1
|
Diez A, Arrieta-Aguirre I, Carrano G, Fernandez-de-Larrinoa I, Moragues MD. A novel Candida albicans Als3, Hwp1 and Met6 derived complex peptide protects mice against hematogenously induced candidiasis. Vaccine 2024; 42:125990. [PMID: 38789371 DOI: 10.1016/j.vaccine.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/22/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Candida albicans can cause superficial or systemic infections in humans, particularly in immunocompromised individuals. Vaccination strategies targeting specific antigens of C. albicans have shown promise in providing protection against invasive candidiasis. This study aimed to evaluate the immuno-protective capacity of a KLH conjugated complex peptide, 3P-KLH, containing epitopes from C. albicans antigens Als3, Hwp1, and Met6 in a murine model of hematogenously induced candidiasis. Mice immunized with 3P-KLH raised a specific antibody response, and protection against C. albicans infection was assessed. Immunized mice exhibited significantly lower fungal load in their kidneys compared to the control group. Moreover, 37.5 % of immunized mice survived 21 days after the infection, while all control animals died within the first nine days. These findings suggest that the 3P-KLH complex peptide, targeting C. albicans key antigens, elicits a protective immune response and reduces the severity of systemic Candida infection. In addition, the high binding affinity of the selected epitopes with MHC II alleles further supports the potential immunogenicity of this peptide in humans. This research provides insights into the development of novel immunotherapeutic approaches against invasive candidiasis.
Collapse
Affiliation(s)
- Ander Diez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain; Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ines Arrieta-Aguirre
- Department of Nursing I, University of the Basque Country UPV/EHU, Leioa, Spain.
| | - Giulia Carrano
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | |
Collapse
|
2
|
Wang Z, Shao J. Fungal vaccines and adjuvants: a tool to reveal the interaction between host and fungi. Arch Microbiol 2024; 206:293. [PMID: 38850421 DOI: 10.1007/s00203-024-04010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/10/2024]
Abstract
Fungal infections are incurring high risks in a range from superficial mucosal discomforts (such as oropharyngeal candidiasis and vulvovaginal candidiasis) to disseminated life-threatening diseases (such as invasive pulmonary aspergillosis and cryptococcal meningitis) and becoming a global health problem in especially immunodeficient population. The major obstacle to conquer fungal harassment lies in the presence of increasing resistance to conventional antifungal agents used in newly clinically isolated strains. Although recombinant cytokines and mono-/poly-clonal antibodies are added into antifungal armamentarium, more effective antimycotic drugs are exceedingly demanded. It is comforting that the development of fungal vaccines and adjuvants opens up a window to brighten the prospective way in the diagnosis, prevention and treatment of fungal assaults. In this review, we focus on the progression of several major fungal vaccines devised for the control of Candida spp., Aspergillus spp., Cryptococcus spp., Coccidioides spp., Paracoccidioides spp., Blastomyces spp., Histoplasma spp., Pneumocystis spp. as well as the adjuvants adopted. We then expound the interaction between fungal vaccines/adjuvants and host innate (macrophages, dendritic cells, neutrophils), humoral (IgG, IgM and IgA) and cellular (Th1, Th2, Th17 and Tc17) immune responses which generally experience immune recognition of pattern recognition receptors, activation of immune cells, and clearance of invaded fungi. Furthermore, we anticipate an in-depth understanding of immunomodulatory properties of univalent and multivalent vaccines against diverse opportunistic fungi, providing helpful information in the design of novel fungal vaccines and adjuvants.
Collapse
Affiliation(s)
- Zixu Wang
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Anti-Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Zhijing Building, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
3
|
Vuscan P, Kischkel B, Joosten LAB, Netea MG. Trained immunity: General and emerging concepts. Immunol Rev 2024; 323:164-185. [PMID: 38551324 DOI: 10.1111/imr.13326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 05/18/2024]
Abstract
Over the past decade, compelling evidence has unveiled previously overlooked adaptive characteristics of innate immune cells. Beyond their traditional role in providing short, non-specific protection against pathogens, innate immune cells can acquire antigen-agnostic memory, exhibiting increased responsiveness to secondary stimulation. This long-term de-facto innate immune memory, also termed trained immunity, is mediated through extensive metabolic rewiring and epigenetic modifications. While the upregulation of trained immunity proves advantageous in countering immune paralysis, its overactivation contributes to the pathogenesis of autoinflammatory and autoimmune disorders. In this review, we present the latest advancements in the field of innate immune memory followed by a description of the fundamental mechanisms underpinning trained immunity generation and different cell types that mediate it. Furthermore, we explore its implications for various diseases and examine current limitations and its potential therapeutic targeting in immune-related disorders.
Collapse
Affiliation(s)
- Patricia Vuscan
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Brenda Kischkel
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Bhargavi G, Subbian S. The causes and consequences of trained immunity in myeloid cells. Front Immunol 2024; 15:1365127. [PMID: 38665915 PMCID: PMC11043514 DOI: 10.3389/fimmu.2024.1365127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Conventionally, immunity in humans has been classified as innate and adaptive, with the concept that only the latter type has an immunological memory/recall response against specific antigens or pathogens. Recently, a new concept of trained immunity (a.k.a. innate memory response) has emerged. According to this concept, innate immune cells can exhibit enhanced responsiveness to subsequent challenges, after initial stimulation with antigen/pathogen. Thus, trained immunity enables the innate immune cells to respond robustly and non-specifically through exposure or re-exposure to antigens/infections or vaccines, providing enhanced resistance to unrelated pathogens or reduced infection severity. For example, individuals vaccinated with BCG to protect against tuberculosis were also protected from malaria and SARS-CoV-2 infections. Epigenetic modifications such as histone acetylation and metabolic reprogramming (e.g. shift towards glycolysis) and their inter-linked regulations are the key factors underpinning the immune activation of trained cells. The integrated metabolic and epigenetic rewiring generates sufficient metabolic intermediates, which is crucial to meet the energy demand required to produce proinflammatory and antimicrobial responses by the trained cells. These factors also determine the efficacy and durability of trained immunity. Importantly, the signaling pathways and regulatory molecules of trained immunity can be harnessed as potential targets for developing novel intervention strategies, such as better vaccines and immunotherapies against infectious (e.g., sepsis) and non-infectious (e.g., cancer) diseases. However, aberrant inflammation caused by inappropriate onset of trained immunity can lead to severe autoimmune pathological consequences, (e.g., systemic sclerosis and granulomatosis). In this review, we provide an overview of conventional innate and adaptive immunity and summarize various mechanistic factors associated with the onset and regulation of trained immunity, focusing on immunologic, metabolic, and epigenetic changes in myeloid cells. This review underscores the transformative potential of trained immunity in immunology, paving the way for developing novel therapeutic strategies for various infectious and non-infectious diseases that leverage innate immune memory.
Collapse
Affiliation(s)
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
5
|
Bindu S, Dandapat S, Manikandan R, Dinesh M, Subbaiyan A, Mani P, Dhawan M, Tiwari R, Bilal M, Emran TB, Mitra S, Rabaan AA, Mutair AA, Alawi ZA, Alhumaid S, Dhama K. Prophylactic and therapeutic insights into trained immunity: A renewed concept of innate immune memory. Hum Vaccin Immunother 2022; 18:2040238. [PMID: 35240935 PMCID: PMC9009931 DOI: 10.1080/21645515.2022.2040238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/18/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022] Open
Abstract
Trained immunity is a renewed concept of innate immune memory that facilitates the innate immune system to have the capacity to remember and train cells via metabolic and transcriptional events to enable them to provide nonspecific defense against the subsequent encounters with a range of pathogens and acquire a quicker and more robust immune response, but different from the adaptive immune memory. Reversing the epigenetic changes or targeting the immunological pathways may be considered potential therapeutic approaches to counteract the hyper-responsive or hypo-responsive state of trained immunity. The efficient regulation of immune homeostasis and promotion or inhibition of immune responses is required for a balanced response. Trained immunity-based vaccines can serve as potent immune stimuli and help in the clearance of pathogens in the body through multiple or heterologous effects and confer protection against nonspecific and specific pathogens. This review highlights various features of trained immunity and its applications in developing novel therapeutics and vaccines, along with certain detrimental effects, challenges as well as future perspectives.
