1
|
Espiritu HM, Valete EJP, Mamuad LL, Jung M, Paik MJ, Lee SS, Cho YI. Metabolic Footprint of Treponema phagedenis and Treponema pedis Reveals Potential Interaction Towards Community Succession and Pathogenesis in Bovine Digital Dermatitis. Pathogens 2024; 13:796. [PMID: 39338987 PMCID: PMC11435060 DOI: 10.3390/pathogens13090796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Bovine digital dermatitis (BDD) is a cattle infection causing hoof lesions and lameness, with treponemes as key pathogens. We analyzed the metabolic activity of Treponema phagedenis and Treponema pedis using gas chromatography-mass spectrometry for organic acids (OAs), amino acids (AAs), and fatty acids (FAs), and high-performance liquid chromatography for short-chain fatty acids (SCFAs). Key findings include a 61.5% reduction in pyruvic acid in T. pedis and 81.0% in T. phagedenis. 2-hydroxybutyric acid increased by 493.8% in T. pedis, while succinic acid increased by 31.3%, potentially supporting T. phagedenis. Among AAs, glycine was reduced by 97.4% in T. pedis but increased by 64.1% in T. phagedenis. Proline increased by 76.6% in T. pedis but decreased by 13.6% in T. phagedenis. Methionine and glutamic acid were competitively utilized, with methionine reduced by 41.8% in T. pedis and 11.9% in T. phagedenis. Both species showed significant utilization of palmitic acid (reduced by 82.8% in T. pedis and 87.2% in T. phagedenis). Butyric acid production increased by 620.2% in T. phagedenis, and propionic acid increased by 932.8% in T. pedis and 395.6% in T. phagedenis. These reveal metabolic interactions between the pathogens, contributing to disease progression and offering insights to BDD pathogenesis.
Collapse
Affiliation(s)
- Hector M. Espiritu
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Edeneil Jerome P. Valete
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Lovelia L. Mamuad
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Myunghwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongsangnam-do, Republic of Korea;
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea;
| | - Sang-Suk Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| | - Yong-Il Cho
- Department of Animal Science and Technology, Sunchon National University, Suncheon-si 57922, Jeollanam-do, Republic of Korea; (H.M.E.); (E.J.P.V.); (L.L.M.); (S.-S.L.)
| |
Collapse
|
2
|
Mukherjee S, Chopra A, Karmakar S, Bhat SG. Periodontitis increases the risk of gastrointestinal dysfunction: an update on the plausible pathogenic molecular mechanisms. Crit Rev Microbiol 2024:1-31. [PMID: 38602474 DOI: 10.1080/1040841x.2024.2339260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Periodontitis is an immuno-inflammatory disease of the soft tissues surrounding the teeth. Periodontitis is linked to many communicable and non-communicable diseases such as diabetes, cardiovascular disease, rheumatoid arthritis, and cancers. The oral-systemic link between periodontal disease and systemic diseases is attributed to the spread of inflammation, microbial products and microbes to distant organ systems. Oral bacteria reach the gut via swallowed saliva, whereby they induce gut dysbiosis and gastrointestinal dysfunctions. Some periodontal pathogens like Porphyromonas. gingivalis, Klebsiella, Helicobacter. Pylori, Streptococcus, Veillonella, Parvimonas micra, Fusobacterium nucleatum, Peptostreptococcus, Haemophilus, Aggregatibacter actinomycetomcommitans and Streptococcus mutans can withstand the unfavorable acidic, survive in the gut and result in gut dysbiosis. Gut dysbiosis increases gut inflammation, and induce dysplastic changes that lead to gut dysfunction. Various studies have linked oral bacteria, and oral-gut axis to various GIT disorders like inflammatory bowel disease, liver diseases, hepatocellular and pancreatic ductal carcinoma, ulcerative colitis, and Crohn's disease. Although the correlation between periodontitis and GIT disorders is well established, the intricate molecular mechanisms by which oral microflora induce these changes have not been discussed extensively. This review comprehensively discusses the intricate and unique molecular and immunological mechanisms by which periodontal pathogens can induce gut dysbiosis and dysfunction.
Collapse
Affiliation(s)
- Sayantan Mukherjee
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Subraya Giliyar Bhat
- Department of Preventive Dental Sciences, Division of Periodontology, College of Dental Surgery, Iman Abdulrahman Bin Faizal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Goriuc A, Cojocaru KA, Luchian I, Ursu RG, Butnaru O, Foia L. Using 8-Hydroxy-2'-Deoxiguanosine (8-OHdG) as a Reliable Biomarker for Assessing Periodontal Disease Associated with Diabetes. Int J Mol Sci 2024; 25:1425. [PMID: 38338704 PMCID: PMC10855048 DOI: 10.3390/ijms25031425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, research has shown that oxidative stress plays a significant role in chronic inflammatory conditions. The alteration of the oxidant/antioxidant balance leads to the appearance of free radicals, important molecules involved in both diabetes mellitus and periodontal disease. Diabetes is considered to be one of the major risk factors of periodontal disease and the inflammation characterizing this condition is associated with oxidative stress, implicitly resulting in oxidative damage to DNA. 8-Hydroxydeoxyguanosine (8-OHdG) is the most common stable product of oxidative DNA damage caused by reactive oxygen species, and its levels have been reported to increase in body fluids and tissues during inflammatory conditions. 8-OHdG emerges as a pivotal biomarker for assessing oxidative DNA damage, demonstrating its relevance across diverse health conditions, including neurodegenerative disorders, cancers, inflammatory conditions, and periodontal disease. Continued research in this field is crucial for developing more precise treatments and understanding the detailed link between oxidative stress and the progression of periodontitis. The use of the 8-OHdG biomarker in assessing and managing chronic periodontitis is an area of increased interest in dental research, with the potential to provide crucial information for diagnosis and treatment.
Collapse
Affiliation(s)
- Ancuta Goriuc
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Karina-Alexandra Cojocaru
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania
| | - Ramona-Garbriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania;
| | - Liliana Foia
- Department of Biochemistry, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iasi, Romania; (A.G.); (K.-A.C.); (L.F.)
