1
|
De Alba-Alvarado MC, Torres-Gutiérrez E, Reynoso-Ducoing OA, Zenteno-Galindo E, Cabrera-Bravo M, Guevara-Gómez Y, Salazar-Schettino PM, Rivera-Fernández N, Bucio-Torres MI. Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease. Pathogens 2023; 12:pathogens12020335. [PMID: 36839607 PMCID: PMC9959418 DOI: 10.3390/pathogens12020335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In Chagas disease, the mechanisms involved in cardiac damage are an active field of study. The factors underlying the evolution of lesions following infection by Trypanosoma cruzi and, in some cases, the persistence of its antigens and the host response, with the ensuing development of clinically observable cardiac damage, are analyzed in this review.
Collapse
Affiliation(s)
- Mariana Citlalli De Alba-Alvarado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Olivia Alicia Reynoso-Ducoing
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Edgar Zenteno-Galindo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Yolanda Guevara-Gómez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
| | - Norma Rivera-Fernández
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| | - Martha Irene Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico
- Correspondence: (N.R.-F.); (M.I.B-T.)
| |
Collapse
|
2
|
Garcia-Bustos V, Moral Moral P, Cabañero-Navalon MD, Salavert Lletí M, Calabuig Muñoz E. Does Autoimmunity Play a Role in the Immunopathogenesis of Vasculitis Associated With Chronic Chagas Disease? Front Cell Infect Microbiol 2021; 11:671962. [PMID: 34295833 PMCID: PMC8290184 DOI: 10.3389/fcimb.2021.671962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Victor Garcia-Bustos
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Pedro Moral Moral
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Marta Dafne Cabañero-Navalon
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Miguel Salavert Lletí
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain
| | - Eva Calabuig Muñoz
- Department of Internal Medicine and Infectious Diseases, University and Polytechnic La Fe Hospital, Valencia, Spain.,Department of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
3
|
Zimmermann N, Gibbons WJ, Homan SM, Prows DR. Heart disease in a mutant mouse model of spontaneous eosinophilic myocarditis maps to three loci. BMC Genomics 2019; 20:727. [PMID: 31601172 PMCID: PMC6788080 DOI: 10.1186/s12864-019-6108-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Background Heart disease (HD) is the major cause of morbidity and mortality in patients with hypereosinophilic diseases. Due to a lack of adequate animal models, our understanding of the pathophysiology of eosinophil-mediated diseases with heart complications is limited. We have discovered a mouse mutant, now maintained on an A/J inbred background, that spontaneously develops hypereosinophilia in multiple organs. Cellular infiltration into the heart causes an eosinophilic myocarditis, with affected mice of the mutant line (i.e., A/JHD) demonstrating extensive myocardial damage and remodeling that leads to HD and premature death, usually by 15-weeks old. Results Maintaining the A/JHD line for many generations established that the HD trait was heritable and implied the mode of inheritance was not too complex. Backcross and intercross populations generated from mating A/JHD males with females from four different inbred strains produced recombinant populations with highly variable rates of affected offspring, ranging from none in C57BL/6 J intercrosses, to a few mice with HD using 129S1/SvImJ intercrosses and C57BL/6 J backcrosses, but nearly 8% of intercrosses and > 17% of backcrosses from SJL/J related populations developed HD. Linkage analyses of these SJL/J derived recombinants identified three highly significant loci: a recessive locus mapping to distal chromosome 5 (LOD = 4.88; named Emhd1 for eosinophilic myocarditis to heart disease-1); and two dominant variants mapping to chromosome 17, one (Emhd2; LOD = 7.51) proximal to the major histocompatibility complex, and a second (Emhd3; LOD = 6.89) that includes the major histocompatibility region. Haplotype analysis identified the specific crossovers that defined the Emhd1 (2.65 Mb), Emhd2 (8.46 Mb) and Emhd3 (14.59 Mb) intervals. Conclusions These results indicate the HD trait in this mutant mouse model of eosinophilic myocarditis is oligogenic with variable penetrance, due to multiple segregating variants and possibly additional genetic or nongenetic factors. The A/JHD mouse model represents a unique and valuable resource to understand the interplay of causal factors that underlie the pathology of this newly discovered eosinophil-associated disease with cardiac complications.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Gibbons
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Shelli M Homan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA
| | - Daniel R Prows
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Bldg. R. MLC 7016, Cincinnati, OH, 45229-3039, USA.
| |
Collapse
|
4
|
Błyszczuk P. Myocarditis in Humans and in Experimental Animal Models. Front Cardiovasc Med 2019; 6:64. [PMID: 31157241 PMCID: PMC6532015 DOI: 10.3389/fcvm.2019.00064] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Myocarditis is defined as an inflammation of the cardiac muscle. In humans, various infectious and non-infectious triggers induce myocarditis with a broad spectrum of histological presentations and clinical symptoms of the disease. Myocarditis often resolves spontaneously, but some patients develop heart failure and require organ transplantation. The need to understand cellular and molecular mechanisms of inflammatory heart diseases led to the development of mouse models for experimental myocarditis. It has been shown that pathogenic agents inducing myocarditis in humans can often trigger the disease in mice. Due to multiple etiologies of inflammatory heart diseases in humans, a number of different experimental approaches have been developed to induce myocarditis in mice. Accordingly, experimental myocarditis in mice can be induced by infection with cardiotropic agents, such as coxsackievirus B3 and protozoan parasite Trypanosoma cruzi or by activating autoimmune responses against heart-specific antigens. In certain models, myocarditis is followed by the phenotype of dilated cardiomyopathy and the end stage of heart failure. This review describes the most commonly used mouse models of experimental myocarditis with a focus on the role of the innate and adaptive immune systems in induction and progression of the disease. The review discusses also advantages and limitations of individual mouse models in the context of the clinical manifestation and the course of the disease in humans. Finally, animal-free alternatives in myocarditis research are outlined.
Collapse
Affiliation(s)
- Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland.,Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
De Bona E, Lidani KCF, Bavia L, Omidian Z, Gremski LH, Sandri TL, de Messias Reason IJ. Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front Immunol 2018; 9:1842. [PMID: 30127792 PMCID: PMC6088212 DOI: 10.3389/fimmu.2018.01842] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022] Open
Abstract
Chagas disease (CD), a neglected tropical disease caused by the protozoan Trypanosoma cruzi, affects around six million individuals in Latin America. Currently, CD occurs worldwide, becoming a significant public health concern due to its silent aspect and high morbimortality rate. T. cruzi presents different escape strategies which allow its evasion from the host immune system, enabling its persistence and the establishment of chronic infection which leads to the development of chronic Chagas cardiomyopathy (CCC). The potent immune stimuli generated by T. cruzi persistence may result in tissue damage and inflammatory response. In addition, molecular mimicry between parasites molecules and host proteins may result in cross-reaction with self-molecules and consequently in autoimmune features including autoantibodies and autoreactive cells. Although controversial, there is evidence demonstrating a role for autoimmunity in the clinical progression of CCC. Nevertheless, the exact mechanism underlying the generation of an autoimmune response in human CD progression is unknown. In this review, we summarize the recent findings and hypotheses related to the autoimmune mechanisms involved in the development and progression of CCC.
Collapse
Affiliation(s)
- Elidiana De Bona
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Kárita Cláudia Freitas Lidani
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Lorena Bavia
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Zahra Omidian
- Department of Pathology, Division of Immunology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | | | - Thaisa Lucas Sandri
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Iara J de Messias Reason
- Laboratory of Molecular Immunopathology, Department of Clinical Pathology, Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
6
|
Wen JJ, Wan X, Thacker J, Garg NJ. Chemotherapeutic efficacy of phosphodiesterase inhibitors in chagasic cardiomyopathy. JACC Basic Transl Sci 2016; 1:235-250. [PMID: 27747306 PMCID: PMC5065248 DOI: 10.1016/j.jacbts.2016.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Molecular mechanisms of Trypanosoma cruzi (Tc)-induced Chagasic cardiomyopathy (CCM) are not well understood. The NO-cGMP-PKG1α pathway maintains cardiac homeostasis and inotropy and may be disturbed due to phosphodiesterase (PDE5)-mediated cGMP catabolism in CCM. To test this, C57BL/6 mice were infected with T. cruzi, and after the control of acute parasitemia (∼45 days post-infection), given sildenafil (SIL) (1 mg/kg) treatment for 3 weeks that ended long before the chronic disease phase (∼150 days post-infection). The PDE5 was increased and cGMP/PKG activity was decreased in chagasic myocardium. Transthoracic echocardiography revealed left ventricular (LV) systolic function, that is, stroke volume, cardiac output, and ejection fraction, was significantly decreased in chagasic mice. SIL treatment resulted in normal levels of PDE5 and cGMP/PKG activity and preserved the LV function. The cardioprotective effects of SIL were provided through inhibition of cardiac collagenosis and chronic inflammation that otherwise were pronounced in CCM. Further, SIL treatment restored the mitochondrial DNA–encoded gene expression, complex I–dependent (but not complex II–dependent) ADP-coupled respiration, and oxidant/antioxidant balance in chagasic myocardium. In vitro studies in cardiomyocytes verified that SIL conserved the redox metabolic state and cellular health via maintaining the antioxidant status that otherwise was compromised in response to T. cruzi infection. We conclude that SIL therapy was useful in controlling the LV dysfunction and chronic pathology in CCM. Mice infected with T. cruzi control acute parasitemia but develop chronic chagasic cardiomyopathy. Treatment with SIL (a phosphodiesterase inhibitor) during a therapeutic window of indeterminate phase provided powerful cardioprotective effects against chronic development of cardiomyopathy and LV dysfunction. SIL normalized the cGMP-dependent protein kinase activity and mitochondrial oxidative metabolism, and established the oxidant/antioxidant balance in chagasic myocardium. SIL prevented the oxidative/inflammatory adducts that precipitate cardiomyocytes death and cardiac remodeling in CCM.
