequencing of E09 showed that a point mutation occurred in the capsule biosynthesis gene wecB. The complementation of wecB in trans in mutant E09 successfully restored CPS production and reduced bacterial attachment/biofilm to levels similar to that of the wild-type. Fluorescence in-situ hybridization microscopy showed that M. haemolytica formed a poly-microbial biofilm with Histophilus somni and Pasteurella multocida. Overall, CPS production by M. haemolytica was inversely correlated with biofilm formation, the integrity of which required eDNA. A poly-microbial biofilm was readily formed between M. haemolytica, H. somni, and P. multocida, suggesting a mutualistic or synergistic interaction that may benefit bacterial colonization of the bovine respiratory tract.
Collapse
Affiliation(s)
- Yue-Jia Lee
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
- Institute of Food Science and Technology, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei, 10617, Taiwan, ROC
| | - Dianjun Cao
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Bindu Subhadra
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| | - Cristina De Castro
- Department of Chemical Sciences, Università di Napoli FedericoII, Naples, Italy
| | | | - Thomas J. Inzana
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, 720 Northern Boulevard, Brookville, NY, 11548, USA
| |
Collapse
|
2
|
Goldkamp AK, Menghwar H, Dassanayake RP, Tatum FM, Briggs RE, Casas E. Complete hybrid genome assembly of Mannheimia haemolytica serotype A2 strain D95 isolated from ovine lung. Microbiol Resour Announc 2024:e0055224. [PMID: 39400145 DOI: 10.1128/mra.00552-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/16/2024] [Indexed: 10/15/2024] Open
Abstract
Mannheimia haemolytica is a major bacterial pathogen associated with broncho- and fibrinous pneumonia in ruminants. Here, we report the complete genome sequence of an isolate of serotype A2 M. haemolytica (D95) recovered from a pneumonic ovine lung. The D95 genome has a size of 2.7 Mb and contains 2,720 genes.
Collapse
Affiliation(s)
- Anna K Goldkamp
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Harish Menghwar
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
- ARS Research Participation Program, Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Rohana P Dassanayake
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Fred M Tatum
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Robert E Briggs
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| | - Eduardo Casas
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, USA
| |
Collapse
|
3
|
Mannaa M, Lee D, Lee HH, Han G, Kang M, Kim TJ, Park J, Seo YS. Exploring the comparative genome of rice pathogen Burkholderia plantarii: unveiling virulence, fitness traits, and a potential type III secretion system effector. FRONTIERS IN PLANT SCIENCE 2024; 15:1416253. [PMID: 38845849 PMCID: PMC11153758 DOI: 10.3389/fpls.2024.1416253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
This study presents a comprehensive genomic analysis of Burkholderia plantarii, a rice pathogen that causes blight and grain rot in seedlings. The entire genome of B. plantarii KACC 18964 was sequenced, followed by a comparative genomic analysis with other available genomes to gain insights into its virulence, fitness, and interactions with rice. Multiple secondary metabolite gene clusters were identified. Among these, 12 demonstrated varying similarity levels to known clusters linked to bioactive compounds, whereas eight exhibited no similarity, indicating B. plantarii as a source of potentially novel secondary metabolites. Notably, the genes responsible for tropolone and quorum sensing were conserved across the examined genomes. Additionally, B. plantarii was observed to possess three complete CRISPR systems and a range of secretion systems, exhibiting minor variations among the analyzed genomes. Genomic islands were analyzed across the four genomes, and a detailed study of the B. plantarii KACC 18964 genome revealed 59 unique islands. These islands were thoroughly investigated for their gene contents and potential roles in virulence. Particular attention has been devoted to the Type III secretion system (T3SS), a crucial virulence factor. An in silico analysis of potential T3SS effectors identified a conserved gene, aroA. Further mutational studies, in planta and in vitro analyses validated the association between aroA and virulence in rice. Overall, this study enriches our understanding of the genomic basis of B. plantarii pathogenicity and emphasizes the potential role of aroA in virulence. This understanding may guide the development of effective disease management strategies.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
- Department of Plant Pathology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Duyoung Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Minhee Kang
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Tae-Jin Kim
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| | - Jungwook Park
- Biotechnology Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
- Institute of System Biology, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
4
|
Kuklewicz J, Zimmer J. Molecular insights into capsular polysaccharide secretion. Nature 2024; 628:901-909. [PMID: 38570679 PMCID: PMC11041684 DOI: 10.1038/s41586-024-07248-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Capsular polysaccharides (CPSs) fortify the cell boundaries of many commensal and pathogenic bacteria1. Through the ABC-transporter-dependent biosynthesis pathway, CPSs are synthesized intracellularly on a lipid anchor and secreted across the cell envelope by the KpsMT ABC transporter associated with the KpsE and KpsD subunits1,2. Here we use structural and functional studies to uncover crucial steps of CPS secretion in Gram-negative bacteria. We show that KpsMT has broad substrate specificity and is sufficient for the translocation of CPSs across the inner bacterial membrane, and we determine the cell surface organization and localization of CPSs using super-resolution fluorescence microscopy. Cryo-electron microscopy analyses of the KpsMT-KpsE complex in six different states reveal a KpsE-encaged ABC transporter, rigid-body conformational rearrangements of KpsMT during ATP hydrolysis and recognition of a glycolipid inside a membrane-exposed electropositive canyon. In vivo CPS secretion assays underscore the functional importance of canyon-lining basic residues. Combined, our analyses suggest a molecular model of CPS secretion by ABC transporters.
Collapse
Affiliation(s)
- Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Howard Hughes Medical Institute, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Kostova V, Hanke D, Kaspar H, Fiedler S, Schwarz S, Krüger-Haker H. Macrolide resistance in Mannheimia haemolytica isolates associated with bovine respiratory disease from the German national resistance monitoring program GE RM-Vet 2009 to 2020. Front Microbiol 2024; 15:1356208. [PMID: 38495516 PMCID: PMC10940430 DOI: 10.3389/fmicb.2024.1356208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024] Open
Abstract
Data collected from the German national resistance monitoring program GERM-Vet showed slowly increasing prevalence of macrolide resistance among bovine respiratory disease (BRD)-associated Pasteurellacae from cattle over the last decade. The focus of this study was to analyze the genetic basis of antimicrobial resistance (AMR) and the prevalence of multidrug-resistance (MDR)-mediating integrative and conjugative elements (ICEs) in 13 German BRD-associated Mannheimia haemolytica isolates collected between 2009 and 2020 via whole-genome sequencing. Antimicrobial susceptibility testing (AST) was performed via broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute for the macrolides erythromycin, tilmicosin, tulathromycin, gamithromycin, tildipirosin, and tylosin as well as 25 other antimicrobial agents. All isolates either had elevated MICs or were resistant to at least one of the macrolides tested. Analysis of whole-genome sequences obtained by hybrid assembly of Illumina MiSeq and Oxford Nanopore MinION reads revealed the presence of seven novel Tn7406-like ICEs, designated Tn7694, and Tn7724- Tn7729. These ICEs harbored the antimicrobial resistance genes erm(T), mef (C), mph(G), floR, catA3, aad(3")(9), aph(3')-Ia, aac(3)-IIa, strA, strB, tet(Y), and sul2 in different combinations. In addition, mutational changes conferring resistance to macrolides, nalidixic acid or streptomycin, respectively, were detected among the M. haemolytica isolates. In addition, four isolates carried a 4,613-bp plasmid with the β-lactamase gene blaROB - 1. The detection of the macrolide resistance genes erm(T), mef (C), and mph(G) together with other resistance genes on MDR-mediating ICEs in bovine M. haemolytica may explain the occurrence of therapeutic failure when treating BRD with regularly used antimicrobial agents, such as phenicols, penicillins, tetracyclines, or macrolides. Finally, pathogen identification and subsequent AST is essential to ensure the efficacy of the antimicrobial agents applied to control BRD in cattle.