| |
Collapse
|
4
|
Gonzalez OA, Kirakodu SS, Ebersole JL. DAMPs and alarmin gene expression patterns in aging healthy and diseased mucosal tissues. FRONTIERS IN ORAL HEALTH 2023; 4:1320083. [PMID: 38098978 PMCID: PMC10720672 DOI: 10.3389/froh.2023.1320083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Periodontitis is delineated by a dysbiotic microbiome at sites of lesions accompanied by a dysregulated persistent inflammatory response that undermines the integrity of the periodontium. The interplay of the altered microbial ecology and warning signals from host cells would be a critical feature for maintaining or re-establishing homeostasis in these tissues. Methods This study used a nonhuman primate model (Macaca mulatta) with naturally-occurring periodontitis (n = 34) and experimental ligature-induced periodontitis (n = 36) to describe the features of gene expression for an array of damage-associate molecular patterns (DAMPs) or alarmins within the gingival tissues. The animals were age stratified into: ≤3 years (Young), 7-12 years (Adolescent), 12-15 years (Adult) and 17-23 years (Aged). Gingival tissue biopsies were examined via microarray. The analysis focused on 51 genes representative of the DAMPs/alarmins family of host cell warning factors and 18 genes associated with tissue destructive processed in the gingival tissues. Bacterial plaque samples were collected by curette sampling and 16S rRNA gene sequences used to describe the oral microbiome. Results A subset of DAMPs/alarmins were expressed in healthy and naturally-occurring periodontitis tissues in the animals and suggested local effects on gingival tissues leading to altered levels of DAMPs/alarmins related to age and disease. Significant differences from adult healthy levels were most frequently observed in the young and adolescent animals with few representatives in this gene array altered in the healthy aged gingival tissues. Of the 51 target genes, only approximately ⅓ were altered by ≥1.5-fold in any of the age groups of animals during disease, with those increases observed during disease initiation. Distinctive positive and negative correlations were noted with the DAMP/alarmin gene levels and comparative expression changes of tissue destructive molecules during disease across the age groups. Finally, specific correlations of DAMP/alarmin genes and relative abundance of particular microbes were observed in health and resolution samples in younger animals, while increased correlations during disease in the older groups were noted. Conclusions Thus, using this human-like preclinical model of induced periodontitis, we demonstrated the dynamics of the activation of the DAMP/alarmin warning system in the gingival tissues that showed some specific differences based on age.
Collapse
Affiliation(s)
- O. A. Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - S. S. Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, United States
| | - J. L. Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
5
|
Dumitrescu DG, Hatzios SK. Emerging roles of low-molecular-weight thiols at the host-microbe interface. Curr Opin Chem Biol 2023; 75:102322. [PMID: 37201290 PMCID: PMC10524283 DOI: 10.1016/j.cbpa.2023.102322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host-microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.
Collapse
Affiliation(s)
- Daniel G Dumitrescu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA
| | - Stavroula K Hatzios
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, 06520, USA; Department of Chemistry, Yale University, New Haven, CT, 06520, USA; Microbial Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
6
|
Kim JH, Ko GP, Son KH, Ku BH, Bang MA, Kang MJ, Park HY. Arazyme in combination with dietary carbohydrolases influences odor emission and gut microbiome in growing-finishing pigs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157735. [PMID: 35926625 DOI: 10.1016/j.scitotenv.2022.157735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/13/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the effects of supplementing feed with arazyme and dietary carbohydrolases derived from invertebrate gut-associated symbionts on the noxious gas emissions, gut microbiota, and host-microbiome interactions of pigs. Here, 270 and 260 growing pigs were assigned to control and treatment groups, respectively. The tested feed additives contained a mixture of arazyme (2,500,000 Unit/kg) and synergetic enzymes, xylanase (200,000 Unit/kg) and mannanase (200,000 Unit/kg), derived from insect gut-associated symbionts in a 7.5:1:1 ratio. The control group was fed a basal diet and the treatment group was fed the basal diet supplemented with 0.1 % enzyme mixture (v/v) for 2 months. Odorous gases were monitored in ventilated air from tested houses. Fecal samples were collected from steel plate under the cage at the completion of the experiment to determine chemical composition, odor emissions, and bacterial communities. There was a significant decrease in the concentration of NH3 (22.5 vs. 11.2 ppm; P < 0.05), H2S (7.35 vs. 3.74 ppm; P < 0.05), trimethylamine (TMA) (0.066 vs. 0.001 ppm; P < 0.05), and p-cresol (0.004 ppm vs. 0 ppm; P < 0.05) at 56 d in treatment group compared with the control group. Moreover, fecal analysis results showed that exogenous enzyme supplementation caused a reduction in VFAs and indole content with approximately >60 % and 72.7 %, respectively. The result of gas emission analysis showed that NH3 (9.9 vs. 5.3 ppm; P < 0.05) and H2S (5.8 vs. 4.1 ppm; P < 0.05) were significantly reduced in the treatment group compared to the control group. The gut microbiota of the treatment group differed significantly from that of the control group, and the treatment group altered predicted metabolic pathways, including sulfur and nitrogen related metabolism, urea degradation. The results demonstrated that supplementing feed with arazyme with dietary carbohydrolases effectively controls noxious gas emissions and improves health and meat quality of pigs.
Collapse
Affiliation(s)
- Jong-Hoon Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Gwang-Pyo Ko
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Son
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Bon-Hwan Ku
- Insect Biotech Co. Ltd., Daejeon 34054, Republic of Korea
| | - Mi-Ae Bang
- Department of Animal Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Man-Jong Kang
- Department of Food Industry Research Center, Jeonnam Bioindustry Foundation, Naju 58275, Republic of Korea.
| | - Ho-Yong Park
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
7
|
Wu DD, Ngowi EE, Zhai YK, Wang YZ, Khan NH, Kombo AF, Khattak S, Li T, Ji XY. Role of Hydrogen Sulfide in Oral Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1886277. [PMID: 35116090 PMCID: PMC8807043 DOI: 10.1155/2022/1886277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Oral diseases are among the most common human diseases yet less studied. These diseases affect both the physical, mental, and social health of the patients resulting in poor quality of life. They affect all ages, although severe stages are mostly observed in older individuals. Poor oral hygiene, genetics, and environmental factors contribute enormously to the development and progression of these diseases. Although there are available treatment options for these diseases, the recurrence of the diseases hinders their efficiency. Oral volatile sulfur compounds (VSCs) are highly produced in oral cavity as a result of bacteria activities. Together with bacteria components such as lipopolysaccharides, VSCs participate in the progression of oral diseases by regulating cellular activities and interfering with the immune response. Hydrogen sulfide (H2S) is a gaseous neurotransmitter primarily produced endogenously and is involved in the regulation of cellular activities. The gas is also among the VSCs produced by oral bacteria. In numerous diseases, H2S have been reported to have dual effects depending on the cell, concentration, and donor used. In oral diseases, high production and subsequent utilization of this gas have been reported. Also, this high production is associated with the progression of oral diseases. In this review, we will discuss the production of H2S in oral cavity, its interaction with cellular activities, and most importantly its role in oral diseases.
Collapse
Affiliation(s)
- Dong-Dong Wu
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Yuan-Kun Zhai
- School of Stomatology, Henan University, Kaifeng, Henan 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, Henan 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ahmad Fadhil Kombo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
8
|
González-Bacerio J, Izquierdo M, Aguado ME, Varela AC, González-Matos M, Del Rivero MA. Using microbial metalo-aminopeptidases as targets in human infectious diseases. MICROBIAL CELL 2021; 8:239-246. [PMID: 34692819 PMCID: PMC8485470 DOI: 10.15698/mic2021.10.761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/13/2022]
Abstract
Several microbial metalo-aminopeptidases are emerging as novel targets for the treatment of human infectious diseases. Some of them are well validated as targets and some are not; some are essential enzymes and others are important for virulence and pathogenesis. For another group, it is not clear if their enzymatic activity is involved in the critical functions that they mediate. But one aspect has been established: they display relevant roles in bacteria and protozoa that could be targeted for therapeutic purposes. This work aims to describe these biological functions for several microbial metalo-aminopeptidases.
