1
|
Wu F, Deng Y, Yao X, Li J. Ruminant livestock TR V(D)J genes and CDR3 repertoire. Vet Immunol Immunopathol 2024; 277:110829. [PMID: 39316948 DOI: 10.1016/j.vetimm.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China; Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlan Deng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Hasankhani A, Bahrami A, Mackie S, Maghsoodi S, Alawamleh HSK, Sheybani N, Safarpoor Dehkordi F, Rajabi F, Javanmard G, Khadem H, Barkema HW, De Donato M. In-depth systems biological evaluation of bovine alveolar macrophages suggests novel insights into molecular mechanisms underlying Mycobacterium bovis infection. Front Microbiol 2022; 13:1041314. [PMID: 36532492 PMCID: PMC9748370 DOI: 10.3389/fmicb.2022.1041314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 08/26/2023] Open
Abstract
Objective Bovine tuberculosis (bTB) is a chronic respiratory infectious disease of domestic livestock caused by intracellular Mycobacterium bovis infection, which causes ~$3 billion in annual losses to global agriculture. Providing novel tools for bTB managements requires a comprehensive understanding of the molecular regulatory mechanisms underlying the M. bovis infection. Nevertheless, a combination of different bioinformatics and systems biology methods was used in this study in order to clearly understand the molecular regulatory mechanisms of bTB, especially the immunomodulatory mechanisms of M. bovis infection. Methods RNA-seq data were retrieved and processed from 78 (39 non-infected control vs. 39 M. bovis-infected samples) bovine alveolar macrophages (bAMs). Next, weighted gene co-expression network analysis (WGCNA) was performed to identify the co-expression modules in non-infected control bAMs as reference set. The WGCNA module preservation approach was then used to identify non-preserved modules between non-infected controls and M. bovis-infected samples (test set). Additionally, functional enrichment analysis was used to investigate the biological behavior of the non-preserved modules and to identify bTB-specific non-preserved modules. Co-expressed hub genes were identified based on module membership (MM) criteria of WGCNA in the non-preserved modules and then integrated with protein-protein interaction (PPI) networks to identify co-expressed hub genes/transcription factors (TFs) with the highest maximal clique centrality (MCC) score (hub-central genes). Results As result, WGCNA analysis led to the identification of 21 modules in the non-infected control bAMs (reference set), among which the topological properties of 14 modules were altered in the M. bovis-infected bAMs (test set). Interestingly, 7 of the 14 non-preserved modules were directly related to the molecular mechanisms underlying the host immune response, immunosuppressive mechanisms of M. bovis, and bTB development. Moreover, among the co-expressed hub genes and TFs of the bTB-specific non-preserved modules, 260 genes/TFs had double centrality in both co-expression and PPI networks and played a crucial role in bAMs-M. bovis interactions. Some of these hub-central genes/TFs, including PSMC4, SRC, BCL2L1, VPS11, MDM2, IRF1, CDKN1A, NLRP3, TLR2, MMP9, ZAP70, LCK, TNF, CCL4, MMP1, CTLA4, ITK, IL6, IL1A, IL1B, CCL20, CD3E, NFKB1, EDN1, STAT1, TIMP1, PTGS2, TNFAIP3, BIRC3, MAPK8, VEGFA, VPS18, ICAM1, TBK1, CTSS, IL10, ACAA1, VPS33B, and HIF1A, had potential targets for inducing immunomodulatory mechanisms by M. bovis to evade the host defense response. Conclusion The present study provides an in-depth insight into the molecular regulatory mechanisms behind M. bovis infection through biological investigation of the candidate non-preserved modules directly related to bTB development. Furthermore, several hub-central genes/TFs were identified that were significant in determining the fate of M. bovis infection and could be promising targets for developing novel anti-bTB therapies and diagnosis strategies.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Shayan Mackie
- Faculty of Science, Earth Sciences Building, University of British Columbia, Vancouver, BC, Canada
| | - Sairan Maghsoodi
- Faculty of Paramedical Sciences, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, AL-Balqa Applied University, AL-Huson University College, AL-Huson, Jordan
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhad Safarpoor Dehkordi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Rajabi
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Marcos De Donato
- Regional Department of Bioengineering, Tecnológico de Monterrey, Monterrey, Mexico
| |
Collapse
|
3
|
Gramegna A, Lombardi A, Lorè NI, Amati F, Barone I, Azzarà C, Cirillo D, Aliberti S, Gori A, Blasi F. Innate and Adaptive Lymphocytes in Non-Tuberculous Mycobacteria Lung Disease: A Review. Front Immunol 2022; 13:927049. [PMID: 35837393 PMCID: PMC9273994 DOI: 10.3389/fimmu.2022.927049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Non-tuberculous mycobacteria (NTM) are ubiquitous environmental microorganisms capable of a wide range of infections that primarily involve the lymphatic system and the lower respiratory tract. In recent years, cases of lung infection sustained by NTM have been steadily increasing, due mainly to the ageing of the population with underlying lung disease, the enlargement of the cohort of patients undergoing immunosuppressive medications and the improvement in microbiologic diagnostic techniques. However, only a small proportion of individuals at risk ultimately develop the disease due to reasons that are not fully understood. A better understanding of the pathophysiology of NTM pulmonary disease is the key to the development of better diagnostic tools and therapeutic targets for anti-mycobacterial therapy. In this review, we cover the various types of interactions between NTM and lymphoid effectors of innate and adaptive immunity. We also give a brief look into the mechanism of immune exhaustion, a phenomenon of immune dysfunction originally reported for chronic viral infections and cancer, but recently also observed in the setting of mycobacterial diseases. We try to set the scene to postulate that a better knowledge of immune exhaustion can play a crucial role in establishing prognostic/predictive factors and enabling a broader investigation of immune-modulatory drugs in the experimental treatment of NTM pulmonary disease.
Collapse
Affiliation(s)
- Andrea Gramegna
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Andrea Gramegna,
| | - Andrea Lombardi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicola I. Lorè
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Amati
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Ivan Barone
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Cecilia Azzarà
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Aliberti
- IRCCS Humanitas Research Hospital, Respiratory Unit, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Andrea Gori
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Infectious Diseases Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Blasi
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Blanco FC, Gravisaco MJ, Bigi MM, García EA, Marquez C, McNeil M, Jackson M, Bigi F. Identifying Bacterial and Host Factors Involved in the Interaction of Mycobacterium bovis with the Bovine Innate Immune Cells. Front Immunol 2021; 12:674643. [PMID: 34335572 PMCID: PMC8319915 DOI: 10.3389/fimmu.2021.674643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.