Collapse
Affiliation(s)
- Valeria Kostova
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Heike Kaspar
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Fiedler
- Federal Office of Consumer Protection and Food Safety (BVL), Berlin, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Henrike Krüger-Haker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Jiao Z, Jiang J, Meng Y, Wu G, Tang J, Chen T, Fu Y, Chen Y, Zhang Z, Gao H, Man C, Chen Q, Du L, Wang F, Chen S. Immune Cells in the Spleen of Mice Mediate the Inflammatory Response Induced by Mannheimia haemolytica A2 Serotype. Animals (Basel) 2024; 14:317. [PMID: 38275777 PMCID: PMC10812571 DOI: 10.3390/ani14020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Mannheimia haemolytica (M. haemolytica) is an opportunistic pathogen and is mainly associated with respiratory diseases in cattle, sheep, and goats. (2) Methods: In this study, a mouse infection model was established using a M. haemolytica strain isolated from goats. Histopathological observations were conducted on various organs of the mice, and bacterial load determination and RNA-seq analysis were specifically performed on the spleens of the mice. (3) Results: The findings of this study suggest that chemokines, potentially present in the spleen of mice following a M. haemolytica challenge, may induce the migration of leukocytes to the spleen and suppress the release of pro-inflammatory factors through a negative feedback regulation mechanism. Additionally, an interesting observation was made regarding the potential of hematopoietic stem/progenitor cells congregating in the spleen to differentiate into immune cells, which could potentially collaborate with leukocytes in their efforts to counteract M. haemolytica invasion. (4) Conclusions: This study revealed the immune regulation mechanism induced by M. haemolytica in the mouse spleen, providing valuable insights into host-pathogen interactions and offering a theoretical basis for the prevention, control, and treatment of mannheimiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| |
Collapse
|
7
|
Sande C, Whitfield C. Capsules and Extracellular Polysaccharides in Escherichia coli and Salmonella. EcoSal Plus 2021; 9:eESP00332020. [PMID: 34910576 PMCID: PMC11163842 DOI: 10.1128/ecosalplus.esp-0033-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Escherichia coli and Salmonella isolates produce a range of different polysaccharide structures that play important roles in their biology. E. coli isolates often possess capsular polysaccharides (K antigens), which form a surface structural layer. These possess a wide range of repeat-unit structures. In contrast, only one capsular polymer (Vi antigen) is found in Salmonella, and it is confined to typhoidal serovars. In both genera, capsules are vital virulence determinants and are associated with the avoidance of host immune defenses. Some isolates of these species also produce a largely secreted exopolysaccharide called colanic acid as part of their complex Rcs-regulated phenotypes, but the precise function of this polysaccharide in microbial cell biology is not fully understood. E. coli isolates produce two additional secreted polysaccharides, bacterial cellulose and poly-N-acetylglucosamine, which play important roles in biofilm formation. Cellulose is also produced by Salmonella isolates, but the genes for poly-N-acetylglucosamine synthesis appear to have been lost during its evolution toward enhanced virulence. Here, we discuss the structures, functions, relationships, and sophisticated assembly mechanisms for these important biopolymers.
Collapse
Affiliation(s)
- Caitlin Sande
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Prediction of Mannheimia haemolytica serotypes based on whole genomic sequences. Vet Microbiol 2021; 262:109232. [PMID: 34509701 DOI: 10.1016/j.vetmic.2021.109232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/02/2021] [Indexed: 11/24/2022]
Abstract
The aim of the investigation was to predict the serotypes of M. haemolytica based on whole genomic sequences with the capsular gene region as target. A total of 22 strains selected to have been serotyped and to represent all serotypes were investigated by whole genomic sequencing. The BIGSdb (Bacterial Isolate Genome Sequence Database) was downloaded and installed on a Linux server. Here the sequence database was setup with unique loci at serotype level. The server allows serotypes of M. haemolytica to be predicted from whole genomic sequences and the service is available to the public for free from https://ivsmlst.sund.root.ku.dk.
Collapse
|
9
|
Caffalette CA, Kuklewicz J, Spellmon N, Zimmer J. Biosynthesis and Export of Bacterial Glycolipids. Annu Rev Biochem 2020; 89:741-768. [DOI: 10.1146/annurev-biochem-011520-104707] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Complex carbohydrates are essential for many biological processes, from protein quality control to cell recognition, energy storage, and cell wall formation. Many of these processes are performed in topologically extracellular compartments or on the cell surface; hence, diverse secretion systems evolved to transport the hydrophilic molecules to their sites of action. Polyprenyl lipids serve as ubiquitous anchors and facilitators of these transport processes. Here, we summarize and compare bacterial biosynthesis pathways relying on the recognition and transport of lipid-linked complex carbohydrates. In particular, we compare transporters implicated in O antigen and capsular polysaccharide biosyntheses with those facilitating teichoic acid and N-linked glycan transport. Further, we discuss recent insights into the generation, recognition, and recycling of polyprenyl lipids.