Collapse
Affiliation(s)
- Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba.,Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
9
|
Belkacemi S, Tidjani Alou M, Khelaifia S, Raoult D. A review of in vitro attempts to develop the axenic culture of Treponema pallidum and genomics-based suggestions to achieve this elusive goal. J Med Microbiol 2021; 70. [PMID: 34328411 DOI: 10.1099/jmm.0.001388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To date, the axenic culture of Treponema pallidum remains a challenge in the field of microbiology despite countless attempts. Here, we conducted a comprehensive bibliographic analysis using several databases and search engines, namely Pubmed, Google scholar, Google, Web of Science and Scopus. Numerous unsuccessful empiric studies have been conducted and evaluated using as criteria dark-field microscopic observation of motile spiral shaped cells in the culture and virulence of the culture through rabbit infectivity. All of these studies failed to induce rabbit infectivity, even when deemed positive after microscopic observation leading to the misnomer of avirulent T. pallidum. In fact, this criterion was improperly chosen because not all spiral shaped cells are T. pallidum. However, these studies led to the formulation of culture media particularly favourable to the growth of several species of Treponema, including Oral Microbiology and Immunology, Zürich medium (OMIZ), Oral Treponeme Enrichment Broth (OTEB) and T-Raoult, thus allowing the increase in the number of cultivable strains of Treponema. The predicted metabolic capacities of T. pallidum show limited metabolism, also exhibited by other non-cultured and pathogenic Treponema species, in contrast to cultured Treponema species. The advent of next generation sequencing represents a turning point in this field, as the knowledge inferred from the genome can finally lead to the axenic culture of T. pallidum.
Collapse
Affiliation(s)
- Souad Belkacemi
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Maryam Tidjani Alou
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Saber Khelaifia
- Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection 19-21 Boulevard Jean Moulin 13005, Marseille, France
| |
Collapse
|
10
|
Ku JWK, Gan YH. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol 2021; 44:102012. [PMID: 34090244 PMCID: PMC8182430 DOI: 10.1016/j.redox.2021.102012] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Low molecular weight (LMW) thiols contain reducing sulfhydryl groups that are important for maintaining antioxidant defense in the cell. Aside from the traditional roles of LMW thiols as redox regulators in bacteria, glutathione (GSH) has been reported to affect virulence and bacterial pathogenesis. The role of GSH in virulence is diverse, including the activation of virulence gene expression and contributing to optimal biofilm formation. GSH can also be converted to hydrogen sulfide (H2S) which is important for the pathogenesis of certain bacteria. Besides GSH, some bacteria produce other LMW thiols such as mycothiol and bacillithiol that affect bacterial virulence. We discuss these newer reported functions of LMW thiols modulating bacterial pathogenesis either directly or indirectly and via modulation of the host immune system.
Collapse
Affiliation(s)
- Joanne Wei Kay Ku
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore.
| |
Collapse
|
11
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
12
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
13
|
Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D. Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 2020; 62:102170. [PMID: 32044394 PMCID: PMC7153967 DOI: 10.1016/j.anaerobe.2020.102170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yimin Wu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
14
|
Maurer A, Leisinger F, Lim D, Seebeck FP. Structure and Mechanism of Ergothionase fromTreponema denticola. Chemistry 2019; 25:10298-10303. [DOI: 10.1002/chem.201901866] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/21/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alice Maurer
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian Leisinger
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - David Lim
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| | - Florian P. Seebeck
- Department for ChemistryUniversity of Basel Mattenstrasse 24a Basel 4002 Switzerland
| |
Collapse
|
15
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola. Curr Top Microbiol Immunol 2017; 415:39-62. [PMID: 29026924 DOI: 10.1007/82_2017_66] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Collapse
|
17
|
Großhennig S, Ischebeck T, Gibhardt J, Busse J, Feussner I, Stülke J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol Microbiol 2016; 100:42-54. [PMID: 26711628 DOI: 10.1111/mmi.13300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2015] [Indexed: 11/27/2022]
Abstract
Mycoplasma pneumoniae is a human pathogen causing atypical pneumonia with a minimalized and highly streamlined genome. So far, hydrogen peroxide production, cytadherence, and the ADP-ribosylating CARDS toxin have been identified as pathogenicity determinants. We have studied haemolysis caused by M. pneumoniae, and discovered that hydrogen peroxide is responsible for the oxidation of heme, but not for lysis of erythrocytes. This feature could be attributed to hydrogen sulfide, a compound that has previously not been identified as virulence factor in lung pathogens. Indeed, we observed hydrogen sulfide production by M. pneumoniae. The search for a hydrogen sulfide-producing enzyme identified HapE, a protein with similarity to cysteine desulfurases. In contrast to typical cysteine desulfurases, HapE is a bifunctional enzyme: it has both the cysteine desulfurase activity to produce alanine and the cysteine desulfhydrase activity to produce pyruvate and hydrogen sulfide. Experiments with purified HapE showed that the enzymatic activity of the protein is responsible for haemolysis, demonstrating that HapE is a novel potential virulence factor of M. pneumoniae.
Collapse
Affiliation(s)
- Stephanie Großhennig
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany
| | - Johannes Gibhardt
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Julia Busse
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute, Justus-von-Liebig Weg 11, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077, Göttingen, Germany
| |
Collapse
|
18
|
Greabu M, Totan A, Miricescu D, Radulescu R, Virlan J, Calenic B. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review. Antioxidants (Basel) 2016; 5:antiox5010003. [PMID: 26805896 PMCID: PMC4808752 DOI: 10.3390/antiox5010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022] Open
Abstract
In the past years, biomedical research has recognized hydrogen sulfide (H₂S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H₂S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H₂S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases.
Collapse
Affiliation(s)
- Maria Greabu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Alexandra Totan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Daniela Miricescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Radu Radulescu
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Justina Virlan
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| | - Bogdan Calenic
- Dental Medicine Faculty, Biochemistry Department, University of Medicine and Pharmacy CAROL DAVILA, 8 Blvd EroilorSanitari, sect.5, 050474 Bucharest, Romania.