Collapse
Affiliation(s)
- Suresh Bindu
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Satyabrata Dandapat
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Rajendran Manikandan
- Immunology Section, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Anbazhagan Subbaiyan
- Division of Bacteriology and Mycology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Pashupathi Mani
- Division of Animal Biochemistry, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, India
- Indian Council of Agricultural Research, The Trafford Group of Colleges, Manchester, UK
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangldesh
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, Australia
| | - Zainab Al Alawi
- Division of Allergy and Immunology, College of Medicine, King Faisal University, Saudi Arabia
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa, Saudi Arabia
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
7
|
Abstract
The dogma that immunological memory is an exclusive trait of adaptive immunity has been recently challenged by studies showing that priming of innate cells can also result in modified long-term responsiveness to secondary stimuli, once the cells have returned to a non-activated state. This phenomenon is known as 'innate immune memory', 'trained immunity' or 'innate training'. While the main known triggers of trained immunity are microbial-derived molecules such as β-glucan, endogenous particles such as oxidized low-density lipoprotein and monosodium urate crystals can also induce trained phenotypes in innate cells. Whether exogenous particles can induce trained immunity has been overlooked. Our exposure to particulates has dramatically increased in recent decades as a result of the broad medical use of particle-based drug carriers, theragnostics, adjuvants, prosthetics and an increase in environmental pollution. We recently showed that pristine graphene can induce trained immunity in macrophages, enhancing their inflammatory response to TLR agonists, proving that exogenous nanomaterials can affect the long-term response of innate cells. The consequences of trained immunity can be beneficial, for instance, enhancing protection against unrelated pathogens; however, they can also be deleterious if they enhance inflammatory disorders. Therefore, studying the ability of particulates and biomaterials to induce innate trained phenotypes in cells is warranted. Here we analyse the mechanisms whereby particles can induce trained immunity and discuss how physicochemical characteristics of particulates could influence the induction of innate memory. We review the implications of trained immunity in the context of particulate adjuvants, nanocarriers and nanovaccines and their potential applications in medicine. Finally, we reflect on the unanswered questions and the future of the field.
Collapse
|
8
|
The Role of B-Cells and Antibodies against Candida Vaccine Antigens in Invasive Candidiasis. Vaccines (Basel) 2021; 9:vaccines9101159. [PMID: 34696267 PMCID: PMC8540628 DOI: 10.3390/vaccines9101159] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 01/08/2023] Open
Abstract
Systemic candidiasis is an invasive fungal infection caused by members of the genus Candida. The recent emergence of antifungal drug resistance and increased incidences of infections caused by non-albicans Candida species merit the need for developing immune therapies against Candida infections. Although the role of cellular immune responses in anti-Candida immunity is well established, less is known about the role of humoral immunity against systemic candidiasis. This review summarizes currently available information on humoral immune responses induced by several promising Candida vaccine candidates, which have been identified in the past few decades. The protective antibody and B-cell responses generated by polysaccharide antigens such as mannan, β-glucan, and laminarin, as well as protein antigens like agglutinin-like sequence gene (Als3), secreted aspartyl proteinase (Sap2), heat shock protein (Hsp90), hyphally-regulated protein (Hyr1), hyphal wall protein (Hwp1), enolase (Eno), phospholipase (PLB), pyruvate kinase (Pk), fructose bisphosphate aldolase (Fba1), superoxide dismutase gene (Sod5) and malate dehydrogenase (Mdh1), are outlined. As per studies reviewed, antibodies induced in response to leading Candida vaccine candidates contribute to protection against systemic candidiasis by utilizing a variety of mechanisms such as opsonization, complement fixation, neutralization, biofilm inhibition, direct candidacidal activity, etc. The contributions of B-cells in controlling fungal infections are also discussed. Promising results using anti-Candida monoclonal antibodies for passive antibody therapy reinforces the need for developing antibody-based therapeutics including anti-idiotypic antibodies, single-chain variable fragments, peptide mimotopes, and antibody-derived peptides. Future research involving combinatorial immunotherapies using humanized monoclonal antibodies along with antifungal drugs/cytokines may prove beneficial for treating invasive fungal infections.
Collapse
|
9
|
Wickerhamomyces Yeast Killer Toxins' Medical Applications. Toxins (Basel) 2021; 13:toxins13090655. [PMID: 34564659 PMCID: PMC8470119 DOI: 10.3390/toxins13090655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
Possible implications and applications of the yeast killer phenomenon in the fight against infectious diseases are reviewed, with particular reference to some wide-spectrum killer toxins (KTs) produced by Wickerhamomyces anomalus and other related species. A perspective on the applications of these KTs in the medical field is provided considering (1) a direct use of killer strains, in particular in the symbiotic control of arthropod-borne diseases; (2) a direct use of KTs as experimental therapeutic agents; (3) the production, through the idiotypic network, of immunological derivatives of KTs and their use as potential anti-infective therapeutics. Studies on immunological derivatives of KTs in the context of vaccine development are also described.
Collapse
|
10
|
Ciociola T, Giovati L, Conti S, Magliani W. Anti-Infective Antibody-Derived Peptides Active against Endogenous and Exogenous Fungi. Microorganisms 2021; 9:microorganisms9010143. [PMID: 33435157 PMCID: PMC7827253 DOI: 10.3390/microorganisms9010143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/18/2022] Open
Abstract
Mycoses still represent relevant opportunistic infections worldwide, although overshadowed in recent years by other severe and more widespread infections. Moreover, deep-seated mycoses are often accompanied by unacceptably high mortality rates. Etiologic agents include endogenous components of the mycobiota, Candida and Malassezia species above all, and exogenous species, both yeasts and filamentous fungi. Old and new fungal pathogens are increasingly characterized by resistance to the existing antifungal agents, making imperative the search for effective and safe new therapeutics. Among the candidate molecules proposed in recent decades, synthetic peptides derived from the complementarity determining and constant regions of diverse antibodies (Abs), as well as the translated products of Ab-encoding genes, have proved of considerable interest. Their anti-infective activities, regardless of the specificity and isotype of the originating Ab, will be briefly presented and discussed in the light of their different mechanisms of action. Intriguing suggestions on the possible function of Abs after their half-life will be presented, following the recent detection, in human serum, of an antimicrobial Ab-derived peptide. Overall, Abs could represent a source of biologically active, highly flexible peptides, devoid of detectable toxicity, which can be easily synthesized and manipulated to be used, alone or in association with already available drugs, for new anti-infective strategies.
Collapse
|
11
|
Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, Riksen NP, Schlitzer A, Schultze JL, Stabell Benn C, Sun JC, Xavier RJ, Latz E. Defining trained immunity and its role in health and disease. Nat Rev Immunol 2020; 20:375-388. [PMID: 32132681 PMCID: PMC7186935 DOI: 10.1038/s41577-020-0285-6] [Citation(s) in RCA: 1315] [Impact Index Per Article: 328.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Immune memory is a defining feature of the acquired immune system, but activation of the innate immune system can also result in enhanced responsiveness to subsequent triggers. This process has been termed ‘trained immunity’, a de facto innate immune memory. Research in the past decade has pointed to the broad benefits of trained immunity for host defence but has also suggested potentially detrimental outcomes in immune-mediated and chronic inflammatory diseases. Here we define ‘trained immunity’ as a biological process and discuss the innate stimuli and the epigenetic and metabolic reprogramming events that shape the induction of trained immunity. Here a group of leaders in the field define our current understanding of ‘trained immunity’, which refers to the memory-type responses that occur in the innate immune system. The authors discuss our current understanding of the key epigenetic and metabolic processes involved in trained immunity and consider its relevance in immune-mediated diseases and cancer.
