1
|
Singer M, Li W, Morré SA, Ouburg S, Spinola SM. Host Polymorphisms in TLR9 and IL10 Are Associated With the Outcomes of Experimental Haemophilus ducreyi Infection in Human Volunteers. J Infect Dis 2016; 214:489-95. [PMID: 27122592 DOI: 10.1093/infdis/jiw164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In humans inoculated with Haemophilus ducreyi, there are host effects on the possible clinical outcomes-pustule formation versus spontaneous resolution of infection. However, the immunogenetic factors that influence these outcomes are unknown. Here we examined the role of 14 single-nucleotide polymorphisms (SNPs) in 7 selected pathogen-recognition pathways and cytokine genes on the gradated outcomes of experimental infection. METHODS DNAs from 105 volunteers infected with H. ducreyi at 3 sites were genotyped for SNPs, using real-time polymerase chain reaction. The participants were classified into 2 cohorts, by race, and into 4 groups, based on whether they formed 0, 1, 2, or 3 pustules. χ(2) tests for trend and logistic regression analyses were performed on the data. RESULTS In European Americans, the most significant findings were a protective association of the TLR9 +2848 GG genotype and a risk-enhancing association of the TLR9 TA haplotype with pustule formation; logistic regression showed a trend toward protection for the TLR9 +2848 GG genotype. In African Americans, logistic regression showed a protective effect for the IL10 -2849 AA genotype and a risk-enhancing effect for the IL10 AAC haplotype. CONCLUSIONS Variations in TLR9 and IL10 are associated with the outcome of H. ducreyi infection.
Collapse
Affiliation(s)
- Martin Singer
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam
| | - Wei Li
- Department of Microbiology and Immunology
| | - Servaas A Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam Institute for Public Health Genomics, Department of Genetics and Cell Biology, School for Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Sander Ouburg
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam
| | - Stanley M Spinola
- Department of Microbiology and Immunology Departments of Medicine Pathology and Laboratory Medicine Center for Immunobiology, Indiana University School of Medicine, Indiana University, Indianapolis
| |
Collapse
|
2
|
The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase. mBio 2014; 5:e01178-14. [PMID: 24902122 PMCID: PMC4030455 DOI: 10.1128/mbio.01178-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response.
Collapse
|
3
|
Costa-Hurtado M, Ballester M, Galofré-Milà N, Darji A, Aragon V. VtaA8 and VtaA9 from Haemophilus parasuis delay phagocytosis by alveolar macrophages. Vet Res 2012; 43:57. [PMID: 22839779 PMCID: PMC3462726 DOI: 10.1186/1297-9716-43-57] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 06/20/2012] [Indexed: 12/02/2022] Open
Abstract
Haemophilus parasuis, a member of the family Pasteurellaceae, is a common inhabitant of the upper respiratory tract of healthy pigs and the etiological agent of Glässer’s disease. As other virulent Pasteurellaceae, H. parasuis can prevent phagocytosis, but the bacterial factors involved in this virulence mechanism are not known. In order to identify genes involved in phagocytosis resistance, we constructed a genomic library of the highly virulent reference strain Nagasaki and clones were selected by increased survival after incubation with porcine alveolar macrophages (PAM). Two clones containing two virulent-associated trimeric autotransporter (VtaA) genes, vtaA8 and vtaA9, respectively, were selected by this method. A reduction in the interaction of the two clones with the macrophages was detected by flow cytometry. Monoclonal antibodies were produced and used to demonstrate the presence of these proteins on the bacterial surface of the corresponding clone, and on the H. parasuis phagocytosis-resistant strain PC4-6P. The effect of VtaA8 and VtaA9 in the trafficking of the bacteria through the endocytic pathway was examined by fluorescence microscopy and a delay was detected in the localization of the vtaA8 and vtaA9 clones in acidic compartments. These results are compatible with a partial inhibition of the routing of the bacteria via the degradative phagosome. Finally, antibodies against a common epitope in VtaA8 and VtaA9 were opsonic and promoted phagocytosis of the phagocytosis-resistant strain PC4-6P by PAM. Taken together, these results indicate that VtaA8 and VtaA9 are surface proteins that play a role in phagocytosis resistance of H. parasuis.