Collapse
Affiliation(s)
- Jian-Jun Wen
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Xianxiu Wan
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - John Thacker
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas
| | - Nisha Jain Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch (UTMB), Galveston, Texas; Department of Pathology, UTMB, Galveston, TX; Institute for Human Infections and Immunity, UTMB, Galveston, TX
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW American trypanosomiasis, or Chagas disease, is a lifelong and persistent infection caused by the protozoan Trypanosoma cruzi and is the most significant cause of morbidity and mortality in South and Central America. Owing to immigration and additional risks from blood transfusion and organ transplantation, the number of reported cases of Chagas disease has increased recently in Europe and the USA. The disease is caused by a moderate to intense lasting inflammatory response that triggers local expression of inflammatory mediators and activates and recruits leukocytes to various tissues to eliminate the parasites. RECENT FINDINGS This long-term inflammatory process triggers biochemical, physiological and morphological alterations and clinical changes in the digestive, nervous and cardiac (e.g. myocarditis, arrhythmias, congestive heart failure, autonomic dysfunctions and microcirculatory disturbances) systems. Indeed, the pathogenesis of Chagas disease is intricate and multifactorial, and the roles of the parasite and the immune response in initiating and maintaining the disease are still controversial. SUMMARY In this review, we discuss the current knowledge of 'strategies' employed by the parasite to persist in the host and host defence mechanisms against Trypanosoma cruzi infection, which can result in equilibrium (absence of the disease) or disease development, mainly in the cardiac systems.
Collapse
|
8
|
Nunes DF, Guedes PMDM, de Mesquita Andrade C, Câmara ACJD, Chiari E, Galvão LMDC. Troponin T autoantibodies correlate with chronic cardiomyopathy in human Chagas disease. Trop Med Int Health 2013; 18:1180-92. [DOI: 10.1111/tmi.12169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Daniela Ferreira Nunes
- Graduate Program in Health Sciences; Center for Health Sciences; Federal University of Rio Grande do Norte; Natal; Brazil
| | - Paulo Marcos da Matta Guedes
- Department of Microbiology and Parasitology; Center for Biosciences; Federal University of Rio Grande do Norte; Natal; Brazil
| | - Cléber de Mesquita Andrade
- Graduate Program in Health Sciences; Center for Health Sciences; Federal University of Rio Grande do Norte; Natal; Brazil
| | - Antonia Cláudia Jácome da Câmara
- Department of Clinical and Toxicological Analyses; Center for Health Sciences; Federal University of Rio Grande do Norte; Natal; Brazil
| | - Egler Chiari
- Department of Parasitology; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte; Brazil
| | - Lúcia Maria da Cunha Galvão
- Graduate Program in Health Sciences; Center for Health Sciences; Federal University of Rio Grande do Norte; Natal; Brazil
| |
Collapse
|
9
|
Bonney KM, Gifford KM, Taylor JM, Chen CI, Engman DM. Cardiac damage induced by immunization with heat-killed Trypanosoma cruzi is not antibody mediated. Parasite Immunol 2013; 35:1-10. [PMID: 23009341 DOI: 10.1111/pim.12008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 07/31/2012] [Indexed: 11/28/2022]
Abstract
Cardiac inflammation that develops during infection with Trypanosoma cruzi may result in part from autoimmunity, which may occur after bystander activation, after parasite-induced cardiomyocyte damage, or molecular mimicry. A/J mice infected with T. cruzi or immunized with heat-killed T. cruzi (HKTC) develop strong autoimmunity accompanied by cardiac damage. To determine whether this cardiac damage occurs via an antibody-dependent mechanism, we analysed T. cruzi-infected and HKTC-immunized mice for the presence of autoantibodies, cardiac antibody deposition, and serum cardiac troponin I as a measure of cardiac damage. We also performed a serum transfer experiment in which sera from T. cruzi-infected and T. cruzi-immunized mice (and controls) were transferred into naïve recipients, which were then analysed for the presence of antibodies and serum troponin. Unlike T. cruzi-infected mice, T. cruzi-immunized mice did not show significant antibody deposition in the myocardium. These results indicate that antibody deposition does not precede cardiac damage and inflammation in mice immunized with or infected with T. cruzi. Serum adoptive transfer did not induce cardiac damage in any recipients. Based on these findings, we conclude that the cardiac damage induced by immunization with HKTC is not mediated by antibodies.
Collapse
Affiliation(s)
- K M Bonney
- Departments of Pathology and Microbiology-Immunology, Northwestern University, Feinberg Cardiovascular Research Institute, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
10
|
Silva GK, Cunha LD, Horta CV, Silva ALN, Gutierrez FRS, Silva JS, Zamboni DS. A parent-of-origin effect determines the susceptibility of a non-informative F1 population to Trypanosoma cruzi infection in vivo. PLoS One 2013; 8:e56347. [PMID: 23409175 PMCID: PMC3569416 DOI: 10.1371/journal.pone.0056347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
The development of Chagas disease is determined by a complex interaction between the genetic traits of both the protozoan parasite, T. cruzi, and the infected host. This process is regulated by multiple genes that control different aspects of the host-parasite interaction. While determination of the relevant genes in humans is extremely difficult, it is feasible to use inbred mouse strains to determine the genes and loci responsible for host resistance to infection. In this study, we investigated the susceptibility of several inbred mouse strains to infection with the highly virulent Y strain of T. cruzi and found a considerable difference in susceptibility between A/J and C57BL/6 mice. We explored the differences between these two mouse strains and found that the A/J strain presented higher mortality, exacerbated and uncontrolled parasitemia and distinct histopathology in the target organs, which were associated with a higher parasite burden and more extensive tissue lesions. We then employed a genetic approach to assess the pattern of inheritance of the resistance phenotype in an F1 population and detected a strong parent-of-origin effect determining the susceptibility of the F1 male mice. This effect is unlikely to result from imprinted genes because the inheritance of this susceptibility was affected by the direction of the parental crossing. Collectively, our genetic approach of using the F1 population suggests that genes contained in the murine chromosome X contribute to the natural resistance against T. cruzi infection. Future linkage studies may reveal the locus and genes participating on the host resistance process reported herein.
Collapse
Affiliation(s)
- Grace K. Silva
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Catarina V. Horta
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L. N. Silva
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Fredy R. S. Gutierrez
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
11
|
Animal models used to examine the role of the environment in the development of autoimmune disease: findings from an NIEHS Expert Panel Workshop. J Autoimmun 2012; 39:285-93. [PMID: 22748431 DOI: 10.1016/j.jaut.2012.05.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/23/2022]
Abstract
Autoimmunity is thought to result from a combination of genetics, environmental triggers, and stochastic events. Environmental factors, such as chemicals, drugs or infectious agents, have been implicated in the expression of autoimmune disease, yet human studies are extremely limited in their ability to test isolated exposures to demonstrate causation or to assess pathogenic mechanisms. In this review we examine the research literature on the ability of chemical, physical and biological agents to induce and/or exacerbate autoimmunity in a variety of animal models. There is no single animal model capable of mimicking the features of human autoimmune disease, particularly as related to environmental exposures. An objective, therefore, was to assess the types of information that can be gleaned from the use of animal models, and how well that information can be used to translate back to human health. Our review notes the importance of genetic background to the types and severity of the autoimmune response following exposure to environmental factors, and emphasizes literature where animal model studies have led to increased confidence about environmental factors that affect expression of autoimmunity. A high level of confidence was reached if there were multiple studies from different laboratories confirming the same findings. Examples include mercury, pristane, and infection with Streptococcus or Coxsackie B virus. A second level of consensus identified those exposures likely to influence autoimmunity but requiring further confirmation. To fit into this category, there needed to be significant supporting data, perhaps by multiple studies from a single laboratory, or repetition of some but not all findings in multiple laboratories. Examples include silica, gold, TCE, TCDD, UV radiation, and Theiler's murine encephalomyelitis virus. With the caveat that researchers must keep in mind the limitations and appropriate applications of the various approaches, animal models are shown to be extremely valuable tools for studying the induction or exacerbation of autoimmunity by environmental conditions and exposures.
Collapse
|
12
|
Teixeira PC, Frade AF, Nogueira LG, Kalil J, Chevillard C, Cunha-Neto E. Pathogenesis of Chagas disease cardiomyopathy. World J Clin Infect Dis 2012; 2:39-53. [DOI: 10.5495/wjcid.v2.i3.39] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, or American trypanosomiasis, is a parasitic infection caused by the flagellate protozoan Trypanosoma cruzi. Chagas disease is mainly affecting rural populations in Mexico and Central and South America. The World Health Organization estimates that 300 000 new cases of Chagas disease occur every year and approximately 20 000 deaths are attributable to Chagas. However, this organisation classified Chagas disease as a neglected tropical disease. The economic burden of this disease is significant. In many Latin American countries, the direct and indirect costs, including the cost of health care in dollars and loss of productivity, attributable to Chagas disease ranges from $40 million to in excess of $800 million per nation per annum. So, it remains a contemporary public health concern. In chronic phase, mortality is primarily due to the rhythm disturbances and congestive heart failure that result from the chronic inflammatory cardiomyopathy (CCC) due to the persistence presence of parasites in the heart tissue. Mechanisms underlying differential progression to CCC are still incompletely understood. In the last decades immunological proteomic genetic approaches lead to significant results which help to disperse the veil covering the knowledge of the pathogenic process. Here, we reported these significant progresses.