Collapse
Affiliation(s)
- Federico Carlos Blanco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María José Gravisaco
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - María Mercedes Bigi
- (Facultad de Agronomía, Universidad de Buenos Aires) School of Agronomy, University of Buenos Aires (UBA), Buenos Aires, Argentina
| | - Elizabeth Andrea García
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
| | - Cecilia Marquez
- High Technology Analytical Centre, Laboratory, Buenos Aires, Argentina
| | - Mike McNeil
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Fabiana Bigi
- (Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria) Institute of Biotechnology, National Institute of Agricultural Technology (INTA), Buenos Aires, Argentina
- (Consejo Nacional de Investigaciones Científicas y Tecnológicas) National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Novel functional sequences uncovered through a bovine multiassembly graph. Proc Natl Acad Sci U S A 2021; 118:2101056118. [PMID: 33972446 DOI: 10.1073/pnas.2101056118] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Many genomic analyses start by aligning sequencing reads to a linear reference genome. However, linear reference genomes are imperfect, lacking millions of bases of unknown relevance and are unable to reflect the genetic diversity of populations. This makes reference-guided methods susceptible to reference-allele bias. To overcome such limitations, we build a pangenome from six reference-quality assemblies from taurine and indicine cattle as well as yak. The pangenome contains an additional 70,329,827 bases compared to the Bos taurus reference genome. Our multiassembly approach reveals 30 and 10.1 million bases private to yak and indicine cattle, respectively, and between 3.3 and 4.4 million bases unique to each taurine assembly. Utilizing transcriptomes from 56 cattle, we show that these nonreference sequences encode transcripts that hitherto remained undetected from the B. taurus reference genome. We uncover genes, primarily encoding proteins contributing to immune response and pathogen-mediated immunomodulation, differentially expressed between Mycobacterium bovis-infected and noninfected cattle that are also undetectable in the B. taurus reference genome. Using whole-genome sequencing data of cattle from five breeds, we show that reads which were previously misaligned against the Bos taurus reference genome now align accurately to the pangenome sequences. This enables us to discover 83,250 polymorphic sites that segregate within and between breeds of cattle and capture genetic differentiation across breeds. Our work makes a so-far unused source of variation amenable to genetic investigations and provides methods and a framework for establishing and exploiting a more diverse reference genome.
Collapse
|
6
|
Special features of γδ T cells in ruminants. Mol Immunol 2021; 134:161-169. [PMID: 33774521 DOI: 10.1016/j.molimm.2021.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 02/28/2021] [Indexed: 02/07/2023]
Abstract
Ruminant γδ T cells were discovered in the mid-1980's shortly after a novel T cell receptor (TCR) gene from murine cells was described in 1984 and the murine TCRγ gene locus in 1985. It was possible to identify γδ T cell populations early in ruminants because they represent a large proportion of the peripheral blood mononuclear cells (PBMC). This null cell population, γδ T cells, was designated as such by its non-reactivity with monoclonal antibodies (mAb) against ovine and bovine CD4, CD8 and surface immunoglobulin (Ig). γδ T cells are non-conventional T cells known as innate-like cells capable of using both TCR as well as other types of receptor systems including pattern recognition receptors (PRR) and natural killer receptors (NKR). Bovine γδ T cells have been shown to respond to stimulation through toll-like receptors, NOD, and NKG2D as well as to cytokines alone, protein and non-protein antigens through their TCR, and to pathogen-infected host cells. The two main populations of γδ T cells are distinguished by the presence or absence of the hybrid co-receptor/PRR known as WC1 or T19. These two populations not only differ by their proportional representation in various tissues and organs but also by their migration into inflamed tissues. The WC1+ cells are found in the blood, skin and spleen while the WC1- γδ T cells predominate in the gut, mammary gland and uterus. In ruminants, γδ T cells may produce IFNγ, IL-17, IL-10 and TGFβ, have cytotoxic activity and memory responses. The expression of particular WC1 family members controls the response to particular pathogens and correlates with differences in cytokine responses. The comparison of the WC1 gene families in cattle, sheep and goats is discussed relative to other multigenic arrays that differentiate γδ T cells by function in humans and mice.
Collapse
|
7
|
Askar H, Chen S, Hao H, Yan X, Ma L, Liu Y, Chu Y. Immune Evasion of Mycoplasma bovis. Pathogens 2021; 10:pathogens10030297. [PMID: 33806506 PMCID: PMC7998117 DOI: 10.3390/pathogens10030297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mycoplasma bovis (M. bovis) causes various chronic inflammatory diseases, including mastitis and bronchopneumonia, in dairy and feed cattle. It has been found to suppress the host immune response during infection, leading to the development of chronic conditions. Both in vitro and in vivo studies have confirmed that M. bovis can induce proinflammatory cytokines and chemokines in the host. This consists of an inflammatory response in the host that causes pathological immune damage, which is essential for the pathogenic mechanism of M. bovis. Additionally, M. bovis can escape host immune system elimination and, thus, cause chronic infection. This is accomplished by preventing phagocytosis and inhibiting key responses, including the neutrophil respiratory burst and the development of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) that lead to the creation of an extracellular bactericidal network, in addition to inhibiting monocyte and alveolar macrophage apoptosis and inducing monocytes to produce anti-inflammatory factors, thus inducing the apoptosis of peripheral blood mononuclear cells (PBMCs), inhibiting their proliferative response and resulting in their invasion. Together, these conditions lead to long-term M. bovis infection. In terms of the pathogenic mechanism, M. bovis may invade specific T-cell subsets and induce host generation of exhausted T-cells, which helps it to escape immune clearance. Moreover, the M. bovis antigen exhibits high-frequency variation in size and expression period, which allows it to avoid activation of the host humoral immune response. This review includes some recent advances in studying the immune response to M. bovis. These may help to further understand the host immune response against M. bovis and to develop potential therapeutic approaches to control M. bovis infection.
Collapse
Affiliation(s)
- Hussam Askar
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Shengli Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Huafang Hao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Xinmin Yan
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Lina Ma
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yongsheng Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
| | - Yuefeng Chu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou 730046, China; (H.A.); (S.C.); (H.H.); (X.Y.); (L.M.); (Y.L.)
- Correspondence: ; Tel.: +86-0931-8342-676
| |
Collapse
|
8
|
Yirsaw A, Baldwin CL. Goat γδ T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103809. [PMID: 32795585 DOI: 10.1016/j.dci.2020.103809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/06/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
Goats are important food animals and are disseminated globally because of their high adaptability to varying environmental conditions and feeding regimes that provide them with a comparative advantage. Productivity is impacted by infectious diseases; this then contributes to societal poverty, food insecurity, and international trade restrictions. Since γδ T cells have been shown to have vital roles in immune responses in other mammals we reviewed the literature regarding what is known about their functions, distribution in tissues and organs and their responses to a variety of infections in goats. It has been shown that caprine γδ T cells produce interferon-γ and IL-17, are found in a variety of lymphoid and nonlymphoid tissues and constitute a significant population of blood mononuclear cells. Their representation in tissues and their functional responses may be altered concomitant with infection. This review summarizes caprine γδ T cell responses to Brucella melitensis, Fasciola hepatica, Mycobacterium avium paratuberculosis, caprine arthritis encephalitis virus (CAEV), and Schistosoma bovis in infected or vaccinated goats. Caprine γδ T cells have also been evaluated in goats infected with M. caprae, Ehrilichia ruminantium, Haemonchus contortus and peste des petits ruminants (PPR) virus but found to have an unknown or limited response or role in either protective immunity or immunopathogenesis in those cases.
