1
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
2
|
Streptococcosis a Re-Emerging Disease in Aquaculture: Significance and Phytotherapy. Animals (Basel) 2022; 12:ani12182443. [PMID: 36139303 PMCID: PMC9495100 DOI: 10.3390/ani12182443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Streptococcosis is an economical important bacterial disease that can seriously cause huge losses in the global aquaculture sector. In recent years studies have focused on to use extracts or essences of medicinal herbs and plants to control or treat the disease outbreaks and, in most cases the results were promising. The essential oils of the herbs or plants are more effective than the extracts and, the extracts examined have moderate efficacy in term of increasing fish survival against fish streptococcosis that could be due to the enhancement of fish immunity by the herb bio-compounds. The lack of dosage optimization, toxicity and bioavailability assays of a specific herb/plant or its bioactive compound in fish organs make it difficult to judge the validation of clinical efficacy of a particular herb/plant against fish streptococcosis, and thus, required further investigations. Abstract Streptococcosis, particularly that caused by S. iniae and S. agalactiae, is a major re-emerging bacterial disease seriously affecting the global sustainability of aquaculture development. Despite a wide spread of the disease in aquaculture, few studies have been directed at assessing the in vitro antagonistic activity and in vivo efficacy of medicinal herbs and other plants against streptococcal agents. Most in vitro studies of plant extractives against S. iniae and S. agalactiae have found antibacterial activity, but essential oils, especially those containing eugenol, carvacrol or thymol, are more effective. Although essential oils have shown better anti-streptococcal activity in in vitro assays, in vivo bioassays require more attention. The extracts examined under in vivo conditions show moderate efficacy, increasing the survival rate of infected fish, probably through the enhancement of immunity before challenge bioassays. The available data, however, lack dosage optimization, toxicity and bioavailability assays of a specific plant or its bioactive compound in fish organs; hence, it is difficult to judge the validation of clinical efficacy for the prevention or treatment of fish streptococcosis. Despite the known bioactive compounds of many tested plants, few data are available on their mode of action towards streptococcal agents. This review addresses the efficacy of medicinal plants to fish streptococcosis and discusses the current gaps.
Collapse
|
3
|
Glajzner P, Szewczyk EM, Szemraj M. Pathogenicity and drug resistance of animal streptococci responsible for human infections. J Med Microbiol 2021; 70. [PMID: 33750514 DOI: 10.1099/jmm.0.001339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria of the genus Streptococcus, earlier considered typically animal, currently have also been causing infections in humans. It is necessary to make clinicians aware of the emergence of new species that may cause the development of human diseases. There is an increasing frequency of isolation of streptococci such as S. suis, S. dysgalactiae, S. iniae and S. equi from people. Isolation of Streptococcus bovis/Streptococcus equinus complex bacteria has also been reported. The streptococcal species described in this review are gaining new properties and virulence factors by which they can thrive in new environments. It shows the potential of these bacteria to changes in the genome and the settlement of new hosts. Information is presented on clinical cases that concern streptococcus species belonging to the groups Bovis, Pyogenic and Suis. We also present the antibiotic resistance profiles of these bacteria. The emerging resistance to β-lactams has been reported. In this review, the classification, clinical characteristics and antibiotic resistance of groups and species of streptococci considered as animal pathogens are summarized.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Eligia Maria Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
4
|
Zhou H, Shi L, Ren Y, Tan X, Liu W, Liu Z. Applications of Human Skin Microbiota in the Cutaneous Disorders for Ecology-Based Therapy. Front Cell Infect Microbiol 2020; 10:570261. [PMID: 33194808 PMCID: PMC7641908 DOI: 10.3389/fcimb.2020.570261] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
The skin represents the exterior interface between the human body with the environment while providing a home to trillions of the commensal microorganisms—collectively referred to as the skin microbiota. These microbes that coexist in an established balance play a pivotal role in the protection of cutaneous health and the orchestration of skin homeostasis. However, the well-controlled but delicate balance can be perturbed by alterations in the skin microbial communities, namely, dysbiosis, often due to commensals defeated by pathogens competing for space and nutrients, which leads to the occurrence of multiple cutaneous disorders. In view of this, the analysis of skin microbiota constituents in skin diseases is crucial for defining the role of commensal microbes and treatment of skin diseases. Emerging evidence shows that the ecology-based therapy of microbial transplantation has been proven as a valid therapeutic strategy for cutaneous disorders caused by skin microbial dysbiosis. Although its mechanism is not well-understood, there are already some applications for ecology-based therapy with the aim of correcting the imbalances on the cutaneous ecosystem. In this review, we summarize the interactions between dysbiosis and the cutaneous disorders, including homeostasis and dysbiosis of skin microbiota, microbial composition in skin diseases, and the mechanisms and applications of reversing or ameliorating the dysbiosis by the targeted manipulation of the skin microbiota, which may contribute to aid development of therapeutic modality for ecology-based therapy.
Collapse
Affiliation(s)
- Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ren
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.,National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Heckman TI, Griffin MJ, Camus AC, LaFrentz BR, Morick D, Smirnov R, Ofek T, Soto E. Multilocus sequence analysis of diverse Streptococcus iniae isolates indicates an underlying genetic basis for phenotypic heterogeneity. DISEASES OF AQUATIC ORGANISMS 2020; 141:53-69. [PMID: 32940251 DOI: 10.3354/dao03521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptococcus iniae is a Gram-positive, opportunistically zoonotic bacterium infective to a wide variety of farmed and wild fish species worldwide. Outbreaks in wild fish can have detrimental environmental and cultural impacts, and mortality events in aquaculture can result in significant economic losses. As an emerging or re-emerging pathogen of global significance, understanding the coalescing factors contributing to piscine streptococcosis is crucial for developing strategies to control infections. Intraspecific antigenic and genetic variability of S. iniae has made development of autogenous vaccines a challenge, particularly where the diversity of locally endemic S. iniae strains is unknown. This study genetically and phenotypically characterized 11 S. iniae isolates from diseased wild and farmed fish from North America, Central America, and the Caribbean. A multilocus sequence analysis (MLSA) scheme was developed to phylogenetically compare these isolates to 84 other strains of Streptococcus spp. relevant to aquaculture. MLSA generated phylogenies comparable to established genotyping methods, and isolates formed distinct clades related to phenotype and host species. The endothelial Oreochromis mossambicus bulbus arteriosus cell line and whole blood from rainbow trout Oncorhynchus mykiss, Nile tilapia Oreochromis niloticus, and white sturgeon Acipenser transmontanus were used to investigate the persistence and virulence of the 11 isolates using in vitro assays. In vivo challenges using an O. niloticus model were used to evaluate virulence by the intragastric route of infection. Isolates showed significant differences (p < 0.05) in virulence and persistence, with some correlation to genogroup, establishing a basis for further work uncovering genetic factors leading to increased pathogenicity.
Collapse
Affiliation(s)
- Taylor I Heckman
- Aquatic Animal Health Laboratory, Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Soh KY, Loh JMS, Hall C, Proft T. Functional Analysis of Two Novel Streptococcus iniae Virulence Factors Using a Zebrafish Infection Model. Microorganisms 2020; 8:E1361. [PMID: 32899555 PMCID: PMC7564053 DOI: 10.3390/microorganisms8091361] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Streptococcus iniae is a major fish pathogen that contributes to large annual losses in the aquaculture industry, exceeding US$100 million. It is also reported to cause opportunistic infections in humans. We have recently identified two novel S. iniae virulence factors, an extracellular nuclease (SpnAi) and a secreted nucleotidase (S5nAi), and verified their predicted enzymatic activities using recombinant proteins. Here, we report the generation of green fluorescent S. iniae spnAi and s5nAi deletion mutants and their evaluation in a transgenic zebrafish infection model. Our results show nuclease and nucleotidase activities in S. iniae could be attributed to SpnAi and S5nAi, respectively. Consistent with this, larvae infected with the deletion mutants demonstrated enhanced survival and bacterial clearance, compared to those infected with wild-type (WT) S. iniae. Deletion of spnAi and s5nAi resulted in sustained recruitment of neutrophils and macrophages, respectively, to the site of infection. We also show that recombinant SpnAi is able to degrade neutrophil extracellular traps (NETs) isolated from zebrafish kidney tissue. Our results suggest that both enzymes play an important role in S. iniae immune evasion and might present potential targets for the development of therapeutic agents or vaccines.