Collapse
Affiliation(s)
- Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands. .,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands. .,Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany.
| | - Jorge Domínguez-Andrés
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Centre, Montreal, QC, Canada.,Department of Pediatrics, University of Montreal, Montreal, QC, Canada.,Genetics Section, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden, Germany.,Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,McGill International TB Centre, McGill University Health Centre, Montreal, QC, Canada
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Musa M Mhlanga
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Willem J M Mulder
- Translational and Molecular Imaging Institute, Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Andreas Schlitzer
- Myeloid Cell Biology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Christine Stabell Benn
- Bandim Health Project, OPEN, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY, USA
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany. .,Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA. .,German Center for Neurodegenerative Diseases, Bonn, Germany.
| |
Collapse
|
12
|
Pickering H, Teng A, Faal N, Joof H, Makalo P, Cassama E, Nabicassa M, Last AR, Burr SE, Rowland-Jones SL, Thomson NR, Roberts CH, Mabey DCW, Bailey RL, Hayward RD, de la Maza LM, Holland MJ. Genome-wide profiling of humoral immunity and pathogen genes under selection identifies immune evasion tactics of Chlamydia trachomatis during ocular infection. Sci Rep 2017; 7:9634. [PMID: 28851925 PMCID: PMC5575166 DOI: 10.1038/s41598-017-09193-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/24/2017] [Indexed: 11/09/2022] Open
Abstract
The frequency and duration of Chlamydia trachomatis (Ct) ocular infections decrease with age, suggesting development of partial immunity. However, there is a lack of clear correlates of immunity to Ct infection in humans. We screened sera from a cohort of Gambian children followed for six-months against a Ct-proteome microarray. At genome sequence level, we detected signatures of selection from a population of ocular Ct isolates from Guinea-Bissau. Together these approaches allowed us to highlight the focus of humoral responses and hypothesise new modes of pathogen immune evasion. Children who were susceptible to frequent and/or prolonged Ct infection had a less focussed antibody response, including preferential recognition of forty-two antigens. There was evidence of positive and purifying selection across the genome, but little balancing selection. In contrast, most antigens that were associated with susceptibility were under neutral selection. These data suggest an evasion strategy in which Ct presents a large panel of irrelevant antigens to the immune system to block or misdirect protective responses. Development of a focused immune response, possibly induced through vaccination, may be an effective strategy to promote protection to Ct infection.
Collapse
Affiliation(s)
- Harry Pickering
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| | - Andy Teng
- ImmPORT Therapeutics, Inc./Antigen Discovery Inc., 1 Technology Dr., Suite E309, Irvine, CA, 92618, United States
| | - Nkoyo Faal
- Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| | - Hassan Joof
- Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| | - Pateh Makalo
- Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| | - Eunice Cassama
- Programa Nacional de Saúde de Visão, Ministério de Saúde Publica, Bissau, Guinea-Bissau
| | - Meno Nabicassa
- Programa Nacional de Saúde de Visão, Ministério de Saúde Publica, Bissau, Guinea-Bissau
| | - Anna R Last
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Sarah E Burr
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.,Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| | - Sarah L Rowland-Jones
- Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| | - Nicholas R Thomson
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.,Pathogen Genomics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Chrissy H Roberts
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - David C W Mabey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Robin L Bailey
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, Birkbeck & University College London, Malet Street, London, WC1E 7HX, United Kingdom
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, Medical Sciences I, Room D440, University of California, Irvine, CA, 92697-4800, United States
| | - Martin J Holland
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.,Disease Control and Elimination Theme, Medical Research Council The Gambia Unit, Fajara, Banjul, The Gambia
| |
Collapse
|
13
|
Bergeron AC, Barker SE, Brothers KM, Prasad BC, Wheeler RT. Polyclonal anti-Candida antibody improves phagocytosis and overall outcome in zebrafish model of disseminated candidiasis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 68:69-78. [PMID: 27884707 PMCID: PMC6700731 DOI: 10.1016/j.dci.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 05/22/2023]
Abstract
Fungal infections are a major cause of animal and plant morbidity and mortality worldwide. Effective biological therapeutics could complement current antifungal drugs, but understanding of their in vivo mechanisms has been hampered by technical barriers to intravital imaging of host-pathogen interactions. Here we characterize the fungal infection of zebrafish as a model to understand the mechanism-of-action for biological antifungal therapeutics through intravital imaging of these transparent animals. We find that non-specific human IgG enhances phagocytosis by zebrafish phagocytes in vivo. Polyclonal anti-Candida antibodies enhance containment of fungi in vivo and promote survival. Analysis suggests that early phagocytic containment is a strong prognostic indicator for overall survival. Although polyclonal anti-Candida antibodies protect against disease, this is not necessarily the case for individual monoclonal anti-Candida antibodies. Thus, the zebrafish appears to provide a useful model host for testing if a biological therapeutic promotes phagocytosis in vivo and enhances protection against candidemia.
Collapse
Affiliation(s)
- Audrey C Bergeron
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Sarah E Barker
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Kimberly M Brothers
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States
| | - Brinda C Prasad
- Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Rd, Tarrytown, NY 10591, United States
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, ME 04469, United States; Graduate School of Biomedical Sciences, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
14
|
Magliani W, Giovati L, Ciociola T, Sperindè M, Santinoli C, Conti G, Conti S, Polonelli L. Antibodies as a source of anti-infective peptides: an update. Future Microbiol 2015; 10:1163-75. [PMID: 26119210 DOI: 10.2217/fmb.15.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This review focuses on antibodies (Abs) and their function in immune protection, with particular emphasis on microbicidal Abs. Some aspects of Abs and Ab-drug conjugates as targeting therapeutic agents are also discussed. The main aim, however, is devoted to Ab-derived peptides modulating functions of the immune system and to the latest experimental evidence of Abs as a source of anti-infective and antitumor peptides derived from their complementarity determining regions and constant regions.
Collapse
Affiliation(s)
- Walter Magliani
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Laura Giovati
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Tecla Ciociola
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Martina Sperindè
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Claudia Santinoli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Giorgio Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Stefania Conti
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| | - Luciano Polonelli
- Department of Biomedical, Biotechnological & Translational Sciences, Microbiology & Virology Unit, University of Parma, 43125 Parma, Italy
| |
Collapse
|
15
|
Liao G, Zhou Z, Burgula S, Liao J, Yuan C, Wu Q, Guo Z. Synthesis and immunological studies of linear oligosaccharides of β-glucan as antigens for antifungal vaccine development. Bioconjug Chem 2015; 26:466-76. [PMID: 25671314 DOI: 10.1021/bc500575a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antifungal vaccines have recently engendered considerable excitement for counteracting the resurgence of fungal infections. In this context, β-glucan, which is abundantly expressed on all fungal cell surfaces, functionally necessary for fungi, and immunologically active, is an attractive target antigen. Aiming at the development of effective antifungal vaccines based on β-glucan, a series of its oligosaccharide derivatives was designed, synthesized, and coupled with a carrier protein, keyhole limpet hemocyanin (KLH), to form new semisynthetic glycoconjugate vaccines. In this article, a convergent and effective synthetic strategy using preactivation-based iterative glycosylation was developed for the designed oligosaccharides. The strategy can be widely useful for rapid construction of large oligo-β-glucans with shorter oligosaccharides as building blocks. The KLH conjugates of the synthesized β-glucan hexa-, octa-, deca-, and dodecasaccharides were demonstrated to elicit high titers of antigen-specific total and IgG antibodies in mice, suggesting the induction of functional T cell-mediated immunity. Moreover, it was revealed that octa-, deca-, and dodeca-β-glucans were much more immunogenic than the hexamer and that the octamer was the best among these. The results suggested that the optimal oligosaccharide sequence of β-glucan required for exceptional immunogenicity was a hepta- or octamer and that longer glucans are not necessarily better antigens, a finding that may be of general importance. Most importantly, the octa-β-glucan-KLH conjugate provoked protective immunity against Candida albicans infection in a systemic challenge model in mice, suggesting the great potential of this glycoconjugate as a clinically useful immunoprophylactic antifungal vaccine.
Collapse
Affiliation(s)
- Guochao Liao
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Zhifang Zhou
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Srinivas Burgula
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Jun Liao
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States.,‡School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Cheng Yuan
- §Department of Pharmacy, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Qiuye Wu
- ‡School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhongwu Guo
- †Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
16
|
Elluru SR, Kaveri SV, Bayry J. The protective role of immunoglobulins in fungal infections and inflammation. Semin Immunopathol 2014; 37:187-97. [PMID: 25404121 DOI: 10.1007/s00281-014-0466-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
Increased incidence of fungal infections in the immunocompromised individuals and fungi-mediated allergy and inflammatory conditions in immunocompetent individuals is a cause of concern. Consequently, there is a need for efficient therapeutic alternatives to treat fungal infections and inflammation. Several studies have demonstrated that antibodies or immunoglobulins have a role in restricting the fungal burden and their clearance. However, based on the data from monoclonal antibodies, it is now evident that the efficacy of antibodies in fungal infections is dependent on epitope specificity, abundance of protective antibodies, and their isotype. Antibodies confer protection against fungal infections by multiple mechanisms that include direct neutralization of fungi and their antigens, inhibition of growth of fungi, modification of gene expression, signaling and lipid metabolism, causing iron starvation, inhibition of polysaccharide release, and biofilm formation. Antibodies promote opsonization of fungi and their phagocytosis, complement activation, and antibody-dependent cell toxicity. Passive administration of specific protective monoclonal antibodies could also prove to be beneficial in drug resistance cases, to reduce the dosage and associated toxic symptoms of anti-fungal drugs. The longer half-life of the antibodies and flexibilities to modify their structure/forms are additional advantages. The clinical data obtained with two monoclonal antibodies should incite interests in translating pre-clinical success into the clinics. The anti-inflammatory and immunoregulatory role of antibodies in fungal inflammation could be exploited by intravenous immunoglobulin or IVIg.