Collapse
Affiliation(s)
- Alehegne Yirsaw
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| | - Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, Integrated Sciences Building, 661 N. Pleasant St, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
9
|
Tulu B, Martineau HM, Zewude A, Desta F, Jolliffe DA, Abebe M, Balcha TT, Belay M, Martineau AR, Ameni G. Cellular and Cytokine Responses in the Granulomas of Asymptomatic Cattle Naturally Infected with Mycobacterium bovis in Ethiopia. Infect Immun 2020; 88:e00507-20. [PMID: 32958527 PMCID: PMC7671892 DOI: 10.1128/iai.00507-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/08/2020] [Indexed: 11/20/2022] Open
Abstract
Cell (CD3+ T cell and CD68+ macrophages), cytokine (interferon gamma-positive [IFN-γ+] and tumor necrosis factor alpha-positive [TNF-α+]), and effector molecule (inducible nitric oxide synthase-positive [iNOS+]) responses were evaluated in the lymph nodes and tissues of cattle naturally infected with Mycobacterium bovis Detailed postmortem and immunohistochemical examinations of lesions were performed on 16 cows that were positive by the single intradermal cervical comparative tuberculin (SICCT) test and that were identified from dairy farms located around the city of Addis Ababa, Ethiopia. The severity of the gross lesion was significantly higher (P = 0.003) in M. bovis culture-positive cows (n = 12) than in culture-negative cows (n = 4). Immunohistochemical techniques showed that in culture-positive cows, the mean immunolabeling fraction of CD3+ T cells decreased as the stage of granuloma increased from stage I to stage IV (P < 0.001). In contrast, the CD68+ macrophage, IFN-γ+, TNF-α+, and iNOS+ immunolabeling fractions increased from stage I to stage IV (P < 0.001). In the early stages, culture-negative cows showed a significantly higher fraction of CD68+ macrophage (P = 0.03) and iNOS+ (P = 0.007) immunolabeling fractions than culture-positive cows. Similarly, at advanced granuloma stages, culture-negative cows demonstrated significantly higher mean proportions of CD3+ T cells (P < 0.001) than culture-positive cows. Thus, this study demonstrates that, following natural infection of cows with M. bovis, as the stage of granuloma increases from stage I to stage IV, the immunolabeling fraction of CD3+ cells decreases, while the CD68+ macrophage, IFN-γ+, TNF-α+, and iNOS+ immunolabeling fractions increases.
Collapse
Affiliation(s)
- Begna Tulu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Medical Laboratory Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Henny M Martineau
- Department of Pathology, The Royal Veterinary College, Hatfield, United Kingdom
| | - Aboma Zewude
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Fekadu Desta
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - David A Jolliffe
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Markos Abebe
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Mulugeta Belay
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adrian R Martineau
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gobena Ameni
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Veterinary Medicine, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Ozturk-Gurgen H, Rieseberg B, Leipig-Rudolph M, Straubinger RK, Hermanns W. Morphology of Naturally-Occurring Tuberculosis in Cattle Caused by Mycobacterium caprae. J Comp Pathol 2020; 174:120-139. [PMID: 31955797 DOI: 10.1016/j.jcpa.2019.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/15/2019] [Accepted: 11/28/2019] [Indexed: 10/25/2022]
Abstract
This study describes the pathomorphological alterations of bovine tuberculosis through gross and histopathological examinations, assessment of the distribution of lesions and the demonstration of mycobacteria. Samples from lungs, liver, small intestine, their regional lymph nodes and retropharyngeal lymph nodes were collected from 84 cattle with tuberculosis from the Allgäu, Germany. Organs were evaluated grossly, histopathologically and by transmission electron microscopy. Mycobacteria and mycobacterial antigens were demonstrated using acid-fast staining and immunohistochemistry (IHC). Bacteriological tests revealed Mycobacterium caprae in all animals. Gross alterations were classified into five patterns (I to V) with an additional pattern of acute exudative pulmonary inflammation (pattern VI). Histological lesions were classified into four types (1-4) with additional lesions occurring in lungs only. Acid-fast staining revealed a low number of bacteria in all tissues, while IHC showed comparatively more mycobacterial antigens within the lesions and also at their periphery. The alimentary tract (68%) was the main portal of entry followed by an aerosol infection (19%). It was assumed that the observed lesions reflect a continuous primary period of infection; there were no lesions typical of a secondary (post-primary) period, as reported in man and also described in the older literature on bovine tuberculosis. The broad spectrum of changes described formerly was not observed in the present cases and the route of infection and nature of acid fast staining showed differences when compared with previous studies of naturally-occurring bovine tuberculosis.
Collapse
Affiliation(s)
- H Ozturk-Gurgen
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany.
| | - B Rieseberg
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - M Leipig-Rudolph
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| | - R K Straubinger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Muenchen, Munich, Germany
| | - W Hermanns
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Muenchen, Germany
| |
Collapse
|
11
|
Abstract
Gamma delta (γδ) T cells constitute a major lymphocyte population in peripheral blood and epithelial surfaces. They play nonredundant roles in host defense against diverse pathogens. Although γδ T cells share functional features with other cells of the immune system, their distinct methods of antigen recognition, rapid response, and tissue tropism make them a unique effector population. This review considers the current state of our knowledge on γδ T cell biology in ruminants and the important roles played by this nonconventional T cell population in protection against several infectious diseases of veterinary and zoonotic importance.
Collapse
|
12
|
Baldwin CL, Yirsaw A, Gillespie A, Le Page L, Zhang F, Damani-Yokota P, Telfer JC. γδ T cells in livestock: Responses to pathogens and vaccine potential. Transbound Emerg Dis 2019; 67 Suppl 2:119-128. [PMID: 31515956 DOI: 10.1111/tbed.13328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/30/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
The immediate objective of our research is to understand the molecular mechanisms underlying activation and potentiation of the protective functional response of WC1+ γδ T cells to pathogens afflicting livestock species. The long-term goal is to incorporate stimulation of these cells into the next generation of vaccine constructs. γδ T cells have roles in the immune response to many infectious diseases including viral, bacterial, protozoan and worm infections, and their functional responses overlap with those of canonical αβ T cells, for example they produce cytokines including interferon-γ and IL-17. Stimulation of non-conventional lymphocytes including γδ T cells and αβ natural killer T (NKT) cells has been shown to contribute to protective immunity in mammals, bridging the gap between the innate and adaptive immune responses. Because of their innate-like early response, understanding how to engage γδ T-cell responses has the potential to optimize strategies of those that aim to induce pro-inflammatory responses as discussed here.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alehegne Yirsaw
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Alexandria Gillespie
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Lauren Le Page
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Fengqiu Zhang
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Payal Damani-Yokota
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| | - Janice C Telfer
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
13
|
Rusk RA, Palmer MV, Waters WR, McGill JL. Measuring bovine γδ T cell function at the site of Mycobacterium bovis infection. Vet Immunol Immunopathol 2017; 193-194:38-49. [PMID: 29129226 DOI: 10.1016/j.vetimm.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/06/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022]
Abstract
Bovine γδ T cells are amongst the first cells to accumulate at the site of Mycobacterium bovis infection; however, their role in the developing lesion remains unclear. We utilized transcriptomics analysis, in situ hybridization, and a macrophage/γδ T cell co-culture system to elucidate the role of γδ T cells in local immunity to M. bovis infection. Transcriptomics analysis revealed that γδ T cells upregulated expression of several novel, immune-associated genes in response to stimulation with M. bovis antigen. BCG-infected macrophage/γδ T cell co-cultures confirmed the results of our RNAseq analysis, and revealed that γδ T cells from M. bovis-infected animals had a significant impact on bacterial viability. Analysis of γδ T cells within late-stage M. bovis granulomas revealed significant expression of IFN-γ and CCL2, but not IL-10, IL-22, or IL-17. Our results suggest γδ T cells influence local immunity to M. bovis through cytokine secretion and direct effects on bacterial burden.