Collapse
|
13
|
Pellegrini A, Guiñazu N, Giordanengo L, Cano RC, Gea S. The role of Toll-like receptors and adaptive immunity in the development of protective or pathological immune response triggered by the Trypanosoma cruzi protozoan. Future Microbiol 2011; 6:1521-33. [DOI: 10.2217/fmb.11.122] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Trypanosoma cruzi, the causal agent of Chagas disease, is an intracellular protozoan parasite that predominantly invades macrophages and cardiomyocytes, leading to persistent infection. Several members of the Toll-like receptor family are crucial for innate immunity to infection and are involved in maintaining tissue homeostasis. This review focuses on recent experimental findings of the innate and adaptive immune response in controlling the parasite and/or in generating heart and liver tissue injury. We also describe the importance of the host’s genetic background in the outcome of the disease and emphasize the importance of studying the response to specific parasite antigens. Understanding the dual participation of the immune response may contribute to the design of new therapies for Chagas disease.
Collapse
Affiliation(s)
- Andrea Pellegrini
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Natalia Guiñazu
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Laura Giordanengo
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | - Roxana Carolina Cano
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICET, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, Córdoba, 5000, Argentina
| | | |
Collapse
|
14
|
Cutrullis RA, Moscatelli GF, Moroni S, Volta BJ, Cardoni RL, Altcheh JM, Corral RS, Freilij HL, Petray PB. Benzonidazole therapy modulates interferon-γ and M2 muscarinic receptor autoantibody responses in Trypanosoma cruzi-infected children. PLoS One 2011; 6:e27133. [PMID: 22066031 PMCID: PMC3205037 DOI: 10.1371/journal.pone.0027133] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/11/2011] [Indexed: 02/05/2023] Open
Abstract
Objective The presence of autoantibodies with adrenergic and cholinergic activity, capable of triggering neurotransmitter receptor-mediated effects, has been associated with pathogenesis in T. cruzi-infected hosts. The goal of this study was to investigate the production of anti-M2 muscarinic receptor autoantibodies (Anti-M2R AAbs) as well as the IFN-γ profile in children at the early stage of Chagas disease, and to examine whether trypanocidal chemotherapy with benznidazole (BZ) could modify both response patterns. Methods This study comprised 30 T. cruzi-infected children (mean age: 13.8 years) and 19 uninfected controls (mean age: 12.7 years). Infected patients were treated with BZ and followed-up. Blood samples collected at diagnosis-T0, end of treatment-T1, and six months later-T2 were analysed by ELISA for detection of Anti-M2R AAbs and circulating levels of IFN-γ. Results At T0, anti-M2R AAbs were demonstrated in 56.7% of T. cruzi-infected patients, whereas uninfected controls were 100% negative. The average age of Anti-M2R AAbs+ patients was higher than that from negative population. Infected children also displayed significantly stronger serum IFN-γ responses than controls. Upon BZ treatment, a significant linear decreasing trend in Anti-M2R AAb reactivity was recorded throughout the follow-up, with 29.7–88.1% decrease at T2. IFN-γ circulating levels also declined by T2. Conclusion Anti-M2R AAbs and IFN-γ raise early during chagasic infection in children and are downmodulated by BZ therapy. These findings reinforce the usefulness of early BZ treatment not only to eliminate the parasite but also to reduce potentially pathogenic immune responses.
Collapse
Affiliation(s)
- Romina A. Cutrullis
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Guillermo F. Moscatelli
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Samanta Moroni
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Bibiana J. Volta
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Administración Nacional de Laboratorios e Institutos de Salud Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - Rita L. Cardoni
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, Administración Nacional de Laboratorios e Institutos de Salud Dr. C.G. Malbrán, Buenos Aires, Argentina
| | - Jaime M. Altcheh
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Ricardo S. Corral
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Héctor L. Freilij
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Patricia B. Petray
- Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
15
|
Acosta DM, Soprano LL, Ferrero M, Landoni M, Esteva MI, Couto AS, Duschak VG. A striking common O-linked N-acetylglucosaminyl moiety between cruzipain and myosin. Parasite Immunol 2011; 33:363-70. [PMID: 21426361 DOI: 10.1111/j.1365-3024.2011.01291.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single units of O-linked N-acetylglucosamine (GlcNAc), usually components of nuclear and cytoplasmatic proteins, are present at the C-terminal domain of cruzipain (Cz), a lysosomal major antigen from Trypanosoma cruzi. On the other hand, antibodies directed against some self-antigens like myosin are associated with Chagas heart disease. The participation of O-GlcNAc moieties in the molecular antigenicity of Cz was determined using GlcNAc linked to aprotinin by ELISA. The immune cross-reactivity between Cz and myosin is mainly focused in the C-T domain. ELISA inhibition assays using rabbit sera specific for Cz and C-T in conjunction with immune-gold electron microscopy analysis of heart tissues from mice immunized with C-T confronted with polyclonal rabbit sera specific for Cz and C-T prior and after myosin adsorption provided evidence which indicates that O-GlcNAc moieties constitute a common epitope between Cz and either myosin or other cardiac O-GlcNAc-containing proteins, showing a new insight into the molecular immune pathogenesis of Chagas heart disease.
Collapse
Affiliation(s)
- D M Acosta
- Instituto Nacional de Parasitología Dr Mario Fatala Chaben, ANLIS-Malbrán, Ministerio de Salud de la Nación, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
16
|
Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas' disease: parasite persistence and autoimmunity. Clin Microbiol Rev 2011; 24:592-630. [PMID: 21734249 PMCID: PMC3131057 DOI: 10.1128/cmr.00063-10] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acute Trypanosoma cruzi infections can be asymptomatic, but chronically infected individuals can die of Chagas' disease. The transfer of the parasite mitochondrial kinetoplast DNA (kDNA) minicircle to the genome of chagasic patients can explain the pathogenesis of the disease; in cases of Chagas' disease with evident cardiomyopathy, the kDNA minicircles integrate mainly into retrotransposons at several chromosomes, but the minicircles are also detected in coding regions of genes that regulate cell growth, differentiation, and immune responses. An accurate evaluation of the role played by the genotype alterations in the autoimmune rejection of self-tissues in Chagas' disease is achieved with the cross-kingdom chicken model system, which is refractory to T. cruzi infections. The inoculation of T. cruzi into embryonated eggs prior to incubation generates parasite-free chicks, which retain the kDNA minicircle sequence mainly in the macrochromosome coding genes. Crossbreeding transfers the kDNA mutations to the chicken progeny. The kDNA-mutated chickens develop severe cardiomyopathy in adult life and die of heart failure. The phenotyping of the lesions revealed that cytotoxic CD45, CD8(+) γδ, and CD8α(+) T lymphocytes carry out the rejection of the chicken heart. These results suggest that the inflammatory cardiomyopathy of Chagas' disease is a genetically driven autoimmune disease.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, University of Brasilia, Federal District, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Teixeira ARL, Gomes C, Nitz N, Sousa AO, Alves RM, Guimaro MC, Cordeiro C, Bernal FM, Rosa AC, Hejnar J, Leonardecz E, Hecht MM. Trypanosoma cruzi in the chicken model: Chagas-like heart disease in the absence of parasitism. PLoS Negl Trop Dis 2011; 5:e1000. [PMID: 21468314 PMCID: PMC3066158 DOI: 10.1371/journal.pntd.0001000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 03/07/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The administration of anti-trypanosome nitroderivatives curtails Trypanosoma cruzi infection in Chagas disease patients, but does not prevent destructive lesions in the heart. This observation suggests that an effective treatment for the disease requires understanding its pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS To understand the origin of clinical manifestations of the heart disease we used a chicken model system in which infection can be initiated in the egg, but parasite persistence is precluded. T. cruzi inoculation into the air chamber of embryonated chicken eggs generated chicks that retained only the parasite mitochondrial kinetoplast DNA minicircle in their genome after eight days of gestation. Crossbreeding showed that minicircles were transferred vertically via the germ line to chicken progeny. Minicircle integration in coding regions was shown by targeted-primer thermal asymmetric interlaced PCR, and detected by direct genomic analysis. The kDNA-mutated chickens died with arrhythmias, shortness of breath, cyanosis and heart failure. These chickens with cardiomyopathy had rupture of the dystrophin and other genes that regulate cell growth and differentiation. Tissue pathology revealed inflammatory dilated cardiomegaly whereby immune system mononuclear cells lyse parasite-free target heart fibers. The heart cell destruction implicated a thymus-dependent, autoimmune; self-tissue rejection carried out by CD45(+), CD8γδ(+), and CD8α lymphocytes. CONCLUSIONS/SIGNIFICANCE These results suggest that genetic alterations resulting from kDNA integration in the host genome lead to autoimmune-mediated destruction of heart tissue in the absence of T. cruzi parasites.