Collapse
Affiliation(s)
- Sri Ramulu Elluru
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
17
|
Romani L, Puccetti P. Controlling pathogenic inflammation to fungi. Expert Rev Anti Infect Ther 2014; 5:1007-17. [DOI: 10.1586/14787210.5.6.1007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Cassone A, Torosantucci A. Opportunistic fungi and fungal infections: the challenge of a single, general antifungal vaccine. Expert Rev Vaccines 2014; 5:859-67. [PMID: 17184223 DOI: 10.1586/14760584.5.6.859] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A vaccine made up by an algal beta-glucan (laminarin), conjugated with a protein component, protects against infections by different fungi and induces antibodies capable of inhibiting fungal growth. Although taking a premium on a common molecular theme, this remains a sort of 'cross-kingdom' vaccine because the immunizing antigen and the vaccination target belong to organisms from two different kingdoms and this is certainly the first case in the field of human vaccines. Thus, it is possible to convey in a single immunological tool the potential to protect against multiple infections, in theory all those caused by beta-glucan-expressing fungi. The generation of antibodies with the potential to directly inhibit the growth of, or kill the fungal cells also opens an exciting perspective for both active and passive vaccination in immunocompromised subjects.
Collapse
Affiliation(s)
- Antonio Cassone
- Istituto Superiore di Sanità, Department of Infectious, Parasitic and Immuno-mediated Diseases, Viale Regina Elena, Rome, Italy.
| | | |
Collapse
|
19
|
Development of vaccines for Candida albicans: fighting a skilled transformer. Nat Rev Microbiol 2013; 11:884-91. [DOI: 10.1038/nrmicro3156] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Paulovičová E, Paulovičová L, Pilišiová R, Bystrický S, Yashunsky DV, Karelin AA, Tsvetkov YE, Nifantiev NE. Synthetically prepared glycooligosaccharides mimicking Candida albicans cell wall glycan antigens--novel tools to study host-pathogen interactions. FEMS Yeast Res 2013; 13:659-73. [PMID: 23859640 DOI: 10.1111/1567-1364.12065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/09/2013] [Accepted: 07/09/2013] [Indexed: 11/29/2022] Open
Abstract
The immunobiological efficacy of synthetically prepared mannooligosaccharides and a glucooligosaccharide mimicking the structure of Candida albicans cell wall glycans was assessed in vivo and in vitro to exploit immune responses. The exposure of mice splenocytes to BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed intense influence on T-cell subset polarization. The conjugates biased the immune responses towards Th1 and Th17 with respect to the prevalence of interferon-gamma (IFN-γ) and interleukin (IL)-17 (IL-17) over IL-4 and IL-10 levels. The inflammatory activity of the conjugates has been evaluated based on the induction of pro-inflammatory cytokines. Postvaccination, antimannooligosaccharide and antiglucooligosaccharide antisera were subjected to an evaluation of the structure-immunomodulation activity relationship. Clinical isolates of C. albicans CCY 29-3-32 and C. albicans CCY 29-3-164 were applied to study interactions between Candida cells and anti-oligosaccharide antibodies. In situ recognition of parietal oligomannosyl and oligoglucosyl sequences in C. albicans cell wall by the antisera raised against BSA-based conjugates of synthetic oligomannosides and oligoglucoside revealed the effective recognition of specific distribution of natural oligosaccharide sequences in the cell wall of C. albicans serotype A. With respect to these results, it can be concluded that new, synthetically prepared oligosaccharides mimicking Candida cell wall structures represent prospective immunobiologically effective components for further immunopharmacologically relevant Candida vaccine design.
Collapse
Affiliation(s)
- Ema Paulovičová
- Department Immunochemistry of Glycoconjugates, Center of Excellence GLYCOMED, Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Adjuvanticity of a recombinant calreticulin fragment in assisting anti-β-glucan IgG responses in T cell-deficient mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:582-9. [PMID: 23408527 DOI: 10.1128/cvi.00689-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysaccharide-encapsulated fungi are the chief source of diseases in immunocompromised hosts such as those infected with human immunodeficiency virus or neutropenia patients. Currently available polysaccharide-protein conjugate vaccines are mainly T cell dependent and are usually ineffective in weakened immune systems. In this study, laminarin, a well-characterized β-1,3-glucan, was conjugated with a prokaryotically expressed recombinant fragment (amino acids [aa] 39 to 272) of calreticulin (rCRT/39-272), which exhibits extraordinarily potent immunogenicity and adjuvanticity in experimental animals. The resultant conjugate reserves the immunostimulatory effect of rCRT/39-272 on naïve murine B cells and is capable of eliciting anti-β-glucan IgG (mostly IgG1) responses in not only BALB/c mice but also athymic nude mice. Laminarin-CRT-induced mouse antibodies (Abs) are able to bind with Candida albicans and inhibit its growth in vitro. In addition, vaccination with laminarin-CRT partially protects mice from lethal C. albicans challenge. These results imply that rCRT/39-272 could be used as an ideal carrier or adjuvant for carbohydrate vaccines aimed at inducing or boosting IgG responses to fungal infections in immunodeficient hosts.
Collapse
|
22
|
Lipinski T, Wu X, Sadowska J, Kreiter E, Yasui Y, Cheriaparambil S, Rennie R, Bundle DR. A β-mannan trisaccharide conjugate vaccine aids clearance of Candida albicans in immunocompromised rabbits. Vaccine 2012; 30:6263-9. [DOI: 10.1016/j.vaccine.2012.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 08/01/2012] [Accepted: 08/05/2012] [Indexed: 02/07/2023]
|
23
|
Magliani W, Conti S, Giovati L, Zanello PP, Sperindè M, Ciociola T, Polonelli L. Antibody Peptide based antifungal immunotherapy. Front Microbiol 2012; 3:190. [PMID: 22675322 PMCID: PMC3365853 DOI: 10.3389/fmicb.2012.00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/10/2012] [Indexed: 12/13/2022] Open
Abstract
Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast killer phenomenon to the production of Ab-derived peptides characterized by in vitro and in vivo fungicidal activity will be focused. In particular, Abs that mimic the antimicrobial activity of a killer toxin (“antibiobodies”) and antifungal peptides derived from antibiobodies (killer peptide) and other unrelated Abs [complementarity determining regions (CDR)-based and constant region (Fc)-based synthetic peptides] are described. Mycological implications in terms of reevaluation of the yeast killer phenomenon, roles of antibiobodies in antifungal immunity, of β-glucans as antifungal targets and vaccines, and of Abs as sources of an unlimited number of sequences potentially active as new immunotherapeutic tools against fungal agents and related mycoses, are discussed.