Collapse
Affiliation(s)
- Kar Yan Soh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Jacelyn Mei San Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| | - Christopher Hall
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences, The University of Auckland, Auckland 1142, New Zealand; (K.Y.S.); (J.M.S.L.)
- Maurice Wilkins Centre for Biomolecular Discoveries, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
7
|
Liu C, Hu X, Cao Z, Sun Y, Chen X, Zhang Z. Construction and characterization of a DNA vaccine encoding the SagH against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2019; 89:71-75. [PMID: 30917926 DOI: 10.1016/j.fsi.2019.03.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus iniae is an important aquaculture pathogen that is associated with disease outbreaks in wild and cultured fish species. Streptolysin S has been identified as an important virulence factor of S. iniae. With an aim to develop effective vaccines against S. iniae for Japanese flounder (Paralichthys olivaceus), in this study, we constructed a DNA vaccine based on the sagH gene, which belongs to the streptolysin S-associated gene cluster. In fish vaccinated with pSagH, the transcription of sagH was detected in tissues and SagH protein was also detected in the muscles of pSagH-vaccinated fish by immunohistochemistry. The immunoprotective effect of SagH showed that fish vaccinated with pSagH at one and two months exhibited a high relative percent survival (RPS) of 92.62% and 90.58% against S. iniae serotype I, respectively. In addition, SagH conferred strong cross protection against S. iniae serotype II and resulted in an RPS of 83.01% and 80.65% at one and two months, respectively. Compared to the control group, fish vaccinated with pSagH were able to induce much stronger respiratory burst activity, and higher titer of specific antibodies. The results of quantitative real-time PCR demonstrated that pSagH upregulated the expression of several immune genes that are possibly involved in both innate and adaptive immune responses. These results indicate that pSagH is a candidate DNA vaccine candidate against S. iniae serotype I and II infection in Japanese flounder in aquaculture.
Collapse
Affiliation(s)
- Chunsheng Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Xiucong Hu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China
| | - Zhenjie Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, PR China.
| | - Xiaojuan Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China
| | - Zhengshi Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, PR China; Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, College of Marine Science, Hainan University, PR China
| |
Collapse
|
8
|
Tabata A, Yamada T, Ohtani H, Ohkura K, Tomoyasu T, Nagamune H. β-Hemolytic Streptococcus anginosus subsp. anginosus causes streptolysin S-dependent cytotoxicity to human cell culture lines in vitro. J Oral Microbiol 2019; 11:1609839. [PMID: 31105901 PMCID: PMC6508071 DOI: 10.1080/20002297.2019.1609839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Abstract
Background: Streptococcus anginosus subsp. anginosus (SAA) is one of the opportunistic pathogens in humans that inhabits the oral cavity. The type strain of SAA, NCTC10713T, showed clear β-hemolysis on blood agar plates, and the sole β-hemolytic factor revealed two streptolysin S (SLS) molecules. SLS is well known as the peptide hemolysin produced from the human pathogen S. pyogenes and shows not only hemolytic activity on erythrocytes but also cytotoxic activity in cell culture lines in vitro and in vivo, such as in a mouse infection model. However, no cytotoxic activity of SLS produced from β-hemolytic SAA (β-SAA) has been reported so far. Objective and Design: In this study, the SLS-dependent cytotoxicity of the β-SAA strains including the genetically modified strains was investigated in vitro. Results: The SLS-producing β-SAA showed cytotoxicity in human cell culture lines under the co-cultivation condition and it was found that this cytotoxicity was caused by the SLS secreted into the extracellular milieu. Conclusion: The results from this study suggest that the SLS produced from β-SAA might indicate the cytotoxic potential similar to that of the SLS from S. pyogenes and the SLS-producing β-SAA would be recognized as “a wolf in sheep’s clothing” More attention will be paid to the pathogenicity of β-hemolytic Anginosus group streptococci.
Collapse
Affiliation(s)
- Atsushi Tabata
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Takuya Yamada
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromi Ohtani
- Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Kazuto Ohkura
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Toshifumi Tomoyasu
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| | - Hideaki Nagamune
- Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University Graduate School, Tokushima, Japan.,Department of Biological Science and Technology, Life System, Institute of Technology and Science, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
9
|
Kolar SL, Tsai CM, Torres J, Fan X, Li H, Liu GY. Propionibacterium acnes-induced immunopathology correlates with health and disease association. JCI Insight 2019; 4:124687. [PMID: 30843879 DOI: 10.1172/jci.insight.124687] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/31/2019] [Indexed: 11/17/2022] Open
Abstract
Genomic studies revealed the existence of health- and acne-associated P. acnes strains and suggested novel approaches for broadening understanding of acne vulgaris. However, clinical association of P. acnes with disease or health has yet to be corroborated experimentally. Current animal models of acne do not closely mimic human disease and have unclear translational value. We have developed a murine model of acne by combining P. acnes inoculation with topical application of a synthetic human sebum. We showed that human sebum promoted persistence of intradermally injected P. acnes with little loss of viability after 1 week and permitted use of more physiologic inoculums. Application of acne-associated P. acnes RT4/5 strains led to development of moderate to severe skin pathology compared with application of health-associated type II P. acnes strains (RT2/6). RT4/5 P. acnes strains uniformly induced higher levels of KC (IL-8), IL-1α, IL-1β, and IL-6 in vitro and in vivo compared with type II P. acnes strains. Overall, our data provide immunopathologic corroboration of health and disease association of clinical P. acnes strains and inform on a platform to query putative virulence factors uncovered by genomic studies.
Collapse
Affiliation(s)
- Stacey L Kolar
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Chih-Ming Tsai
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Infectious Diseases, Department of Pediatrics, UCSD, San Diego, California, USA
| | - Juan Torres
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xuemo Fan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, USA
| | - George Y Liu
- Division of Pediatric Infectious Diseases and Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Division of Infectious Diseases, Department of Pediatrics, UCSD, San Diego, California, USA
| |
Collapse
|
10
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
11
|
cpsJ gene of Streptococcus iniae is involved in capsular polysaccharide synthesis and virulence. Antonie van Leeuwenhoek 2016; 109:1483-1492. [PMID: 27535839 DOI: 10.1007/s10482-016-0750-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
The capsular polysaccharides are an important virulence factor of Streptococcus iniae, protecting the bacterium from destruction and clearance by the immune system. The cpsJ gene encodes a putative UDP-glucose epimerase involved in the capsule synthesis system. To determine the role of the CpsJ protein in the production of the capsule, a ΔcpsJ mutant was generated and analyzed by comparing its growth performances and virulence with those of the wild type (WT) strain. The ΔcpsJ mutant had longer chains, smaller colonies, and a slower growth rate and decreased optical density than the WT, suggesting that the ΔcpsJ mutant produces less capsular polysaccharide. The ΔcpsJ mutant was more able to adhere to and invaded epithelioma papulosum cyprinid cells (EPCs) when its virulence in vitro was compared with that of the WT, but survived less well in the whole blood of channel catfish. When a channel catfish infection model was used to determine the virulence of the ΔcpsJ mutant in vivo, the mutant caused an increase in survival with the mutant (53.33 %) versus the WT (26.67 %). In summary, mutation of the cpsJ gene influenced both the capsule synthesis and virulence of S. iniae.
Collapse
|
12
|
Barnett TC, Cole JN, Rivera-Hernandez T, Henningham A, Paton JC, Nizet V, Walker MJ. Streptococcal toxins: role in pathogenesis and disease. Cell Microbiol 2015; 17:1721-41. [PMID: 26433203 DOI: 10.1111/cmi.12531] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/13/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022]
Abstract
Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen.