Collapse
Affiliation(s)
- Mar Costa-Hurtado
- Centre de Recerca en Sanitat Animal, (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
4
|
Flannagan RS, Jaumouillé V, Grinstein S. The Cell Biology of Phagocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 7:61-98. [PMID: 21910624 DOI: 10.1146/annurev-pathol-011811-132445] [Citation(s) in RCA: 660] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
5
|
Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans. Infect Immun 2011; 80:679-87. [PMID: 22144477 DOI: 10.1128/iai.05826-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sialylated glycoconjugates on the surfaces of mammalian cells play important roles in intercellular communication and self-recognition. The sialic acid preferentially expressed in human tissues is N-acetylneuraminic acid (Neu5Ac). In a process called molecular mimicry, many bacterial pathogens decorate their cell surface glycolipids with Neu5Ac. Incorporation of Neu5Ac into bacterial glycolipids promotes bacterial interactions with host cell receptors called Siglecs. These interactions affect bacterial adherence, resistance to serum killing and phagocytosis, and innate immune responses. Haemophilus ducreyi, the etiologic agent of chancroid, expresses lipooligosaccharides (LOS) that are highly sialylated. However, an H. ducreyi sialyltransferase (lst) mutant, whose LOS contain reduced levels of Neu5Ac, is fully virulent in human volunteers. Recently, a second sialyltransferase gene (Hd0053) was discovered in H. ducreyi, raising the possibility that Hd0053 compensated for the loss of lst during human infection. CMP-Neu5Ac is the obligate nucleotide sugar donor for all bacterial sialyltransferases; LOS derived from an H. ducreyi CMP-Neu5Ac synthetase (neuA) mutant has no detectable Neu5Ac. Here, we compared an H. ducreyi neuA mutant to its wild-type parent in several models of pathogenesis. In human inoculation experiments, the neuA mutant formed papules and pustules at rates that were no different than those of its parent. When grown in media with and without Neu5Ac supplementation, the neuA mutant and its parent had similar phenotypes in bactericidal, macrophage uptake, and dendritic cell activation assays. Although we cannot preclude a contribution of LOS sialylation to ulcerative disease, these data strongly suggest that sialylation of LOS is dispensable for H. ducreyi pathogenesis in humans.
Collapse
|
6
|
Immunization with the Haemophilus ducreyi hemoglobin receptor HgbA with adjuvant monophosphoryl lipid A protects swine from a homologous but not a heterologous challenge. Infect Immun 2010; 78:3763-72. [PMID: 20584974 DOI: 10.1128/iai.00217-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Haemophilus ducreyi, the etiological agent of chancroid, has a strict requirement for heme, which it acquires from its only natural host, humans. Previously, we showed that a vaccine preparation containing the native hemoglobin receptor HgbA purified from H. ducreyi class I strain 35000HP (nHgbAI) and administered with Freund's adjuvant provided complete protection against a homologous challenge. In the current study, we investigated whether nHgbAI dispensed with monophosphoryl lipid A (MPL), an adjuvant approved for use in humans, offered protection against a challenge with H. ducreyi strain 35000HP expressing either class I or class II HgbA (35000HPhgbAI and 35000HPhgbAII, respectively). Pigs immunized with the nHgbAI/MPL vaccine were protected against a challenge from homologous H. ducreyi strain 35000HPhgbAI but not heterologous strain 35000HPhgbAII, as evidenced by the isolation of only strain 35000HPhgbAII from nHgbAI-immunized pigs. Furthermore, histological analysis of the lesions showed striking differences between mock-immunized and nHgbAI-immunized animals challenged with strains 35000HPhgbAI but not those challenged with strain 35000HPhgbAII. Mock-immunized pigs were not protected from a challenge by either strain. The enzyme-linked immunosorbent assay (ELISA) activity of the nHgbAI/MPL antiserum was lower than the activity of antiserum from animals immunized with the nHgbAI/Freund's vaccine; however, anti-nHgbAI from both studies bound whole cells of 35000HPhgbAI better than 35000HPhgbAII and partially blocked hemoglobin binding to nHgbAI. In conclusion, despite eliciting lower antibody ELISA activity than the nHgbAI/Freund's, the nHgbAI/MPL vaccine provided protection against a challenge with homologous but not heterologous H. ducreyi, suggesting that a bivalent HgbA vaccine may be needed.