Collapse
Affiliation(s)
- Antonio R L Teixeira
- Chagas Disease Multidisciplinary Research Laboratory, Faculty of Medicine, University of Brasilia, Brasilia, Federal District, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Trypanosoma cruzi antigen immunization induces a higher B cell survival in BALB/c mice, a susceptible strain, compared to C57BL/6 B lymphocytes, a resistant strain to cardiac autoimmunity. Med Microbiol Immunol 2011; 200:209-18. [DOI: 10.1007/s00430-011-0192-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Indexed: 12/25/2022]
|
19
|
Bonney KM, Taylor JM, Daniels MD, Epting CL, Engman DM. Heat-killed Trypanosoma cruzi induces acute cardiac damage and polyantigenic autoimmunity. PLoS One 2011; 6:e14571. [PMID: 21283741 PMCID: PMC3024973 DOI: 10.1371/journal.pone.0014571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 11/18/2010] [Indexed: 12/12/2022] Open
Abstract
Chagas heart disease, caused by the protozoan parasite Trypanosoma cruzi, is a potentially fatal cardiomyopathy often associated with cardiac autoimmunity. T. cruzi infection induces the development of autoimmunity to a number of antigens via molecular mimicry and other mechanisms, but the genesis and pathogenic potential of this autoimmune response has not been fully elucidated. To determine whether exposure to T. cruzi antigens alone in the absence of active infection is sufficient to induce autoimmunity, we immunized A/J mice with heat-killed T. cruzi (HKTC) emulsified in complete Freund's adjuvant, and compared the resulting immune response to that induced by infection with live T. cruzi. We found that HKTC immunization is capable of inducing acute cardiac damage, as evidenced by elevated serum cardiac troponin I, and that this damage is associated with the generation of polyantigenic humoral and cell-mediated autoimmunity with similar antigen specificity to that induced by infection with T. cruzi. However, while significant and preferential production of Th1 and Th17-associated cytokines, accompanied by myocarditis, develops in T. cruzi-infected mice, HKTC-immunized mice produce lower levels of these cytokines, do not develop Th1-skewed immunity, and lack tissue inflammation. These results demonstrate that exposure to parasite antigen alone is sufficient to induce autoimmunity and cardiac damage, yet additional immune factors, including a dominant Th1/Th17 immune response, are likely required to induce cardiac inflammation.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology, Northwestern University, Chicago, Illinois, United States of America.
| | | | | | | | | |
Collapse
|
20
|
The Clinical and Diagnostic Significance of Anti-myosin Autoantibodies in Cardiac Disease. Clin Rev Allergy Immunol 2011; 44:98-108. [DOI: 10.1007/s12016-010-8229-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Abstract
The scarcity of Trypanosoma cruzi in inflammatory lesions of chronic Chagas disease led early investigators to suggest that tissue damage had an autoimmune nature. In spite of parasite persistence in chronic Chagas disease, several reports indicate that inflammatory tissue damage may not be correlated to the local presence of T. cruzi. A significant number of reports have described autoantibodies and self-reactive T cells, often cross-reactive with T. cruzi antigens, both in patients and in animal models. Evidence for a direct pathogenetic role of autoimmunity was suggested by the development of lesions after immunization with T. cruzi antigens or passive transfer of lymphocytes from infected animals, and the amelioration of chronic myocarditis in animals made tolerant to myocardial antigens. Autoimmune and T. cruzi-specific innate or adaptative responses are not incompatible or mutually exclusive, and it is likely that a combination of both is involved in the pathogenesis of chronic Chagas disease cardiomyopathy. The association between persistent infection and autoimmune diseases-such as multiple sclerosis or diabetes mellitus-suggests that post-infectious autoimmunity may be a frequent finding. Here, we critically review evidence for autoimmune phenomena and their possible pathogenetic role in human Chagas disease and animal models, with a focus on chronic Chagas disease cardiomyopathy.
Collapse
|
22
|
Cunha-Neto E, Teixeira PC, Fonseca SG, Bilate AM, Kalil J. Myocardial gene and protein expression profiles after autoimmune injury in Chagas' disease cardiomyopathy. Autoimmun Rev 2010; 10:163-5. [PMID: 20883825 DOI: 10.1016/j.autrev.2010.09.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 09/18/2010] [Indexed: 01/04/2023]
Abstract
One third of the 16 million of individuals infected by the protozoan Trypanosoma cruzi in Latin America eventually develop chronic Chagas' disease cardiomyopathy (CCC), an inflammatory dilated cardiomyopathy with shorter survival than non-inflammatory cardiomyopathies. The presence of a T cell-rich mononuclear inflammatory infiltrate and the relative scarcity of parasites in the heart suggested that chronic inflammation secondary to the autoimmune recognition of cardiac proteins could be a major pathogenetic mechanism. Sera from CCC patients crossreactively recognize cardiac myosin and T. cruzi protein B13. T cell clones elicited from peripheral blood with T. cruzi B13 protein or its peptides could crossreactively recognize epitopes from cardiac myosin heavy chain. Likewise, CD4+ T cell clones infiltrating CCC myocardium crossreactively recognize cardiac myosin and T. cruzi protein B13, and intralesional T cell lines produce the inflammatory cytokines IFN-γ and TNF-α. Conversely, IFN-γ-induced genes and chemokines were found to be upregulated in CCC heart samples, and IFN-γ is able to induce cardiomyocyte expression of atrial natriuretic factor, a key member of the hypertrophy/heart failure signature. Proteomic analysis of CCC heart tissue showed reduced expression of the energy metabolism enzymes. It can be hypothesized that cytokine-induced modulation of cardiomyocyte gene/protein expression may be a novel disease mechanism in CCC, in addition to direct inflammatory damage.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Pagni PP, Traub S, Demaria O, Chasson L, Alexopoulou L. Contribution of TLR7 and TLR9 signaling to the susceptibility of MyD88-deficient mice to myocarditis. Autoimmunity 2010; 43:275-87. [PMID: 20187710 DOI: 10.3109/08916930903509056] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLRs) are evolutionary conserved molecules that recognize various microbial components and host-derived agonists from damaged cells and play a central role in innate and adaptive immunity. It has been reported that MyD88, the adaptor molecule downstream of all TLRs, except TLR3, is essential for initiation of experimental autoimmune myocarditis (EAM). To determine the role of the intracellular TLRs in EAM, TLR3(-/-), TLR7(-/-), and TLR9(-/-) mice were immunized with cardiac alpha-myosin heavy chain peptide (MyHC-alpha) in Complete Freund's Adjuvant (CFA) and their EAM scores and associated immunological responses were compared to wild-type (WT) and MyD88(-/-) mice. MyD88(-/-) mice were completely resistant to EAM and had a profound defect in all the parameters we tested. Myocardial cellular infiltration and in vitro proliferation of MyHC-alpha-restimulated splenocytes were markedly reduced in TLR7(-/-) mice, while TLR3(-/-) and TLR9(-/-) mice showed similar inflammatory cell infiltration in the heart-like WT mice. Thus, the resistance of MyD88(-/-) mice to EAM can be attributed to a certain degree to TLR7 signaling. Moreover, upon murine cytomegalovirus-induced myocarditis, we found that the severity of myocardial inflammation was higher in TLR9(-/-) and MyD88(-/-) mice compared with WT, TLR3(-/-), or TLR7(-/-) mice and paralleled the ability of the mice to fight the viral infection.
Collapse
|
24
|
Merino MC, Montes CL, Acosta-Rodriguez EV, Bermejo DA, Amezcua-Vesely MC, Gruppi A. Peritoneum from Trypanosoma cruzi-infected mice is a homing site of Syndecan-1neg plasma cells which mainly provide non-parasite-specific antibodies. Int Immunol 2010; 22:399-410. [DOI: 10.1093/intimm/dxq019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
25
|
Macambira SG, Vasconcelos JF, Costa CRS, Klein W, Lima RS, Guimarães P, Vidal DTA, Mendez LC, Ribeiro-Dos-Santos R, Soares MBP. Granulocyte colony-stimulating factor treatment in chronic Chagas disease: preservation and improvement of cardiac structure and function. FASEB J 2009; 23:3843-50. [PMID: 19608624 DOI: 10.1096/fj.09-137869] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study investigates the effects of granulocyte colony-stimulating factor (G-CSF) therapy in experimental chronic chagasic cardiomyopathy. Chagas disease is one of the leading causes of heart failure in Latin America and remains without an effective treatment other than cardiac transplantation. C57BL/6 mice were infected with 10(3) trypomastigotes of Trypanosoma cruzi, and chronic chagasic mice were treated with G-CSF or saline (control). Evaluations following treatment were functional, immunological, and histopathological. Comparing hearts of G-CSF-treated mice showed reduced inflammation and fibrosis compared to saline-treated chagasic mice. G-CSF treatment did not alter the parasite load but caused an increase in the number of apoptotic inflammatory cells in the heart. Cardiac conductance disturbances in all infected animals improved or remained stable due to the G-CSF treatment, whereas all of the saline-treated mice deteriorated. The distance run on a treadmill and the exercise time were significantly greater in G-CSF-treated mice when compared to chagasic controls, as well as oxygen consumption (VO(2)), carbon dioxide production (VCO(2)), and respiratory exchange ration (RER) during exercise. Administration of G-CSF in experimental cardiac ischemia had beneficial effects on cardiac structure, which were well correlated with improvements in cardiac function and whole animal performance.