Collapse
Affiliation(s)
- Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jason N Cole
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Anna Henningham
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.,Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - James C Paton
- Research Centre for Infectious Diseases, Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
13
|
Molloy EM, Casjens SR, Cox CL, Maxson T, Ethridge NA, Margos G, Fingerle V, Mitchell DA. Identification of the minimal cytolytic unit for streptolysin S and an expansion of the toxin family. BMC Microbiol 2015. [PMID: 26204951 PMCID: PMC4513790 DOI: 10.1186/s12866-015-0464-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Streptolysin S (SLS) is a cytolytic virulence factor produced by the human pathogen Streptococcus pyogenes and other Streptococcus species. Related "SLS-like" toxins have been characterized in select strains of Clostridium and Listeria, with homologous clusters bioinformatically identified in a variety of other species. SLS is a member of the thiazole/oxazole-modified microcin (TOMM) family of natural products. The structure of SLS has yet to be deciphered and many questions remain regarding its structure-activity relationships. RESULTS In this work, we assessed the hemolytic activity of a series of C-terminally truncated SLS peptides expressed in SLS-deficient S. pyogenes. Our data indicate that while the N-terminal poly-heterocyclizable (NPH) region of SLS substantially contributes to its bioactivity, the variable C-terminal region of the toxin is largely dispensable. Through genome mining we identified additional SLS-like clusters in diverse Firmicutes, Spirochaetes and Actinobacteria. Among the Spirochaete clusters, naturally truncated SLS-like precursors were found in the genomes of three Lyme disease-causing Borrelia burgdorferi sensu lato (Bbsl) strains. Although unable to restore hemolysis in SLS-deficient S. pyogenes, a Bbsl SLS-like precursor peptide was converted to a cytolysin using purified SLS biosynthetic enzymes. A PCR-based screen demonstrated that SLS-like clusters are substantially more prevalent in Bbsl than inferred from publicly available genome sequences. CONCLUSIONS The mutagenesis data described herein indicate that the minimal cytolytic unit of SLS encompasses the NPH region of the core peptide. Interestingly, this region is found in all characterized TOMM cytolysins, as well as the novel putative TOMM cytolysins we discovered. We propose that this conserved region represents the defining feature of the SLS-like TOMM family. We demonstrate the cytolytic potential of a Bbsl SLS-like precursor peptide, which has a core region of similar length to the SLS minimal cytolytic unit, when modified with purified SLS biosynthetic enzymes. As such, we speculate that some Borrelia have the potential to produce a TOMM cytolysin, although the biological significance of this finding remains to be determined. In addition to providing new insight into the structure-activity relationships of SLS, this study greatly expands the cytolysin group of TOMMs.
Collapse
Affiliation(s)
- Evelyn M Molloy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, UT, 84112, USA.
| | - Courtney L Cox
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Tucker Maxson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Nicole A Ethridge
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, National Reference Centre for Borrelia, Oberschleissheim, Germany.
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
14
|
El Aamri F, Remuzgo-Martínez S, Acosta F, Real F, Ramos-Vivas J, Icardo JM, Padilla D. Interactions of Streptococcus iniae with phagocytic cell line. Microbes Infect 2015; 17:258-65. [DOI: 10.1016/j.micinf.2014.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/20/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
15
|
Asam D, Mauerer S, Spellerberg B. Streptolysin S of Streptococcus anginosus exhibits broad-range hemolytic activity. Med Microbiol Immunol 2014; 204:227-37. [PMID: 25381594 DOI: 10.1007/s00430-014-0363-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/28/2014] [Indexed: 02/01/2023]
Abstract
Streptococcus anginosus is a commensal of mucous membranes and an emerging human pathogen. Some strains, including the type strain, display a prominent β-hemolytic phenotype. A gene cluster (sag), encoding a variant of streptolysin S (SLS) has recently been identified as the genetic background for β-hemolysin production in S. anginosus. In this study, we further characterized the hemolytic and cytolytic activity of the S. anginosus hemolysin in comparison with other streptococcal hemolysins. The results indicate that SLS of S. anginosus is a broad-range hemolysin able to lyse erythrocytes of different species, including horse, bovine, rabbit and even chicken. The hemolytic activity is temperature dependent, and a down-regulation of the hemolysin expression is induced in the presence of high glucose levels. Survival assays indicate that in contrast to other streptococcal species, S. anginosus does not require SLS for survival in the presence of human granulocytes. Cross-complementation studies using the sagB and sagD genes of Streptococcus pyogenes and Streptococcus dysgalactiae subsp. equisimilis demonstrated functional similarities to the S. anginosus SLS. Nevertheless, distinct differences to other streptolysin S variants were noted and provide further insights into the molecular mechanisms of SLS pathogen host interactions.
Collapse
Affiliation(s)
- Daniela Asam
- Institute of Medical Microbiology and Hospital Hygiene, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | | | |
Collapse
|
16
|
Rosa-Fraile M, Dramsi S, Spellerberg B. Group B streptococcal haemolysin and pigment, a tale of twins. FEMS Microbiol Rev 2014; 38:932-46. [PMID: 24617549 PMCID: PMC4315905 DOI: 10.1111/1574-6976.12071] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/18/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022] Open
Abstract
Group B streptococcus [(GBS or Streptococcus agalactiae)] is a leading cause of neonatal meningitis and septicaemia. Most clinical isolates express simultaneously a β-haemolysin/cytolysin and a red polyenic pigment, two phenotypic traits important for GBS identification in medical microbiology. The genetic determinants encoding the GBS haemolysin and pigment have been elucidated and the molecular structure of the pigment has been determined. The cyl operon involved in haemolysin and pigment production is regulated by the major two-component system CovS/R, which coordinates the expression of multiple virulence factors of GBS. Genetic analyses indicated strongly that the haemolysin activity was due to a cytolytic toxin encoded by cylE. However, the biochemical nature of the GBS haemolysin has remained elusive for almost a century because of its instability during purification procedures. Recently, it has been suggested that the haemolytic and cytolytic activity of GBS is due to the ornithine rhamnopolyenic pigment and not to the CylE protein. Here we review and summarize our current knowledge of the genetics, regulation and biochemistry of these twin GBS phenotypic traits, including their functions as GBS virulence factors.
Collapse
Affiliation(s)
| | - Shaynoor Dramsi
- Unité de Biologie des Bactéries Pathogènes à Gram positif, Institut PasteurParis, France
- CNRS ERL 3526Paris, France
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital UlmUlm, Germany
| |
Collapse
|
17
|
Li MF, Zhang BC, Li J, Sun L. Sil: a Streptococcus iniae bacteriocin with dual role as an antimicrobial and an immunomodulator that inhibits innate immune response and promotes S. iniae infection. PLoS One 2014; 9:e96222. [PMID: 24781647 PMCID: PMC4004548 DOI: 10.1371/journal.pone.0096222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium and a severe pathogen to a wide range of economically important fish species. In addition, S. iniae is also a zoonotic pathogen and can cause serious infections in humans. In this study, we identified from a pathogenic S. iniae strain a putative bacteriocin, Sil, and examined its biological activity. Sil is composed of 101 amino acid residues and shares 35.6% overall sequence identity with the lactococcin 972 of Lactococcus lactis. Immunoblot analysis showed that Sil was secreted by S. iniae into the extracellular milieu. Purified recombinant Sil (rSil) exhibited a dose-dependent inhibitory effect on the growth of Bacillus subtilis but had no impact on the growths of other 16 Gram-positive bacteria and 10 Gram-negative bacteria representing 23 different bacterial species. Treatment of rSil by heating at 50°C abolished the activity of rSil. rSil bound to the surface of B. subtilis but induced no killing of the target cells. Cellular study revealed that rSil interacted with turbot (Scophthalmus maximus) head kidney monocytes and inhibited the innate immune response of the cells, which led to enhanced cellular infection of S. iniae. Antibody blocking of the extracellular Sil produced by S. iniae significantly attenuated the infectivity of S. iniae. Consistent with these in vitro observations, in vivo study showed that administration of turbot with rSil prior to S. iniae infection significantly increased bacterial dissemination and colonization in fish tissues. Taken together, these results indicate that Sil is a novel virulence-associated bacteriostatic and an immunoregulator that promotes S. iniae infection by impairing the immune defense of host fish.
Collapse
Affiliation(s)
- Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, Michigan, United States of America
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
18
|
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 2014; 9:e91324. [PMID: 24621602 PMCID: PMC3951389 DOI: 10.1371/journal.pone.0091324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.