Collapse
Affiliation(s)
- Walter Magliani
- Section of Microbiology, Department of Pathology and Laboratory Medicine, University of Parma Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Capodicasa C, Chiani P, Bromuro C, De Bernardis F, Catellani M, Palma AS, Liu Y, Feizi T, Cassone A, Benvenuto E, Torosantucci A. Plant production of anti-β-glucan antibodies for immunotherapy of fungal infections in humans. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:776-87. [PMID: 21265996 DOI: 10.1111/j.1467-7652.2010.00586.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There is an increasing interest in the development of therapeutic antibodies (Ab) to improve the control of fungal pathogens, but none of these reagents is available for clinical use. We previously described a murine monoclonal antibody (mAb 2G8) targeting β-glucan, a cell wall polysaccharide common to most pathogenic fungi, which conferred significant protection against Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans in animal models. Transfer of this wide-spectrum, antifungal mAb into the clinical setting would allow the control of most frequent fungal infections in many different categories of patients. To this aim, two chimeric mouse-human Ab derivatives from mAb 2G8, in the format of complete IgG or scFv-Fc, were generated, transiently expressed in Nicotiana benthamiana plants and purified from leaves with high yields (approximately 50 mg Ab/kg of plant tissues). Both recombinant Abs fully retained the β-glucan-binding specificity and the antifungal activities of the cognate murine mAb against C. albicans. In fact, they recognized preferentially β1,3-linked glucan molecules present at the fungal cell surface and directly inhibited the growth of C. albicans and its adhesion to human epithelial cells in vitro. In addition, both the IgG and the scFv-Fc promoted C. albicans killing by isolated, human polymorphonuclear neutrophils in ex vivo assays and conferred significant antifungal protection in animal models of systemic or vulvovaginal C. albicans infection. These recombinant Abs represent valuable molecules for developing novel, plant-derived immunotherapeutics against candidiasis and, possibly, other fungal diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Fungal/biosynthesis
- Antibodies, Fungal/genetics
- Antibodies, Fungal/immunology
- Antibodies, Fungal/therapeutic use
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigens, Fungal/immunology
- Aspergillus fumigatus/immunology
- Candida albicans/growth & development
- Candida albicans/immunology
- Candida albicans/physiology
- Candidiasis/microbiology
- Candidiasis/therapy
- Cell Adhesion/immunology
- Cell Line
- Cell Wall/immunology
- Cryptococcus neoformans/immunology
- Female
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin G/genetics
- Immunoglobulin G/metabolism
- Immunotherapy
- Mice
- Models, Animal
- Mycoses/microbiology
- Mycoses/therapy
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plantibodies/genetics
- Plantibodies/immunology
- Plantibodies/metabolism
- Plantibodies/therapeutic use
- Rats
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Single-Chain Antibodies/genetics
- Single-Chain Antibodies/metabolism
- Nicotiana/genetics
- Nicotiana/immunology
- beta-Glucans/immunology
- beta-Glucans/metabolism
Collapse
Affiliation(s)
- Cristina Capodicasa
- ENEA, UT BIORAD, Laboratory of Biotechnology, Research Center Casaccia, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Adamo R, Tontini M, Brogioni G, Romano MR, Costantini G, Danieli E, Proietti D, Berti F, Costantino P. Synthesis of Laminarin Fragments and Evaluation of a β-(1,3) Glucan Hexasaccaride-CRM197Conjugate as Vaccine Candidate againstCandida albicans. J Carbohydr Chem 2011. [DOI: 10.1080/07328303.2011.604453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
|
27
|
Joller N, Weber SS, Oxenius A. Antibody - Fc receptor interactions in protection against intracellular pathogens. Eur J Immunol 2011; 41:889-97. [DOI: 10.1002/eji.201041340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/21/2011] [Accepted: 03/02/2011] [Indexed: 01/12/2023]
|
28
|
Cabezas J, Albaina O, Montañez D, Sevilla MJ, Moragues MD, Pontón J. Potential of anti-Candida antibodies in immunoprophylaxis. Immunotherapy 2010; 2:171-83. [PMID: 20635926 DOI: 10.2217/imt.09.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need for new options for the treatment of invasive candidiasis has fuelled the use of antibodies in combination with conventional antifungal therapy. After a long period of time in which antibodies were considered irrelevant in the resistance against invasive candidiasis, it was demonstrated that a number of antibodies or their engineered derivatives directed against Candida albicans cell-wall polysaccharides and glycopeptides, as well as against some protein epitopes, confer protection against invasive candidiasis. This has confirmed this approach as a new strategy for the prophylaxis of invasive candidiasis. Of particular interest is Mycograb, a human recombinant monoclonal antibody that inhibits heat shock protein 90, and has been administrated in combination with lipid-associated amphotericin B to patients with invasive candidiasis, and the fungicidal anti-beta-glucan antibodies induced by the glycoconjugate vaccine composed of a beta-glucan polysaccharide conjugated with the diphtheria toxoid CRM 197. However, despite the promising data obtained in vitro and in animal models, at present there is very little clinical experience on the use of antibodies in Candida immunoprophylaxis.
Collapse
Affiliation(s)
- Jonathan Cabezas
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
29
|
From Pichia anomala killer toxin through killer antibodies to killer peptides for a comprehensive anti-infective strategy. Antonie van Leeuwenhoek 2010; 99:35-41. [PMID: 20714805 DOI: 10.1007/s10482-010-9496-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/04/2010] [Indexed: 10/19/2022]
Abstract
"Antibiobodies", antibodies (Abs) with antibiotic activity, internal image of a Pichia anomala killer toxin (PaKT) characterized by microbicidal activity against microorganisms expressing β-glucans cell-wall receptors (PaKTRs), were produced by idiotypic vaccination with a PaKT-neutralizing monoclonal Ab (PaKT-like Abs) or induced by a protein-conjugated β-glucan. Human natural PaKT-like Abs (PaKTAbs) were found in the vaginal fluid of women infected with KT-sensitive microorganisms. Monoclonal and recombinant PaKT-like Abs, and PaKTAbs proved to be protective against experimental candidiasis, cryptococcosis and aspergillosis. A killer decapeptide (KP), synthesized from the sequence of a recombinant PaKT-like Ab or produced in transgenic plants, showed a microbicidal activity in vitro, neutralized by β-glucans, a therapeutic effect in vivo, against experimental mucosal and systemic mycoses, and a prophylactic role in planta, against phytopathogenic microorganisms, respectively. KP showed fungicidal properties against all the defective mutants of a Saccharomyces cerevisiae library, inclusive of strains recognized to be resistant to conventional antifungal drugs. KP inhibited in vitro, ex vivo and/or in vivo HIV-1 and Influenza A virus replication, owing to down-regulation of CCR5 co-receptors, physical block of the gp120-receptor interaction and reduction in the synthesis of glycoproteins, HA and M1 in particular. KP modulated the expression of costimulatory and MHC molecules on murine dendritic cells, improving their capacity to induce lymphocyte proliferation. KP, proven to be devoid of cytotoxicity on human cells, showed self-assembly-releasing hydrogel-like properties, catalyzed by β 1,3 glucan. PaKT's biotechnological derivatives may represent the prototypes of novel antifungal vaccines and anti-infective drugs characterized by different mechanisms of action.
Collapse
|
30
|
Bromuro C, Romano M, Chiani P, Berti F, Tontini M, Proietti D, Mori E, Torosantucci A, Costantino P, Rappuoli R, Cassone A. Beta-glucan-CRM197 conjugates as candidates antifungal vaccines. Vaccine 2010; 28:2615-23. [DOI: 10.1016/j.vaccine.2010.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/22/2009] [Accepted: 01/10/2010] [Indexed: 10/19/2022]
|
31
|
Influence of mannan and glucan on complement activation and C3 binding by Candida albicans. Infect Immun 2009; 78:1250-9. [PMID: 20028806 DOI: 10.1128/iai.00744-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complement system is important for host resistance to hematogenously disseminated candidiasis. However, modulation of complement activation by cell wall components of Candida albicans has not been characterized. Although intact yeast display mannan on the surface, glucan, typically located in the interior, becomes exposed during C. albicans infection. We show here the distinct effects of mannan and glucan on complement activation and opsonophagocytosis. Previous studies showed that intact cells are resistant to initiation of complement activation through the alternative pathway, and antimannan antibody reverses this resistance via an Fc-independent mechanism. The present study shows that this mannan-dependent resistance can be overcome by periodate-borohydride conversion of mannose polysaccharides to polyalcohols; cells treated with periodate-borohydride initiate the alternative pathway without the need for antibody. These observations identify an inhibitory role for intact mannan in complement activation. Next, removal of the surface-displayed mannan by acid treatment of periodate-borohydride cells exposes glucan. Glucan-displaying cells or purified beta-glucan initiate the alternative pathway when incubated with the purified proteins of the alternative pathway alone, suggesting that C. albicans glucan is a natural activator of the alternative pathway. Finally, ingestion of mannan-displaying cells by human neutrophils requires anti-mannan antibody, whereas ingestion of glucan-displaying cells requires complement. These results demonstrate a contrasting requirement of natural antibody and complement for opsonophagocytosis of C. albicans cells displaying mannan or glucan. Thus, differential surface expression of mannan and glucan may influence recognition of C. albicans by the complement system.