Collapse
Affiliation(s)
- Simone G Macambira
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The apparent discrepancy between the intensity of inflammatory reaction and scarce number of parasites in chronic chagasic myocarditis prompt several investigators to hypothesize that an autoimmune process was involved in the pathogenesis of Chagas disease. Here, we recapitulate diverse molecular and cellular mechanisms of innate and acquired immunity involved in the control of parasite replication and in the build up of myocarditis observed during infection with Trypanosoma cruzi. In addition, we review the immunoregulatory mechanisms responsible for preventing excessive immune response elicited by this protozoan parasite. Ongoing studies in this research area may provide novel therapeutic strategies that could enhance the immunoprotective response while preventing the deleterious parasite-elicited responses observed during Chagas disease.
Collapse
Affiliation(s)
- Denise Golgher
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, and René Research Center, Oswaldo Cruz Foundation, Belo Horizonte, MG, Brazil
| | | |
Collapse
|
27
|
Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM. Induction of cardiac autoimmunity in Chagas heart disease: A case for molecular mimicry. Autoimmunity 2009; 39:41-54. [PMID: 16455581 DOI: 10.1080/08916930500485002] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Up to 18 million of individuals are infected by the protozoan parasite Trypanosoma cruzi in Latin America, one third of whom will develop chronic Chagas disease cardiomyopathy (CCC) up to 30 years after infection. Cardiomyocyte destruction is associated with a T cell-rich inflammatory infiltrate and fibrosis. The presence of such lesions in the relative scarcity of parasites in the heart, suggested that CCC might be due, in part, to a postinfectious autoimmune process. Over the last two decades, a significant amount of reports of autoimmune and molecular mimicry phenomena have been described in CCC. The authors will review the evidence in support of an autoimmune basis for CCC pathogenesis in humans and experimental animals, with a special emphasis on molecular mimicry as a fundamental mechanism of autoimmunity.
Collapse
Affiliation(s)
- Edecio Cunha-Neto
- Heart Institute (InCor), Laboratory of Immunology, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
28
|
Foti L, Fonseca BDPFE, Nascimento LD, Marques CDFS, Silva EDD, Duarte CAB, Probst CM, Goldenberg S, Pinto AG, Krieger MA. Viability study of a multiplex diagnostic platform for Chagas disease. Mem Inst Oswaldo Cruz 2009; 104 Suppl 1:136-41. [DOI: 10.1590/s0074-02762009000900019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/16/2009] [Indexed: 01/20/2023] Open
|
29
|
Abstract
Autoimmunity occurs when the immune system recognizes and attacks host tissue. In addition to genetic factors, environmental triggers (in particular viruses, bacteria and other infectious pathogens) are thought to play a major role in the development of autoimmune diseases. In this review, we (i) describe the ways in which an infectious agent can initiate or exacerbate autoimmunity; (ii) discuss the evidence linking certain infectious agents to autoimmune diseases in humans; and (iii) describe the animal models used to study the link between infection and autoimmunity.
Collapse
Affiliation(s)
- A M Ercolini
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
30
|
Abstract
Chagas heart disease (CHD), caused by the protozoan parasite Trypanosoma cruzi, is the leading cause of infectious myocarditis in the world. The etiology of CHD is unclear and multiple mechanisms have been proposed to explain the pathogenesis of the disease. This review describes the proposed mechanisms of CHD pathogenesis and evaluates the historical significance and evidence supporting each. Although the majority of CHD-related pathologies are currently attributed to parasite persistence in the myocardium and autoimmunity, there is strong evidence that CHD develops as a result of additive and even synergistic effects of several distinct mechanisms rather than one factor.
Collapse
Affiliation(s)
- Kevin M Bonney
- Department of Pathology and Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
31
|
Hyland KV, Asfaw SH, Olson CL, Daniels MD, Engman DM. Bioluminescent imaging of Trypanosoma cruzi infection. Int J Parasitol 2008; 38:1391-400. [PMID: 18511053 DOI: 10.1016/j.ijpara.2008.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 03/31/2008] [Accepted: 04/03/2008] [Indexed: 11/18/2022]
Abstract
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.
Collapse
Affiliation(s)
- Kenneth V Hyland
- Department of Microbiology - Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
32
|
Frank FM, Cazorla SI, Sartori MJ, Corral RS. Elicitation of specific, Th1-biased immune response precludes skeletal muscle damage in cruzipain-vaccinated mice. Exp Mol Pathol 2007; 84:64-70. [PMID: 18054912 DOI: 10.1016/j.yexmp.2007.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/10/2007] [Accepted: 10/17/2007] [Indexed: 01/23/2023]
Abstract
Cruzipain (Cz), the major cystein proteinase of Trypanosoma cruzi, is able to induce protective immunity against parasite challenge. However, some concern has arisen regarding its potential to elicit pathogenic autoimmune reactivity. To determine whether the adverse myopathic effects of Cz-based immunization could be prevented, we evaluated the co-administration of Cz with different adjuvants. Mice were immunized with Cz adjuvantized by alum (Cz+alum), oligodeoxynucleotides containing CpG motifs (Cz+ODN-CpG) or Freund's preparation (Cz+CFA). Cz triggered a vigorous specific humoral response, irrespective of the adjuvant used. Alum mainly drove response towards Th2 phenotype, characterized by specific IgG1 antibodies and IL-10 induction, whereas Cz+ODN-CpG mice exhibited Th1-dominant immunity, with antibodies of the IgG2a isotype and enhanced IFN-gamma production. Histological examination of cardiac tissue demonstrated lesions in Cz+CFA but not in Cz+alum nor Cz+ODN-CpG immunized animals, suggesting that CFA is critical for Cz-mediated injury. Analysis of skeletal muscle revealed that mice receiving Cz+CFA exhibited disrupted and hyalinized myofibers, whereas [Cz+alum]-immunized animals showed hyalinization, architecture modifications and small inflammatory foci. Conversely, no abnormalities were observed in the striated muscle from the Cz+ODN-CpG group. Hence, generation of specific immune response skewed towards Th1, as that recorded for the ODN-CpG adjuvant, may preclude triggering of Cz-mediated muscle tissue damage.
Collapse
Affiliation(s)
- F M Frank
- Cátedra de Inmunología and Instituto de Estudios de la Inmunidad Humoral (IDEHU), CONICET-UBA, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina.
| | | | | | | |
Collapse
|
33
|
Gironès N, Carrasco-Marin E, Cuervo H, Guerrero NA, Sanoja C, John S, Flores-Herráez R, Fernández-Prieto L, Chico-Calero I, Salgado H, Carrión J, Fresno M. Role of Trypanosoma cruzi autoreactive T cells in the generation of cardiac pathology. Ann N Y Acad Sci 2007; 1107:434-44. [PMID: 17804572 DOI: 10.1196/annals.1381.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chagas disease, caused by Trypanosoma cruzi, affects several million people in Central and South America. About 30% of chronic patients develop cardiomyopathy probably caused by parasite persistence and/or autoimmunity. While several cross-reactive antibodies generated during mammal T. cruzi infection have been described, very few cross-reactive T cells have been identified. We performed adoptive transfer experiments of T cells isolated from chronically infected mice. The results showed the generation of cardiac pathology in the absence of parasites. We also transferred cross-reactive SAPA-specific T cells and observed unspecific alterations in heart repolarization, cardiac inflammatory infiltration, and tissue damage.
Collapse
Affiliation(s)
- Núria Gironès
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hyland KV, Leon JS, Daniels MD, Giafis N, Woods LM, Bahk TJ, Wang K, Engman DM. Modulation of autoimmunity by treatment of an infectious disease. Infect Immun 2007; 75:3641-50. [PMID: 17485457 PMCID: PMC1932944 DOI: 10.1128/iai.00423-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 04/16/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022] Open
Abstract
Chagas' heart disease (CHD), caused by the parasite Trypanosoma cruzi, is the most common form of myocarditis in Central America and South America. Some humans and experimental animals develop both humoral and cell-mediated cardiac-specific autoimmunity during infection. Benznidazole, a trypanocidal drug, is effective at reducing parasite load and decreasing the severity of myocarditis in acutely infected patients. We hypothesized that the magnitude of autoimmunity that develops following T. cruzi infection is directly proportional to the amount of damage caused by the parasite. To test this hypothesis, we used benznidazole to reduce the number of parasites in an experimental model of CHD and determined whether this treatment altered the autoimmune response. Infection of A/J mice with the Brazil strain of T. cruzi leads to the development of severe inflammation, fibrosis, necrosis, and parasitosis in the heart accompanied by vigorous cardiac myosin-specific delayed-type hypersensitivity (DTH) and antibody production at 21 days postinfection. Mice succumbed to infection within a month if left untreated. Treatment of infected mice with benznidazole eliminated mortality and decreased disease severity. Treatment also reduced cardiac myosin-specific DTH and antibody production. Reinfection of treated mice with a heart-derived, virulent strain of T. cruzi or immunization with myosin led to the redevelopment of myosin-specific autoimmune responses and inflammation. These results provide a direct link between the levels of T. cruzi and the presence of autoimmunity and suggest that elimination of the parasite may result in the reduction or elimination of autoimmunity in the chronic phase of infection.