Collapse
|
7
|
dos Santos CÃS, dos Santos LS, de Souza MC, dos Santos Dourado F, de Souza de Oliveira Dias AA, Sabbadini PS, Pereira GA, Cabral MC, Junior RH, de Mattos-Guaraldi AL. Non-opsonic phagocytosis of homologous non-toxigenic and toxigenicCorynebacterium diphtheriaestrains by human U-937 macrophages. Microbiol Immunol 2010; 54:1-10. [DOI: 10.1111/j.1348-0421.2009.00179.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Olvera A, Ballester M, Nofrarías M, Sibila M, Aragon V. Differences in phagocytosis susceptibility in Haemophilus parasuis strains. Vet Res 2009; 40:24. [PMID: 19239855 PMCID: PMC2695031 DOI: 10.1051/vetres/2009007] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 02/24/2009] [Indexed: 11/18/2022] Open
Abstract
Haemophilus parasuis is a colonizer of the upper respiratory tract of healthy pigs, but virulent strains can cause a systemic infection characterized by fibrinous polyserositis, commonly known as Glässer’s disease. The variability in virulence that is observed among H. parasuis strains is not completely understood, since the virulence mechanisms of H. parasuis are largely unknown. In the course of infection, H. parasuis has to survive the host pulmonary defences, which include alveolar macrophages, to produce disease. Using strains from different clinical backgrounds, we were able to detect clear differences in susceptibility to phagocytosis. Strains isolated from the nose of healthy animals were efficiently phagocytosed by porcine alveolar macrophages (PAM), while strains isolated from systemic lesions were resistant to this interaction. Phagocytosis of susceptible strains proceeded through mechanisms independent of a specific receptor, which involved actin filaments and microtubules. In all the systemic strains tested in this study, we observed a distinct capsule after interaction with PAM, indicating a role of this surface structure in phagocytosis resistance. However, additional mechanisms of resistance to phagocytosis should be explored, since we detected different effects of microtubule inhibition among systemic strains.
Collapse
Affiliation(s)
- Alexandre Olvera
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
9
|
Lu L, Ma Z, Jokiranta TS, Whitney AR, DeLeo FR, Zhang JR. Species-specific interaction of Streptococcus pneumoniae with human complement factor H. THE JOURNAL OF IMMUNOLOGY 2008; 181:7138-46. [PMID: 18981135 DOI: 10.4049/jimmunol.181.10.7138] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.
Collapse
Affiliation(s)
- Ling Lu
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
10
|
Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases. Infect Immun 2008; 76:4692-702. [PMID: 18678665 DOI: 10.1128/iai.00513-08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.
Collapse
|
11
|
Humphreys TL, Li L, Li X, Janowicz DM, Fortney KR, Zhao Q, Li W, McClintick J, Katz BP, Wilkes DS, Edenberg HJ, Spinola SM. Dysregulated immune profiles for skin and dendritic cells are associated with increased host susceptibility to Haemophilus ducreyi infection in human volunteers. Infect Immun 2007; 75:5686-97. [PMID: 17893130 PMCID: PMC2168359 DOI: 10.1128/iai.00777-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In experimentally infected human volunteers, the cutaneous immune response to Haemophilus ducreyi is orchestrated by serum, polymorphonuclear leukocytes, macrophages, T cells, and myeloid dendritic cells (DC). This response either leads to spontaneous resolution of infection or progresses to pustule formation, which is associated with the failure of phagocytes to ingest the organism and the presence of Th1 and regulatory T cells. In volunteers who are challenged twice, some subjects form at least one pustule twice (PP group), while others have all inoculated sites resolve twice (RR group). Here, we infected PP and RR subjects with H. ducreyi and used microarrays to profile gene expression in infected and wounded skin. The PP and RR groups shared a core response to H. ducreyi. Additional transcripts that signified effective immune function were differentially expressed in RR infected sites, while those that signified a hyperinflammatory, dysregulated response were differentially expressed in PP infected sites. To examine whether DC drove these responses, we profiled gene expression in H. ducreyi-infected and uninfected monocyte-derived DC. Both groups had a common response that was typical of a type 1 DC (DC1) response. RR DC exclusively expressed many additional transcripts indicative of DC1. PP DC exclusively expressed differentially regulated transcripts characteristic of DC1 and regulatory DC. The data suggest that DC from the PP and RR groups respond differentially to H. ducreyi. PP DC may promote a dysregulated T-cell response that contributes to phagocytic failure, while RR DC may promote a Th1 response that facilitates bacterial clearance.