Collapse
|
32
|
Torosantucci A, Chiani P, Bromuro C, De Bernardis F, Palma AS, Liu Y, Mignogna G, Maras B, Colone M, Stringaro A, Zamboni S, Feizi T, Cassone A. Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One 2009; 4:e5392. [PMID: 19399183 PMCID: PMC2670538 DOI: 10.1371/journal.pone.0005392] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 03/28/2009] [Indexed: 01/09/2023] Open
Abstract
Anti-β-glucan antibodies elicited by a laminarin-conjugate vaccine confer cross-protection to mice challenged with major fungal pathogens such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans. To gain insights into protective β-glucan epitope(s) and protection mechanisms, we studied two anti-β-glucan monoclonal antibodies (mAb) with identical complementarity-determining regions but different isotypes (mAb 2G8, IgG2b and mAb 1E12, IgM). C. albicans, the most relevant fungal pathogen for humans, was used as a model. Both mAbs bound to fungal cell surface and to the β1,3-β1,6 glucan of the fungal cell wall skeleton, as shown by immunofluorescence, electron-microscopy and ELISA. They were also equally unable to opsonize fungal cells in a J774 macrophage phagocytosis and killing assay. However, only the IgG2b conferred substantial protection against mucosal and systemic candidiasis in passive vaccination experiments in rodents. Competition ELISA and microarray analyses using sequence-defined glucan oligosaccharides showed that the protective IgG2b selectively bound to β1,3-linked (laminarin-like) glucose sequences whereas the non-protective IgM bound to β1,6- and β1,4-linked glucose sequences in addition to β1,3-linked ones. Only the protective IgG2b recognized heterogeneous, polydisperse high molecular weight cell wall and secretory components of the fungus, two of which were identified as the GPI-anchored cell wall proteins Als3 and Hyr1. In addition, only the IgG2b inhibited in vitro two critical virulence attributes of the fungus, hyphal growth and adherence to human epithelial cells. Our study demonstrates that the isotype of anti-β-glucan antibodies may affect details of the β-glucan epitopes recognized, and this may be associated with a differing ability to inhibit virulence attributes of the fungus and confer protection in vivo. Our data also suggest that the anti-virulence properties of the IgG2b mAb may be linked to its capacity to recognize β-glucan epitope(s) on some cell wall components that exert critical functions in fungal cell wall structure and adherence to host cells.
Collapse
Affiliation(s)
- Antonella Torosantucci
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Bromuro
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia De Bernardis
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Angelina S. Palma
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Giuseppina Mignogna
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome ‘La Sapienza’, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, University of Rome ‘La Sapienza’, Rome, Italy
| | - Marisa Colone
- Departments of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Annarita Stringaro
- Departments of Technology and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Ten Feizi
- Glycosciences Laboratory, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Antonio Cassone
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
33
|
Wong SF, Mak JW, Pook CKP. Potential use of a monoclonal antibody for the detection of Candida antigens in an experimental systemic candidiasis model. Hybridoma (Larchmt) 2009; 27:361-73. [PMID: 18823263 DOI: 10.1089/hyb.2008.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Candida species are the most common fungal pathogens of systemic candidiasis. The diagnosis of invasive candidiasis remains a laboratory and clinical challenge. Thus, development of diagnostic assays to detect systemic candidiasis and to identify Candida virulence factors and associated pathogenesis through immunohistochemistry using specific monoclonals and polyclonals will be useful. Inbred Balb/c mice were immunized with C. albicans antigens, and blood was checked for the presence of reactive antibodies using ELISA. Fusion was performed using the harvested spleen cells and NS1 myeloma cells, and the clones were screened for the presence of antibody producing hybrid cells by dot-blot. Western blot analysis showed that the L2D10 monoclonal antibody was reactive against the antigens with molecular weight of 20 kDa. Experimental systemic candidiasis in mice was induced through intravenous injection of C. albicans and all the vital organs were collected for immunohistochemistry study. The monoclonal antibody reacted to surface epitopes on the yeast cells, germ tubes, and hyphae, and to immune complexes. It was used with the polyclonal antibody in a sandwich ELISA for the detection of circulating antigens in experimental candiadiasis in mice. Antibody levels were also determined using the ELISA method, and the antibody levels of C. albicans infected mice were increased compared with uninfected animals. The monoclonal antibody was used in immunoperoxidase and immunofluorescence techniques for the detection of fungal infection in tissue sections and was found to be more sensitive than conventional periodic acid Schiff or silver staining techniques. This monoclonal antibody may serve as potential primary capture antibodies for the development of a rapid diagnostic test for human systemic fungal infection.
Collapse
Affiliation(s)
- Shew Fung Wong
- International Medical University, Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
34
|
Chiani P, Bromuro C, Cassone A, Torosantucci A. Anti-beta-glucan antibodies in healthy human subjects. Vaccine 2008; 27:513-9. [PMID: 19041357 DOI: 10.1016/j.vaccine.2008.11.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/04/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Previous data by our group demonstrated the antifungal efficacy of a vaccine consisting of laminarin (beta-(1,3)-glucan), conjugated with diphtheria toxoid, which generated protective anti-laminarin antibodies in mice. In this paper, we sought for the presence, isotype and subclass composition of natural anti-laminarin antibodies in an unselected population of human healthy subjects, in a comparison with antibodies directed against beta-(1,6)-glucan (pustulan) and branched beta-(1,3/1,6)-glucan (Pool 1) and mannan from Candida albicans. Almost all subjects showed detectable levels of anti-beta-glucan antibodies, with IgG largely prevailing on IgM, little, if any, IgA and no IgE. However, the titer of anti-beta-glucan antibodies was overall about 1log lower than that of anti-mannan antibodies of the corresponding isotype. In particular, the level of anti-laminarin IgG was the lowest one, its geometrical mean titer (95% confidence interval, CI) being 1838 (1245-2714) as compared to 8157 (6067-10,931) and 3940 (2911-5332) for pustulan and Pool 1 fungal glucan, respectively. Analysis of IgG subclass composition showed that IgG2 was the prevalent subclass against any antigen, and again the concentration of anti-laminarin IgG2 was the lowest one, its geometrical mean concentration being 0.13 (0.07-0.24)microg/ml as compared to anti-pustulan and anti-Pool 1 glucan and mannan IgG2 levels, which were 0.33 (0.2-0.5), 1.35 (0.9-2.0), and 36.1 (25.2-51.3)microg/ml, respectively. These data show that anti-laminarin antibodies are present at low levels in humans as compared to other anti-beta-glucan and, mostly, anti-mannan antibodies, and suggest that a protective antifungal vaccination in humans should attempt to tip the balance of antifungal antibodies in favour of the anti-laminarin ones.
Collapse
Affiliation(s)
- P Chiani
- Department of Infectious, Parasitic and Immune-mediated Diseases, Medical Mycology Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
35
|
Paulovičová E, Bystrický S, Machová E, Bujdáková H. Immune responsiveness of a novel peptidoglycan conjugate prepared from surfaceCandidaimmunogens: mannan and CR3-related protein. ACTA ACUST UNITED AC 2008; 53:421-8. [DOI: 10.1111/j.1574-695x.2008.00442.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Iorio E, Torosantucci A, Bromuro C, Chiani P, Ferretti A, Giannini M, Cassone A, Podo F. Candida albicans cell wall comprises a branched β-d-(1→6)-glucan with β-d-(1→3)-side chains. Carbohydr Res 2008; 343:1050-61. [DOI: 10.1016/j.carres.2008.02.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 02/19/2008] [Accepted: 02/23/2008] [Indexed: 11/25/2022]
|
37
|
Fungal vaccines: real progress from real challenges. THE LANCET. INFECTIOUS DISEASES 2008; 8:114-24. [DOI: 10.1016/s1473-3099(08)70016-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Galao RP, Scheller N, Alves-Rodrigues I, Breinig T, Meyerhans A, Díez J. Saccharomyces cerevisiae: a versatile eukaryotic system in virology. Microb Cell Fact 2007; 6:32. [PMID: 17927824 PMCID: PMC2148055 DOI: 10.1186/1475-2859-6-32] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/10/2007] [Indexed: 02/07/2023] Open
Abstract
The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.