Collapse
Affiliation(s)
- Kenneth V Hyland
- Department of Microbiology-Immunology and Pathology, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bahk TJ, Daniels MD, Leon JS, Wang K, Engman DM. Comparison of angiotensin converting enzyme inhibition and angiotensin II receptor blockade for the prevention of experimental autoimmune myocarditis. Int J Cardiol 2007; 125:85-93. [PMID: 17588693 PMCID: PMC2488158 DOI: 10.1016/j.ijcard.2007.04.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 04/01/2007] [Indexed: 11/22/2022]
Abstract
The angiotensin converting enzyme inhibitor captopril prevents myosin-induced experimental autoimmune myocarditis. Captopril inhibits production of angiotensin II and increases bradykinin signaling, among other actions. To test whether captopril inhibits disease through blockade of angiotensin signaling, we tested the ability of losartan, an angiotensin II receptor blocker, to prevent myosin-induced myocarditis. A/J mice immunized with the heavy chain of cardiac myosin in complete Freund's adjuvant develop acute myocarditis by day 21 post-immunization, consisting of severe focal inflammation, necrosis and fibrosis. Administration of losartan (250 mg/L in the drinking water) or captopril (75 mg/L in the drinking water) significantly reduced inflammation, necrosis and fibrosis in myosin-immunized mice. The heart weights and the heart weight-to-body weight ratios were also significantly reduced in both treatment groups. However, whereas captopril reduced myosin-specific delayed-type hypersensitivity, losartan did not. Both captopril-treated mice and losartan-treated mice showed a decrease in myosin-specific autoantibody production. Because losartan treatment significantly reduced myocarditis, fibrosis and autoantibody production in EAM, it is likely that prevention of angiotensin II receptor stimulation is a major mechanism underlying the inhibition of myosin-induced myocarditis by captopril.
Collapse
Affiliation(s)
| | | | | | | | - David M. Engman
- Corresponding author: David M. Engman, Northwestern University Feinberg School of Medicine, Department of Pathology, 303 East Chicago Avenue, Ward 6-175, Chicago, Illinois 60611 United States, Phone: +1-312-503-1288, Fax: +1-312-503-1265, E-mail:
| |
Collapse
|
36
|
Srinivasan M, Zegans ME, Zelefsky JR, Kundu A, Lietman T, Whitcher JP, Cunningham ET. Clinical characteristics of Mooren's ulcer in South India. Br J Ophthalmol 2007; 91:570-5. [PMID: 17035269 PMCID: PMC1954782 DOI: 10.1136/bjo.2006.105452] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2006] [Indexed: 11/04/2022]
Abstract
AIM To describe the clinical characteristics at presentation of a large cohort of patients with Mooren's ulcer in South India. METHODS The medical records of patients with Mooren's ulcer examined in the cornea clinic at Aravind Eye Hospital Madurai, Tamil Nadu, India, over a 10-year period were reviewed in this retrospective observational case series. RESULTS The cohort contained 242 eyes of 166 patients. All patients were from South India, and men outnumbered women by a ratio of 4.7:1. The median and mean ages at presentation were 65 and 61 years, respectively, with a range of 13-95 years. One eye was affected in 90 of 166 (54%) patients. Visual acuity in the affected eye at presentation ranged from 6/6 to light perception, and was 6/12 or better in 34 of 242 (14%) eyes, between 6/12 and 3/60 in 168 (69%) eyes, and worse than 3/60 in 40 (17%) eyes. Partial peripheral corneal ulceration was observed in 222 (92%) eyes, complete peripheral corneal ulceration was observed in 15 (6%) eyes and total corneal ulceration was observed in 5 (2%) eyes. For those 222 eyes with partial peripheral ulceration, 152 (68%) showed temporal involvement, 129 (58%) showed nasal involvement, 116 (52%) showed inferior involvement and 30 (14%) showed superior involvement. Perforation was observed in 26 (11%) eyes, and was more common in eyes with peripheral as compared with total ulceration (p<0.001). Identified risk factors in the cohort included evidence of prior corneal surgery (22%), corneal trauma (17%) and corneal infection (2%). CONCLUSIONS Mooren's ulcer is a rare and potentially blinding eye condition observed not infrequently in the cornea clinic at Aravind Eye Hospital. Men are affected more often than women and may present with either unilateral or bilateral disease. Perforation is observed in approximately 1 in 10 affected eyes at presentation and occurs most often in the setting of peripheral ulceration. The occurrence of prior corneal surgery, trauma or infection in nearly one third of patients supports theories of exposure to corneal antigen in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Muthaiah Srinivasan
- Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
BACKGROUND Chagas disease remains a significant public health issue and a major cause of morbidity and mortality in Latin America. Despite nearly 1 century of research, the pathogenesis of chronic Chagas cardiomyopathy is incompletely understood, the most intriguing challenge of which is the complex host-parasite interaction. METHODS AND RESULTS A systematic review of the literature found in MEDLINE, EMBASE, BIREME, LILACS, and SCIELO was performed to search for relevant references on pathogenesis and pathophysiology of Chagas disease. Evidence from studies in animal models and in anima nobile points to 4 main pathogenetic mechanisms to explain the development of chronic Chagas heart disease: autonomic nervous system derangements, microvascular disturbances, parasite-dependent myocardial aggression, and immune-mediated myocardial injury. Despite its prominent peculiarities, the role of autonomic derangements and microcirculatory disturbances is probably ancillary among causes of chronic myocardial damage. The pathogenesis of chronic Chagas heart disease is dependent on a low-grade but incessant systemic infection with documented immune-adverse reaction. Parasite persistence and immunological mechanisms are inextricably related in the myocardial aggression in the chronic phase of Chagas heart disease. CONCLUSIONS Most clinical studies have been performed in very small number of patients. Future research should explore the clinical potential implications and therapeutic opportunities of these 2 fundamental underlying pathogenetic mechanisms.
Collapse
Affiliation(s)
- Jose Antonio Marin-Neto
- Cardiology Division, Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
38
|
Zelefsky JR, Srinivasan M, Kundu A, Lietman T, Whitcher JP, Wang K, Buyse M, Cunningham ET. Hookworm Infestation as a Risk Factor for Mooren’s Ulcer in South India. Ophthalmology 2007; 114:450-3. [PMID: 17123614 DOI: 10.1016/j.ophtha.2006.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 08/10/2006] [Accepted: 08/10/2006] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To investigate the association between Mooren's ulcer and intestinal hookworm infestation in South India. DESIGN Prospective observational case-control study. PARTICIPANTS Fifteen patients with Mooren's ulcer and 30 age- and gender-matched controls seen at Aravind Eye Hospital. METHODS Stool samples from the Mooren's ulcer patients and controls were collected and analyzed for presence of hookworm infestation. MAIN OUTCOME MEASURE Prevalence of hookworm infestation in Mooren's ulcer patients and controls. RESULTS There was a statistically significant correlation between intestinal hookworm infestation and the occurrence of Mooren's ulcer (P = 0.009). Retrospective exploratory subgroup analyses suggested that the correlation between intestinal hookworm infestation and the occurrence of Mooren's ulcer in men (P<0.0001) was stronger than the correlation in women, with no statistically significant difference being observed in the prevalence of hookworm infestation between women with Mooren's ulcer and female control subjects (P>0.99). Similarly, when both the Mooren's ulcer and the control subject groups were analyzed retrospectively by age > 50 years or age < 50, subjects with an age over 50 demonstrated a stronger correlation between hookworm infestation and Mooren's ulcer than controls (P = 0.017), whereas there was no statistically significant difference in the prevalence of hookworm infection between Mooren's ulcer subjects and control subjects < or = 50 (P = 0.31). CONCLUSION Intestinal hookworm infestation appears to be associated with the development of Mooren's ulcer in South India. Although the power of our retrospective exploratory subgroup analyses was limited by multiple testing and small sample sizes, these data suggest further that the correlation between intestinal hookworm infestation and the development of Mooren's ulcer may be greatest in male patients with more advanced age.
Collapse
|
39
|
Castro E, Gironés N, Bueno JL, Carrión J, Lin L, Fresno M. The efficacy of photochemical treatment with amotosalen HCl and ultraviolet A (INTERCEPT) for inactivation of Trypanosoma cruzi in pooled buffy-coat platelets. Transfusion 2007; 47:434-41. [PMID: 17319823 DOI: 10.1111/j.1537-2995.2007.01133.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND This study evaluated the efficacy of photochemical treatment (PCT) with amotosalen and ultraviolet A (UVA) light to inactivate Trypanosoma cruzi in contaminated platelet (PLT) components. STUDY DESIGN AND METHODS Fifteen pools of buffy-coat PLTs (BC-PLTs) were inoculated with approximately 5 x 10(3) to 5 x 10(5) per mL of viable T. cruzi of the G, Tulahuen (T), or Y strains. Samples from BC-PLTs were assayed for infectivity before and after PCT with 150 micromol per L amotosalen and 3 J per cm(2) UVA light. Infectivity was determined with three different methods: 1) in vitro culture to detect viable epimastigotes, 2) [(3)H]thymidine incorporation in culture, and 3) in vivo inoculation into interferon-gamma receptor (IFN-gammaR)-deficient mice. RESULTS The in vitro assay yielded viable parasite titers of 3.9 x 10(5), 2.8 x 10(4), and 5.6 x 10(3) per mL (corresponding to 5.6, 4.4, and 3.8 logs/mL) for the Y, T, and G strains, respectively. PCT was able to inactivate all three strains of T. cruzi to below the limit of detection (10 parasites/mL) in the sensitive in vivo assay. Because 10-mL samples, each concentrated into a 1-mL sample for inoculation, were tested in the in vivo assay, log reductions achieved were greater than 5.6, greater than 4.4, and greater than 3.8 for the Y, T, and G strains of T. cruzi, respectively. CONCLUSIONS The pathogen reduction system with amotosalen HCl and UVA demonstrated robust efficacy for inactivation of high doses of three different strains of T. cruzi and offers the potential to make the PLT supply safer.