Collapse
Affiliation(s)
- Christopher A. Caffalette
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jeremi Kuklewicz
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Nicholas Spellmon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jochen Zimmer
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
10
|
Benz R, Piselli C, Potter AA. Channel Formation by LktA of Mannheimia (Pasteurella) haemolytica in Lipid Bilayer Membranes and Comparison of Channel Properties with Other RTX-Cytolysins. Toxins (Basel) 2019; 11:toxins11100604. [PMID: 31627319 PMCID: PMC6833087 DOI: 10.3390/toxins11100604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Cytolysin LktA is one of the major pathogenicity factors of Mannheimia haemolytica (formerly Pasteurella haemolytica) that is the cause of pasteurellosis, also known as shipping fever pneumonia, causing substantial loss of sheep and cattle during transport. LktA belongs to the family of RTX-toxins (Repeats in ToXins) that are produced as pathogenicity factors by a variety of Gram-negative bacteria. Sublytic concentrations of LktA cause inflammatory responses of ovine leukocytes. Higher concentrations result in formation of transmembrane channels in target cells that may cause cell lysis and apoptosis. In this study we investigated channel formation by LktA in artificial lipid bilayer membranes made of different lipids. LktA purified from culture supernatants by polyethylene glycol 4000 precipitation and lyophilization had to be activated to frequently form channels by solution in 6 M urea. The LktA channels had a single-channel conductance of about 60 pS in 0.1 M KCl, which is about one tenth of the conductance of most RTX-toxins with the exception of adenylate cyclase toxin of Bordetella pertussis. The LktA channels are highly cation-selective caused by negative net charges. The theoretical treatment of the conductance of LktA as a function of the bulk aqueous concentration allowed a rough estimate of the channel diameter, which is around 1.5 nm. The size of the LktA channel is discussed with respect to channels formed by other RTX-toxins. We present here the first investigation of LktA in a reconstituted system.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs-University Bremen gGmbH Campusring, 1; 28759 Bremen, Germany.
| | - Andrew A Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK S7N5E3, Canada.
| |
Collapse
|
11
|
Litschko C, Oldrini D, Budde I, Berger M, Meens J, Gerardy-Schahn R, Berti F, Schubert M, Fiebig T. A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens. mBio 2018; 9:e00641-18. [PMID: 29844111 PMCID: PMC5974469 DOI: 10.1128/mbio.00641-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis, Actinobacillus pleuropneumoniae, Haemophilus influenzae, Bibersteinia trehalosi, and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis.IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy. The new capsule polymerase family described here vastly increases the toolbox of enzymes available for biotechnology purposes. Representatives are abundantly found in human pathogens but also in animal pathogens, paving the way for the exploitation of polymerases for the development of a new generation of vaccines for animal husbandry.
Collapse
Affiliation(s)
- Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Insa Budde
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Monika Berger
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Meens
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | - Mario Schubert
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
12
|
Klima CL, Zaheer R, Briggs RE, McAllister TA. A multiplex PCR assay for molecular capsular serotyping of Mannheimia haemolytica serotypes 1, 2, and 6. J Microbiol Methods 2017; 139:155-160. [DOI: 10.1016/j.mimet.2017.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
13
|
Willis LM, Whitfield C. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378:35-44. [PMID: 23746650 DOI: 10.1016/j.carres.2013.05.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/06/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis.
Collapse
Affiliation(s)
- Lisa M Willis
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
14
|
Reddy JS, Kumar R, Watt JM, Lawrence ML, Burgess SC, Nanduri B. Transcriptome profile of a bovine respiratory disease pathogen: Mannheimia haemolytica PHL213. BMC Bioinformatics 2012; 13 Suppl 15:S4. [PMID: 23046475 PMCID: PMC3439734 DOI: 10.1186/1471-2105-13-s15-s4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Computational methods for structural gene annotation have propelled gene discovery but face certain drawbacks with regards to prokaryotic genome annotation. Identification of transcriptional start sites, demarcating overlapping gene boundaries, and identifying regulatory elements such as small RNA are not accurate using these approaches. In this study, we re-visit the structural annotation of Mannheimia haemolytica PHL213, a bovine respiratory disease pathogen. M. haemolytica is one of the causative agents of bovine respiratory disease that results in about $3 billion annual losses to the cattle industry. We used RNA-Seq and analyzed the data using freely-available computational methods and resources. The aim was to identify previously unannotated regions of the genome using RNA-Seq based expression profile to complement the existing annotation of this pathogen. Results Using the Illumina Genome Analyzer, we generated 9,055,826 reads (average length ~76 bp) and aligned them to the reference genome using Bowtie. The transcribed regions were analyzed using SAMTOOLS and custom Perl scripts in conjunction with BLAST searches and available gene annotation information. The single nucleotide resolution map enabled the identification of 14 novel protein coding regions as well as 44 potential novel sRNA. The basal transcription profile revealed that 2,506 of the 2,837 annotated regions were expressed in vitro, at 95.25% coverage, representing all broad functional gene categories in the genome. The expression profile also helped identify 518 potential operon structures involving 1,086 co-expressed pairs. We also identified 11 proteins with mutated/alternate start codons. Conclusions The application of RNA-Seq based transcriptome profiling to structural gene annotation helped correct existing annotation errors and identify potential novel protein coding regions and sRNA. We used computational tools to predict regulatory elements such as promoters and terminators associated with the novel expressed regions for further characterization of these novel functional elements. Our study complements the existing structural annotation of Mannheimia haemolytica PHL213 based on experimental evidence. Given the role of sRNA in virulence gene regulation and stress response, potential novel sRNA described in this study can form the framework for future studies to determine the role of sRNA, if any, in M. haemolytica pathogenesis.
Collapse
Affiliation(s)
- Joseph S Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | | | | | | | | | | |
Collapse
|
15
|
In vivo gene expression in Mannheimia haemolytica A1 during a time-course trial in the bovine host. Vet Microbiol 2012; 158:163-71. [PMID: 22386672 DOI: 10.1016/j.vetmic.2012.01.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 12/21/2022]
Abstract
The objective of this study is to examine the expression of Mannheimia haemolytica genes over time during the early stage of infection. In addition, gene expression at different sites of infection in the bovine host was examined. A time-course experiment was designed to collect pharyngeal swabs and lung washings from the same animals over two time points. Six calves were experimentally challenged with M. haemolytica A1; pharyngeal swabs were collected from all animals 5h post infection. Three calves were euthanized at 6h; pharyngeal swabs were collected from the remaining 3 calves at 12h and the calves were euthanized. Lung washings were recovered from all animals at necropsy. Total RNA was prepared from the pharyngeal swabs and lung washings and primers for eight well characterized virulence-associated genes were used in qRT-PCR to examine mRNA levels. The expression of key virulence genes such as lktA, gcp and tbpB was higher in vivo compared to in vitro with the highest changes observed from 6 to 12h. The expression of lktA and gapA increased while expression of fbpA, gs60, nmaA and tbpB was found to decreased over time in the 6h period. Gene expression profiles in the lungs versus the pharynx also differed, with most genes (fbpA, tbpB, nmaA, gs60, lktA and narP) showing higher expressing in lung washings. This is the first study to follow gene expression by M. haemolytica in the same animal over time during an infection.