Collapse
Affiliation(s)
- Rui P Galao
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
39
|
Paulovicová E, Machová E, Tulinská J, Bystrický S. Cell and antibody mediated immunity induced by vaccination with novel Candida dubliniensis mannan immunogenic conjugate. Int Immunopharmacol 2007; 7:1325-33. [PMID: 17673147 DOI: 10.1016/j.intimp.2007.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/15/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022]
Abstract
Antigen-specific humoral response, as well as the induction of cellular immunity generated by Candida dubliniensis mannan-human serum albumin (HSA) conjugate, a novel proposed immunogenic structure for subcellular vaccine, were evaluated in rabbits. Mannan-HSA conjugate-induced specific IgG and IgA increased significantly after boosters (IgG: P<0.001 and IgA: P<0.01). Mannan-HSA conjugate up-regulation of cell-surface expression of B-lymphocyte and granulocyte activation antigens CD25 and CD11b indicated the effective activation. Immunogenic effect of conjugate on T lymphocytes was demonstrated via inductive increase of CD4+ T lymphocyte subset and CD4+/CD8+ ratio and via induction of T(H)1 cytokines. Immunogenic effectiveness of mannan-HSA conjugate at a dose of 0.25 mg of mannan antigenic moiety overcame that of the mannan alone and of yeast whole cells, thus promising further application in Candida vaccine development.
Collapse
Affiliation(s)
- Ema Paulovicová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
40
|
Nisini R, Torosantucci A, Romagnoli G, Chiani P, Donati S, Gagliardi MC, Teloni R, Sargentini V, Mariotti S, Iorio E, Cassone A. beta-Glucan of Candida albicans cell wall causes the subversion of human monocyte differentiation into dendritic cells. J Leukoc Biol 2007; 82:1136-42. [PMID: 17656653 DOI: 10.1189/jlb.0307160] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional consequences of treating human monocytes with purified and chemically characterized Candida albicans beta-glucan -- a major microbial pathogen associated molecular pattern -- on their differentiation into dendritic cells (DC) were investigated. We show here that beta-glucan-treated monocytes differentiated into mature DC (Glu-MoDC) with altered phenotype and functional behavior, similarly to DC derived from C. albicans germ-tubes-infected monocytes (Gt-MoDC). They failed to express CD1a and to up-regulate CD80 and DR molecules. Moreover, they produced IL-10 but not IL-12 and primed naive T cells without inducing their functional polarization into effector cells. Since C. albicans beta-glucan is a mixture of both beta-(1,3) and beta-(1,6) glucan, we investigated their relative contribution by the use of non-Candida beta-glucan structural analogs. We found that high molecular weight (MW) glucans beta-(1,6) pustulan and beta-(1,3) curdlan totally mimicked the effect of C. albicans beta-glucan, while the low MW beta-(1,3) glucan laminarin did not have any effect. Because beta-glucan is a common constituent of all fungi and is abundantly released in vivo during systemic fungal infection, this novel effect of beta-glucan has potential implications for host-parasite relationship in candidiasis and other mycoses. In particular, our data suggest that beta-glucan could bias noninfected, bystander monocytes, thus aggravating the general immunodeficiency, predisposing to systemic fungal infection.
Collapse
Affiliation(s)
- Roberto Nisini
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cassone A, De Bernardis F, Santoni G. Anticandidal immunity and vaginitis: novel opportunities for immune intervention. Infect Immun 2007; 75:4675-86. [PMID: 17562759 PMCID: PMC2044548 DOI: 10.1128/iai.00083-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Antonio Cassone
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | | | | |
Collapse
|
42
|
Sandini S, La Valle R, De Bernardis F, Macrì C, Cassone A. The 65�kDa mannoprotein gene of Candida albicans encodes a putative ?-glucanase adhesin required for hyphal morphogenesis and experimental pathogenicity. Cell Microbiol 2007; 9:1223-38. [PMID: 17217426 DOI: 10.1111/j.1462-5822.2006.00862.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mannoproteins are fungal cell wall components which play a main role in host-parasite relationship. Camp65p is a putative beta-glucanase mannoprotein of 65 kDa which has been characterized as a main target of human immune response against Candida albicans. However, nothing is known about its specific contribution to the biology and virulence of this fungus. We constructed CAMP65 knock-out mutants including null camp65/camp65 and CAMP65/camp65 heterozygous strains. The null strains had the same growth rate and morphology under yeast form as the wild-type strain but they were severely affected in hyphal morphogenesis both in vitro and in vivo. Hyphae formation was restored in revertant strains. The null mutants lost adherence to the plastic, and this was in keeping with the strong inhibition of fungal cell adherence to plastic exerted by anti-Camp65p antibodies. The null mutants were also significantly less virulent than the parental strains, and this loss of virulence was observed both in systemic and in mucosal C. albicans infection models. Nonetheless, the virulence in both infectious models was regained by the CAMP65 revertants. Thus, CAMP65 of C. albicans encodes a putative beta-glucanase, mannoprotein adhesin, which has a dual role (hyphal cell wall construction and virulence), accounting for the particular relevance of host immune response against this mannoprotein.
Collapse
Affiliation(s)
- Silvia Sandini
- Department of Infectious, Parasitic and Immuno-mediated Diseases, Instituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
43
|
Abstract
Fungal infections represent a serious health problem in industrialized countries. In particular, multimorbid patients are highly susceptible to life-threatening infections by opportunistic fungi, most often Candida or Aspergillus species. In Europe, fungal infections account for 17% of intensive care unit infections. In addition, common non-life-threatening superficial infections impose significant restrictions on patients, resulting in a reduced quality of life. One of the first steps of pathogens during infection of the host is to attach to the surface of host tissues. This step in host–pathogen interaction is crucial for colonization by the pathogen and for the persistance of the pathogen in the host. Commensal organisms, such as Candida albicans, are able to persistently colonize the host without causing symptoms. However, the balance between commensalism and pathogenicity is delicate. How these two states are modulated during C. albicans colonization is a major area of research in medical mycology, with the aim of utilizing the knowledge gained for the benefit of the patient.
Collapse
Affiliation(s)
- Steffen Rupp
- Fraunhofer Institute for Interfacial Engineering & Biotechnology, Department of Molecular Biotechnology, Stuttgart, Germany.
| |
Collapse
|
44
|
Fungal Vaccines and Vaccination: Problems and Perspectives. IMMUNOLOGY OF FUNGAL INFECTIONS 2007. [PMCID: PMC7121605 DOI: 10.1007/1-4020-5492-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vaccines against human pathogenic fungi, a rather neglected medical need until few years ago, are now gaining steps in the public health priority scale. The awareness of the rising medical threat represented by the opportunistic fungal infections among the health care-associated infections, the advances in the knowledge of fungal pathogenicity and immune response and the extraordinary progress of biotechnology have generated enthusiasm and critical new tools for active and passive anti-fungal vaccination. The discovery that antibodies play a critical role for protection against fungal infection has greatly contributed to the advancements in this field, in recognition that almost all useful vaccines against viral and bacterial pathogens owe their protective efficacy to neutralizing, opsonizing or otherwise effective antibodies. Overall, there is more hope now than few years ago about the chances of generating and having approved by the regulatory authorities one or more antifungal vaccines, be active or passive, for use in humans in the next few years. In particular, the possibility of protecting against multiple opportunistic mycoses in immuno-depressed subjects with a single, well-defined glucan-conjugate vaccine eliciting directly anti-fungal antibodies may be an important step to achieve this public health goal
Collapse
|
45
|
Murciano C, Villamón E, Yáñez A, O'Connor JE, Gozalbo D, Gil ML. Impaired immune response to Candida albicans in aged mice. J Med Microbiol 2006; 55:1649-1656. [PMID: 17108267 DOI: 10.1099/jmm.0.46740-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The prevalence of opportunistic fungal infections has increased dramatically among the aged population in recent years. This work investigated the effect of ageing on murine defences against Candida albicans. Aged C57BL/6 mice that were experimentally infected intravenously had a significantly impaired survival and a higher tissue fungal burden compared with young mice. In vitro production of tumour necrosis factor (TNF)-alpha by macrophages from aged mice in response to yeast cells and hyphae of C. albicans was significantly lower than production by macrophages from young mice. In vitro production of cytokines, such as TNF-alpha and gamma interferon (IFN-gamma), by antigen-stimulated splenocytes from mice intravenously infected with C. albicans cells was also diminished in old mice. This decrease in production of T helper 1 cytokines in old mice correlated with a diminished frequency of IFN-gamma-producing CD4+ T lymphocytes, although the ability to develop an acquired resistance upon vaccination (primary sublethal infection) of mice with the low-virulence PCA2 strain was not affected in aged mice. The diversity of antigens recognized by C. albicans-specific antibodies in sera from infected aged mice was clearly diminished when compared with that from infected young mice. Taken together, these data show that aged mice develop an altered innate and adaptive immune response to C. albicans and are more susceptible to systemic primary candidiasis.