Collapse
Affiliation(s)
- Emma Castro
- From the Spanish Red Cross Transfusion Center, and the National Research Council, Autonomous University of Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Gironès N, Cuervo H, Fresno M. Trypanosoma cruzi-induced molecular mimicry and Chagas' disease. Curr Top Microbiol Immunol 2006; 296:89-123. [PMID: 16323421 DOI: 10.1007/3-540-30791-5_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chagas' disease, caused by Trypanosoma cruzi, has been considered a paradigm of infection-induced autoimmune disease. Thus, the scarcity of parasites in the chronic phase of the disease contrasts with the severe cardiac pathology observed in approximately 30% of chronic patients and suggested a role for autoimmunity as the origin of the pathology. Antigen-specific and antigen-non-specific mechanisms have been described by which T. cruzi infection might activate T and B cells, leading to autoimmunity. Among the first mechanisms, molecular mimicry has been claimed as the most important mechanism leading to autoimmunity and pathology in the chronic phase of this disease. In this regard, various T. cruzi antigens, such as B13, cruzipain and Cha, cross-react with host antigens at the B or T cell level and their role in pathogenesis has been widely studied. Immunization with those antigens and/or passive transfer of autoreactive T lymphocytes in mice lead to clinical disturbances similar to those found in Chagas' disease patients. On the other hand, the parasite is becoming increasingly detected in chronically infected hosts and may also be the cause of pathology either directly or through parasite-specific mediated inflammatory responses. Thus, the issue of autoimmunity versus parasite persistence as the cause of Chagas' disease pathology is hotly debated among many researchers in the field. We critically review here the evidence in favor of and against autoimmunity through molecular mimicry as responsible for Chagas' disease pathology from clinical, pathological and immunological perspectives.
Collapse
Affiliation(s)
- N Gironès
- Centro de Biología Molecular, CSIC-UAM, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
41
|
Tyler KM, Luxton GWG, Applewhite DA, Murphy SC, Engman DM. Responsive microtubule dynamics promote cell invasion by Trypanosoma cruzi. Cell Microbiol 2005; 7:1579-91. [PMID: 16207245 DOI: 10.1111/j.1462-5822.2005.00576.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The American trypanosome, Trypanosoma cruzi, can invade non-phagocytic cell types by a G-protein-mediated, calcium-dependent mechanism, in which the cell's natural puncture repair mechanism is usurped in order to recruit lysosomes to the parasite/host cell junction or 'parasite synapse.' The fusion of lysosomes necessary for construction of the nascent parasitophorous vacuole is achieved by directed trafficking along microtubules. We demonstrate altered host cell microtubule dynamics during the initial stages of the entry process involving de novo microtubule polymerization from the cytoplasmic face of the parasite synapse which appears to serve as a secondary microtubule organizing centre. The net result of these dynamic changes to the host cell's microtubule cytoskeleton is the development of the necessary infrastructure for transport of lysosomes to the parasite synapse.
Collapse
Affiliation(s)
- Kevin M Tyler
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
42
|
Zacks MA, Wen JJ, Vyatkina G, Bhatia V, Garg N. An overview of chagasic cardiomyopathy: pathogenic importance of oxidative stress. AN ACAD BRAS CIENC 2005; 77:695-715. [PMID: 16341444 DOI: 10.1590/s0001-37652005000400009] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence to suggest that chagasic myocardia are exposed to sustained oxidative stress-induced injuries that may contribute to disease progression. Pathogen invasion- and replication-mediated cellular injuries and immune-mediated cytotoxic reactions are the common source of reactive oxygen species (ROS) in infectious etiologies. However, our understanding of the source and role of oxidative stress in chagasic cardiomyopathy (CCM) remains incomplete. In this review, we discuss the evidence for increased oxidative stress in chagasic disease, with emphasis on mitochondrial abnormalities, electron transport chain dysfunction and its role in sustaining oxidative stress in myocardium. We discuss the literature reporting the consequences of sustained oxidative stress in CCM pathogenesis.
Collapse
Affiliation(s)
- Michele A Zacks
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | | | | | |
Collapse
|
43
|
Croxford JL, Wang K, Miller SD, Engman DM, Tyler KM. Effects of cannabinoid treatment on Chagas disease pathogenesis: balancing inhibition of parasite invasion and immunosuppression. Cell Microbiol 2005; 7:1592-602. [PMID: 16207246 DOI: 10.1111/j.1462-5822.2005.00577.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Trypanosoma cruzi invades heart cells via a calcium-dependent, G protein-mediated mechanism, leading to severe cardiac inflammation considered by some to be autoimmune in nature. Cannabinoids inhibit calcium flux and G protein signalling; as potent immunosuppressive agents, they are effective in the treatment of autoimmune disease but contraindicated for the treatment of infections. We compared the action of the synthetic cannabinoid R(+)WIN55,212 and its inactive isomer S(-)WIN55,212 on cardiac myoblast invasion: R(+)WIN55,212 inhibited invasion by over 85%. We then tested for efficacy in modulating pathogenesis in mice by assaying parasite burden in heart and blood, cellular and humoral immunity to parasite and self antigens, and mortality. R(+)WIN55,212 significantly reduced cardiac inflammation but led to considerably increased parasitaemia. Cardiac parasitosis and mortality were not significantly different in treatment and control groups. We conclude that cannabinoids can block cardiac cell puncture repair mechanisms, thereby inhibiting trypanosome invasion as predicted by the mode of drug action, but, also inhibit immune cell effector functions, offsetting the benefit of inhibition parasite cell invasion. Refined use of cannabinoids may prove therapeutic in the future, but our results raise concern about the effect of cannabis use on those chronically infected by T. cruzi and on heart cell homeostasis generally.
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
44
|
Iwai LK, Juliano MA, Juliano L, Kalil J, Cunha-Neto E. T-cell molecular mimicry in Chagas disease: identification and partial structural analysis of multiple cross-reactive epitopes between Trypanosoma cruzi B13 and cardiac myosin heavy chain. J Autoimmun 2005; 24:111-7. [PMID: 15829403 DOI: 10.1016/j.jaut.2005.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Indexed: 10/25/2022]
Abstract
Chagas disease cardiomyopathy (CCC) is one of the few examples of post-infectious autoimmunity, where infectious episodes with an established pathogen, the protozoan parasite Trypanosoma cruzi, clearly triggers molecular mimicry-related target organ immune damage. CD4+ T-cell clones infiltrating hearts from CCC patients cross-reactively recognize human cardiac myosin, the major heart protein, and the immunodominant B13 protein from T. cruzi. Moreover, in vitro priming with B13 leads to the recovery of cardiac myosin cross-reactive T-cell clones. In order to identify cross-reactive epitopes between B13 protein and human cardiac myosin, we used B13 peptide S15.4, preferentially recognized by CCC patients, to establish a T-cell clone from an HLA-DQ7 individual. The B13 S15.4 peptide-specific CD4+ T-cell clone 3E5 was tested in proliferation assays against 15 Lys/His-substituted S15.4-derived peptides for TCR/HLA contact analysis. Together with previous HLA-binding data and molecular modeling of the HLA-DQ7-peptide S15.4 complex, Lys/His scanning analysis showed eight TCR/HLA contact positions. Clone 3E5 was also tested against 45 15-mer peptides from human beta-cardiac myosin heavy chain bearing the central HLA-DQ7 binding motif. Clone 3E5 recognized 13 peptides from cardiac myosin. The alignment of cross-reactive peptides in cardiac myosin showed very limited sharing of residues or side chains with similar chemical/structural features at aligned positions, indicative of a very degenerate TCR recognition pattern. The existence of degenerate intramolecular recognition, with multiple low-homology, cross-reactive epitopes in a single autoantigenic protein may have implications in increasing the magnitude of the autoimmune response in CCC and other autoimmune diseases.