| |
Collapse
|
19
|
Öngöz Dede F, Bozkurt Doğan Ş, Balli U, Avci B, Durmuşlar MC, Baratzade T. Glutathione levels in plasma, saliva and gingival crevicular fluid after periodontal therapy in obese and normal weight individuals. J Periodontal Res 2016; 51:726-734. [PMID: 26740476 DOI: 10.1111/jre.12349] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE The purpose of this study was to investigate the effects of obesity on reduced and oxidized glutathione (GSH and GSSG) levels in the gingival crevicular fluid, plasma and saliva of patients with chronic periodontitis and to evaluate the changes after nonsurgical periodontal therapy. MATERIAL AND METHODS The study included 60 patients: 30 patients with chronic periodontitis (15 obese patients and 15 normal weight patients) and 30 healthy control subjects (15 obese patients and 15 normal weight patients). Gingival crevicular fluid, plasma and saliva samples were collected, and clinical periodontal measurements were recorded at baseline and at the first month after periodontal therapy from patients with chronic periodontitis. GSH and GSSG levels were analyzed with spectrophotometry. RESULTS The GSH levels in the plasma, saliva and gingival crevicular fluid in obese individuals with chronic periodontitis were lower than in normal weight individuals at baseline (p < 0.01). There was a significant difference in the GSH/GSSG ratio in plasma and gingival crevicular fluid between the obese and normal weight groups at baseline (p < 0.01). The GSH levels in plasma, gingival crevicular fluid and saliva were significantly increased in both chronic periodontitis groups after nonsurgical periodontal therapy (p < 0.01). A significant positive correlation was found between GSH levels in saliva, plasma and gingival crevicular fluid in all groups (p < 0.001). CONCLUSIONS The study revealed that obesity in patients with chronic periodontitis is associated with decreased GSH levels and the GSH/GSSG ratio. Moreover, nonsurgical periodontal therapy may be helpful for improvement in glutathione values in obese and normal weight individuals with chronic periodontitis.
Collapse
Affiliation(s)
- F Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Bülent Ecevit University, Zonguldak, Turkey
| | - Ş Bozkurt Doğan
- Department of Periodontology, Faculty of Dentistry, Bülent Ecevit University, Zonguldak, Turkey
| | - U Balli
- Department of Periodontology, Faculty of Dentistry, Bülent Ecevit University, Zonguldak, Turkey
| | - B Avci
- Department of Biochemistry, Faculty of Medicine, Ondokuzmayis University, Samsun, Turkey
| | - M C Durmuşlar
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Bülent Ecevit University, Zonguldak, Turkey
| | - T Baratzade
- Department of Biochemistry, Faculty of Medicine, Ondokuzmayis University, Samsun, Turkey
| |
Collapse
|
20
|
Savita AM, Sarun E, Arora S, Krishnan S. Evaluation of glutathione level in gingival crevicular fluid in periodontal health, in chronic periodontitis and after nonsurgical periodontal therapy: A clinicobiochemical study. Contemp Clin Dent 2015; 6:206-10. [PMID: 26097356 PMCID: PMC4456743 DOI: 10.4103/0976-237x.156047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
CONTEXT Periodontitis is predominantly due to exaggerated host response to pathogenic microorganisms and their products which causes an imbalance between the reactive oxygen species-antioxidant in gingival crevicular fluid (GCF). Glutathione is an important redox regulator in GCF and maintenance of stable reduced glutathione (GSH):oxidized glutathione (GSSG) ratio is essential for periodontal health. AIMS The present study was undertaken to evaluate and compare the level of glutathione and redox balance (GSH: GSSG ratio) in GCF of chronic periodontitis patients, periodontally healthy controls and also to evaluate the effect of nonsurgical periodontal therapy on the level of glutathione and redox balance during 3 months postoperative visit. STUDY DESIGN Baseline GCF samples were collected from 20 chronic periodontitis patients and 20 periodontally healthy subjects for GSH and GSSG levels estimation. Periodontitis patients were recalled 3 months postnonsurgical periodontal therapy to re-sample GCF. MATERIALS AND METHODS GSH and GSSG levels were measured by high-performance liquid chromatography. The values were statistically analyzed by Paired t-test. RESULTS The mean GSH and GSSG values in GCF were found to be significantly lower in periodontitis patients pre- and 3 months post-nonsurgical periodontal therapy, compared with those in the control group subjects. In addition, the successful nonsurgical therapy even though leading to a significant improvement in the GSH and GSSG levels, does not restore glutathione concentration to the levels seen in healthy subjects. CONCLUSION Successful nonsurgical periodontal therapy leads to significant improvement in the redox balance (GSH: GSSG ratio) in chronic periodontitis patients.
Collapse
Affiliation(s)
- A M Savita
- Department of Periodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, Karnataka, India
| | - E Sarun
- Royal Multi Speciality Dental Clinic, Kannur, Kerala, India
| | | | - Swathi Krishnan
- Department of Periodontics, Dayananda Sagar College of Dental Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Liu LY, McGregor N, Wong BKJ, Butt H, Darby IB. The association between clinical periodontal parameters and free haem concentration within the gingival crevicular fluid: a pilot study. J Periodontal Res 2015; 51:86-94. [DOI: 10.1111/jre.12286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Affiliation(s)
- L. Y. Liu
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| | - N. McGregor
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
- BioScreen Medical; Parkville Vic. Australia
| | - B. K. J. Wong
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| | - H. Butt
- BioScreen Medical; Parkville Vic. Australia
| | - I. B. Darby
- Melbourne Dental School; The University of Melbourne; Melbourne Vic. Australia
| |
Collapse
|
22
|
Vorwerk H, Mohr J, Huber C, Wensel O, Schmidt-Hohagen K, Gripp E, Josenhans C, Schomburg D, Eisenreich W, Hofreuter D. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol Microbiol 2014; 93:1224-45. [PMID: 25074326 DOI: 10.1111/mmi.12732] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2014] [Indexed: 12/12/2022]
Abstract
The non-glycolytic food-borne pathogen Campylobacter jejuni successfully colonizes the intestine of various hosts in spite of its restricted metabolic properties. While several amino acids are known to be used by C. jejuni as energy sources, none of these have been found to be essential for growth. Here we demonstrated through phenotype microarray analysis that cysteine utilization increases the metabolic activity of C. jejuni. Furthermore, cysteine was crucial for its growth as C. jejuni was unable to synthesize it from sulphate or methionine. Our study showed that C. jejuni compensates this limited anabolic capacity by utilizing sulphide, thiosulphate, glutathione and the dipeptides γGlu-Cys, Cys-Gly and Gly-Cys as sulphur sources and cysteine precursors. A panel of C. jejuni mutants in putative peptidases and peptide transporters were generated and tested for their participation in the catabolism of the cysteine-containing peptides, and the predicted transporter protein CJJ81176_0236 was discovered to facilitate the growth with the dipeptide Cys-Gly, Ile-Arg and Ile-Trp. It was named Campylobacter peptide transporter A (CptA) and is the first representative of the oligopeptide transporter OPT family demonstrated to participate in the glutathione-derivative Cys-Gly catabolism in prokaryotes. Our study provides new insights into how host- and microbiota-derived substrates like sulphide, thiosulphate and short peptides are used by C. jejuni to compensate its restricted metabolic capacities.
Collapse
Affiliation(s)
- Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Song ZJ, Ng MY, Lee ZW, Dai W, Hagen T, Moore PK, Huang D, Deng LW, Tan CH. Hydrogen sulfide donors in research and drug development. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00362k] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review summarized most of the H2S donors such as inorganic compounds, natural products, anethole trithione derivatives and synthetic compounds used in research and drug development. These special bioactivities provided us some effective strategies for antiphlogosis, cancer therapy, cardiovascular protection and so on.