Collapse
Affiliation(s)
- Rachel A Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA, USA
| | - Jodi L McGill
- Department of Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
14
|
Albarrak S, Waters W, Stabel J, Hostetter J. WC1+ γδ T cells from cattle naturally infected with Mycobacterium avium subsp. paratuberculosis respond differentially to stimulation with PPD-J. Vet Immunol Immunopathol 2017; 190:57-64. [DOI: 10.1016/j.vetimm.2017.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023]
|
15
|
Swift BMC, Convery TW, Rees CED. Evidence of Mycobacterium tuberculosis complex bacteraemia in intradermal skin test positive cattle detected using phage-RPA. Virulence 2016; 7:779-88. [PMID: 27197018 DOI: 10.1080/21505594.2016.1191729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Bovine tuberculosis is a zoonotic infectious disease caused by Mycobacterium bovis that affects cattle and can cause tuberculosis in a range of wildlife animals. A bacteriophage-based method combined with PCR (phage-PCR) has been recently used to detect and identify viable pathogenic mycobacteria in the peripheral blood mononuclear cells (PBMCs) of animals suffering from paratuberculosis. To adapt this method for the detection of M. bovis in blood, a new isothermal DNA amplification protocol using Recombinase Polymerase Amplification (RPA) was developed and was found to be able to detect M. bovis BCG within 48 h, with a limit of detection of approximately 10 cells per ml of blood for artificially inoculated blood samples. When blood samples (2 ml) from a Single Comparative Cervical Intradermal Tuberculin (SCCIT)- negative beef herd were tested, Mycobacterium tuberculosis complex (MTC) cells were not detected from any (45) of the blood samples. However when blood samples from SCCIT-positive animals were tested, viable MTC bacteria were detected in 66 % (27/41) of samples. Of these 41 animals sampled, 32 % (13) had visible lesions. In the visible lesion (VL) group, 85 % (11/13) had detectable levels of MTC whereas only 57 % (16/28) of animals which had no visible lesions (NVL) were found to have detectable mycobacteraemia. These results indicated that this simple, rapid method can be applied for the study of M. bovis infections. The frequency with which viable mycobacteria were detected in the peripheral blood of SCCIT-positive animals changes the paradigm of this disease.
Collapse
Affiliation(s)
- Benjamin M C Swift
- a School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| | - Thomas W Convery
- b School of Biosciences, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| | - Catherine E D Rees
- b School of Biosciences, University of Nottingham, Sutton Bonington Campus , Nr Loughbotough, Leics , UK
| |
Collapse
|
16
|
Bovine gamma delta T cells and the function of gamma delta T cell specific WC1 co-receptors. Cell Immunol 2015; 296:76-86. [PMID: 26008759 DOI: 10.1016/j.cellimm.2015.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 12/28/2022]
Abstract
The study of γδ T cells in ruminants dates to the discovery of the γδ TCR in humans and mice. It is important since cattle offer an alternative model to the mouse for evaluating the role of γδ T cells in zoonotic disease research and for control of disease reservoirs in non-human animals. In addition, maintaining the health of cattle and other members of the order Artiodactyla is critical to meet the global human need for animal-source protein. In this review, we examine the bovine γδ T cell responses to Mycobacteria, which infects a third of the human population, and bovine γ and δ TCR diversity and the relationship to the TCR of human mycobacteria-responsive γδ T cells. We review the utilization of the γδ T cell specific scavenger receptor cysteine-rich (SRCR) glycoproteins known as WC1, and that are part of the CD163 family, which function as both γδ T cell activating co-receptors and pattern recognition receptors (PRR) for bovine γδ T cells and highlight the presence and evolution of this multigenic array, with potential for the same function, in birds, reptiles, jawless and bony fishes, and prototherian and eutherian mammals.
Collapse
|
17
|
Parlane NA, Buddle BM. Immunity and Vaccination against Tuberculosis in Cattle. CURRENT CLINICAL MICROBIOLOGY REPORTS 2015. [DOI: 10.1007/s40588-014-0009-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Baldwin CL, Telfer JC. The bovine model for elucidating the role of γδ T cells in controlling infectious diseases of importance to cattle and humans. Mol Immunol 2014; 66:35-47. [PMID: 25547715 DOI: 10.1016/j.molimm.2014.10.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/22/2014] [Accepted: 10/24/2014] [Indexed: 01/29/2023]
Abstract
There are several instances of co-investigation and related discoveries and achievements in bovine and human immunology; perhaps most interesting is the development of the BCG vaccine, the tuberculin skin test and the more recent interferon-gamma test that were developed first in cattle to prevent and diagnosis bovine tuberculosis and then applied to humans. There are also a number of immune-physiological traits that ruminant share with humans including the development of their immune systems in utero which increases the utility of cattle as a model for human immunology. These are reviewed here with a particular focus on the use of cattle to unravel γδ T cell biology. Based on the sheer number of γδ T cells in this γδ T cell high species, it is reasonable to expect γδ T cells to play an important role in protective immune responses. For that reason alone cattle may provide good models for elucidating at least some of the roles γδ T cells play in protective immunity in all species. This includes fundamental research on γδ T cells as well as the responses of ruminant γδ T cells to a variety of infectious disease situations including to protozoan and bacterial pathogens. The role that pattern recognition receptors (PRR) play in the activation of γδ T cells may be unique relative to αβ T cells. Here we focus on that of the γδ T cell specific family of molecules known as WC1 or T19 in ruminants, which are part of the CD163 scavenger receptor cysteine rich (SRCR) family that includes SCART1 and SCART2 expressed on murine γδ T cells. We review the evidence for WC1 being a PRR as well as an activating co-receptor and the role that γδ T cells bearing these receptors play in immunity to leptospirosis and tuberculosis. This includes the generation of memory responses to vaccines, thereby continuing the tradition of co-discovery between cattle and humans.