Collapse
|
16
|
Role for Rhizobium rhizogenes K84 cell envelope polysaccharides in surface interactions. Appl Environ Microbiol 2011; 78:1644-51. [PMID: 22210213 DOI: 10.1128/aem.07117-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Rhizobium rhizogenes strain K84 is a commercial biocontrol agent used worldwide to control crown gall disease. The organism binds tightly to polypropylene substrate and efficiently colonizes root surfaces as complex, multilayered biofilms. A genetic screen identified two mutants in which these surface interactions were affected. One of these mutants failed to attach and form biofilms on the abiotic surface although, interestingly, it exhibited normal biofilm formation on the biological root tip surface. This mutant is disrupted in a wcbD ortholog gene, which is part of a large locus predicted to encode functions for the biosynthesis and export of a group II capsular polysaccharide (CPS). Expression of a functional copy of wcbD in the mutant background restored the ability of the bacteria to attach and form normal biofilms on the abiotic surface. The second identified mutant attached and formed visibly denser biofilms on both abiotic and root tip surfaces. This mutant is disrupted in the rkpK gene, which is predicted to encode a UDP-glucose 6-dehydrogenase required for O-antigen lipopolysaccharide (LPS) and K-antigen capsular polysaccharide (KPS) biosynthesis in rhizobia. The rkpK mutant from strain K84 was deficient in O-antigen synthesis and exclusively produced rough LPS. We also show that strain K84 does not synthesize the KPS typical of some other rhizobia strains. In addition, we identified a putative type II CPS, distinct from KPS, that mediates cell-surface interactions, and we show that O antigen of strain K84 is necessary for normal cell-cell interactions in the biofilms.
Collapse
|
17
|
Hounsome JDA, Baillie S, Noofeli M, Riboldi-Tunnicliffe A, Burchmore RJS, Isaacs NW, Davies RL. Outer membrane protein A of bovine and ovine isolates of Mannheimia haemolytica is surface exposed and contains host species-specific epitopes. Infect Immun 2011; 79:4332-41. [PMID: 21896777 PMCID: PMC3257919 DOI: 10.1128/iai.05469-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/23/2011] [Accepted: 08/08/2011] [Indexed: 01/21/2023] Open
Abstract
Mannheimia haemolytica is the etiological agent of pneumonic pasteurellosis of cattle and sheep; two different OmpA subclasses, OmpA1 and OmpA2, are associated with bovine and ovine isolates, respectively. These proteins differ at the distal ends of four external loops, are involved in adherence, and are likely to play important roles in host adaptation. M. haemolytica is surrounded by a polysaccharide capsule, and the degree of OmpA surface exposure is unknown. To investigate surface exposure and immune specificity of OmpA among bovine and ovine M. haemolytica isolates, recombinant proteins representing the transmembrane domain of OmpA from a bovine serotype A1 isolate (rOmpA1) and an ovine serotype A2 isolate (rOmpA2) were overexpressed, purified, and used to generate anti-rOmpA1 and anti-rOmpA2 antibodies, respectively. Immunogold electron microscopy and immunofluorescence techniques demonstrated that OmpA1 and OmpA2 are surface exposed, and are not masked by the polysaccharide capsule, in a selection of M. haemolytica isolates of various serotypes and grown under different growth conditions. To explore epitope specificity, anti-rOmpA1 and anti-rOmpA2 antibodies were cross-absorbed with the heterologous isolate to remove cross-reacting antibodies. These cross-absorbed antibodies were highly specific and recognized only the OmpA protein of the homologous isolate in Western blot assays. A wider examination of the binding specificities of these antibodies for M. haemolytica isolates representing different OmpA subclasses revealed that cross-absorbed anti-rOmpA1 antibodies recognized OmpA1-type proteins but not OmpA2-type proteins; conversely, cross-absorbed anti-rOmpA2 antibodies recognized OmpA2-type proteins but not OmpA1-type proteins. Our results demonstrate that OmpA1 and OmpA2 are surface exposed and could potentially bind to different receptors in cattle and sheep.
Collapse
Affiliation(s)
- Jonathan D. A. Hounsome
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Susan Baillie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mojtaba Noofeli
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alan Riboldi-Tunnicliffe
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Neil W. Isaacs
- School of Chemistry, College of Science and Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Robert L. Davies
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Larue K, Ford RC, Willis LM, Whitfield C. Functional and structural characterization of polysaccharide co-polymerase proteins required for polymer export in ATP-binding cassette transporter-dependent capsule biosynthesis pathways. J Biol Chem 2011; 286:16658-68. [PMID: 21454677 PMCID: PMC3089508 DOI: 10.1074/jbc.m111.228221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 03/17/2011] [Indexed: 11/06/2022] Open
Abstract
Neisseria meningitidis serogroup B and Escherichia coli K1 bacteria produce a capsular polysaccharide (CPS) that is composed of α2,8-linked polysialic acid (PSA). Biosynthesis of PSA in these bacteria occurs via an ABC (ATP-binding cassette) transporter-dependent pathway. In N. meningitidis, export of PSA to the surface of the bacterium requires two proteins that form an ABC transporter (CtrC and CtrD) and two additional proteins, CtrA and CtrB, that are proposed to form a cell envelope-spanning export complex. CtrA is a member of the outer membrane polysaccharide export (OPX) family of proteins, which are proposed to form a pore to mediate export of CPSs across the outer membrane. CtrB is an inner membrane protein belonging to the polysaccharide co-polymerase (PCP) family. PCP proteins involved in other bacterial polysaccharide assembly systems form structures that extend into the periplasm from the inner membrane. There is currently no structural information available for PCP or OPX proteins involved in an ABC transporter-dependent CPS biosynthesis pathway to support their proposed roles in polysaccharide export. Here, we report cryo-EM images of purified CtrB reconstituted into lipid bilayers. These images contained molecular top and side views of CtrB and showed that it formed a conical oligomer that extended ∼125 Å from the membrane. This structure is consistent with CtrB functioning as a component of an envelope-spanning complex. Cross-complementation of CtrA and CtrB in E. coli mutants with defects in genes encoding the corresponding PCP and OPX proteins show that PCP-OPX pairs require interactions with their cognate partners to export polysaccharide. These experiments add further support for the model of an ABC transporter-PCP-OPX multiprotein complex that functions to export CPS across the cell envelope.
Collapse
Affiliation(s)
- Kane Larue
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| | - Robert C. Ford
- the Faculty of Life Science, University of Manchester, Manchester M60 1QD, United Kingdom
| | - Lisa M. Willis
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| | - Chris Whitfield
- From the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1 and
| |
Collapse
|
19
|
Lâm TT, Claus H, Frosch M, Vogel U. Sequence analysis of serotype-specific synthesis regions II of Haemophilus influenzae serotypes c and d: evidence for common ancestry of capsule synthesis in Pasteurellaceae and Neisseria meningitidis. Res Microbiol 2011; 162:483-7. [PMID: 21513796 DOI: 10.1016/j.resmic.2011.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/12/2011] [Indexed: 10/18/2022]
Abstract
Sequencing of yet unknown Haemophilus influenzae serotype c (Hic) and d (Hid) capsule synthesis regions II revealed four (ccs1-4) and five (dcs1-5) open reading frames, respectively. The inferred gene functions were in line with capsular polysaccharide structures. One or more proteins encoded by the Hic capsule synthesis region II showed similarity to Actinobacillus pleuropneumoniae serotype 1 and Actinobacillus suis K1 enzymes. Orthologues to the complete operon were observed in Actinobacillus minor strain 202, where even the gene order was conserved. Furthermore, Ccs4 was related to the capsule O-acetyltransferase of Neisseria meningitidis serogroup W-135. For the Hid locus, similarities to Hie, Mannheimia haemolytica A1 and N. meningitidis serogroup A were identified and the succession of genes was similar in the different species. The resemblance of genes and gene organization found for Hic and Hid with other species suggested horizontal gene transfer during capsule evolution across the bacterial classes.