Collapse
Affiliation(s)
- Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
19
|
Sun Y, Sun L, Xing MQ, Liu CS, Hu YH. SagE induces highly effective protective immunity against Streptococcus iniae mainly through an immunogenic domain in the extracellular region. Acta Vet Scand 2013; 55:78. [PMID: 24215645 PMCID: PMC3829104 DOI: 10.1186/1751-0147-55-78] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus iniae is a Gram-positive bacterium and a severe pathogen of a wide range of farmed fish. S. iniae possesses a virulence-associated streptolysin S cluster composed of several components, one of which is SagE. SagE a transmembrane protein with one major extracellular region named ECR. This study aimed to develop a SagE-based DNA candidate vaccine against streptococcosis and examine the immunoprotective mechanism of the vaccine. Results We constructed a DNA vaccine, pSagE, based on the sagE gene and examined its immunological property in a Japanese flounder (Paralichthys olivaceus) model. The results showed that at 7 days post-vaccination, expression of SagE at transcription and translation levels was detected in the tissues of the vaccinated fish. After challenge with S. iniae at one and two months post-vaccination, pSagE-vaccinated fish exhibited relative percent survival (RPS) of 95% and 88% respectively. Immunological analysis showed that (i) pSagE significantly upregulated the expression of a wide range of immune genes, (ii) pSagE induced the production of specific serum antibodies that bound whole-cell S. iniae, and (iii) treatment of S. iniae with pSagE-induced antibodies blocked bacterial invasion of host cells. To localize the immunoprotective domain of SagE, the ECR-expressing DNA vaccine pSagEECR was constructed. Immunization analysis showed that flounder vaccinated with pSagEECR exhibited a RPS of 68%, and that pSagEECR induced serum antibody production and immune gene expression in a manner similar to, though to lower magnitudes than, those induced by pSagE. Conclusions We in this study developed a DNA vaccine, pSagE, which induces highly protective immunity against S. iniae. The protective effect of pSagE is probably due to its ability to elicit systemic immune response, in particular that of the humoral branch, which leads to production of specific serum antibodies that impair bacterial infection. These results add insights to the immunoprotective mechanism of fish DNA vaccine.
Collapse
|
20
|
Asam D, Mauerer S, Walheim E, Spellerberg B. Identification of β-haemolysin-encoding genes inStreptococcus anginosus. Mol Oral Microbiol 2013; 28:302-15. [DOI: 10.1111/omi.12026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 11/30/2022]
Affiliation(s)
- D. Asam
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| | - S. Mauerer
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| | | | - B. Spellerberg
- Institute of Medical Microbiology and Hospital Hygiene; University of Ulm; Ulm; Germany
| |
Collapse
|
21
|
Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J Invest Dermatol 2013; 133:2152-60. [PMID: 23337890 PMCID: PMC3745799 DOI: 10.1038/jid.2013.21] [Citation(s) in RCA: 457] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/19/2012] [Accepted: 12/03/2012] [Indexed: 01/13/2023]
Abstract
The human skin microbiome plays important roles in skin health and
disease. However, bacterial population structure and diversity at the strain
level is poorly understood. We compared the skin microbiome at the strain level
and genome level of Propionibacterium acnes, a dominant skin
commensal, between 49 acne patients and 52 healthy individuals by sampling the
pilosebaceous units on their noses. Metagenomic analysis demonstrated that while
the relative abundances of P. acnes were similar, the strain
population structures were significantly different in the two cohorts. Certain
strains were highly associated with acne and other strains were enriched in
healthy skin. By sequencing 66 previously unreported P. acnes
strains and comparing 71 P. acnes genomes, we identified
potential genetic determinants of various P. acnes strains in
association with acne or health. Our analysis suggests that acquired DNA
sequences and bacterial immune elements may play roles in determining virulence
properties of P. acnes strains and some could be future targets
for therapeutic interventions. This study demonstrates a previously unreported
paradigm of commensal strain populations that could explain the pathogenesis of
human diseases. It underscores the importance of strain level analysis of the
human microbiome to define the role of commensals in health and disease.
Collapse
|
22
|
Novel twin streptolysin S-like peptides encoded in the sag operon homologue of beta-hemolytic Streptococcus anginosus. J Bacteriol 2013; 195:1090-9. [PMID: 23292771 DOI: 10.1128/jb.01344-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus anginosus is a member of the anginosus group streptococci, which form part of the normal human oral flora. In contrast to the pyogenic group streptococci, our knowledge of the virulence factors of the anginosus group streptococci, including S. anginosus, is not sufficient to allow a clear understanding of the basis of their pathogenicity. Generally, hemolysins are thought to be important virulence factors in streptococcal infections. In the present study, a sag operon homologue was shown to be responsible for beta-hemolysis in S. anginosus strains by random gene knockout. Interestingly, contrary to pyogenic group streptococci, beta-hemolytic S. anginosus was shown to have two tandem sagA homologues, encoding streptolysin S (SLS)-like peptides, in the sag operon homologue. Gene deletion and complementation experiments revealed that both genes were functional, and these SLS-like peptides were essential for beta-hemolysis in beta-hemolytic S. anginosus. Furthermore, the amino acid sequence of these SLS-like peptides differed from that of the typical SLS of S. pyogenes, especially in their propeptide domain, and an amino acid residue indicated to be important for the cytolytic activity of SLS in S. pyogenes was deleted in both S. anginosus homologues. These data suggest that SLS-like peptides encoded by two sagA homologues in beta-hemolytic S. anginosus may be potential virulence factors with a different structure essential for hemolytic activity and/or the maturation process compared to the typical SLS present in pyogenic group streptococci.
Collapse
|
23
|
Richards VP, Zadoks RN, Pavinski Bitar PD, Lefébure T, Lang P, Werner B, Tikofsky L, Moroni P, Stanhope MJ. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis. BMC Microbiol 2012; 12:293. [PMID: 23244770 PMCID: PMC3541175 DOI: 10.1186/1471-2180-12-293] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/06/2012] [Indexed: 11/18/2022] Open
Abstract
Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern, as it highlights the possibility for continued acquisition of human virulence factors for this emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sun Y, Hu YH, Liu CS, Sun L. Construction and comparative study of monovalent and multivalent DNA vaccines against Streptococcus iniae. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1303-10. [PMID: 23063784 DOI: 10.1016/j.fsi.2012.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 05/12/2023]
Abstract
Streptococcus iniae is an important fish pathogen with a broad host range that includes both marine and freshwater fish species. With an aim to develop effective vaccines against S. iniae, we in this study constructed three monovalent DNA vaccines, i.e., pSagF, pSagG, and pSagI, based on sagF, G, and I, which are components of the streptolysin S cluster. The immunoprotective potentials of these vaccines were examined in a model of Japanese flounder (Paralichthys olivaceus). The results showed that following intramuscular administration, the vaccine plasmids were transported to spleen, kidney, and liver, where the vaccine-encoding transgenes were expressed. Immunocolloidal gold electron microscopy detected production of the vaccine protein in fish vaccinated with each of the vaccine plasmids. Following lethal-dose S. iniae challenge, pSagF-, pSagG-, and pSagI-vaccinated fish exhibited relative percent of survival (RPS) rates of 78%, 65%, and 76% respectively. To examine whether multivalent vaccines composed of different combinations of monovalent vaccines would produce better protections, flounder were vaccinated with FG (pSagF plus pSagG), FI (pSagF plus pSagG), or FGI (pSagF plus pSagG and pSagI). Subsequent challenging study showed that the RPS rates of the fish vaccinated with the divalent and trivalent vaccines were 4%-17% and 13%-26% respectively higher than those of the fish vaccinated with the component monovalent vaccines. Furthermore, FGI exhibited a strong cross protection against both serotype I and serotype II S. iniae, apparently due to, as revealed by sequence analysis, the existence of highly conserved SagF, SagG, and SagI homologs in these serotypes. Immunological analysis showed that all vaccines induced (i) specific serum antibody production, (ii) enhanced complement-mediated bactericidal activity, and (iii) significant induction of a wide range of immune genes. However, the levels of gene expression and serum bactericidal activity induced by FGI were in general more potent than those induced by monovalent vaccines. Taken together, these results indicate that the DNA vaccines based on sagF, G, and I, especially when they are formulated as multivalent vaccines, are highly efficacious against S. iniae infection.