Collapse
Affiliation(s)
- Cynthia L Baldwin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| | - Janice C Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
19
|
Innate Resistance to Tuberculosis in Man, Cattle and Laboratory Animal Models: Nipping Disease in the Bud? J Comp Pathol 2014; 151:291-308. [DOI: 10.1016/j.jcpa.2014.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/04/2023]
|
20
|
Walusimbi SS, Pate JL. Luteal Cells from Functional and Regressing Bovine Corpora Lutea Differentially Alter the Function of Gamma Delta T Cells1. Biol Reprod 2014; 90:140. [DOI: 10.1095/biolreprod.114.117564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
21
|
Baldwin CL, Hsu H, Chen C, Palmer M, McGill J, Waters WR, Telfer JC. The role of bovine γδ T cells and their WC1 co-receptor in response to bacterial pathogens and promoting vaccine efficacy: A model for cattle and humans. Vet Immunol Immunopathol 2014; 159:144-55. [DOI: 10.1016/j.vetimm.2014.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Ray Waters W. The role of gamma delta T cells in immunity to Mycobacterium bovis infection in cattle. Vet Immunol Immunopathol 2014; 159:133-43. [DOI: 10.1016/j.vetimm.2014.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Moiane I, Machado A, Santos N, Nhambir A, Inlamea O, Hattendorf J, Källenius G, Zinsstag J, Correia-Neves M. Prevalence of bovine tuberculosis and risk factor assessment in cattle in rural livestock areas of Govuro District in the Southeast of Mozambique. PLoS One 2014; 9:e91527. [PMID: 24632593 PMCID: PMC3954769 DOI: 10.1371/journal.pone.0091527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/13/2014] [Indexed: 12/03/2022] Open
Abstract
Background Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an infectious disease of cattle that also affects other domestic animals, free-ranging and farmed wildlife, and also humans. In Mozambique, scattered surveys have reported a wide variation of bTB prevalence rates in cattle from different regions. Due to direct economic repercussions on livestock and indirect consequences for human health and wildlife, knowing the prevalence rates of the disease is essential to define an effective control strategy. Methodology/Principal findings A cross-sectional study was conducted in Govuro district to determine bTB prevalence in cattle and identify associated risk factors. A representative sample of the cattle population was defined, stratified by livestock areas (n = 14). A total of 1136 cattle from 289 farmers were tested using the single comparative intradermal tuberculin test. The overall apparent prevalence was estimated at 39.6% (95% CI 36.8–42.5) using a diagnostic threshold cut-off according to the World Organization for Animal Health. bTB reactors were found in 13 livestock areas, with prevalence rates ranging from 8.1 to 65.8%. Age was the main risk factor; animals older than 4 years were more likely to be positive reactors (OR = 3.2, 95% CI: 2.2–4.7). Landim local breed showed a lower prevalence than crossbred animals (Landim × Brahman) (OR = 0.6, 95% CI: 0.4–0.8). Conclusions/Significance The findings reveal an urgent need for intervention with effective, area-based, control measures in order to reduce bTB prevalence and prevent its spread to the human population. In addition to the high prevalence, population habits in Govuro, particularly the consumption of raw milk, clearly may potentiate the transmission to humans. Thus, further studies on human tuberculosis and the molecular characterization of the predominant strain lineages that cause bTB in cattle and humans are urgently required to evaluate the impact on human health in the region.
Collapse
Affiliation(s)
- Ivânia Moiane
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Paraclinic Department, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Adelina Machado
- Paraclinic Department, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Nuno Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Nhambir
- Paraclinic Department, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Osvaldo Inlamea
- Paraclinic Department, Veterinary Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Jan Hattendorf
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gunilla Källenius
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Zinsstag
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
24
|
Waters WR, Maggioli MF, McGill JL, Lyashchenko KP, Palmer MV. Relevance of bovine tuberculosis research to the understanding of human disease: historical perspectives, approaches, and immunologic mechanisms. Vet Immunol Immunopathol 2014; 159:113-32. [PMID: 24636301 DOI: 10.1016/j.vetimm.2014.02.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, demonstrating a profound relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due to Mycobacterium tuberculosis in humans and Mycobacterium bovis in cattle, is an exemplary model for the demonstration of this concept. Early studies with cattle were instrumental in the development of the use of Koch's tuberculin as an in vivo measure of cell-mediated immunity for diagnostic purposes. Calmette and Guerin demonstrated the efficacy of an attenuated M. bovis strain (BCG) in cattle prior to use of this vaccine in humans. The interferon-γ release assay, now widely used for TB diagnosis in humans, was developed circa 1990 for use in the Australian bovine TB eradication program. More recently, M. bovis infection and vaccine efficacy studies with cattle have demonstrated a correlation of vaccine-elicited T cell central memory (TCM) responses to vaccine efficacy, correlation of specific antibody to mycobacterial burden and lesion severity, and detection of antigen-specific IL-17 responses to vaccination and infection. Additionally, positive prognostic indicators of bovine TB vaccine efficacy (i.e., responses measured after infection) include: reduced antigen-specific IFN-γ, iNOS, IL-4, and MIP1-α responses; reduced antigen-specific expansion of CD4(+) T cells; and a diminished activation profile on T cells within antigen stimulated cultures. Delayed type hypersensitivity and IFN-γ responses correlate with infection but do not necessarily correlate with lesion severity whereas antibody responses generally correlate with lesion severity. Recently, serologic tests have emerged for the detection of tuberculous animals, particularly elephants, captive cervids, and camelids. B cell aggregates are consistently detected within tuberculous lesions of humans, cattle, mice and various other species, suggesting a role for B cells in the immunopathogenesis of TB. Comparative immunology studies including partnerships of researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in both man and animals.
Collapse
Affiliation(s)
- W Ray Waters
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States.
| | - Mayara F Maggioli
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Jodi L McGill
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Ames, IA, United States
| | | | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
25
|
McGill JL, Sacco RE, Baldwin CL, Telfer JC, Palmer MV, Waters WR. Specific Recognition of Mycobacterial Protein and Peptide Antigens by γδ T Cell Subsets following Infection with VirulentMycobacterium bovis. THE JOURNAL OF IMMUNOLOGY 2014; 192:2756-69. [DOI: 10.4049/jimmunol.1302567] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Quevillon EL, Díaz F, Jaramillo L, Lascurain R, Gutiérrez-Pabello JA, Castañeda FA, Arriaga C, Pérez R, González XE. Comparison of immune peripheral blood cells in tuberculin reactor cattle that are seropositive or seronegative for Mycobacterium bovis antigens. Vet Immunol Immunopathol 2013; 153:194-201. [PMID: 23523102 DOI: 10.1016/j.vetimm.2013.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 01/24/2013] [Accepted: 02/26/2013] [Indexed: 11/28/2022]
Abstract
Bovine tuberculosis (bTB) is a major economic problem in animal husbandry and is a public health risk in nonindustrialized countries. It is generally accepted that protection against TB is generated through cell-mediated immunity. Previous investigations have shown that WC1(+) γδ, CD4(+) and CD8(+) T-cell subpopulations are important in the immune response to bTB. It is known that changes in the immune balance from a dominant T helper 1 (Th1)-type response toward a more prominent Th2 response may be observed during disease progression. In this study, we aimed to investigate immune peripheral blood cells in tuberculin reactor cattle that are seropositive or seronegative for Mycobacterium bovis antigens, using flow cytometry and hematological analysis. The evaluation of the T cell subpopulations revealed a decrease in CD8(+) T cells of the seropositive and seronegative animals compared with the control animals (p=0.0001). Moreover, the seropositive group exhibited a lower percentage of CD8(+) T cells than the seronegative group. The percentage of B cells was significantly increased in the seropositive group compared with the seronegative group and the control group (p=0.0009). No difference was observed in the percentage of WC1(+) γδ and CD4(+) T cells among the groups. Furthermore, following 24h of peripheral blood culture with bovine purified protein derivative (PPD), both apparently infected groups showed an increase in the levels of cellular activation compared with the control group (p<0.0001). The seropositive group displayed a higher level of cellular activation than the seronegative group. In both apparently infected groups, the hematological analysis showed an increase in total leukocyte (p=0.0012), lymphocyte (p=0.0057), monocyte (p=0.0010) and neutrophil (p=0.0320) counts in comparison with the healthy animals. Our results demonstrated differences in immune peripheral blood cells of tuberculin reactor cattle that are seropositive or seronegative for M. bovis antigens, probably due to different stages of bTB among the groups. The percentages of CD8(+) T cells, B cells and the T cell activation levels may represent biomarkers for the progression of the disease. However, general characteristics shared by both apparently infected groups as lymphocytosis and monocytosis may also be indicative of the disease. Further experiments are required to understand the variations between cellular and humoral immunities throughout the course of bTB infection. A detailed knowledge of the peripheral blood cells involved in all stages of the bTB immune response of naturally infected cattle is essential for the optimal exploitation of diagnosis and vaccination models.