Collapse
Affiliation(s)
- Thiên-Trí Lâm
- Institute for Hygiene and Microbiology, Consultant Laboratory for Haemophilus influenzae, University of Würzburg, Josef-Schneider-Str. 2 (E1), 97080 Würzburg, Germany
| | | | | | | |
Collapse
|
20
|
Abstract
Complex glycoconjugates play critical roles in the biology of microorganisms. Despite the remarkable diversity in glycan structures and the bacteria that produce them, conserved themes are evident in the biosynthesis-export pathways. One of the primary pathways involves representatives of the ATP-binding cassette (ABC) transporter superfamily. These proteins are responsible for the export of a wide variety of cell surface oligo- and polysaccharides in both Gram-positive and Gram-negative bacteria. Recent investigations of the structure and function of ABC transporters involved in the export of lipopolysaccharide O antigens have revealed two fundamentally different strategies for coupling glycan polymerization to export. These mechanisms are distinguished by the presence (or absence) of characteristic nonreducing terminal modifications on the export substrates, which serve as chain termination and/or export signals, and by the presence (or absence) of a discrete substrate-binding domain in the nucleotide-binding domain polypeptide of the ABC transporter. A bioinformatic survey examining ABC exporters from known oligo- and polysaccharide biosynthesis loci identifies conserved nucleotide-binding domain protein families that correlate well with themes in the structures and assembly of glycans. The familial relationships among the ABC exporters generate hypotheses concerning the biosynthesis of structurally diverse oligo- and polysaccharides, which play important roles in the biology of bacteria with different lifestyles.
Collapse
|
21
|
Jessing SG, Ahrens P, Inzana TJ, Angen Ø. The genetic organisation of the capsule biosynthesis region of Actinobacillus pleuropneumoniae serotypes 1, 6, 7, and 12. Vet Microbiol 2008; 129:350-9. [PMID: 18215476 DOI: 10.1016/j.vetmic.2007.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/05/2007] [Accepted: 12/07/2007] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to investigate the organisation of the genes (cps) involved in biosynthesis the capsular polysaccharide (CPS) of Actinobacillus pleuropneumoniae serotypes 6, 7, and 12 and to compare these to the corresponding genes previously described in other A. pleuropneumoniae serotypes. In serotypes 6 and 7 the sequenced DNA regions comprised five and four open reading frames, respectively, designated cps6ABCDE and cps7ABCD, whereas the sequenced DNA region in serotype 12 comprised only two open reading frames designated cps12AB. At the amino acid level, CpsA, CpsB, and CpsC of A. pleuropneumoniae serotypes 2, 6, 7, and 8 contained a high degree of homology. At the amino acid level Cps6D revealed a high degree of homology to Cps8D, whereas Cps7D contained a high degree of homology to the Cps2D. The deduced gene product of the partially sequenced cps6E gene showed no homology to any deduced gene products of any cps genes of A. pleuropneumoniae investigated so far. None of the deduced gene products of the cps genes involved in encapsulation of A. pleuropneumoniae serotypes 2, 6, 7, and 8 revealed homology to the deduced gene products of the cps genes of serotypes 1, 5A, and 12. For some genes, a local homology was found to genes probably involved in teichoic acid synthesis in other bacteria. The results obtained revealed a high degree of homology among the genes involved in CPS biosynthesis for serotypes 2, 6, 7, and 8 and a different group of homologous cps genes for serotypes 1 and 12. In some serotype 7 strains, including the serotype 7 reference strain, WF83, the cps genes were not located adjacent to the genes responsible for CPS export (cpx), probably due to genetic rearrangements.
Collapse
Affiliation(s)
- Stine G Jessing
- National Veterinary Institute, Technical University of Denmark, Copenhagen V, Denmark
| | | | | | | |
Collapse
|
22
|
Zhou J, Law DKS, Sill ML, Tsang RSW. Nucleotide sequence diversity of the bexA gene in serotypeable Haemophilus influenzae strains recovered from invasive disease patients in Canada. J Clin Microbiol 2007; 45:1996-9. [PMID: 17460059 PMCID: PMC1933025 DOI: 10.1128/jcm.00612-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bexA genes of 36 Haemophilus influenzae isolates were sequenced to reveal their nucleotide sequence diversity, which divided them into two groups, similar to clonal divisions I and II. This sequence diversity may lead to false-negative PCR results for H. influenzae infections if bexA is the chosen gene target.
Collapse
Affiliation(s)
- Jianwei Zhou
- Vaccine Preventable Bacteria Diseases, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada R3E 32R2
| | | | | | | |
Collapse
|
23
|
Czuprynski CJ, Leite F, Sylte M, Kuckleburg C, Schultz R, Inzana T, Behling-Kelly E, Corbeil L. Complexities of the pathogenesis ofMannheimia haemolyticaandHaemophilus somnusinfections: challenges and potential opportunities for prevention? Anim Health Res Rev 2007; 5:277-82. [PMID: 15984339 DOI: 10.1079/ahr200483] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractProgress in producing improved vaccines against bacterial diseases of cattle is limited by an incomplete understanding of the pathogenesis of these agents. Our group has been involved in investigations of two members of the family Pasteurellaceae,Mannheimia haemolyticaandHaemophilus somnus, which illustrate some of the complexities that must be confronted. Susceptibility toM. haemolyticais greatly increased during active viral respiratory infection, resulting in rapid onset of a severe and even lethal pleuropneumonia. Despite years of investigation, understanding of the mechanisms underlying this viral–bacterial synergism is incomplete. We have investigated the hypothesis that active viral infection increases the susceptibility of bovine leukocytes to theM. haemolyticaleukotoxin by increasing the expression of or activating the β2integrin CD11a/CD18 (LFA-1) on the leukocyte surface.In vitroexposure to proinflammatory cytokines (i.e. interleukin-1β, tumor necrosis factor-α and interferon-γ) increases LFA-1 expression on bovine leukocytes, which in turn correlates with increased binding and responsiveness to the leukotoxin. Alveolar macrophages and peripheral blood leukocytes from cattle with active bovine herpesvirus-1 (BVH-1) infection are more susceptible to the lethal effects of the leukotoxinex vivothan leukocytes from uninfected cattle. Likewise,in vitroincubation of bovine leukocytes with bovine herpesvirus 1 (BHV-1) potentiates LFA-1 expression and makes the cells more responsive to leukotoxin. A striking characteristic ofH. somnusinfection is its propensity to cause vasculitis. We have shown thatH. somnusand its lipo-oligosaccharide (LOS) trigger caspase activation and apoptosis in bovine endothelial cellsin vitro. This effect is associated with the production of reactive oxygen and nitrogen intermediates, and is amplified in the presence of platelets. The adverse effects ofH. somnusLOS are mediated in part by activation of endothelial cell purinergic receptors such as P2X7. Further dissection of the pathways that lead to endothelial cell damage in response toH. somnusmight help in the development of new preventive or therapeutic regimens. A more thorough understanding ofM. haemolyticaandH. somnusvirulence factors and their interactions with the host might identify new targets for prevention of bovine respiratory disease.