Collapse
Affiliation(s)
- Zhi Jian Song
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Mei Ying Ng
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Zheng-Wei Lee
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Weilu Dai
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Thilo Hagen
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Philip K. Moore
- Department of Pharmacology
- National University of Singapore
- Singapore
| | - Dejian Huang
- Department of Chemistry
- National University of Singapore
- Singapore
| | - Lih-Wen Deng
- Department of Biochemistry
- National University of Singapore
- Singapore
| | - Choon-Hong Tan
- Division of Chemistry & Biological Chemistry
- School of Physical & Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
24
|
Morris D, Khurasany M, Nguyen T, Kim J, Guilford F, Mehta R, Gray D, Saviola B, Venketaraman V. Glutathione and infection. Biochim Biophys Acta Gen Subj 2013; 1830:3329-49. [DOI: 10.1016/j.bbagen.2012.10.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/10/2012] [Accepted: 10/12/2012] [Indexed: 01/16/2023]
|
25
|
Karim S, Pratibha PK, Kamath S, Bhat GS, Kamath U, Dutta B, Sharma N, Archana B, Bhat KM, Guddattu V. Superoxide dismutase enzyme and thiol antioxidants in gingival crevicular fluid and saliva. Dent Res J (Isfahan) 2012; 9:266-72. [PMID: 23087730 PMCID: PMC3469891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The possibility of impaired antioxidant status and so increased oxidative damage in periodontal disease is being conjectured. The present randomized controlled study was carried out with the objective of analyzing the activity of superoxide dismutase enzyme and thiol antioxidants in gingival crevicular fluid (GCF) and saliva as indicators of response to periodontal therapy. MATERIALS AND METHODS SUBJECTS WERE SCREENED AND RANDOMLY DIVIDED INTO THREE GROUPS: 23 periodontally healthy controls, 24 with gingivitis, and 23 with periodontitis. Based on the clinical attachment levels, the periodontitis group was further divided into subgroups, including mild, moderate, and severe periodontitis. GCF and saliva samples were collected for estimation of superoxide dismutase and thiol antioxidant concentrations at baseline and 15 days after nonsurgical treatment. Intragroup comparisons were statistically analyzed using repeated measures analysis of covariance (P value <0.05). RESULTS Superoxide dismutase was present in greater quantities in the GCF compartment (100.32±3.67 U/0.5 mL) than in saliva (39.99±3.52 U/0.5 mL), with elevated levels in mild and moderate subgroups as compared with severe periodontitis. Thiol concentrations were comparable in these media, 14.43±1.57 micromol /L in GCF and 15.09±2.26 micromol/L in saliva. Following treatment, superoxide dismutase and thiol antioxidant concentrations significantly improved in all the patient groups. CONCLUSION The reduction of the inflammatory response following therapy resulted in improved antioxidant profiles in both the GCF and salivary compartments.
Collapse
Affiliation(s)
- Shermin Karim
- Department of Periodontics, Annoor Dental College, Muvattupuzha, Ernakulam District, Kerala, India
| | - P. K. Pratibha
- Department of Periodontics, Manipal College of Dental Sciences, Manipal University, Manipal, India
| | - Shobha Kamath
- Department of Biochemistry, Kasturba Medical College, Manipal, India
| | - G. Subraya Bhat
- Department of Periodontics, Manipal College of Dental Sciences, Manipal University, Manipal, India
| | - Ullas Kamath
- Department of Biochemistry, Melaka Medical College, Manipal, India
| | - Babi Dutta
- Department of Biochemistry and Genetics, Kasturba Medical College – International Centre, Manipal, India
| | - Naveen Sharma
- Department of Neurosurgery, Laboratory of Cerebro-Vascular laboratory, Chonbuk National University Medical School, Jeonju, South Korea
| | - B. Archana
- Department of Biochemistry, Kasturba Medical College, Manipal, India
| | - K. Mahalinga Bhat
- Department of Periodontics, Manipal College of Dental Sciences, Manipal University, Manipal, India
| | | |
Collapse
|
26
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
27
|
Dashper SG, Seers CA, Tan KH, Reynolds EC. Virulence factors of the oral spirochete Treponema denticola. J Dent Res 2010; 90:691-703. [PMID: 20940357 DOI: 10.1177/0022034510385242] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is compelling evidence that treponemes are involved in the etiology of several chronic diseases, including chronic periodontitis as well as other forms of periodontal disease. There are interesting parallels with other chronic diseases caused by treponemes that may indicate similar virulence characteristics. Chronic periodontitis is a polymicrobial disease, and recent animal studies indicate that co-infection of Treponema denticola with other periodontal pathogens can enhance alveolar bone resorption. The bacterium has a suite of molecular determinants that could enable it to cause tissue damage and subvert the host immune response. In addition to this, it has several non-classic virulence determinants that enable it to interact with other pathogenic bacteria and the host in ways that are likely to promote disease progression. Recent advances, especially in molecular-based methodologies, have greatly improved our knowledge of this bacterium and its role in disease.
Collapse
Affiliation(s)
- S G Dashper
- Cooperative Research Centre for Oral Health, Melbourne Dental School and Bio21 Institute, The University of Melbourne, 720 Swanston Street, Victoria 3010, Australia
| | | | | | | |
Collapse
|
28
|
Zhang JH, Dong Z, Chu L. Hydrogen sulfide induces apoptosis in human periodontium cells. J Periodontal Res 2010; 45:71-8. [DOI: 10.1111/j.1600-0765.2009.01202.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Grant MM, Brock GR, Matthews JB, Chapple ILC. Crevicular fluid glutathione levels in periodontitis and the effect of non-surgical therapy. J Clin Periodontol 2010; 37:17-23. [DOI: 10.1111/j.1600-051x.2009.01504.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Chu L, Xu X, Su J, Song L, Lai Y, Dong Z, Cappelli D. Role of Aggregatibacter actinomycetemcomitans in glutathione catabolism. ACTA ACUST UNITED AC 2009; 24:236-42. [PMID: 19416454 DOI: 10.1111/j.1399-302x.2008.00501.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Our previous studies demonstrated that three enzymes, gamma-glutamyltransferase (GGT), cysteinylglycinase (CGase) and cystalysin, are required for the catabolism of glutathione to produce hydrogen sulfide (H(2)S) in Treponema denticola. In this study, we examined glutathione catabolism in Aggregatibacter actinomycetemcomitans. METHODS The GGT and CGase of A. actinomycetemcomitans were determined by biological methods and GGT was characterized using a molecular biological approach. RESULTS A. actinomycetemcomitans showed GGT and CGase activity, but could not produce H(2)S from glutathione. The addition of recombinant T. denticola cystalysin, an l-cysteine desulfhydrase, to whole cells of A. actinomycetemcomitans resulted in the production of H(2)S from glutathione. Subsequently, we cloned A. actinomycetemcomitans GGT gene (ggt) and overexpressed the 63 kDa GGT protein. The recombinant A. actinomycetemcomitans GGT was purified and identified. The K(cat)/K(m) of the recombinant GGT from N-gamma-l-glutamyl-4-nitroaniline as substrate was 31/microm/min. The activity of GGT was optimum at pH 6.9-7.1 and enhanced by thiol-containing compounds. CONCLUSION The results demonstrated that A. actinomycetemcomitans had GGT and CGase activities and that the GGT was characterized. The possible role of A. actinomycetemcomitans in glutathione metabolism and H(2)S production from oral bacteria was discussed.