Collapse
Affiliation(s)
- Yun Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | |
Collapse
|
25
|
Abstract
Streptococcus iniae causes systemic infection characterized by meningitis and sepsis. Here, we report a larval zebrafish model of S. iniae infection. Injection of wild-type S. iniae into the otic vesicle induced a lethal infection by 24 h postinfection. In contrast, an S. iniae mutant deficient in polysaccharide capsule (cpsA mutant) was not lethal, with greater than 90% survival at 24 h postinfection. Live imaging demonstrated that both neutrophils and macrophages were recruited to localized otic infection with mutant and wild-type S. iniae and were able to phagocytose bacteria. Depletion of neutrophils and macrophages impaired host survival following infection with wild-type S. iniae and the cpsA mutant, suggesting that leukocytes are critical for host survival in the presence of both the wild-type and mutant bacteria. However, zebrafish larvae with impaired neutrophil function but normal macrophage function had increased susceptibility to wild-type bacteria but not the cpsA mutant. Taking these findings together, we have developed a larval zebrafish model of S. iniae infection and have found that although neutrophils are important for controlling infection with wild-type S. iniae, neutrophils are not necessary for host defense against the cpsA mutant.
Collapse
|
26
|
Boone TJ, Tyrrell GJ. Identification of genes affecting expression of phosphoglycerate kinase on the surface of group B streptococcus. Can J Microbiol 2012; 58:433-41. [PMID: 22444251 DOI: 10.1139/w2012-015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Group B streptococcal phosphoglycerate kinase (GBS-PGK), a glycolytic enzyme, has previously been identified on the surface of group B streptococcus (GBS). To identify genes involved in surface expression of GBS-PGK, we performed Tn917 mutagenesis followed by quantification of PGK expressed on the GBS surface. Tn917 mutagenesis identified 4 genes (sag0966, sag0979, sag0980, and sag1003) that when disrupted, alter expression of GBS-PGK on the bacterial surface. Three of the identified genes were localized to a region of the GBS genome containing genes (sag0973-sag0977) predicted to be involved in resistance to antimicrobial peptides. One mutant isolate, designated NCS13sag1003::Tn917, was found to have increased sensitivity to the antimicrobial peptides bacitracin and nisin. In addition, all of the mutant strains assayed were found to have decreased β-hemolysis. In conclusion, we have identified genes involved in surface expression of GBS-PGK. These genes also appear to be involved in antimicrobial peptide resistance and regulate expression of the β-hemolysin.
Collapse
Affiliation(s)
- Tyler J Boone
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
27
|
Molloy EM, Cotter PD, Hill C, Mitchell DA, Ross RP. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 2011; 9:670-81. [PMID: 21822292 DOI: 10.1038/nrmicro2624] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Streptolysin S (SLS) is a potent cytolytic toxin and virulence factor that is produced by nearly all Streptococcus pyogenes strains. Despite a 100-year history of research on this toxin, it has only recently been established that SLS is just one of an extended family of post-translationally modified virulence factors (the SLS-like peptides) that are produced by some streptococci and other Gram-positive pathogens, such as Listeria monocytogenes and Clostridium botulinum. In this Review, we describe the identification, genetics, biochemistry and various functions of SLS. We also discuss the shared features of the virulence-associated SLS-like peptides, as well as their place within the rapidly expanding family of thiazole/oxazole-modified microcins (TOMMs).
Collapse
Affiliation(s)
- Evelyn M Molloy
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
28
|
González-Contreras A, Magariños B, Godoy M, Irgang R, Toranzo AE, Avendaño-Herrera R. Surface properties of Streptococcus phocae strains isolated from diseased Atlantic salmon, Salmo salar L. JOURNAL OF FISH DISEASES 2011; 34:203-215. [PMID: 21306587 DOI: 10.1111/j.1365-2761.2010.01228.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Streptococcus phocae is an emerging pathogen for Chilean Atlantic salmon, Salmo salar, but the factors determining its virulence are not yet elucidated. In this work, cell surface-related properties such as hydrophobicity and haemagglutination, adhesion to mucus and cell lines, capsule detection, survival and biofilm formation in skin mucus and serum resistance of the isolates responsible for outbreaks in Atlantic salmon and seals were examined. Adhesion to hydrocarbons and the results of salt aggregation tests indicated most of the S. phocae were strongly hydrophobic. All isolates exhibited a similar ability to attach to the Chinook salmon embryo (CHSE) cells line, but were not able to enter CHSE cells. Haemagglutination was not detected. Our data clearly indicate that S. phocae can resist the killing activity of mucus and serum and proliferate in them, which could be associated with the presence of a capsular layer around the cells. Pathogenicity studies using seal and fish isolates demonstrated mortality or pathological signs in fish injected only with the Atlantic salmon isolate. No mortalities or histopathological alterations were observed in fish injected with extracellular products.
Collapse
Affiliation(s)
- A González-Contreras
- Departamento de Ciencias Biológicas, Universidad Andres Bello, Viña del Mar, Chile
| | | | | | | | | | | |
Collapse
|
29
|
Sumitomo T, Nakata M, Higashino M, Jin Y, Terao Y, Fujinaga Y, Kawabata S. Streptolysin S contributes to group A streptococcal translocation across an epithelial barrier. J Biol Chem 2010; 286:2750-61. [PMID: 21084306 DOI: 10.1074/jbc.m110.171504] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Group A Streptococcus pyogenes (GAS) is a human pathogen that causes local suppurative infections and severe invasive diseases. Systemic dissemination of GAS is initiated by bacterial penetration of the epithelial barrier of the pharynx or damaged skin. To gain insight into the mechanism by which GAS penetrates the epithelial barrier, we sought to identify both bacterial and host factors involved in the process. Screening of a transposon mutant library of a clinical GAS isolate recovered from an invasive episode allowed identification of streptolysin S (SLS) as a novel factor that facilitates the translocation of GAS. Of note, the wild type strain efficiently translocated across the epithelial monolayer, accompanied by a decrease in transepithelial electrical resistance and cleavage of transmembrane junctional proteins, including occludin and E-cadherin. Loss of integrity of intercellular junctions was inhibited after infection with a deletion mutant of the sagA gene encoding SLS, as compared with those infected with the wild type strain. Interestingly, following GAS infection, calpain was recruited to the plasma membrane along with E-cadherin. Moreover, bacterial translocation and destabilization of the junctions were partially inhibited by a pharmacological calpain inhibitor or genetic interference with calpain. Our data indicate a potential function of SLS that facilitates GAS invasion into deeper tissues via degradation of epithelial intercellular junctions in concert with the host cysteine protease calpain.
Collapse
Affiliation(s)
- Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Streptococcus iniae is an emerging zoonotic pathogen; such infections generally occur through injuries associated with preparing whole fresh fish for cooking. Those infected to date have been of Asian descent, are usually elderly (average age 68 years), and have had >/=1 underlying conditions that may predispose them to infection. Studies of the foundations of growth characteristics of S. iniae and its interactions with piscine host cells have recently been complemented by molecular studies. Advances in molecular biology have allowed research groups to identify numerous virulence factors and to explore their roles in the progression of S. iniae infection. Many of these virulence factors are homologous to those found in the major human pathogen S. pyogenes. An increased understanding of the properties of these factors and their effect on the success of infection is leading to novel approaches to control S. iniae infection; in particular, vaccination programs at fish farms have reduced the reservoir of infection for additional clinical cases.
Collapse
Affiliation(s)
- Justice C F Baiano
- The University of Queensland, Aquatic Animal Health Laboratory, Centre for Marine Studies, St. Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
31
|
Lin A, Loughman JA, Zinselmeyer BH, Miller MJ, Caparon MG. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun 2009; 77:5190-201. [PMID: 19687200 PMCID: PMC2772533 DOI: 10.1128/iai.00420-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/24/2009] [Accepted: 08/10/2009] [Indexed: 11/20/2022] Open
Abstract
In contrast to infection of superficial tissues, Streptococcus pyogenes infection of deeper tissue can be associated with a significantly diminished inflammatory response, suggesting that this bacterium has the ability to both promote and suppress inflammation. To examine this, we analyzed the behavior of an S. pyogenes mutant deficient in expression of the cytolytic toxin streptolysin S (SLS-) and evaluated events that occur during the first few hours of infection by using several models including injection of zebrafish (adults, larvae, and embryos), a transepithelial polymorphonuclear leukocyte (PMN) migration assay, and two-photon microscopy of mice in vivo. In contrast to wild-type S. pyogenes, the SLS- mutant was associated with the robust recruitment of neutrophils and significantly reduced lethal myositis in adult zebrafish. Similarly, the mutant was attenuated in embryos in its ability to cause lethality. Infection of larva muscle allowed an analysis of inflammation in real time, which revealed that the mutant had recruited PMNs to the infection site. Analysis of transepithelial migration in vitro suggested that SLS inhibited the host cells' production of signals chemotactic for neutrophils, which contrasted with the proinflammatory effect of an unrelated cytolytic toxin, streptolysin O. Using two-photon microscopy of mice in vivo, we showed that the extravasation of neutrophils during infection with SLS- mutant bacteria was significantly accelerated compared to infection with wild-type S. pyogenes. Taken together, these data support a role for SLS in the inhibition of neutrophil recruitment during the early stages of S. pyogenes infection.