Collapse
Affiliation(s)
- Leo Kei Iwai
- Laboratory of Immunology, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas de Carvalho Aguiar, 44, bloco-2, 9(o) andar, Cerqueira César, São Paulo, SP 05403-000, Brazil
| | | | | | | | | |
Collapse
|
45
|
Guiñazú N, Pellegrini A, Giordanengo L, Aoki MP, Rivarola HW, Cano R, Rodrigues MM, Gea S. Immune response to a major Trypanosoma cruzi antigen, cruzipain, is differentially modulated in C57BL/6 and BALB/c mice. Microbes Infect 2004; 6:1250-8. [PMID: 15555530 DOI: 10.1016/j.micinf.2004.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2004] [Accepted: 07/21/2004] [Indexed: 11/25/2022]
Abstract
BALB/c mice immunized with cruzipain, a major Trypanosoma cruzi antigen, produce specific and autoreactive immune responses against heart myosin, associated with cardiac functional and structural abnormalities. Preferential activation of the Th2 phenotype and an increase in cell populations expressing CD19+, Mac-1+ and Gr-1+ markers were found in the spleens of these mice. The aim of the present study was to investigate whether cardiac autoimmunity could be induced by cruzipain immunization of C57BL/6 mice and to compare the immune response elicited with that of BALB/c mice. We demonstrate that immune C57BL/6 splenocytes, re-stimulated in vitro with cruzipain, produced high levels of IFNgamma and low levels of IL-4 compatible with a Th1 profile. In contrast to BALB/c mice, spleens from cruzipain immune C57BL/6 mice revealed no significant changes in the number of cells presenting CD19+, Mac-1+ and Gr-1+ markers. An increased secretion of TGFbeta and a greater number of CD4+ TGFbeta+ cells were found in immune C57BL/6 but not in BALB/c mice. These findings were associated with the lack of autoreactive response against heart myosin and a myosin- or cruzipain-derived peptide. Thus, the differential immune response elicited in C57BL/6 and BALB/c mice upon cruzipain immunization is implicated in the resistance or pathogenesis of experimental Chagas' disease.
Collapse
Affiliation(s)
- Natalia Guiñazú
- Inmunología, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Haya de la Torre y Medina Allende S/N, 5000 Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Leon JS, Daniels MD, Toriello KM, Wang K, Engman DM. A cardiac myosin-specific autoimmune response is induced by immunization with Trypanosoma cruzi proteins. Infect Immun 2004; 72:3410-7. [PMID: 15155647 PMCID: PMC415650 DOI: 10.1128/iai.72.6.3410-3417.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Revised: 07/09/2003] [Accepted: 02/17/2004] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi is the protozoan parasite that causes Chagas' heart disease, a potentially fatal cardiomyopathy prevalent in Central and South America. Infection with T. cruzi induces cardiac myosin autoimmunity in susceptible humans and mice, and this autoimmunity has been suggested to contribute to cardiac inflammation. To address how T. cruzi induces cardiac myosin autoimmunity, we investigated whether immunity to T. cruzi antigens could induce cardiac myosin-specific autoimmunity in the absence of live parasites. We immunized A/J mice with a T. cruzi Brazil-derived protein extract emulsified in complete Freund's adjuvant and found that these mice developed cardiac myosin-specific delayed-type hypersensitivity (DTH) and autoantibodies in the absence of detectable cardiac damage. The induction of autoimmunity was specific since immunization with extracts of the related protozoan parasite Leishmania amazonensis did not induce myosin autoimmunity. The immunogenetic makeup of the host was important for this response, since C57BL/6 mice did not develop cardiac myosin DTH upon immunization with T. cruzi extract. Perhaps more interesting, mice immunized with cardiac myosin developed T. cruzi-specific DTH and antibodies. This DTH was also antigen specific, since immunization with skeletal myosin and myoglobin did not induce T. cruzi-specific immunity. These results suggest that immunization with cardiac myosin or T. cruzi antigen can induce specific, bidirectionally cross-reactive immune responses in the absence of detectable cardiac damage.
Collapse
Affiliation(s)
- Juan S Leon
- Department of Microbiology-Immunology, The Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
47
|
Soares MBP, Lima RS, Rocha LL, Takyia CM, Pontes-de-Carvalho L, de Carvalho ACC, Ribeiro-dos-Santos R. Transplanted bone marrow cells repair heart tissue and reduce myocarditis in chronic chagasic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:441-7. [PMID: 14742250 PMCID: PMC1602272 DOI: 10.1016/s0002-9440(10)63134-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A progressive destruction of the myocardium occurs in approximately 30% of Trypanosoma cruzi-infected individuals, causing chronic chagasic cardiomyopathy, a disease so far without effective treatment. Syngeneic bone marrow cell transplantation has been shown to cause repair and improvement of heart function in a number of studies in patients and animal models of ischemic cardiopathy. The effects of bone marrow transplant in a mouse model of chronic chagasic cardiomyopathy, in the presence of the disease causal agent, ie, the T. cruzi, are described herein. Bone marrow cells injected intravenously into chronic chagasic mice migrated to the heart and caused a significant reduction in the inflammatory infiltrates and in the interstitial fibrosis characteristics of chronic chagasic cardiomyopathy. The beneficial effects were observed up to 6 months after bone marrow cell transplantation. A massive apoptosis of myocardial inflammatory cells was observed after the therapy with bone marrow cells. Transplanted bone marrow cells obtained from chagasic mice and from normal mice had similar effects in terms of mediating chagasic heart repair. These results show that bone marrow cell transplantation is effective for treatment of chronic chagasic myocarditis and indicate that autologous bone marrow transplant may be used as an efficient therapy for patients with chronic chagasic cardiomyopathy.
Collapse
Affiliation(s)
- Milena B P Soares
- Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, BA, Brazil
| | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
49
|
Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect Immun 2004; 72:46-53. [PMID: 14688079 PMCID: PMC343959 DOI: 10.1128/iai.72.1.46-53.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 07/26/2003] [Accepted: 09/26/2003] [Indexed: 11/20/2022] Open
Abstract
The mechanisms involved in the pathology of chronic chagasic cardiomyopathy are still debated, and the controversy has interfered with the development of new treatments and vaccines. Because of the potential of DNA vaccines for immunotherapy of chronic and infectious diseases, we tested if DNA vaccines could control an ongoing Trypanosoma cruzi infection. BALB/c mice were infected with a lethal dose (5 x 10(4) parasites) as a model of acute infection, and then they were treated with two injections of 100 microg of plasmid DNA 1 week apart, beginning on day 5 postinfection. Control mice had high levels of parasitemia and mortality and severe cardiac inflammation, while mice treated with plasmid DNA encoding trypomastigote surface antigen 1 or Tc24 had reduced parasitemia and mild cardiac inflammation and >70% survived the infection. The efficacy of the immunotherapy also was significant when it was delayed until days 10 and 15 after infection. Parasitological analysis of cardiac tissue of surviving mice indicated that most mice still contained detectable parasite kinetoplast DNA but fewer mice contained live parasites, suggesting that there was efficient but not complete parasite elimination. DNA vaccine immunotherapy was also evaluated in CD1 mice infected with a low dose (5 x 10(2) parasites) as a model of chronic infection. Immunotherapy was initiated on day 70 postinfection and resulted in improved survival and reduced cardiac tissue inflammation. These results suggest that DNA vaccines have strong potential for the immunotherapy of T. cruzi infection and may provide new alternatives for the control of Chagas' disease.
Collapse
MESH Headings
- Acute Disease
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Chagas Cardiomyopathy/mortality
- Chagas Cardiomyopathy/parasitology
- Chagas Cardiomyopathy/therapy
- Chagas Disease/mortality
- Chagas Disease/parasitology
- Chagas Disease/therapy
- Chronic Disease
- Humans
- Immunotherapy/methods
- Mice
- Mice, Inbred BALB C
- Myocardium/pathology
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Treatment Outcome
- Trypanosoma cruzi/genetics
- Trypanosoma cruzi/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Variant Surface Glycoproteins, Trypanosoma/administration & dosage
- Variant Surface Glycoproteins, Trypanosoma/genetics
- Variant Surface Glycoproteins, Trypanosoma/immunology
Collapse
Affiliation(s)
- Eric Dumonteil
- Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Universidad Autónoma de Yucatán, Mérida, Yucatán, Mexico.
| | | | | | | | | |
Collapse
|
50
|
Leon JS, Wang K, Engman DM. Myosin Autoimmunity Is Not Essential for Cardiac Inflammation in Acute Chagas’ Disease. THE JOURNAL OF IMMUNOLOGY 2003; 171:4271-7. [PMID: 14530351 DOI: 10.4049/jimmunol.171.8.4271] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with the protozoan parasite Trypanosoma cruzi leads to acute myocarditis that is accompanied by autoimmunity to cardiac myosin in susceptible strains of mice. It has been difficult to determine the contribution of autoimmunity to tissue inflammation, because other inflammatory mechanisms, such as parasite-mediated myocytolysis and parasite-specific immunity, are coincident during active infection. To begin to investigate the contribution of myosin autoimmunity to myocarditis, we selectively inhibited myosin autoimmunity by restoring myosin tolerance via injection of myosin-coupled splenocytes. This tolerization regimen suppressed the strong myosin-specific delayed-type hypersensitivity (DTH) that normally develops in infected mice, although it did not affect myosin-specific Ab production. Suppression of myosin autoimmunity had no effect on myocarditis or cardiac parasitosis. In contrast, myosin tolerization completely abrogated myocarditis in mice immunized with purified myosin, which normally causes severe autoimmune myocarditis. In this case, myosin-specific DTH and Ab production were significantly reduced. We also examined the contribution of T. cruzi-specific immunity to inflammation by injection of T. cruzi-coupled splenocytes before infection. This treatment reduced T. cruzi DTH, although there was no effect on parasite-specific Ab production. Interestingly, cardiac inflammation was decreased, cardiac parasitosis was significantly increased, and mortality occurred earlier in the parasite-tolerized animals. These results indicate that myosin-specific autoimmunity, while a potentially important inflammatory mechanism in acute and chronic T. cruzi infection, is not essential for inflammation in acute disease. They also confirm previous studies showing that parasite-specific cell-mediated immunity is important for myocarditis and survival of T. cruzi infection.
Collapse
Affiliation(s)
- Juan S Leon
- Department of Microbiology, The Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|