Collapse
Affiliation(s)
- L Chu
- Department of Orthodontics, University of Texas Health Sciences Center, San Antonio, TX 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Tomofuji T, Irie K, Sanbe T, Azuma T, Ekuni D, Tamaki N, Yamamoto T, Morita M. Periodontitis and increase in circulating oxidative stress. JAPANESE DENTAL SCIENCE REVIEW 2009. [DOI: 10.1016/j.jdsr.2008.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
32
|
Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D. A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 2008; 283:19351-8. [PMID: 18482986 PMCID: PMC2443665 DOI: 10.1074/jbc.m801034200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/28/2008] [Indexed: 11/06/2022] Open
Abstract
The metabolism of glutathione by the periodontal pathogen Treponema denticola produces hydrogen sulfide, which may play a role in the host tissue destruction seen in periodontitis. H2S production in this organism has been proposed to occur via a three enzyme pathway, gamma-glutamyltransferase, cysteinylglycinase (CGase), and cystalysin. In this study, we describe the purification and characterization of T. denticola CGase. Standard approaches were used to purify a 52-kDa CGase activity from T. denticola, and high pressure liquid chromatography electrospray ionization tandem mass spectrometry analysis of this molecule showed that it matches the amino acid sequence of a predicted 52-kDa protein in the T. denticola genome data base. A recombinant version of this protein was overexpressed in and purified from Escherichia coli and shown to catalyze the hydrolysis of cysteinylglycine (Cys-Gly) with the same kinetics as the native protein. Surprisingly, because sequence homology indicates that this protein is a member of a family of metalloproteases called M17 leucine aminopeptidases, the preferred substrate for the T. denticola protein is Cys-Gly (k cat/Km of 8.2 microm(-1) min(-1)) not l-Leu-p-NA (k cat/Km of 1.1 microm(-1) min(-1)). The activity of CGase for Cys-Gly is optimum at pH 7.3 and is enhanced by Mn2+, Co2+, or Mg2+ but not by Zn2+ or Ca2+. Importantly, in combination with the two other previously purified T. denticola enzymes, gamma-glutamyltransferase and cystalysin, CGase mediates the in vitro degradation of glutathione into the expected end products, including H2S. These results prove that T. denticola contains the entire three-step pathway to produce H2S from glutathione, which may be important for pathogenesis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lai Y, Chu L. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola. Appl Environ Microbiol 2008; 74:73-9. [PMID: 17981934 PMCID: PMC2223203 DOI: 10.1128/aem.01972-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/25/2007] [Indexed: 01/08/2023] Open
Abstract
Treponema denticola, a periodontal pathogen, has recently been shown to exhibit properties of a facultative anaerobic spirochete, in contrast to its previous recognition as an obligate anaerobic bacterium. In this study, the capacity and possible mechanism of T. denticola survival and growth under aerobic conditions were investigated. Factors detrimental to the growth of T. denticola ATCC 33405, such as oxygen concentration and hydrogen sulfide (H(2)S) levels as well as the enzyme activities of gamma-glutamyltransferase, cysteinylglycinase, and cystalysin associated with the cells were monitored. The results demonstrated that T. denticola grew only at deeper levels of broth (>or=3 ml in a 10-ml tube), high inoculation ratios (>or=20% of culture in medium), and short cultivation times (
Collapse
Affiliation(s)
- Yanlai Lai
- Department of Orthodontics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
34
|
Barnes IH, Bagnall MC, Browning DD, Thompson SA, Manning G, Newell DG. Gamma-glutamyl transpeptidase has a role in the persistent colonization of the avian gut by Campylobacter jejuni. Microb Pathog 2007; 43:198-207. [PMID: 17600669 PMCID: PMC2778803 DOI: 10.1016/j.micpath.2007.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 05/15/2007] [Indexed: 01/12/2023]
Abstract
The contribution of gamma-glutamyl transpeptidase (GGT) to Campylobacter jejuni virulence and colonization of the avian gut has been investigated. The presence of the ggt gene in C. jejuni strains directly correlated with the expression of GGT activity as measured by cleavage and transfer of the gamma-glutamyl moiety. Inactivation of the monocistronic ggt gene in C. jejuni strain 81116 resulted in isogenic mutants with undetectable GGT activity; nevertheless, these mutants grew normally in vitro. However, the mutants had increased motility, a 5.4-fold higher invasion efficiency into INT407 cells in vitro and increased resistance to hydrogen peroxide stress. Moreover, the apoptosis-inducing activity of the ggt mutant was significantly lower than that of the parental strain. In vivo studies showed that, although GGT activity was not required for initial colonization of 1-day-old chicks, the enzyme was required for persistent colonization of the avian gut.