Collapse
|
12
|
Ravcheev DA, Gerasimova AV, Mironov AA, Gelfand MS. Comparative genomic analysis of regulation of anaerobic respiration in ten genomes from three families of gamma-proteobacteria (Enterobacteriaceae, Pasteurellaceae, Vibrionaceae). BMC Genomics 2007; 8:54. [PMID: 17313674 PMCID: PMC1805755 DOI: 10.1186/1471-2164-8-54] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 02/21/2007] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Gamma-proteobacteria, such as Escherichia coli, can use a variety of respiratory substrates employing numerous aerobic and anaerobic respiratory systems controlled by multiple transcription regulators. Thus, in E. coli, global control of respiration is mediated by four transcription factors, Fnr, ArcA, NarL and NarP. However, in other Gamma-proteobacteria the composition of global respiration regulators may be different. RESULTS In this study we applied a comparative genomic approach to the analysis of three global regulatory systems, Fnr, ArcA and NarP. These systems were studied in available genomes containing these three regulators, but lacking NarL. So, we considered several representatives of Pasteurellaceae, Vibrionaceae and Yersinia spp. As a result, we identified new regulon members, functioning in respiration, central metabolism (glycolysis, gluconeogenesis, pentose phosphate pathway, citrate cicle, metabolism of pyruvate and lactate), metabolism of carbohydrates and fatty acids, transcriptional regulation and transport, in particular: the ATP synthase operon atpIBEFHAGCD, Na+-exporting NADH dehydrogenase operon nqrABCDEF, the D-amino acids dehydrogenase operon dadAX. Using an extension of the comparative technique, we demonstrated taxon-specific changes in regulatory interactions and predicted taxon-specific regulatory cascades. CONCLUSION A comparative genomic technique was applied to the analysis of global regulation of respiration in ten gamma-proteobacterial genomes. Three structurally different but functionally related regulatory systems were described. A correlation between the regulon size and the position of a transcription factor in regulatory cascades was observed: regulators with larger regulons tend to occupy top positions in the cascades. On the other hand, there is no obvious link to differences in the species' lifestyles and metabolic capabilities.
Collapse
Affiliation(s)
- Dmitry A Ravcheev
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
| | | | - Andrey A Mironov
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| | - Mikhail S Gelfand
- Lomonosov Moscow State University, Department of Bioengineering and Bioinformatics, Moscow, 119992, Russia
- Institute for Information Transmission Problems, Moscow, 127994, Russia
- State Scientific Center GosNIIGenetika, Moscow, 113545, Russia
| |
Collapse
|
13
|
Mock JR, Vakevainen M, Deng K, Latimer JL, Young JA, van Oers NSC, Greenberg S, Hansen EJ. Haemophilus ducreyi targets Src family protein tyrosine kinases to inhibit phagocytic signaling. Infect Immun 2006; 73:7808-16. [PMID: 16299270 PMCID: PMC1307070 DOI: 10.1128/iai.73.12.7808-7816.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Haemophilus ducreyi, the etiologic agent of the sexually transmitted disease chancroid, has been shown to inhibit phagocytosis of both itself and secondary targets in vitro. Immunodepletion of LspA proteins from H. ducreyi culture supernatant fluid abolished this inhibitory effect, indicating that the LspA proteins are necessary for the inhibition of phagocytosis by H. ducreyi. Fluorescence microscopy revealed that macrophages incubated with wild-type H. ducreyi, but not with a lspA1 lspA2 mutant, were unable to complete development of the phagocytic cup around immunoglobulin G-opsonized targets. Examination of the phosphotyrosine protein profiles of these two sets of macrophages showed that those incubated with wild-type H. ducreyi had greatly reduced phosphorylation levels of proteins in the 50-to-60-kDa range. Subsequent experiments revealed reductions in the catalytic activities of both Lyn and Hck, two members of the Src family of protein tyrosine kinases that are known to be involved in the proximal signaling steps of Fcgamma receptor-mediated phagocytosis. Additional experiments confirmed reductions in the levels of both active Lyn and active Hck in three different immune cell lines, but not in HeLa cells, exposed to wild-type H. ducreyi. This is the first example of a bacterial pathogen that suppresses Src family protein tyrosine kinase activity to subvert phagocytic signaling in hostcells.