Collapse
Affiliation(s)
- Eve-Lyne Quevillon
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, C.P. 04510, D.F., Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hedges JF, Kimmel E, Snyder DT, Jerome M, Jutila MA. Solute carrier 11A1 is expressed by innate lymphocytes and augments their activation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4263-73. [PMID: 23509347 DOI: 10.4049/jimmunol.1200732] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Solute carrier 11A1 (SLC11A1) is a divalent ion transporter formerly known as the natural resistance-associated macrophage protein (NRAMP1) and the Bcg/Lsh/Ity locus. SLC11A1 was thought to be exclusively expressed in monocyte/macrophages and to have roles in phagosome maturation and cell activation. We characterized the expression of SLC11A1 in the majority of human and bovine γδ T cells and NK cells and in human CD3(+)CD45RO(+) T cells. Consistent with a role for iron-dependent inhibition of protein tyrosine phosphatases, SLC11A1(+) lymphocytes were more prone to activation and retained tyrosine phosphorylation. Transfection of SLC11A1 into a human γδ T cell-like line rendered the cells more prone to activation. Nonadherent splenocytes from wild-type mice expressed significantly greater IFN-γ compared with cells from Sv/129 (SLC11A1(-/-)) mice. Our data suggest that SLC11A1 has a heretofore unknown role in activation of a large subset of innate lymphocytes that are critical sources of IFN-γ. SLC11A1(+) animals have enhanced innate IFN-γ expression in response to Salmonella infection compared with SLC11A1(-) mice, which include commonly used inbred laboratory mice. Expression of SLC11A1 in innate lymphocytes and its role in augmenting their activation may account for inconsistencies in studies of innate lymphocytes in different animal models.
Collapse
Affiliation(s)
- Jodi F Hedges
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, MT 59718, USA.
| | | | | | | | | |
Collapse
|
28
|
Holderness J, Hedges JF, Ramstead A, Jutila MA. Comparative biology of γδ T cell function in humans, mice, and domestic animals. Annu Rev Anim Biosci 2013; 1:99-124. [PMID: 25387013 DOI: 10.1146/annurev-animal-031412-103639] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
γδ T cells are a functionally heterogeneous population and contribute to many early immune responses. The majority of their activity is described in humans and mice, but the immune systems of all jawed vertebrates include the γδ T cell lineage. Although some aspects of γδ T cells vary between species, critical roles in early immune responses are often conserved. Common features of γδ T cells include innate receptor expression, antigen presentation, cytotoxicity, and cytokine production. Herein we compare studies describing these conserved γδ T cell functions and other, potentially unique, functions. γδ T cells are well documented for their potential immunotherapeutic properties; however, these proposed therapies are often focused on human diseases and the mouse models thereof. This review consolidates some of these studies with those in other animals to provide a consensus for the current understanding of γδ T cell function across species.
Collapse
Affiliation(s)
- Jeff Holderness
- Department of Immunology and Infectious Diseases, Montana State University, Bozeman, Montana 59717; , , ,
| | | | | | | |
Collapse
|
29
|
Liebenberg J, Pretorius A, Faber F, Collins N, Allsopp B, van Kleef M. Identification of Ehrlichia ruminantium proteins that activate cellular immune responses using a reverse vaccinology strategy. Vet Immunol Immunopathol 2012; 145:340-9. [DOI: 10.1016/j.vetimm.2011.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 11/08/2011] [Accepted: 12/05/2011] [Indexed: 12/24/2022]
|
30
|
BCG vaccination of neonatal calves: potential roles for innate immune cells in the induction of protective immunity. Comp Immunol Microbiol Infect Dis 2011; 35:219-26. [PMID: 22169020 DOI: 10.1016/j.cimid.2011.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 12/13/2022]
Abstract
Bovine tuberculosis is a disease of increasing incidence in the UK causing major economic losses and with significant impact on bovine and, potentially human health: the causative agent Mycobacterium bovis is a zoonotic pathogen. Neonatal vaccination with the attenuated M. bovis Bacille Calmette Guerin (BCG) vaccine confers a significant degree of protection in cattle, and is a widely used control strategy for human TB. The adaptive immune system is relatively immature in neonates and increased numbers of innate effector cells present in young animals and human infants may compensate for this, enabling effective immune responses to vaccination. Natural killer cells and subsets of γδ TCR+ T lymphocytes secrete high levels of interferon gamma and can interact with antigen presenting cells to promote both innate and adaptive immune responses. These cell populations may be pivotal in determining immune bias following neonatal vaccination with BCG.
Collapse
|
31
|
Plattner BL, Hostetter JM. Comparative gamma delta T cell immunology: a focus on mycobacterial disease in cattle. Vet Med Int 2011; 2011:214384. [PMID: 21647391 PMCID: PMC3103839 DOI: 10.4061/2011/214384] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/22/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
A theme among many pathogenic mycobacterial species affecting both humans and animals is a prolonged asymptomatic or latent period that can last years to decades. The mechanisms that favor progression to active disease are not well understood. Pathogen containment is often associated with an effective cell-mediated or T-helper 1 immune profile. With certain pathogenic mycobacteria, such as Mycobacterium avium subspecies paratuberculosis, a shift to active clinical disease is associated with loss of T-helper 1 immunity and development of an ineffective humoral or T-helper 2 immune response. Recently γδ T cells have been shown to play a role early in mycobacterial infections and have been hypothesized to influence disease outcome. The purpose of this paper is to compare recent advancements in our understanding of γδ T cells in humans, cattle, and mice and to discuss roles of γδ T cells in host response to mycobacterial infection.
Collapse
Affiliation(s)
- Brandon L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | |
Collapse
|
32
|
Guzman E, Price S, Poulsom H, Hope J. Bovine γδ T cells: cells with multiple functions and important roles in immunity. Vet Immunol Immunopathol 2011; 148:161-7. [PMID: 21501878 DOI: 10.1016/j.vetimm.2011.03.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/01/2011] [Accepted: 03/05/2011] [Indexed: 12/01/2022]
Abstract
The γδ T-cell receptor (TCR)-positive lymphocytes are a major circulating lymphocyte population in cattle, especially in young calves. In contrast, human and mice have low levels of circulating γδ TCR(+) T cells (γδ T cells). The majority of the circulating γδ T cells in ruminants express the workshop cluster 1 (WC1) molecule and are of the phenotype WC1(+) CD2(-) CD4(-) CD8(-). WC1 is a 220000 molecular weight glycoprotein with homology to the scavenger receptor cysteine-rich (SRCR) family, closely related to CD163. The existence of 13 members in the bovine WC1 gene family has recently been demonstrated and although murine and human orthologues to WC1 genes exist, functional gene products have not been identified in species other than ruminants and pigs. Highly diverse TCRδ usage has been reported, with expanded variable genes in cattle compared to humans and mice. Differential γ chain usage is evident between populations of bovine γδ T cells, this may have implications for functionality. There is a growing body of evidence that WC1(+) γδ T cells are important in immune responses to mycobacteria and may have important roles in T cell regulation and antigen presentation. In this review, we will summarize recent observations in γδ T cell biology and the importance of γδ T cells in immune responses to mycobacterial infections in cattle.