Collapse
Affiliation(s)
- If H.A. Barnes
- Veterinary Laboratories Agency (Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2100, USA
| | - Mary C. Bagnall
- Veterinary Laboratories Agency (Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Darren D. Browning
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2100, USA
| | - Stuart A. Thompson
- Department of Biochemistry & Molecular Biology, Medical College of Georgia, 1120 15th Street, Augusta, GA 30912-2100, USA
| | - Georgina Manning
- Veterinary Laboratories Agency (Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Diane G. Newell
- Veterinary Laboratories Agency (Weybridge), Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
- Corresponding author. Tel.: +44 1932357547; fax: +44 1932357268. (D.G. Newell)
| |
Collapse
|
35
|
Chapple ILC, Matthews JB. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol 2000 2007; 43:160-232. [PMID: 17214840 DOI: 10.1111/j.1600-0757.2006.00178.x] [Citation(s) in RCA: 549] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Iain L C Chapple
- Unit of Periodontology, The University of Birmingham School of Dentistry, Birmingham, UK
| | | |
Collapse
|
36
|
Cellini B, Montioli R, Bossi A, Bertoldi M, Laurents DV, Voltattorni CB. Holo- and apo-cystalysin from Treponema denticola: Two different conformations. Arch Biochem Biophys 2006; 455:31-9. [PMID: 17014820 DOI: 10.1016/j.abb.2006.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 08/21/2006] [Accepted: 08/21/2006] [Indexed: 11/21/2022]
Abstract
Cystalysin, the key virulence factor in the bacterium Treponema denticola responsible for periodontis, is a pyridoxal 5'-phosphate (PLP) enzyme which catalyzes, in addition to alpha,beta-elimination of L-cysteine, racemization and transamination of both enantiomers of alanine. In this paper several indicators have been used as probes of the different conformational status of T. denticola cystalysin in the holo and apo form. Compared to holoenzyme, the apoenzyme displays an altered reactivity of cysteine residues, a significantly different pI, and a differential susceptibility to proteinase K. The site of cleavage that is accessible in apocystalysin and masked in holocystalysin has been identified by mass spectrometry as the peptide bond between Phe 360 and Gly 361. This cleavage results in the loss of the C-terminal fragment corresponding to a molecular mass of 4289.21+/-0.1Da. The major fragment of cleaved enzyme retains its dimeric structure, binds the coenzyme with an affinity approximately 5000-fold lower than that of uncleaved holoenzyme, and in the reconstituted form is able to form the external aldimine with substrates. Although the break causes the loss of lyase, racemase and transaminase activities of D-alanine, it does not abolish the transaminase activity of L-alanine. Possible mechanistic and physiological implications are proposed.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Morfologico-Biomediche, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Strada Le Grazie 8, Universita di Verona, 37134 Verona, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Tsai CC, Chen HS, Chen SL, Ho YP, Ho KY, Wu YM, Hung CC. Lipid peroxidation: a possible role in the induction and progression of chronic periodontitis. J Periodontal Res 2005; 40:378-84. [PMID: 16105090 DOI: 10.1111/j.1600-0765.2005.00818.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Reactive oxygen species (ROS) are implicated in the destruction of the periodontium during inflammatory periodontal diseases. The imbalance in oxidant/antioxidant activity may be a key factor in the damaging effects of ROS. This study aimed to determine the lipid peroxidation levels in gingival crevicular fluid and saliva, and glutathione (GSH) and glutathione peroxidase (GPx) in saliva in patients with chronic periodontitis. METHODS Gingival crevicular fluid and saliva were collected from 13 patients and 9 healthy control subjects during the preliminary study, and from 21 patients during the subsequent study. Lipid peroxidation level, GSH level and GPx activity were determined by spectrophotometric assay. RESULTS The preliminary study found that when comparing patients to healthy controls, the gingival crevicular fluid samples produced the following results, respectively: higher lipid peroxidation concentration (microm) (by sites: 167.55 vs. 53.71, p < 0.0001; by subjects: 151.99 vs. 50.66, p < 0.005) and total amount (pmol) (by sites: 93.02 vs. 8.47, p < 0.0001, by subjects: 80.44 vs. 7.84, p < 0.0005). In saliva samples, lower GSH concentration (microm) (373.04 vs. 606.67, p < 0.05), higher lipid peroxidation concentration (microm) (0.66 vs. 0.13, p < 0.0005), and no difference in GPx activity were found in patients than in those of healthy controls. The subsequent study showed statistically significant (p < 0.05) improvement of clinical periodontal parameters (plaque index, gingival index, probing attachment level, probing pocket depth and gingival crevicular fluid volume), decreases in gingival crevicular fluid lipid peroxidation levels (concentration and total amount) at the sites after the completion of phase 1 periodontal treatment. Similarly, the periodontal treatment resulted in a significant decrease of lipid peroxidation concentrations (p < 0.05), increase in GSH concentration (p < 0.001), and no change in GPx activity in saliva samples. CONCLUSION The increased levels of lipid peroxidation may play a role in the inflammation and destruction of the periodontium in periodontitis.
Collapse
Affiliation(s)
- C C Tsai
- Graduate Institute of Dental Sciences, College of Dental Medicine, Kaohsiung Medical University, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Rausch-Fan X, Ulm C, Jensen-Jarolim E, Schedle A, Boltz-Nitulescu G, Rausch WD, Matejka M. Interleukin-1β–Induced Prostaglandin E2Production by Human Gingival Fibroblasts Is Upregulated by Glycine. J Periodontol 2005; 76:1182-8. [PMID: 16018763 DOI: 10.1902/jop.2005.76.7.1182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Human gingival fibroblasts (GFB) may produce prostaglandin E(2) (PGE(2)) in response to proinflammatory cytokines. Elevated concentrations of glycine were previously found in periodontal pockets and saliva of periodontitis patients and, therefore, we aimed to study the influence of glycine on PGE(2) production. METHODS Human GFB were cultured in the presence of various concentrations of glycine and/or interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, and IL-10 and their influence on PGE(2) production was measured. The expression of cyclooxygenases (COX) was analyzed by Western blot and immunocytochemistry. RESULTS The PGE(2) production by IL-1beta-stimulated GFB was significantly upregulated by glycine. The effect of glycine on IL- 1beta-induced cell proliferation and PGE(2) production was concentration- dependent, reached a peak at 3 mM, and declined slowly at higher doses. The synthesis of PGE(2) by human GFB cultured in the absence of glycine was significantly inhibited by IL-10 and partially induced in cells cultured with glycine. Glycine had no effect on TNF-alpha-induced PGE(2) production. The IL-1beta-driven PGE(2) synthesis was blocked by indomethacin, a COX-1/COX-2 inhibitor, and by COX-2 inhibitor NS-398. The expression of COX-2 protein was slightly induced by glycine, more evidently by IL-1beta, and mostly enhanced by combined IL-1beta with glycine. CONCLUSION Since PGE(2) is a potent stimulator of bone resorption, and production of PGE(2) and COX-2 protein is augmented by glycine, our results strongly suggest that glycine may be involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xiaohui Rausch-Fan
- Department of Periodontology, Dental School, Medical University Vienna, Waehringer Strasse 25A, A-1090 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
39
|
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38:72-122. [PMID: 15853938 DOI: 10.1111/j.1600-0757.2005.00113.x] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Stanley C Holt
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
40
|
Affiliation(s)
- Richard P Ellen
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
41
|
Ryder MI, Hyun W, Loomer P, Haqq C. Alteration of gene expression profiles of peripheral mononuclear blood cells by tobacco smoke: implications for periodontal diseases. ORAL MICROBIOLOGY AND IMMUNOLOGY 2004; 19:39-49. [PMID: 14678473 DOI: 10.1046/j.0902-0055.2003.00110.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alterations of the host response by tobacco smoke adversely affect the periodontium. In this study, we examined the effects of in vitro acute smoke exposure on changes in m-RNA expression of primary peripheral mononuclear blood cells through microarray analysis. Mononuclear blood cells were isolated from four healthy non-smokers and plated in culture wells. Half of the cells were then exposed to 5 min of tobacco smoke. Fluorescent c-DNA probes were prepared from the linearly amplified m-RNAs for each sample and hybridized to cDNA microarrays representing approximately 30000 human genes. Significant increases or decreases in m-RNA gene expression between non-smoke-exposed and smoke-exposed samples were identified by permutation t-test, as implemented by the Significance Analysis of Microarrays software package. After smoke exposure, the expression of 90 genes with known function was significantly elevated and the expression of 19 genes with known function was significantly depressed. In addition, 18 upregulated and 26 downregulated transcripts were expressed sequence tags with little information available on function. Approximately 20 of the significantly elevated genes had previously been reported in the literature to be associated with periodontal pathogenesis (fold changes in parentheses). These included plasminogen activator (4.4), Heat Shock Protein (Hsp) 40 kD (2.2), thrombomodulin (4.2), cytochrome c (1.8), COX-2 (2.6), interleukin-1a (1.4), chemokine ligand 1 (3.8), cathepsin L (2.0), and calgranulin A (2.1). In addition, several significantly elevated genes not previously reported in the literature may also play a role in periodontal pathogenesis, and thus warrant further investigation. These include Diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor) (7.8), Hsp 10 kDa (1.7), Hsp 105 kD (2.1), Hsp 70 kDa (1.6), and mitogen activated protein kinase 3 (1.5). Among the significantly depressed genes that may play a protective or destructive role in periodontal pathogenesis were interferon gamma receptor 2 (0.58) and chemokine receptor 2 (0.24). Our results may be of use in the search for the molecular mechanisms for the adverse effects of tobacco smoke on the host response.