Collapse
Affiliation(s)
- Charles J Czuprynski
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gioia J, Qin X, Jiang H, Clinkenbeard K, Lo R, Liu Y, Fox GE, Yerrapragada S, McLeod MP, McNeill TZ, Hemphill L, Sodergren E, Wang Q, Muzny DM, Homsi FJ, Weinstock GM, Highlander SK. The genome sequence of Mannheimia haemolytica A1: insights into virulence, natural competence, and Pasteurellaceae phylogeny. J Bacteriol 2006; 188:7257-66. [PMID: 17015664 PMCID: PMC1636238 DOI: 10.1128/jb.00675-06] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of Mannheimia haemolytica A1, the causative agent of bovine respiratory disease complex (BRDC), is presented. Strain ATCC BAA-410, isolated from the lung of a calf with BRDC, was the DNA source. The annotated genome includes 2,839 coding sequences, 1,966 of which were assigned a function and 436 of which are unique to M. haemolytica. Through genome annotation many features of interest were identified, including bacteriophages and genes related to virulence, natural competence, and transcriptional regulation. In addition to previously described virulence factors, M. haemolytica encodes adhesins, including the filamentous hemagglutinin FhaB and two trimeric autotransporter adhesins. Two dual-function immunoglobulin-protease/adhesins are also present, as is a third immunoglobulin protease. Genes related to iron acquisition and drug resistance were identified and are likely important for survival in the host and virulence. Analysis of the genome indicates that M. haemolytica is naturally competent, as genes for natural competence and DNA uptake signal sequences (USS) are present. Comparison of competence loci and USS in other species in the family Pasteurellaceae indicates that M. haemolytica, Actinobacillus pleuropneumoniae, and Haemophilus ducreyi form a lineage distinct from other Pasteurellaceae. This observation was supported by a phylogenetic analysis using sequences of predicted housekeeping genes.
Collapse
Affiliation(s)
- Jason Gioia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sukupolvi-Petty S, Grass S, St Geme JW. The Haemophilus influenzae Type b hcsA and hcsB gene products facilitate transport of capsular polysaccharide across the outer membrane and are essential for virulence. J Bacteriol 2006; 188:3870-7. [PMID: 16707679 PMCID: PMC1482897 DOI: 10.1128/jb.01968-05] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus influenzae type b is a common cause of invasive bacterial disease, especially among children in underdeveloped countries. The type b polysaccharide capsule is a polymer of ribose and ribitol-5-phosphate and is a critical determinant of virulence. Expression of the type b capsule is dependent upon the cap b locus, which consists of three functionally distinct regions, designated regions 1 to 3. Region 3 contains the hcsA and hcsB genes, which share significant homology with genes that have been implicated in encapsulation in other pathogenic bacteria but have unclear functions. In this study, we inactivated hcsA alone, hcsB alone, and both hcsA and hcsB together and examined the effects of these mutations on polysaccharide transport and bacterial virulence properties. Inactivation of hcsA alone resulted in accumulation of polysaccharide in the periplasm and a partial decrease in surface-associated polysaccharide, whereas inactivation of hcsB alone or of both hcsA and hcsB together resulted in accumulation of polysaccharide in the periplasm and complete loss of surface-associated polysaccharide. All mutations eliminated serum resistance and abrogated bacteremia and mortality in neonatal rats. These results indicate that the hcsA and hcsB gene products have complementary functions involved in the transport of polysaccharide across the outer membrane and are essential for virulence.
Collapse
Affiliation(s)
- Soila Sukupolvi-Petty
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
26
|
Cuthbertson L, Powers J, Whitfield C. The C-terminal domain of the nucleotide-binding domain protein Wzt determines substrate specificity in the ATP-binding cassette transporter for the lipopolysaccharide O-antigens in Escherichia coli serotypes O8 and O9a. J Biol Chem 2005; 280:30310-9. [PMID: 15980069 DOI: 10.1074/jbc.m504371200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The polymannan O-antigenic polysaccharides (O-PSs) of Escherichia coli O8 and O9a are synthesized via an ATP-binding cassette (ABC) transporter-dependent pathway. The group 2 capsular polysaccharides of E. coli serve as prototypes for polysaccharide synthesis and export via this pathway. Here, we show that there are some fundamental differences between the ABC transporter-dependent pathway for O-PS biosynthesis and the capsular polysaccharide paradigm. In the capsule system, mutants lacking the ABC transporter are viable, and membranes isolated from these strains are no longer able to synthesize polymer using an endogenous acceptor. In contrast, E. coli strains carrying mutations in the membrane component (Wzm) and/or the nucleotide-binding component (Wzt) of the O8 and O9a polymannan transporters are nonviable under conditions permissive to O-PS biosynthesis and take on an aberrant elongated cell morphology. Whereas the ABC transporters for capsular polysaccharides with different structures are functionally interchangeable, the O8 and O9a exporters are specific for their cognate polymannan substrates. The E. coli O8 and O9a Wzt proteins contain a C-terminal domain not present in the corresponding nucleotide-binding protein (KpsT) from the capsule exporter. Whereas the Wzm components are functionally interchangeable, albeit with reduced efficiency, the Wzt components are not, indicating a specific role for Wzt in substrate specificity. Chimeric Wzt proteins were constructed in order to localize the region involved in substrate specificity to the C-terminal domain.
Collapse
Affiliation(s)
- Leslie Cuthbertson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | |
Collapse
|
27
|
Schuchert JA, Inzana TJ, Angen Ø, Jessing S. Detection and identification of Actinobacillus pleuropneumoniae serotypes 1, 2, and 8 by multiplex PCR. J Clin Microbiol 2004; 42:4344-8. [PMID: 15365041 PMCID: PMC516343 DOI: 10.1128/jcm.42.9.4344-4348.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiplex PCR assays were developed to identify Actinobacillus pleuropneumoniae serotypes 1, 2, and 8. Primers designed for the conserved capsular polysaccharide (CP) export region amplified a 489-bp DNA fragment from all serotypes. Primers specific to the CP biosynthesis regions of serotypes 1, 2, and 8 amplified fragments of 1.6 kb, 1.7 kb, and 970 bp from only their respective serotypes.