Collapse
Affiliation(s)
- Ada Lin
- Department of Pediatrics, Department of Pathology and Immunology, Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110-1093
| | - Jennifer A. Loughman
- Department of Pediatrics, Department of Pathology and Immunology, Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110-1093
| | - Bernd H. Zinselmeyer
- Department of Pediatrics, Department of Pathology and Immunology, Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110-1093
| | - Mark J. Miller
- Department of Pediatrics, Department of Pathology and Immunology, Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110-1093
| | - Michael G. Caparon
- Department of Pediatrics, Department of Pathology and Immunology, Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110-1093
| |
Collapse
|
32
|
Milani CJE, Aziz RK, Locke JB, Dahesh S, Nizet V, Buchanan JT. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. MICROBIOLOGY-SGM 2009; 156:543-554. [PMID: 19762441 DOI: 10.1099/mic.0.028365-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aquatic zoonotic pathogen Streptococcus iniae represents a threat to the worldwide aquaculture industry and poses a risk to humans who handle raw fish. Because little is known about the mechanisms of S. iniae pathogenesis or virulence factors, we established a high-throughput system combining whole-genome pyrosequencing and transposon mutagenesis that allowed us to identify virulence proteins, including Pdi, the polysaccharide deacetylase of S. iniae, that we describe here. Using bioinformatics tools, we identified a highly conserved signature motif in Pdi that is also conserved in the peptidoglycan deacetylase PgdA protein family. A Deltapdi mutant was attenuated for virulence in the hybrid striped bass model and for survival in whole fish blood. Moreover, Pdi was found to promote bacterial resistance to lysozyme killing and the ability to adhere to and invade epithelial cells. On the other hand, there was no difference in the autolytic potential, resistance to oxidative killing or resistance to cationic antimicrobial peptides between S. iniae wild-type and Deltapdi. In conclusion, we have demonstrated that pdi is involved in S. iniae adherence and invasion, lysozyme resistance and survival in fish blood, and have shown that pdi plays a role in the pathogenesis of S. iniae. Identification of Pdi and other S. iniae virulence proteins is a necessary initial step towards the development of appropriate preventive and therapeutic measures against diseases and economic losses caused by this pathogen.
Collapse
Affiliation(s)
- Carlo J E Milani
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Ramy K Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Jeffrey B Locke
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Samira Dahesh
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - Victor Nizet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, MC 0657, La Jolla, CA 92093-0657, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| | - John T Buchanan
- Aqua Bounty Technologies, 8395 Camino Santa Fe, Suite E, San Diego, CA 92121, USA.,Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, MC 0687, La Jolla, CA 92093-0687, USA
| |
Collapse
|
33
|
Mitchell DA, Lee SW, Pence MA, Markley AL, Limm JD, Nizet V, Dixon JE. Structural and functional dissection of the heterocyclic peptide cytotoxin streptolysin S. J Biol Chem 2009; 284:13004-12. [PMID: 19286651 PMCID: PMC2676033 DOI: 10.1074/jbc.m900802200] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human pathogen Streptococcus pyogenes secretes a highly
cytolytic toxin known as streptolysin S (SLS). SLS is a key virulence
determinant and responsible for the β-hemolytic phenotype of these
bacteria. Despite over a century of research, the chemical structure of SLS
remains unknown. Recent experiments have revealed that SLS is generated from
an inactive precursor peptide that undergoes extensive post-translational
modification to an active form. In this work, we address outstanding questions
regarding the SLS biosynthetic process, elucidating the features of substrate
recognition and sites of posttranslational modification to the SLS precursor
peptide. Further, we exploit these findings to guide the design of artificial
cytolytic toxins that are recognized by the SLS biosynthetic enzymes and
others that are intrinsically cytolytic. This new structural information has
ramifications for future antimicrobial therapies.
Collapse
Affiliation(s)
- Douglas A Mitchell
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Strain-associated virulence factors of Streptococcus iniae in hybrid-striped bass. Vet Microbiol 2008; 131:145-53. [DOI: 10.1016/j.vetmic.2008.02.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/24/2008] [Accepted: 02/26/2008] [Indexed: 11/18/2022]
|
35
|
Locke JB, Aziz RK, Vicknair MR, Nizet V, Buchanan JT. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS One 2008; 3:e2824. [PMID: 18665241 PMCID: PMC2483786 DOI: 10.1371/journal.pone.0002824] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 06/17/2008] [Indexed: 12/21/2022] Open
Abstract
Background Streptococcus iniae is a significant pathogen in finfish aquaculture, though knowledge of virulence determinants is lacking. Through pyrosequencing of the S. iniae genome we have identified two gene homologues to classical surface-anchored streptococcal virulence factors: M-like protein (simA) and C5a peptidase (scpI). Methodology/Principal Findings S. iniae possesses a Mga-like locus containing simA and a divergently transcribed putative mga-like regulatory gene, mgx. In contrast to the Mga locus of group A Streptococcus (GAS, S. pyogenes), scpI is located distally in the chromosome. Comparative sequence analysis of the Mgx locus revealed only one significant variant, a strain with an insertion frameshift mutation in simA and a deletion mutation in a region downstream of mgx, generating an ORF which may encode a second putative mga-like gene, mgx2. Allelic exchange mutagenesis of simA and scpI was employed to investigate the potential role of these genes in S. iniae virulence. Our hybrid striped bass (HSB) and zebrafish models of infection revealed that M-like protein contributes significantly to S. iniae pathogenesis whereas C5a peptidase-like protein does not. Further, in vitro cell-based analyses indicate that SiMA, like other M family proteins, contributes to cellular adherence and invasion and provides resistance to phagocytic killing. Attenuation in our virulence models was also observed in the S. iniae isolate possessing a natural simA mutation. Vaccination of HSB with the ΔsimA mutant provided 100% protection against subsequent challenge with a lethal dose of wild-type (WT) S. iniae after 1,400 degree days, and shows promise as a target for live attenuated vaccine development. Conclusions/Significance Analysis of M-like protein and C5a peptidase through allelic replacement revealed that M-like protein plays a significant role in S. iniae virulence, and the Mga-like locus, which may regulate expression of this gene, has an unusual arrangement. The M-like protein mutant created in this research holds promise as live-attenuated vaccine.
Collapse
Affiliation(s)
- Jeffrey B. Locke
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
| | - Ramy K. Aziz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mike R. Vicknair
- Kent SeaTech Corporation, San Diego, California, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Center for Marine Biotechnology & Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - John T. Buchanan
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Aqua Bounty Technologies, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Abstract
Bacteriocins represent a large family of ribosomally produced peptide antibiotics. Here we describe the discovery of a widely conserved biosynthetic gene cluster for the synthesis of thiazole and oxazole heterocycles on ribosomally produced peptides. These clusters encode a toxin precursor and all necessary proteins for toxin maturation and export. Using the toxin precursor peptide and heterocycle-forming synthetase proteins from the human pathogen Streptococcus pyogenes, we demonstrate the in vitro reconstitution of streptolysin S activity. We provide evidence that the synthetase enzymes, as predicted from our bioinformatics analysis, introduce heterocycles onto precursor peptides, thereby providing molecular insight into the chemical structure of streptolysin S. Furthermore, our studies reveal that the synthetase exhibits relaxed substrate specificity and modifies toxin precursors from both related and distant species. Given our findings, it is likely that the discovery of similar peptidic toxins will rapidly expand to existing and emerging genomes.