Collapse
Affiliation(s)
- Jason R Mock
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Prather DT, Bains M, Hancock REW, Filiatrault MJ, Campagnari AA. Differential expression of porins OmpP2A and OmpP2B of Haemophilus ducreyi. Infect Immun 2004; 72:6271-8. [PMID: 15501753 PMCID: PMC523061 DOI: 10.1128/iai.72.11.6271-6278.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Haemophilus ducreyi is a strict human pathogen and the causative agent of the sexually transmitted disease chancroid. The genome of the human-passaged strain of H. ducreyi (35000HP) contains two homologous genes whose protein products have estimated molecular masses of 46 and 43 kDa. A comparative analysis of the deduced amino acid sequences revealed that these proteins share 27 to 33% identity to the outer membrane protein P2 (OmpP2), a major porin of Haemophilus influenzae. Therefore, these proteins have been designated OmpP2A and OmpP2B, respectively. The detection of ompP2A and ompP2B transcripts by reverse transcriptase PCR indicated that these genes were independently transcribed in H. ducreyi 35000HP. Western blot analysis of outer membrane proteins isolated from a geographically diverse collection of H. ducreyi clinical isolates revealed that OmpP2A and OmpP2B were differentially expressed among these strains. Although PCR analysis suggested that ompP2A and ompP2B were conserved among the strains tested, the differential expression observed was due to nucleotide additions and partial gene deletions. Purified OmpP2A and OmpP2B were isolated under nondenaturing conditions, and subsequent analysis demonstrated that these two proteins exhibited porin activity. OmpP2A and OmpP2B are the first porins described for H. ducreyi.
Collapse
Affiliation(s)
- Derrick T Prather
- Department of Microbiology and Immunology, State University of New York at Buffalo, 14214, USA
| | | | | | | | | |
Collapse
|
16
|
Brest P, Bétis F, Cuburu N, Selva E, Herrant M, Servin A, Auberger P, Hofman P. Increased rate of apoptosis and diminished phagocytic ability of human neutrophils infected with Afa/Dr diffusely adhering Escherichia coli strains. Infect Immun 2004; 72:5741-9. [PMID: 15385473 PMCID: PMC517549 DOI: 10.1128/iai.72.10.5741-5749.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proinflammatory effect of Afa/Dr diffusely adhering Escherichia coli (Afa/Dr DAEC) strains have been recently demonstrated in vitro by showing that polymorphonuclear leukocyte (PMN) transepithelial migration is induced after bacterial colonization of apical intestinal monolayers. The effect of Afa/Dr DAEC-PMN interaction on PMN behavior has been not investigated. Because of the putative virulence mechanism of PMN apoptosis during infectious diseases and taking into account the high level of expression of the decay-accelerating factor (DAF, or CD55), the receptor of Afa/Dr DAEC on PMNs, we sought to determine whether infection of PMNs by Afa/Dr DAEC strains could promote cell apoptosis. We looked at the behavior of PMNs incubated with Afa/Dr DAEC strains once they had transmigrated across polarized monolayers of intestinal (T84) cells. Infection of PMNs by Afa/Dr DAEC strains induced PMN apoptosis characterized by morphological nuclear changes, DNA fragmentation, caspase activation, and a high level of annexin V expression. However, transmigrated and nontransmigrated PMNs incubated with Afa/Dr DAEC strains showed similar elevated global caspase activities. PMN apoptosis depended on their agglutination, induced by Afa/Dr DAEC, and was still observed after preincubation of PMNs with anti-CD55 and/or anti-CD66 antibodies. Low levels of phagocytosis of Afa/Dr DAEC strains were observed both in nontransmigrated and in transmigrated PMNs compared to that observed with the control E. coli DH5alpha strain. Taken together, these data strongly suggest that interaction of Afa/Dr DAEC with PMNs may increase the bacterial virulence both by inducing PMN apoptosis through an agglutination process and by diminishing their phagocytic capacity.
Collapse
|
17
|
Janowicz DM, Fortney KR, Katz BP, Latimer JL, Deng K, Hansen EJ, Spinola SM. Expression of the LspA1 and LspA2 proteins by Haemophilus ducreyi is required for virulence in human volunteers. Infect Immun 2004; 72:4528-33. [PMID: 15271912 PMCID: PMC470669 DOI: 10.1128/iai.72.8.4528-4533.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Haemophilus ducreyi colocalizes with polymorphonuclear leukocytes and macrophages and evades phagocytosis during experimental infection of human volunteers. H. ducreyi contains two genes, lspA1 and lspA2, which encode predicted proteins of 456 and 543 kDa, respectively. Compared to its wild-type parent, an lspA1 lspA2 double mutant does not inhibit phagocytosis by macrophage and myelocytic cell lines in vitro and is attenuated in an experimental rabbit model of chancroid. To test whether expression of LspA1 and LspA2 was necessary for virulence in humans, six volunteers were experimentally infected. Each volunteer was inoculated with three doses (ranging from 85 to 112 CFU) of the parent (35000HP) in one arm and three doses (ranging from 60 to 822 CFU) of the mutant (35000HP Omega 12) in the other arm. The papule formation rates were 88% (95% confidence interval [95% CI], 76.8 to 99.9%) at 18 parent sites and 72% (95% CI, 44.4 to 99.9%) at 18 mutant sites (P = 0.19). However, papules were significantly smaller at mutant sites (mean size, 24.8 mm(2)) than at parent sites (mean size, 39.1 mm(2)) 24 h after inoculation (P = 0.0002). The pustule formation rates were 44% (95% CI, 5.8 to 77.6%) at parent sites and 0% (95% CI, 0 to 39.4%) at mutant sites (P = 0.009). With the caveat that biosafety regulations preclude testing of a complemented mutant in human subjects, these results indicate that expression of LspA1 and LspA2 facilitates the ability of H. ducreyi to initiate disease and to progress to pustule formation in humans.