Collapse
Affiliation(s)
- M I Ryder
- Department of Stomatology University of California, San Francisco, UCSF Comprehensive Cancer Center, San Francisco, CA 94143, USA.
| | | | | | | |
Collapse
|
42
|
Cellini B, Bertoldi M, Borri Voltattorni C. Treponema denticola cystalysin catalyzes beta-desulfination of L-cysteine sulfinic acid and beta-decarboxylation of L-aspartate and oxalacetate. FEBS Lett 2003; 554:306-10. [PMID: 14623084 DOI: 10.1016/s0014-5793(03)01178-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pyridoxal 5'-phosphate-dependent cystalysin from Treponema denticola catalyzes the beta-displacement of the beta-substituent from both L-aspartate and L-cysteine sulfinic acid. The steady-state kinetic parameters for beta-desulfination of L-cysteine sulfinic acid, k(cat) and K(m), are 89+/-7 s(-1) and 49+/-9 mM, respectively, whereas those for beta-decarboxylation of L-aspartate are 0.8+/-0.1 s(-1) and 280+/-70 mM. Moreover, cystalysin in the pyridoxamine 5'-phosphate form has also been found to catalyze beta-decarboxylation of oxalacetate as shown by consumption of oxalacetate and a concomitant production of pyruvate. The k(cat) and K(m) of this reaction are 0.15+/-0.01 s(-1) and 13+/-2 mM, respectively. Possible mechanistic and physiological implications are discussed.
Collapse
Affiliation(s)
- Barbara Cellini
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Chimica Biologica, Facoltà di Medicina e Chirurgia, Università degli Studi di Verona, Strada Le Grazie, 8, 37134 Verona, Italy.
| | | | | |
Collapse
|
43
|
Torresyap G, Haffajee AD, Uzel NG, Socransky SS. Relationship between periodontal pocket sulfide levels and subgingival species. J Clin Periodontol 2003; 30:1003-10. [PMID: 14761124 DOI: 10.1034/j.1600-051x.2003.00377.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Many species implicated in the pathogenesis of periodontal disease produce volatile sulfur compounds (VSC). This investigation examined the relationship between levels of sulfide and subgingival bacterial species in the same periodontal pockets. MATERIAL AND METHODS Twenty chronic periodontitis subjects were measured clinically at six sites per tooth for plaque, gingivitis, bleeding on probing, suppuration, pocket depth and attachment level. Subgingival plaque samples, taken from the mesial aspect of each tooth, were individually analyzed for their content of 40 bacterial species using checkerboard DNA-DNA hybridization. Sulfide levels were measured at the same sites using a Diamond Probe/Perio 2000 system. Clinical and microbiological data were averaged for sulfide-positive and -negative sites separately in each subject and then averaged across subjects. Significance differences in clinical and microbial parameters between sulfide-positive and -negative sites were sought using the Wilcoxon signed ranks test. RESULTS Mean total DNA probe counts (x10(5), +/-SEM) at sulfide-negative and -positive sites were 44.0 +/- 9.9 and 65.0 +/- 13.3, respectively (p < 0.01). Seventeen species were found at significantly higher levels in sulfide-positive than -negative sites. These included abundant producers of VSC such as members of the genera Fusobacterium, Campylobacter, Prevotella, Treponema and Eubacterium, and Bacteriodes forsythus, Selenomonas noxia and Propionibacterium acnes. Prevotella intermedia, Bacteriodes forsythus, Prevotella nigrescens, Fusobacterium nucleatum ss vincentii and Treponema denticola exhibited the greatest difference in mean counts between sulfide-negative and -positive sites. Orange and red complex species were at higher counts at shallow (< 4 mm) sulfide-positive than shallow sulfide-negative sites. Although not statistically significant, mean clinical parameters were somewhat higher at sulfide-positive than sulfide-negative sites. CONCLUSIONS Intra-pocket sulfide levels reflect the levels of sulfide-producing species and may provide useful diagnostic information.
Collapse
Affiliation(s)
- G Torresyap
- Department of Periodontology, The Forsyth Institute, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
44
|
Chu L, Xu X, Dong Z, Cappelli D, Ebersole JL. Role for recombinant gamma-glutamyltransferase from Treponema denticola in glutathione metabolism. Infect Immun 2003; 71:335-42. [PMID: 12496183 PMCID: PMC143415 DOI: 10.1128/iai.71.1.335-342.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Volatile sulfur compounds, including hydrogen sulfide (H(2)S), have been implicated in the development of periodontal disease. Glutathione is an important thiol source for H(2)S production in periodontal pockets. Our recent studies have delineated a pathway of glutathione metabolism in Treponema denticola that releases H(2)S. In this pathway, gamma-glutamyltransferase (GGT) has been proposed to catalyze the first step of glutathione degradation. We have cloned the gene of GGT from T. denticola, which contains an open reading frame of 726 bp encoding a protein of 241 amino acids. Transformation of this gene into Escherichia coli led to the expression of a recombinant protein. After purification by chromatography, the recombinant protein showed enzymatic activity typical of GGT, catalyzing the degradation of Na-gamma-glutamyl-4-nitroaniline (GNA) and the hydrolysis of glutathione, releasing glutamic acid or glutamine and cysteinylglycine. L-Cysteine is not a substrate of GGT. Importantly, GNA, when added to T. denticola, was able to compete with glutathione and inhibit the production of H(2)S, ammonia, and pyruvate. This was accompanied by the suppression of hemoxidative and hemolytic activities of the bacteria. Purified GGT was inactivated by TLCK (Nalpha-p-tosyl-L-lysine chloromethyl ketone) and proteinase K treatment. However, higher enzymatic activity was demonstrated in the presence of 2-mercaptoethanol and dithiothreitol. Our further experiments showed that the addition of recombinant GGT to Porphyromonas gingivalis, a bacterium without significant glutathione-metabolizing capacity, drastically increased the utilization of glutathione by the bacterium, producing H(2)S, ammonia, and pyruvate. This was again accompanied by enhanced bacterial hemoxidative and hemolytic activities. Together, the results suggest an important role for GGT in glutathione metabolism in oral bacteria.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Orthodontics, University of Texas Health Science Center, San Antonio, Texas 78229, USA.
| | | | | | | | | |
Collapse
|