Collapse
|
37
|
Bolotin S, Fuller JD, Bast DJ, de Azavedo JCS. The two-component system sivS/R regulates virulence in Streptococcus iniae. ACTA ACUST UNITED AC 2008; 51:547-54. [PMID: 17991014 DOI: 10.1111/j.1574-695x.2007.00334.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Streptococcus iniae causes invasive disease and death in fish, and to a lesser extent, sporadic cases of soft-tissue infections in humans. A two-component system termed sivS/R, which regulates capsule expression, was previously identified and characterized. In this study, it is shown that a sivS/R deletion-insertion mutant, termed 9117Deltasiv, causes transient bacteremia and reduced virulence compared with the parent strain when tested in a murine model of bacteremic infection. Furthermore, real-time PCR studies indicated that SivS/R regulates the expression levels of the streptolysin S structural gene, sagA, as well as the CAMP factor gene, cfi. Sodium dodecyl sulphate polyacrylamide gel electrophoresis of S. iniae spheroplasts revealed downregulation of three surface proteins in the mutant strain compared with the parent strain. These proteins were identified by MS to be a putative lipoprotein, a hyaluronate-associated protein and a pyruvate kinase. This study demonstrates that SivS/R regulates virulence in vivo, and controls the expression of a number of genes in S. iniae.
Collapse
Affiliation(s)
- Shelly Bolotin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | |
Collapse
|
38
|
Microcyclamide biosynthesis in two strains of Microcystis aeruginosa: from structure to genes and vice versa. Appl Environ Microbiol 2008; 74:1791-7. [PMID: 18245249 DOI: 10.1128/aem.02392-07] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparative analysis of related biosynthetic gene clusters can provide new insights into the versatility of these pathways and allow the discovery of new natural products. The freshwater cyanobacterium Microcystis aeruginosa NIES298 produces the cytotoxic peptide microcyclamide. Here, we provide evidence that the cyclic hexapeptide is formed by a ribosomal pathway through the activity of a set of processing enzymes closely resembling those recently shown to be involved in patellamide biosynthesis in cyanobacterial symbionts of ascidians. Besides two subtilisin-type proteases and a heterocyclization enzyme, the gene cluster discovered in strain NIES298 encodes six further open reading frames, two of them without similarity to enzymes encoded by the patellamide gene cluster. Analyses of genomic data of a second cyanobacterial strain, M. aeruginosa PCC 7806, guided the discovery and structural elucidation of two novel peptides of the microcyclamide family. The identification of the microcyclamide biosynthetic genes provided an avenue by which to study the regulation of peptide synthesis at the transcriptional level. The precursor genes were strongly and constitutively expressed throughout the growth phase, excluding the autoinduction of these peptides, as has been observed for several peptide pheromone families in bacteria.
Collapse
|
39
|
Eyngor M, Chilmonczyk S, Zlotkin A, Manuali E, Lahav D, Ghittino C, Shapira R, Hurvitz A, Eldar A. Transcytosis ofStreptococcus iniaethrough skin epithelial barriers: anin vitrostudy. FEMS Microbiol Lett 2007; 277:238-48. [DOI: 10.1111/j.1574-6968.2007.00973.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Bolotin S, Fuller JD, Bast DJ, Beveridge TJ, de Azavedo JCS. Capsule expression regulated by a two-component signal transduction system in Streptococcus iniae. ACTA ACUST UNITED AC 2007; 50:366-74. [PMID: 17537179 DOI: 10.1111/j.1574-695x.2007.00261.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus iniae causes disease in fish and humans and the presence of capsule is associated with virulence. Tn917 transposon mutagenesis was performed to identify capsule-associated genes and a mutant was isolated, with an insertion in a genetic locus encoding a two-component signal transduction system (TCS), which we termed sivS/R. sivS and sivR encode a 506-amino-acid (aa) putative histidine kinase and a 223-aa putative response regulator, respectively. In order to investigate the role of sivS/R, a deletion-insertion mutant was constructed using a PCR ligation technique. Real-time PCR showed that transcription of cpsA, the first gene in the S. iniae capsule operon, was reduced in the mutant, indicating that sivS/R regulates expression of this gene at the transcriptional level. Whole human blood killing assays demonstrated that unlike the parent, the mutant was susceptible to phagocytosis. Transmission electron microscopy showed exopolysaccharide on the surface of the parent strain but not the mutant which showed aberrant asymmetric septae that resulted in clumps of abnormal-shaped cells. Exponential growth rates of the mutant and parent strain were similar, although the mutant exhibited a longer lag phase. We conclude that sivS/R regulates capsule expression, thus affecting the ability to evade phagocytosis.
Collapse
Affiliation(s)
- Shelly Bolotin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | |
Collapse
|
41
|
Lowe BA, Miller JD, Neely MN. Analysis of the polysaccharide capsule of the systemic pathogen Streptococcus iniae and its implications in virulence. Infect Immun 2006; 75:1255-64. [PMID: 17194809 PMCID: PMC1828557 DOI: 10.1128/iai.01484-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic pathogens have developed numerous strategies for evading the defenses of the host, permitting dissemination and multiplication in various tissues. One means of survival in the host, particularly in the bloodstream, has been attributed to the ability to avoid phagocytosis via capsular polysaccharide. To further define the virulence capacity of Streptococcus iniae, a zoonotic pathogen with the ability to cause severe systemic disease in both fish and humans, we performed an analysis of the capsule locus. The initial analysis included cloning and sequencing of the capsule synthesis operon, which revealed an approximately 21-kb region that is highly homologous to capsule operons of other streptococci. A genetic comparison of S. iniae virulent strain 9117 and commensal strain 9066 revealed that the commensal strain does not have the central region of the capsule operon composed of several important capsule synthesis genes. Four 9117 insertion or deletion mutants with mutations in the beginning, middle, or end of the capsule locus were analyzed to determine their capsule production and virulence. Virulence profiles were analyzed for each mutant using three separate criteria, which demonstrated the attenuation of each mutant in several tissue environments. These analyses also provided insight into the different responses of the host to each mutant strain compared to a wild-type infection. Our results demonstrate that capsule is not required for all host environments, while excess capsule is also not optimal, suggesting that for an "ideal" systemic infection, capsule production is most likely regulated while the bacterium is in different environments of the host.
Collapse
Affiliation(s)
- Beth A Lowe
- Wayne State School of Medicine, Department of Immunology and Microbiology, 540 E. Canfield, Detroit, MI 48201, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Ingolf F Nes
- Laboratory of Microbial Gene Technology, Norwegian University of Life Sciences, N-1432 As, Norway.
| | | | | |
Collapse
|
43
|
Locke JB, Colvin KM, Datta AK, Patel SK, Naidu NN, Neely MN, Nizet V, Buchanan JT. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J Bacteriol 2006; 189:1279-87. [PMID: 17098893 PMCID: PMC1797360 DOI: 10.1128/jb.01175-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Surface capsular polysaccharides play a critical role in protecting several pathogenic microbes against innate host defenses during infection. Little is known about virulence mechanisms of the fish pathogen Streptococcus iniae, though indirect evidence suggests that capsule could represent an important factor. The putative S. iniae capsule operon contains a homologue of the cpsD gene, which is required for capsule polymerization and export in group B Streptococcus and Streptococcus pneumoniae. To elucidate the role of capsule in the S. iniae infectious process, we deleted cpsD from the genomes of two virulent S. iniae strains by allelic exchange mutagenesis to generate the isogenic capsule-deficient DeltacpsD strains. Compared to wild-type S. iniae, the DeltacpsD mutants had a predicted reduction in buoyancy and cell surface negative charge. Transmission electron microscopy confirmed a decrease in the abundance of extracellular capsular polysaccharide. Gas-liquid chromatography-mass spectrometry analysis of the S. iniae extracellular polysaccharides showed the presence of l-fucose, d-mannose, d-galactose, d-glucose, d-glucuronic acid, N-acetyl-d-galactosamine, and N-acetyl-d-glucosamine, and all except mannose were reduced in concentration in the isogenic mutant. The DeltacpsD mutants were highly attenuated in vivo in a hybrid striped bass infection challenge despite being more adherent and invasive to fish epithelial cells and more resistant to cationic antimicrobial peptides than wild-type S. iniae. Increased susceptibility of the S. iniae DeltacpsD mutants to phagocytic killing in whole fish blood and by a fish macrophage cell line confirmed the role of capsule in virulence and highlighted its antiphagocytic function. In summary, we report a genetically defined study on the role of capsule in S. iniae virulence and provide preliminary analysis of S. iniae capsular polysaccharide sugar components.