Collapse
Affiliation(s)
- Efrain Guzman
- Institute for Animal Health, Division of Immunology, Compton, Newbury RG20 7NN, United Kingdom
| | | | | | | |
Collapse
|
33
|
Tuberculosis immunity: opportunities from studies with cattle. Clin Dev Immunol 2010; 2011:768542. [PMID: 21197095 PMCID: PMC3004413 DOI: 10.1155/2011/768542] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 09/28/2010] [Accepted: 10/11/2010] [Indexed: 01/11/2023]
Abstract
Mycobacterium tuberculosis and M. bovis share >99% genetic identity and induce similar host responses and disease profiles upon infection. There is a rich history of codiscovery in the development of control measures applicable to both human and bovine tuberculosis (TB) including skin-testing procedures, M. bovis BCG vaccination, and interferon-γ release assays. The calf TB infection model offers several opportunities to further our understanding of TB immunopathogenesis. Recent observations include correlation of central memory immune responses with TB vaccine efficacy, association of SIRPα+ cells in ESAT-6:CFP10-elicited multinucleate giant cell formation, early γδ T cell responses to TB, antimycobacterial activity of memory CD4+ T cells via granulysin production, association of specific antibody with antigen burden, and suppression of innate immune gene expression in infected animals. Partnerships teaming researchers with veterinary and medical perspectives will continue to provide mutual benefit to TB research in man and animals.
Collapse
|
34
|
Price S, Davies M, Villarreal-Ramos B, Hope J. Differential distribution of WC1+ γδ TCR+ T lymphocyte subsets within lymphoid tissues of the head and respiratory tract and effects of intranasal M. bovis BCG vaccination. Vet Immunol Immunopathol 2010; 136:133-7. [DOI: 10.1016/j.vetimm.2010.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 10/19/2022]
|
35
|
Plattner BL, Doyle RT, Hostetter JM. Gamma-delta T cell subsets are differentially associated with granuloma development and organization in a bovine model of mycobacterial disease. Int J Exp Pathol 2009; 90:587-97. [PMID: 19758417 DOI: 10.1111/j.1365-2613.2009.00679.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The characteristic lesion in bovine tuberculosis is well-organized respiratory granulomas. This is typically associated with a strong T-helper 1 biased cell-mediated immune response and eventual containment of the infection. In bovine paratuberculosis, the classic lesion is unorganized granulomatous intestinal inflammation. Clinical paratuberculosis is associated with a T-helper 2 biased humoral immune response and eventual death because of inability of the host to contain the infection. Recent reports have suggested that gamma-delta (gammadelta) T cells play a significant role in granuloma development and/or maintenance during initial stages of infection and may influence the subsequent adaptive immune response. The objective of this study was to use an in vivo bovine model to evaluate gammadelta T cells during the early host immune response to mycobacterial infection. We used immunofluorescent staining, hyperspectral microscopy, and computerized assisted morphometry to evaluate staining and distribution of gammadelta T cells during development of organized and unorganized granulomas. Our data suggest that bovine gammadelta T cell subsets are differentially recruited to early infection sites, and may be instrumental during the initial antimycobacterial host immune response as well as for granuloma organization.
Collapse
Affiliation(s)
- Brandon L Plattner
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
36
|
Ameni G, Aseffa A, Hewinson G, Vordermeier M. Comparison of different testing schemes to increase the detection Mycobacterium bovis infection in Ethiopian cattle. Trop Anim Health Prod 2009; 42:375-83. [DOI: 10.1007/s11250-009-9429-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 08/11/2009] [Indexed: 11/28/2022]
|
37
|
Antigenic basis of diversity in the γδ T cell co-receptor WC1 family. Mol Immunol 2009; 46:2565-75. [DOI: 10.1016/j.molimm.2009.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 05/13/2009] [Accepted: 05/14/2009] [Indexed: 01/31/2023]
|
38
|
Alvarez AH, Estrada-Chávez C, Flores-Valdez MA. Molecular findings and approaches spotlighting Mycobacterium bovis persistence in cattle. Vet Res 2009; 40:22. [PMID: 19220975 PMCID: PMC2695034 DOI: 10.1051/vetres/2009005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 02/11/2009] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and Mycobacterium bovis (M. bovis) are the etiological agents of human and bovine tuberculosis (TB, bTB) respectively, and share genetic identity over 99% at the whole genome level. Progress has been made towards explaining how mycobacteria and their infected hosts remain in balance without producing clinical symptoms of disease, a phenomenon referred to as latency or persistence, which can be mimicked by certain in vitro conditions. Latency/persistence has mainly been studied using Mtb, where the two-component signalling system, dosRS, has been assigned an instrumental role, and even constitutes the current basis for development of new diagnostic methods and treatment addressing this particular stage of TB. M. bovis conserves homolog genes that in Mtb play a role in human latent TB infection and that, by analogy, would allow it to enter a persistent state in infected cattle; nevertheless, little attention has been paid to this stage in bovine hosts. We suggest that many of the advances acquired through the study of Mtb can and should be taken into consideration by research groups and veterinary professionals dealing with bTB. The study of the infection in bovines, paying particular attention to defining the molecular and cellular markers of a M. bovis persistent infection in cattle, presents great opportunities for the development and trial of new diagnostic tests and vaccines, tools that will surely help in promoting eradication of bTB in high-burden settings.
Collapse
Affiliation(s)
- Angel H Alvarez
- Centro de Investigación y Asistencía en Tecnologá y diseño del Estado de Jalisco (CIATEJ) A.C., Unidad de Biotecnología, Guadalajara, Jalisco, C.P. 44270, México
| | | | | |
Collapse
|
39
|
Immunotherapy with combined DNA vaccines is an effective treatment for M. bovis infection in cattle. Vaccine 2009; 27:1317-22. [DOI: 10.1016/j.vaccine.2008.12.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/17/2008] [Accepted: 12/28/2008] [Indexed: 11/17/2022]
|
40
|
Hoek A, Rutten VPMG, Kool J, Arkesteijn GJA, Bouwstra RJ, Van Rhijn I, Koets AP. Subpopulations of bovine WC1(+) gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo. Vet Res 2009; 40:6. [PMID: 18928784 PMCID: PMC2695017 DOI: 10.1051/vetres:2008044] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 10/15/2008] [Indexed: 11/22/2022] Open
Abstract
Regulatory T cells (Treg) are regarded essential components for maintenance of immune homeostasis. Especially CD4(+)CD25(high) T cells are considered to be important regulators of immune reactivity. In humans and rodents these natural Treg are characterized by their anergic nature, defined as a non-proliferative state, suppressive function and expression of Foxp3. In this study the potential functional role of flowcytometry-sorted bovine white blood cell populations, including CD4(+)CD25(high) T cells and gammadelta T cell subpopulations, as distinct ex vivo regulatory cells was assessed in co-culture suppression assays. Our findings revealed that despite the existence of a distinct bovine CD4(+)CD25(high) T cell population, which showed Foxp3 transcription/expression, natural regulatory activity did not reside in this cell population. In bovine co-culture suppression assays these cells were neither anergic nor suppressive. Subsequently, the following cell populations were tested functionally for regulatory activity: CD4(+)CD25(low) T cells, WC1(+), WC1.1(+) and WC1.2(+) gammadelta T cells, NK cells, CD8(+) T cells and CD14(+) monocytes. Only the WC1.1(+) and WC1.2(+) gammadelta T cells and CD14(+) monocytes proved to act as regulatory cells in cattle, which was supported by the fact that these regulatory cells showed IL-10 transcription/expression. In conclusion, our data provide first evidence that cattle CD4(+)CD25(high)Foxp3(+) and CD4(+)CD25(low) T cells do not function as Treg ex vivo. The bovine Treg function appears to reside in the gammadelta T cell population, more precisely in the WC1.1(+) and the WC1.2(+) subpopulation, major populations present in blood of cattle in contrast to non-ruminant species.