Collapse
Affiliation(s)
- Jennifer A Schuchert
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, 1410 Prices Fork Rd., Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0342, USA
| | | | | | | |
Collapse
|
28
|
Satola SW, Schirmer PL, Farley MM. Genetic analysis of the capsule locus of Haemophilus influenzae serotype f. Infect Immun 2004; 71:7202-7. [PMID: 14638817 PMCID: PMC308930 DOI: 10.1128/iai.71.12.7202-7207.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 19-kb DNA region containing genes involved in the biosynthesis of the capsule of Haemophilus influenzae serotype f (Hif) has been cloned and characterized. The Hif cap locus organization is typical of group II capsule biosynthetic loci found in other H. influenzae serotype b bacteria and other gram-negative bacteria. However, the Hif cap locus was not associated with an IS1016 element. Three new open reading frames, Fcs1, Fcs2, and Fcs3, were identified in the Hif capsule-specific region II. The chromosomal location of the Hif cap locus and the organization of the flanking sequences differed significantly from previously described division I H. influenzae serotypes.
Collapse
Affiliation(s)
- Sarah W Satola
- Atlanta Veterans Affairs Medical Center and Department of Medicine, Emory University School of Medicine, Decatur, Georgia 30033, USA
| | | | | |
Collapse
|
29
|
Bandara AB, Lawrence ML, Veit HP, Inzana TJ. Association of Actinobacillus pleuropneumoniae capsular polysaccharide with virulence in pigs. Infect Immun 2003; 71:3320-8. [PMID: 12761114 PMCID: PMC155728 DOI: 10.1128/iai.71.6.3320-3328.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The capsular polysaccharide (CP) of Actinobacillus pleuropneumoniae is required for virulence of the bacteria in swine. However, a molecular investigation of whether the type or quantity of CP affects A. pleuropneumoniae virulence has not been reported. To initiate this investigation, a DNA region downstream of conserved genes required for CP export in A. pleuropneumoniae serotype 1 was cloned and sequenced. Three open reading frames, designated cps1A, cps1B, and cps1C, were identified that had amino acid homology to bacterial carbohydrate biosynthesis genes. A kanamycin resistance cassette (Kan(r)) was inserted into a 750-bp deletion spanning cps1AB or into a 512-bp deletion in cps1B only, and the constructs were cloned in a suicide vector. The Kan(r) gene was then transferred into the chromosome of strain 4074 by homologous recombination to produce strain 4074Deltacps1N and strain 4074Deltacps1B, respectively. Strain 4074Deltacps1N produced no detectable CP, but strain 4074Deltacps1B made 15% of the serotype 1 CP made by the parent strain, 4074, as determined by enzyme-linked immunosorbent assay and precipitation of free CP. The cps1ABC genes of strain 4074 and the cps5ABC and cps5ABCDE genes of serotype 5a strain J45 were cloned into the shuttle vector pLS88 and electroporated into 4074Deltacps1N to produce 4074Deltacps1N(pABcps101), 4074Deltacps1N(pJMLcps53), and 4074Deltacps1N(pABcps55), respectively. Strain 4074Deltacps1N(pABcps101) produced about 33% of the serotype 1 CP produced by strain 4074. Strains 4074Deltacps1N(pJMLcps53) and 4074Deltacps1N(pABcps55) produced serotype 5a CP in similar quantity or in fourfold excess, respectively, to that produced by strain 4074. With intratracheal challenge in pigs at similar dosages, the order of virulence of strains producing serotype 1 CP (assessed by mortality, lung consolidation, hemorrhage, and fibrinous pleuritis) was the following: strain 4074 > strain 4074Deltacps1N(pABcps101) > or = strain 4074Deltacps1N > strain 4074Deltacps1B. Strain 4074Deltacps1N(pJMLcps53) was less virulent than strain 4074Deltacps1N(pABcps55). However, both strains produced serotype 5a CP in similar or greater quantities than was observed for production of serotype 1 CP by the parent strain, 4074, but were less virulent than the parent strain. Therefore, the amount of serotype 1 or 5a CP produced by isogenic strains of A. pleuropneumoniae correlated with the virulence of the bacteria in pigs. However, virulence was also influenced by the type of CP produced or by its mechanism of expression.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
30
|
Satola SW, Schirmer PL, Farley MM. Complete sequence of the cap locus of Haemophilus influenzae serotype b and nonencapsulated b capsule-negative variants. Infect Immun 2003; 71:3639-44. [PMID: 12761153 PMCID: PMC155767 DOI: 10.1128/iai.71.6.3639-3644.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete capsule (cap) loci from three Haemophilus influenzae strains, one serotype b (Hib) and two nonencapsulated b capsule-negative variants, were sequenced. Two new open reading frames, hcsA and hcsB, were identified in region III and thought to be involved in postpolymerization modification of the capsule. The location of the cap locus in the Haemophilus influenzae chromosome was identified within section 97 of the Rd genome (chromosomal coordinates 1074542 to 1086327) and found to be the same for the Hib and two Hib(-) strains as well as some other encapsulated division I H. influenzae strains.
Collapse
Affiliation(s)
- Sarah W Satola
- Atlanta Veterans Affairs Medical Center and Department of Medicine, Emory University School of Medicine, Decatur, Georgia 30033, USA
| | | | | |
Collapse
|
31
|
Zhang YL, Lau YL, Arakawa E, Leung KY. Detection and genetic analysis of group II capsules in Aeromonas hydrophila. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1051-1060. [PMID: 12686647 DOI: 10.1099/mic.0.26144-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genetic organization and sequences of the group II capsule gene cluster of Aeromonas hydrophila PPD134/91 have been determined previously. The purified capsular polysaccharides can increase the ability of avirulent strain PPD35/85 to survive in naive tilapia serum but have no inhibitory effect on the adhesion of PPD134/91 to carp epithelial cells. In this study, the presence of group II capsules among 33 randomly chosen A. hydrophila strains was examined by electron microscopy and genetic analysis. Ten strains were found to produce group II capsules. A PCR detection system was developed to identify two types of group II capsules (IIA and IIB) based on their genetic organization in the region II gene clusters. Group IIA capsules in the authors' collection of A. hydrophila strains are mainly found in the O : 18 and O : 34 serogroups, while group IIB capsules are found in the O : 21 and O : 27 serogroups. The presence of group II capsules in A. hydrophila strongly correlates with the serum and phagocyte survival abilities (seven out of ten strains). The results indicate that the authors' PCR detection system can constitute a reliable assay for the classification of group II capsules in A. hydrophila.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| | - Y L Lau
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| | - E Arakawa
- Department of Bacteriology, National Institute of Infectious Diseases, Tokyo, Japan 162-8640
| | - K Y Leung
- Tropical Marine Science Institute, The National University of Singapore, Singapore 117543
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| |
Collapse
|
32
|
Parsons YN, Banasko R, Detsika MG, Duangsonk K, Rainbow L, Hart CA, Winstanley C. Suppression-subtractive hybridisation reveals variations in gene distribution amongst the Burkholderia cepacia complex, including the presence in some strains of a genomic island containing putative polysaccharide production genes. Arch Microbiol 2003; 179:214-23. [PMID: 12610727 DOI: 10.1007/s00203-003-0518-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2002] [Revised: 12/17/2002] [Accepted: 01/06/2003] [Indexed: 11/30/2022]
Abstract
Some strains of the Burkholderia cepacia complex, including the ET12 lineage, have been implicated in epidemic spread amongst cystic fibrosis (CF) patients. Suppression-subtractive hybridisation was used to identify genomic regions within strain J2315 (ET12 lineage; genomovar IIIA) that were absent from a non-transmissible genomovar IIIB strain. Sequence data from 15 subtracted clones were used to interrogate the genome sequence of strain J2315 and identify genomic regions incorporating the subtracted sequences. Many of the genomic regions displayed abnormally low GC content and similarity to sequences implicated in gene transfer. The distribution of three subtracted regions amongst members of the B. cepacia complex varied. A large cluster of genes with strong sequence similarity to capsular production genes from Burkholderia mallei and other bacterial pathogens was identified. This genomic island was detected in some but not all representatives of genomovar IIIA, two out of four genomovar I strains, and one of two strains of Burkholderia multivorans, but was not detected in Burkholderia stabilis, Burkholderia vietnamiensis, genomovar VI or Burkholderia. ambifaria. The polysaccharide production gene cluster of strain J2315 carries an IS 407-like sequence within the gene similar to B. mallei wcbO that is lacking in other ET12 isolates. Genes from this cluster are expressed during exponential growth in broth.