Collapse
Affiliation(s)
- Diane M Janowicz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Ward CK, Mock JR, Hansen EJ. The LspB protein is involved in the secretion of the LspA1 and LspA2 proteins by Haemophilus ducreyi. Infect Immun 2004; 72:1874-84. [PMID: 15039306 PMCID: PMC375143 DOI: 10.1128/iai.72.4.1874-1884.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LspA1 and LspA2 proteins of Haemophilus ducreyi 35000 are two very large macromolecules that can be detected in concentrated culture supernatant fluid. Both of these proteins exhibit homology with the N-terminal region of the Bordetella pertussis filamentous hemagglutinin (FHA), which is involved in secretion of the latter macromolecule. The lspA2 open reading frame is flanked upstream by a gene, lspB, that encodes a predicted protein with homology to the B. pertussis FhaC outer membrane protein that is involved in secretion of FHA across the outer membrane. The H. ducreyi lspB gene encodes a protein with a predicted molecular mass of 66,573 Da. Reverse transcription-PCR analysis suggested that the lspB gene was transcribed together with the lspA2 gene on a single mRNA transcript. Polyclonal H. ducreyi LspB antiserum reacted with a 64-kDa antigen present in the Sarkosyl-insoluble cell envelope fraction of H. ducreyi 35000, which indicated that the LspB protein is likely an outer membrane protein. Concentrated culture supernatant fluids from H. ducreyi lspB and lspA1 lspB mutants did not contain detectable LspA1 and detectable LspA2, respectively. However, complementation of the lspB mutant with the wild-type lspB gene on a plasmid restored LspB protein expression and resulted in release of detectable amounts of the LspA1 protein into culture supernatant fluid. When evaluated in the temperature-dependent rabbit model of infection, the lspB mutant was attenuated in the ability to cause lesions and was never recovered in a viable form from lesions. These results indicated that the H. ducreyi LspB protein is involved in secretion of the LspA1 and LspA2 proteins across the outer membrane.
Collapse
Affiliation(s)
- Christine K Ward
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
| | | | | |
Collapse
|
19
|
Spinola SM, Bong CTH, Faber AL, Fortney KR, Bennett SL, Townsend CA, Zwickl BE, Billings SD, Humphreys TL, Bauer ME, Katz BP. Differences in host susceptibility to disease progression in the human challenge model of Haemophilus ducreyi infection. Infect Immun 2003; 71:6658-63. [PMID: 14573692 PMCID: PMC219599 DOI: 10.1128/iai.71.11.6658-6663.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With human volunteers inoculated at two sites with Haemophilus ducreyi, outcomes for a subject were not independent. In a reinfection trial, 2 of 11 previous pustule formers and 6 of 10 previous resolvers resolved all sites of infection. There was no correlation between serum bactericidal or phagocytic activity and outcome in the trial. These data indicate that different hosts are differentially susceptible to disease progression versus resolution in the model.
Collapse
Affiliation(s)
- Stanley M Spinola
- Departments of Medicine, Indiana University, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Vakevainen M, Greenberg S, Hansen EJ. Inhibition of phagocytosis by Haemophilus ducreyi requires expression of the LspA1 and LspA2 proteins. Infect Immun 2003; 71:5994-6003. [PMID: 14500520 PMCID: PMC201102 DOI: 10.1128/iai.71.10.5994-6003.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi previously has been shown to inhibit the phagocytosis of both secondary targets and itself by certain cells in vitro. Wild-type H. ducreyi strain 35000HP contains two genes, lspA1 and lspA2, whose encoded protein products are predicted to be 456 and 543 kDa, respectively. An isogenic mutant of H. ducreyi 35000HP with inactivated lspA1 and lspA2 genes has been shown to exhibit substantially decreased virulence in the temperature-dependent rabbit model for chancroid. This lspA1 lspA2 mutant was tested for its ability to inhibit phagocytosis of immunoglobulin G-opsonized particles by differentiated HL-60 and U-937 cells and by J774A.1 cells. The wild-type strain H. ducreyi 35000HP readily inhibited phagocytosis, whereas the lspA1 lspA2 mutant was unable to inhibit phagocytosis. Similarly, the wild-type strain was resistant to phagocytosis, whereas the lspA1 lspA2 mutant was readily engulfed by phagocytes. This inhibitory effect of wild-type H. ducreyi on phagocytic activity was primarily associated with live bacterial cells but could also be found, under certain conditions, in concentrated H. ducreyi culture supernatant fluids that lacked detectable outer membrane fragments. Both the wild-type strain and the lspA1 lspA2 mutant attached to phagocytes at similar levels. These results indicate that the LspA1 and LspA2 proteins of H. ducreyi are involved, directly or indirectly, in the antiphagocytic activity of this pathogen, and they provide a possible explanation for the greatly reduced virulence of the lspA1 lspA2 mutant.