Collapse
Affiliation(s)
- Celia Murciano
- Departamento de Microbiología y Ecología, Universitat de València, Facultad de Ciencias Biológicas, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| | - Eva Villamón
- Departamento de Microbiología y Ecología, Universitat de València, Facultad de Ciencias Biológicas, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| | - Alberto Yáñez
- Departamento de Microbiología y Ecología, Universitat de València, Facultad de Ciencias Biológicas, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| | - José-Enrique O'Connor
- Laboratorio de Citómica, Unidad Mixta CIPF-UVEG, Centro de Investigación 'Principe Felipe', Valencia, Spain
| | - Daniel Gozalbo
- Departamento de Microbiología y Ecología, Universitat de València, Facultad de Ciencias Biológicas, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| | - M Luisa Gil
- Departamento de Microbiología y Ecología, Universitat de València, Facultad de Ciencias Biológicas, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjasot, Valencia, Spain
| |
Collapse
|
46
|
Dimitrova P, Ivanovska N. Influence of leflunomide on gastrointestinal Candida albicans infection induced in naive and arthritic newborn mice. Int Immunopharmacol 2006; 6:1682-9. [PMID: 16979122 DOI: 10.1016/j.intimp.2006.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/05/2006] [Accepted: 07/06/2006] [Indexed: 11/28/2022]
Abstract
Mucosal Candida albicans infection in immunocompromised individuals being treated with recently advanced drugs can progress to systemic disease. One such medication applied in patients with rheumatoid arthritis is leflunomide. The object of the present study was to investigate the effect of leflunomide on a model of gastrointestinal (g.i.) C. albicans infection induced in naïve or arthritic mice and on the host resistance to systemic re-infection. Newborn mice were orally inoculated with 1 x 10(5) colony forming units (CFU) of C. albicans and at age of 5 weeks they were treated with 5 mg/kg or 20 mg/kg of leflunomide for 10 consecutive days. Both doses elevated the yeast colonization of the stomach, without the dissemination into the internal organs. This was in parallel with the enhanced delayed type hypersensitivity (DTH) reaction to the yeast. Contrary to that, leflunomide caused a shift to Th2 reactivity by prevalence of IL-4 to IFN-gamma and a suppression of anti-Candida antibody synthesis by a higher dose. It might be supposed that infection increased autoimmune response in arthritic mice, according to stimulated DTH reaction to collagen. The administration of leflunomide during the simultaneous development of infection and arthritis diminished anti-Candida and anti-collagen antibody synthesis compared to untreated infected arthritic mice. The improved survival of arthritic infected animals against severe systemic re-infection was not changed after administration of leflunomide to re-infected arthritic mice. We can conclude that although leflunomide influenced cytokine secretion and suppressed anti-Candida antibody production it neither provokes a progression from gastrointestinal to systemic C. albicans infection nor increases the susceptibility to severe C. albicans re-infection of arthritic mice.
Collapse
Affiliation(s)
- Petya Dimitrova
- Department of Immunology, Institute of Microbiology, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
47
|
Vonk AG, Netea MG, van der Meer JWM, Kullberg BJ. Host defence against disseminated Candida albicans infection and implications for antifungal immunotherapy. Expert Opin Biol Ther 2006; 6:891-903. [PMID: 16918256 DOI: 10.1517/14712598.6.9.891] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The different manifestations of Candida albicans infection are dictated by an underlying defect in the immune response of the host. Protective immunity to disseminated candidiasis, the manifestation of C. albicans infection discussed in this review, has traditionally been ascribed to innate immunity with emphasis on the role of granulocytes. Lately, however, immunological studies have learned that host defence against disseminated candidiasis is based on a complex interplay between innate and cell-mediated immunity. Despite the availability of new antifungal agents, mortality associated with disseminated C. albicans infection remains high. Immunotherapy that augments host defence is an important strategic option in the battle against disseminated candidiasis. Here, the authors review the chronological events in the pathogenesis of disseminated candidiasis that aid in predicting the impact of existing immunotherapy and the development of future immunomodulating strategies.
Collapse
Affiliation(s)
- Alieke G Vonk
- Radboud University Nijmegen Medical Center, Department of Medicine 463, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
48
|
Xin H, Cutler JE. Hybridoma passage in vitro may result in reduced ability of antimannan antibody to protect against disseminated candidiasis. Infect Immun 2006; 74:4310-21. [PMID: 16790805 PMCID: PMC1489732 DOI: 10.1128/iai.00234-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the enhanced resistance of monoclonal antibodies B6.1 (an immunoglobulin M [IgM]) and C3.1 (an IgG3) against experimental candidiasis. Both MAbs recognize the same fungal epitope. We have since found that a highly passaged B6.1 hybridoma (hp-B6.1) resulted in antibody that has little protective potential. The potential clinical applicability of the antibody and our interest in understanding antibody protection against candidiasis led us to investigate an explanation for this phenomenon. Antibody genetic structure of hp-B6.1, the original hybridoma clone (ori-B6.1) stored frozen since 1995, a subclone of hp-B6.1 that produces protective antibody, the IgG3-producing hybridoma, and a nonprotective IgG1-producing hybridoma were compared. Variable region gene sequences of heavy (V(H)) and light chains showed genetic instability of V(H) chains with only the hp-B6.1; the V(H) sequences from ori-B6.1 and the subclone were, however, identical. Activation-induced cytidine deaminase levels were greatest in the B6.1 hybridomas, which may explain the instability. The constant region CH3 domain remained unchanged, implying normal N-glycation and complement-fixing potential, and antibody binding affinities appeared unchanged. Complement fixation assays surprisingly showed that ori-B6.1 antibody fixes C3 more rapidly than does hp-B6.1 antibody. The V(H) region primary structure may affect complement activation, which could explain our result. Indeed, antibody from the hp-B6.1 subclone fixed complement like antibody from ori-B6.1. These results show that the greatest protection occurs when antimannan antibodies possess the dual abilities of recognizing the appropriate carbohydrate epitope and rapidly fixing complement; loss of the latter property results in the loss of protective potential by the antibody.
Collapse
Affiliation(s)
- Hong Xin
- Research Institute for Children, Children's Hospital, 200 Henry Clay Ave., New Orleans, LA 70118, USA
| | | |
Collapse
|
49
|
Bliss JM, Laforce-Nesbitt SS. Toxicity to Candida albicans mediated by human serum and peripheral blood mononuclear cells. ACTA ACUST UNITED AC 2006; 46:452-60. [PMID: 16553821 DOI: 10.1111/j.1574-695x.2006.00063.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study evaluates the conditions in which peripheral blood mononuclear cells mediate toxicity to Candida albicans opsonized with heat-inactivated human serum. Serum concentrations as low as 1% resulted in 50% inhibition of C. albicans metabolic activity after incubation with peripheral blood mononuclear cells at an effector to target ratio of 8. Measurable inhibition was also achieved at lower effector to target ratios and lower serum concentrations, and at least a portion of the metabolic inhibition reflected fungal cell death. Depletion of C. albicans-specific antibody decreased the toxic effect while opsonization with purified human IgG restored toxicity, and cell-cell contact between peripheral blood mononuclear cells and fungus was required. Depletion of or enrichment for monocytes from the peripheral blood mononuclear cells preparation diminished the toxic effect and the monocytic cell line, THP-1, was likewise incapable of toxicity. These studies provide evidence that antibody augments antifungal host defense and underscore the complex interrelationship between humoral and cellular immunity in these infections.
Collapse
Affiliation(s)
- Joseph M Bliss
- Women & Infants Hospital of Rhode Island, Department of Pediatrics, Brown Medical School, Providence, RI 02905, USA.
| | | |
Collapse
|
50
|
Sevilla MJ, Robledo B, Rementeria A, Moragues MD, Pontón J. A fungicidal monoclonal antibody protects against murine invasive candidiasis. Infect Immun 2006; 74:3042-5. [PMID: 16622248 PMCID: PMC1459740 DOI: 10.1128/iai.74.5.3042-3045.2006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice infected by Candida albicans and treated with monoclonal antibody C7 survived longer than saline-treated animals. A prozone-like effect was observed. The in vitro candidacidal activity of macrophages was strongly enhanced when C. albicans was opsonized by C7 and complete murine serum was present.
Collapse
Affiliation(s)
- María J Sevilla
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apartado 644, E-48080 Bilbao, Vizcaya, Spain.
| | | | | | | | | |
Collapse
|