Collapse
Affiliation(s)
- Yasmin N Parsons
- Department of Medical Microbiology and Genitourinary Medicine, University of Liverpool, Duncan Building, Daulby Street, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
McKerral LJ, Lo RYC. Construction and characterization of an acapsular mutant of Mannheimia haemolytica A1. Infect Immun 2002; 70:2622-9. [PMID: 11953404 PMCID: PMC127936 DOI: 10.1128/iai.70.5.2622-2629.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nmaA and nmaB genes, which code for UDP-GlcNAc-2-epimerase and UDP-ManNAc-dehydrogenase, respectively, are involved in capsular polysaccharide biosynthesis in Mannheimia haemolytica A1. A chloramphenicol resistance (Cm(r)) cassette cloned behind an M. haemolytica A1 promoter, plpcat, was created and used to interrupt nmaA and nmaB. A 1.3-kbp DNA fragment that encompasses part of nmaA and nmaB was replaced by the 1.0-kbp plpcat, resulting in a knockout mutant which is Cm(r) and unable to synthesize N-acetylmannosamine (ManNAc) and N-acetylmannosaminuronic acid (ManNAcA). The DNA replacement was confirmed by Southern hybridization and PCR analyses of the nmaA and nmaB loci. Electron microscopy examination of the mutant showed the absence of capsular materials compared to the parent strain. The loss of NmaA and NmaB activity was confirmed by analysis of carbohydrate moieties using capillary electrophoresis. Serum sensitivity assays indicated that the acapsular mutant is as resistant as the encapsulated parent to complement-mediated killing by colostrum-deprived calf serum but is more sensitive to killing by immune bovine serum. Analysis of lipopolysaccharide prepared from the acapsular mutant and encapsulated parent confirmed that these strains have long O-polysaccharide chains, possibly conferring resistance to serum-mediated killing.
Collapse
Affiliation(s)
- Linda J McKerral
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | |
Collapse
|
34
|
Zhang YL, Arakawa E, Leung KY. Novel Aeromonas hydrophila PPD134/91 genes involved in O-antigen and capsule biosynthesis. Infect Immun 2002; 70:2326-35. [PMID: 11953367 PMCID: PMC127894 DOI: 10.1128/iai.70.5.2326-2335.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sequences of the O-antigen and capsule gene clusters of the virulent Aeromonas hydrophila strain PPD134/91 were determined. The O-antigen gene cluster is 17,296 bp long and comprises 17 genes. Seven pathway genes for the synthesis of rhamnose and mannose, six transferase genes, one O unit flippase gene, and one O-antigen chain length determinant gene were identified by amino acid sequence similarity. PCR and Southern blot analysis were performed to survey the distribution of these 17 genes among 11 A. hydrophila strains of different serotypes. A. hydrophila PPD134/91 might belong to serotype O:18, as represented by JCM3980; it contained all the same O-antigen genes as JCM3980 (97 to 100% similarity at the DNA and amino acid levels). The capsule gene cluster of A. hydrophila PPD134/91 is 17,562 bp long and includes 13 genes, which were assembled into three distinct regions similar to those of the group II capsule gene cluster of Escherichia coli and other bacteria. Regions I and III contained four and two capsule transport genes, respectively. Region II had five genes which were highly similar to capsule synthesis pathway genes found in other bacteria. Both the purified O-antigen and capsular polysaccharides increased the ability of the avirulent A. hydrophila strain PPD35/85 to survive in naïve tilapia serum. However, the purified surface polysaccharides had no inhibitory effect on the adhesion of A. hydrophila PPD134/91 to carp epithelial cells.
Collapse
Affiliation(s)
- Y L Zhang
- Department of Biological Sciences, Faculty of Science, The National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
35
|
Abstract
Using a molecular genetic approach, the genes that code for the various virulence factors of Mannheimia haemolytica A1 have been cloned for detailed characterizations. These included analysis of the encoded proteins, their biological activities, secretion of the molecules from the bacterium as well as their use in a vaccine component. Two newly characterized antigens of M. haemolytica A1 have been identified. The first one is a TonB-dependent iron regulated outer-membrane receptor that is distinct from the transferrin binding proteins. The 84kDa Irp protein exhibits features including a TonB box and a 50 amino acid region that can adopt occluded beta-barrel structures similar to the "plug" domain of the Escherichia coli FhuA and FepA crystal structures. Homologues of Irp were identified by analysis of the genome sequences of a number of Gram negative mucosal pathogens, including Neisseria meningitidis and N. gonorrhoeae. The Neisserial irp genes were cloned by PCR and expressed the 84kDa protein as expected, demonstrating that they are functional genes. In addition to being regulated by iron and Fur, irp(Mh) undergoes phase variation by a slipped-strand mispairing mechanism and may represent a contingency locus for iron acquisition during an infection. Another locus that codes for a putative adhesin molecule has also been partially characterized. This putative adhesin protein is highly homologous with the high-molecular-weight adhesin proteins of non-piliated non-typable strains of Haemophilus influenzae (NTHi) including Hia, Hsf, HMW1, HMW2. Currently, we have cloned the DNA that codes for 2223 amino acids (225kDa) and is still missing the stop codon. It is anticipated that when complete, the protein could be close to 240kDa, similar to the molecular mass of Hsf. Though incomplete, analysis of the adhesin showed that it exhibits characteristics of autotransporter (AT) proteins. The role of this high-molecular-weight adhesin in infection is being investigated.
Collapse
Affiliation(s)
- R Y Lo
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|