Collapse
Affiliation(s)
- Merja Vakevainen
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | |
Collapse
|
21
|
Ward CK, Latimer JL, Nika J, Vakevainen M, Mock JR, Deng K, Blick RJ, Hansen EJ. Mutations in the lspA1 and lspA2 genes of Haemophilus ducreyi affect the virulence of this pathogen in an animal model system. Infect Immun 2003; 71:2478-86. [PMID: 12704119 PMCID: PMC153216 DOI: 10.1128/iai.71.5.2478-2486.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Haemophilus ducreyi 35000HP contains two genes, lspA1 and lspA2, whose predicted protein products have molecular weights of 456,000 and 543,000, respectively (C. K. Ward, S. R. Lumbley, J. L. Latimer, L. D. Cope, and E. J. Hansen, J. Bacteriol. 180:6013-6022, 1998). We have constructed three H. ducreyi 35000HP mutants containing antibiotic resistance cartridges in one or both of the lspA1 and lspA2 open reading frames. Western blot analysis using LspA1- and LspA2-specific monoclonal antibodies indicated that the wild-type parent strain 35000HP expressed LspA1 protein that was readily detectable in culture supernatant fluid together with a barely detectable amount of LspA2 protein. The lspA2 mutant 35000HP.2 expressed LspA1 protein that was detectable in culture supernatant fluid and no LspA2 protein. In contrast, the H. ducreyi lspA1 mutant 35000HP.1, which did not express the LspA1 protein, expressed a greater quantity of the LspA2 protein than did the wild-type parent strain. The lspA1 lspA2 double mutant 35000HP.12 expressed neither LspA1 nor LspA2. The three mutant strains adhered to human foreskin fibroblasts and to a human keratinocyte cell line in vitro at a level that was not significantly different from that of the wild-type strain 35000HP. Lack of expression of the LspA1 protein by both the lspA1 mutant and the lspA1 lspA2 double mutant was associated with an increased tendency to autoagglutinate. When evaluated in the temperature-dependent rabbit model for chancroid, the lspA1 lspA2 double mutant was substantially less virulent than the wild-type strain 35000HP. The results of these studies indicated that H. ducreyi requires both the LspA1 and LspA2 proteins to be fully virulent in this animal model for experimental chancroid.
Collapse
Affiliation(s)
- Christine K Ward
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9048, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bong CTH, Bauer ME, Spinola SM. Haemophilus ducreyi: clinical features, epidemiology, and prospects for disease control. Microbes Infect 2002; 4:1141-8. [PMID: 12361914 DOI: 10.1016/s1286-4579(02)01639-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Haemophilus ducreyi is the causative agent of the genital ulcer disease chancroid. Chancroid is common in developing countries and facilitates human immunodeficiency virus transmission. In this review, the clinical features, epidemiology, and prospects for disease control are discussed in the context of experimental and natural infection of humans.