Collapse
Affiliation(s)
- Jeffrey B Locke
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sudek S, Haygood MG, Youssef DTA, Schmidt EW. Structure of trichamide, a cyclic peptide from the bloom-forming cyanobacterium Trichodesmium erythraeum, predicted from the genome sequence. Appl Environ Microbiol 2006; 72:4382-7. [PMID: 16751554 PMCID: PMC1489667 DOI: 10.1128/aem.00380-06] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene cluster for the biosynthesis of a new small cyclic peptide, dubbed trichamide, was discovered in the genome of the global, bloom-forming marine cyanobacterium Trichodesmium erythraeum ISM101 because of striking similarities to the previously characterized patellamide biosynthesis cluster. The tri cluster consists of a precursor peptide gene containing the amino acid sequence for mature trichamide, a putative heterocyclization gene, an oxidase, two proteases, and hypothetical genes. Based upon detailed sequence analysis, a structure was predicted for trichamide and confirmed by Fourier transform mass spectrometry. Trichamide consists of 11 amino acids, including two cysteine-derived thiazole groups, and is cyclized by an N C terminal amide bond. As the first natural product reported from T. erythraeum, trichamide shows the power of genome mining in the prediction and discovery of new natural products.
Collapse
Affiliation(s)
- Sebastian Sudek
- Scripps Institution of Oceanography, University of California--San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
45
|
Salim KY, Cvitkovitch DG, Chang P, Bast DJ, Handfield M, Hillman JD, de Azavedo JCS. Identification of group A Streptococcus antigenic determinants upregulated in vivo. Infect Immun 2005; 73:6026-38. [PMID: 16113323 PMCID: PMC1231132 DOI: 10.1128/iai.73.9.6026-6038.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group A Streptococcus (GAS) causes a range of diseases in humans, from mild noninvasive infections to severe invasive infections. The molecular basis for the varying severity of disease remains unclear. We identified genes expressed during invasive disease using in vivo-induced antigen technology (IVIAT), applied for the first time in a gram-positive organism. Convalescent-phase sera from patients with invasive disease were pooled, adsorbed against antigens derived from in vitro-grown GAS, and used to screen a GAS genomic expression library. A murine model of invasive GAS disease was included as an additional source of sera for screening. Sequencing DNA inserts from clones reactive with both human and mouse sera indicated 16 open reading frames with homology to genes involved in metabolic activity to genes of unknown function. Of these, seven genes were assessed for their differential expression by quantitative real-time PCR both in vivo, utilizing a murine model of invasive GAS disease, and in vitro at different time points of growth. Three gene products-a putative penicillin-binding protein 1A, a putative lipoprotein, and a conserved hypothetical protein homologous to a putative translation initiation inhibitor in Vibrio vulnificus-were upregulated in vivo, suggesting that these genes play a role during invasive disease.
Collapse
Affiliation(s)
- Kowthar Y Salim
- Department of Microbiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Facklam R, Elliott J, Shewmaker L, Reingold A. Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J Clin Microbiol 2005; 43:933-7. [PMID: 15695711 PMCID: PMC548108 DOI: 10.1128/jcm.43.2.933-937.2005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven reference strains and seven clinical isolates of Streptococcus iniae, submitted to the Centers for Disease Control and Prevention Streptococcus Reference Laboratory between 2001 and 2004, were successfully identified by a conventional identification system. The seven randomly submitted clinical isolates were sensitive to beta-lactams, macrolides, quinolones, and vancomycin. Two of the seven clinical isolates were resistant to tetracycline. All seven strains grew well and multiplied in a phagocytosis assay. One of the seven randomly submitted strains was more similar to the type strain of S. iniae than to the other six strains. The latter six strains were similar if not identical to representative strains from a cluster of disease in Canada (M. R. Weinstein et al., N. Engl. J. Med. 337:589-594, 1997).
Collapse
Affiliation(s)
- Richard Facklam
- Streptococcus Laboratory, Centers for Disease Control & Prevention, Atlanta, GA 30333 USA.
| | | | | | | |
Collapse
|
47
|
Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J. Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci U S A 2005; 102:7315-20. [PMID: 15883371 PMCID: PMC1091749 DOI: 10.1073/pnas.0501424102] [Citation(s) in RCA: 427] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prochloron spp. are obligate cyanobacterial symbionts of many didemnid family ascidians. It has been proposed that the cyclic peptides of the patellamide class found in didemnid extracts are synthesized by Prochloron spp., but studies in which host and symbiont cells are separated and chemically analyzed to identify the biosynthetic source have yielded inconclusive results. As part of the Prochloron didemni sequencing project, we identified patellamide biosynthetic genes and confirmed their function by heterologous expression of the whole pathway in Escherichia coli. The primary sequence of patellamides A and C is encoded on a single ORF that resembles a precursor peptide. We propose that this prepatellamide is heterocyclized to form thiazole and oxazoline rings, and the peptide is cleaved to yield the two cyclic patellamides, A and C. This work represents the full sequencing and functional expression of a marine natural-product pathway from an obligate symbiont. In addition, a related cluster was identified in Trichodesmium erythraeum IMS101, an important bloom-forming cyanobacterium.
Collapse
Affiliation(s)
- Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Miller JD, Neely MN. Large-scale screen highlights the importance of capsule for virulence in the zoonotic pathogen Streptococcus iniae. Infect Immun 2005; 73:921-34. [PMID: 15664934 PMCID: PMC546978 DOI: 10.1128/iai.73.2.921-934.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Zoonotic pathogens have the unique ability to cross the species barrier, causing disease in both humans and specific animal hosts. Streptococcus iniae is a zoonotic pathogen of both fish and humans, and the clinical presentations of S. iniae infections in fish and humans are very similar to those caused by various human-specific streptococcal pathogens. Virulence mechanisms required for infection by this pathogen of either host have yet to be determined. Using the previously reported zebrafish infectious disease model, we performed a large-scale screening to determine genes required for systemic infection. Screening 1,128 signature-tagged transposon mutants through the zebrafish model allowed identification of 41 potential mutants that were unable to survive within the host environment. Greater than 50% of the mutants that could be identified through homology searches were highly homologous to genes found in other human-specific streptococcal pathogens, while 32% were found to have no homology to any sequences found in the databases, suggesting as yet unknown gram-positive bacterial virulence factors. A large percentage of the insertions were found to be located in several putative capsule synthesis genes, an important virulence component for other systemic pathogens. Density gradient assays demonstrated that several of these putative capsule mutants have dissimilar buoyant densities, suggesting different levels of capsule synthesis. Putative capsule mutants were also less resistant to phagocytosis in whole-blood assays than wild-type S. iniae. Our initial large-scale characterization of S. iniae virulence highlights the importance of the capsule for successful infection.
Collapse
Affiliation(s)
- Jesse D Miller
- Department of Immunology and Microbiology, Wayne State School of Medicine, 540 East Canfield Ave., Detroit, MI 48201, USA
| | | |
Collapse
|
49
|
Datta V, Myskowski SM, Kwinn LA, Chiem DN, Varki N, Kansal RG, Kotb M, Nizet V. Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection. Mol Microbiol 2005; 56:681-95. [PMID: 15819624 DOI: 10.1111/j.1365-2958.2005.04583.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark beta-haemolytic phenotype produced by GAS. The nine-gene GAS locus (sagA-sagI) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, in-frame allelic exchange mutagenesis and single-gene complementation, we show sagA, sagB, sagC, sagD, sagE, sagF and sagG are each individually required for SLS production, and that sagE may further serve an immunity function. Limited site-directed mutagenesis of specific amino acids in the SagA prepropeptide supports the designation of SLS as a bacteriocin-like toxin. No significant pleotrophic effects of sagA deletion were observed on M protein, capsule or cysteine protease production. In a murine model of NF, the SLS-negative M1T1 GAS mutant was markedly diminished in its ability to produce necrotic skin ulcers and spread to the systemic circulation. The SLS toxin impaired phagocytic clearance and promoted epithelial cell cytotoxicity, the latter phenotype being enhanced by the effects of M protein and streptolysin O. We conclude that all genetic components of the sag operon are required for expression of functional SLS, an important virulence factor in the pathogenesis of invasive M1T1 GAS infection.
Collapse
Affiliation(s)
- Vivekanand Datta
- Department of Pediatrics, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
May JP, Walker CA, Maskell DJ, Slater JD. Development of an in vivo Himar1transposon mutagenesis system for use in Streptococcus equisubsp. equi. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09782.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|