Collapse
Affiliation(s)
- Cliffton T H Bong
- Department of Medicine, School of Medicine, Indiana University, 435 Emerson Hall, 545 Barnhill Drive, Indianapolis, IN 46202-5124, USA
| | | | | |
Collapse
|
23
|
Bong CTH, Fortney KR, Katz BP, Hood AF, San Mateo LR, Kawula TH, Spinola SM. A superoxide dismutase C mutant of Haemophilus ducreyi is virulent in human volunteers. Infect Immun 2002; 70:1367-71. [PMID: 11854222 PMCID: PMC127809 DOI: 10.1128/iai.70.3.1367-1371.2002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Haemophilus ducreyi produces a periplasmic copper-zinc superoxide dismutase (Cu-Zn SOD), which is thought to protect the organism from exogenous reactive oxygen species generated by neutrophils during an inflammatory response. We had previously identified the gene, sodC, responsible for the production and secretion of Cu-Zn SOD and constructed an isogenic H. ducreyi strain with a mutation in the sodC gene (35000HP-sodC-cat). Compared to the parent, the mutant does not survive in the presence of exogenous superoxide (L. R. San Mateo, M. Hobbs, and T. H. Kawula, Mol. Microbiol. 27:391-404, 1998) and is impaired in the swine model of H. ducreyi infection (L. R. San Mateo, K. L. Toffer, P. E. Orndorff, and T. H. Kawula, Infect. Immun. 67:5345-5351, 1999). To test whether Cu-Zn SOD is important for bacterial survival in vivo, six human volunteers were experimentally infected with 35000HP and 35000HP-sodC-cat and observed for papule and pustule formation. Papules developed at similar rates at sites inoculated with the mutant or parent. The pustule formation rates were 75% (95% confidence intervals [CI], 43 to 95%) at 12 parent-inoculated sites and 67% (95% CI, 41 to 88%) at 18 mutant-inoculated sites (P = 0.47). There was no significant difference in levels of H. ducreyi recovery from mutant- and parent-inoculated biopsy sites. These results suggest that expression of Cu-Zn SOD does not play a major role in the survival of this pathogen in the initial stages of experimental infection of humans.
Collapse
Affiliation(s)
- Cliffton T H Bong
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Ahmed HJ, Johansson C, Svensson LA, Ahlman K, Verdrengh M, Lagergård T. In vitro and in vivo interactions of Haemophilus ducreyi with host phagocytes. Infect Immun 2002; 70:899-908. [PMID: 11796625 PMCID: PMC127673 DOI: 10.1128/iai.70.2.899-908.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the phagocytosis of Haemophilus ducreyi both in vitro and in vivo. Human granulocyte and monocyte phagocytosis of opsonized and nonopsonized, fluorescence-labeled H. ducreyi was assessed by flow cytometry. Both Escherichia coli and noncapsulated H. influenzae were included as controls. The maximal percentage of granulocytes taken up by H. ducreyi was 35% after 90 min. In contrast, 95% of H. influenzae bacteria were phagocytosed by granulocytes after 30 min. These results indicated that H. ducreyi phagocytosis was slow and inefficient. Bacterial opsonization by using specific antibodies increased the percentage of granulocytes phagocytosing H. ducreyi from 24 to 49%. The nonphagocytosed bacteria were completely resistant to phagocytosis even when reexposed to granulocytes, indicating that the H. ducreyi culture comprised a mixture of phenotypes. The intracellular survival of H. ducreyi in granulocytes, in monocytes/macrophages, and in a monocyte cell line (THP-1) was quantified after application of gentamicin treatment to kill extracellular bacteria. H. ducreyi survival within phagocytes was poor; approximately 11 and <0.1% of the added bacteria survived intracellularly after 2 and 20 h of incubation, respectively, while no intracellular H. influenzae bacteria were recovered after 2 h of incubation with phagocytes. The role of phagocytes in the development of skin lesions due to H. ducreyi was also studied in vivo. Mice that were depleted of granulocytes and/or monocytes and SCID mice, which lacked T and B cells, were injected intradermally with approximately 10(6) CFU of H. ducreyi. Within 4 days of inoculation, the granulocyte-depleted mice developed lesions that persisted throughout the experimental period. This result reinforces the importance of granulocytes in the early innate defense against H. ducreyi infection. In conclusion, H. ducreyi is insufficiently phagocytosed to achieve complete eradication of the bacteria. Indeed, H. ducreyi has the ability to survive intracellularly for short periods within phagocytic cells in vitro. Since granulocytes play a major role in the innate defense against H. ducreyi infection in vivo, bacterial resistance to phagocytosis probably plays a crucial role in the pathogenesis of chancroid.
Collapse
Affiliation(s)
- Hinda J Ahmed
- Department of Medical Microbiology and Immunology, University of Göteborg, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Haemophilus ducreyi causes the sexually transmitted disease chancroid, which facilitates the transmission of HIV infection. This review focuses on recent advances in the epidemiology, diagnosis, treatment and pathogenesis of this disease.
Collapse
Affiliation(s)
- Jaffar A Al-Tawfiq
- Saudi Aramco Medical Services Organization, Saudi Aramco, Dhahran 31311, Saudi Arabia.
| | | |
Collapse
|