Collapse
Affiliation(s)
- Aad Hoek
- Division of Immunology, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Price SJ, Hope JC. Enhanced secretion of interferon-gamma by bovine gammadelta T cells induced by coculture with Mycobacterium bovis-infected dendritic cells: evidence for reciprocal activating signals. Immunology 2008; 126:201-8. [PMID: 18657206 DOI: 10.1111/j.1365-2567.2008.02889.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Evidence suggests that gammadelta T cells form part of the innate immune response to Mycobacterium bovis infection. Dendritic cells (DCs) are capable of secreting high levels of interleukin-12 (IL-12) following infection with mycobacteria and can induce interferon-gamma (IFN-gamma) secretion by natural killer and gammadelta T cells We investigated the innate interactions occurring between WC1(+)gammadelta T cells and M. bovis-infected DCs. Following coculture with M. bovis-infected DCs, secretion of IFN-gamma and expression of CD25 and major histocompatibility complex class II on WC1(+)gammadelta T cells were significantly enhanced. Reciprocal enhancement of IL-12 secretion by the DCs was also observed and this interaction was found to be contact dependent. We hypothesize that there is an early, transient signal between the WC1(+)gammadelta T cells and the DCs, which promotes the synthesis of biologically active IL-12, and which is dependent upon cell-cell contact. Reciprocal signals including IL-12 are then delivered to WC1(+)gammadelta cells, which leads to the enhanced secretion of IFN-gamma, and the up-regulation of activation markers and antigen presentation molecules by the WC1(+)gammadelta T cells. These interactions are likely to form a critical part of the T helper type 1-conditioning response of DCs to M. bovis.
Collapse
Affiliation(s)
- Sally J Price
- Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | |
Collapse
|
42
|
Van Rhijn I, Godfroid J, Michel A, Rutten V. Bovine tuberculosis as a model for human tuberculosis: advantages over small animal models. Microbes Infect 2008; 10:711-5. [DOI: 10.1016/j.micinf.2008.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/31/2008] [Accepted: 04/14/2008] [Indexed: 10/22/2022]
|
43
|
Hope JC, Villarreal-Ramos B. Bovine TB and the development of new vaccines. Comp Immunol Microbiol Infect Dis 2008; 31:77-100. [PMID: 17764740 DOI: 10.1016/j.cimid.2007.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2007] [Indexed: 11/20/2022]
Abstract
Bovine tuberculosis (bTB) is caused by Mycobacterium bovis. The incidence of bTB is increasing in cattle herds of developed countries that have a wild life reservoir of M. bovis, such as the UK, New Zealand and the USA. The increase in the incidence of bTB is thought to be due, at least in part, to a wildlife reservoir of M. bovis. M. bovis is also capable of infecting humans and on a worldwide basis, M. bovis is thought to account for up to 10% of cases of human TB [Cosivi O, Grange JM, Daborn CJ et al. Zoonotic tuberculosis due to Mycobacterium bovis in developing countries. Emerg Infect Dis 1998;4(1):59-70]. Thus, the increased incidence of bTB, besides being a major economic problem, poses an increased risk to human health. In the UK, the incidence of bTB continues to rise despite the use of the tuberculin test and slaughter control policy, highlighting the need for improved control strategies. Vaccination of cattle, in combination with more specific and sensitive diagnostic tests, is suggested as the most effective strategy for bovine TB control. The only vaccine currently available for human and bovine TB is the live attenuated Bacille Calmette Guerin (BCG). BCG is thought to confer protection through the induction of Th1 responses against mycobacteria. However, protection against TB conferred by BCG is variable and to this date the reasons for the successes and failures of BCG are not clear. Therefore, there is a need to develop vaccines that confer greater and more consistent protection against bTB than that afforded by BCG. Given that BCG is currently the only licensed vaccine against human TB, it is likely that any new vaccine or vaccination strategy will be based around BCG. In this review we discuss immune responses elicited by mycobacteria in cattle and the novel approaches emerging for the control of bovine TB based on our increasing knowledge of protective immune responses.
Collapse
Affiliation(s)
- Jayne C Hope
- Institute for Animal Health, Compton, Newbury, Berkshire RG20 7NN, UK.
| | | |
Collapse
|
44
|
Blumerman SL, Herzig CTA, Baldwin CL. WC1+ gammadelta T cell memory population is induced by killed bacterial vaccine. Eur J Immunol 2007; 37:1204-16. [PMID: 17429840 DOI: 10.1002/eji.200636216] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Limited studies have addressed the ability of gammadelta T cells to become memory populations. We previously demonstrated that WC1.1(+) gammadelta T cells from ruminants vaccinated with killed Leptospira borgpetersenii proliferate and produce IFN-gamma in recall responses. Here we show that this response is dependent upon antigen-responsive CD4 T cells, at least across transwell membranes; this requirement cannot be replaced by IL-2. The response was also dependent upon in vivo priming, since gammadelta T cells from leptospira vaccine-naive animals did not respond to antigen even when co-cultured across membranes from antigen-responsive PBMC. Gammadelta T cells were the major antigen-responding T cell population for the first 4 wks following vaccination and replicated more rapidly than CD4 T cells. Primed WC1(+) gammadelta T cells circulated as CD62L(hi)/CD45RO(int)/CD44(lo), characteristics of T(CM) cells. When stimulated with antigen, they decreased CD62L, increased CD44 and CD25, and had no change in CD45RO expression. These changes paralleled those of the leptospira antigen-responsive CD4 T cells but differed from those of gammadelta T cells proliferating to mitogen stimulation. This system for in vivo gammadelta T cell priming is unique, since it relies on a killed antigen to induce memory and may be pertinent to designing vaccines that require type 1 pro-inflammatory cytokines.
Collapse
|
45
|
Liebana E, Marsh S, Gough J, Nunez A, Vordermeier HM, Whelan A, Spencer Y, Clifton-Hardley R, Hewinson G, Johnson L. Distribution and activation of T-lymphocyte subsets in tuberculous bovine lymph-node granulomas. Vet Pathol 2007; 44:366-72. [PMID: 17491079 DOI: 10.1354/vp.44-3-366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The immune response against mycobacterial infections is dependant upon a complex interaction between T lymphocytes and macrophages in the context of the granuloma. For this study, we performed the analysis of 18 stage I or II, and 13 stage III or IV granulomas found in lymph nodes from 8 experimentally and 2 naturally infected cattle. T-cell subpopulations (CD3(+), CD4(+), CD8(+), WC1(+), CD25(+)) were investigated by immunohistochemistry. In the majority of stage I/II lesions, CD8(+) and CD25(+) cells were predominantly found in the lymphocytic outer region of the granuloma, suggesting a possible role for activated CD8(+) cells in the initial attempt to restrain the granuloma growth. CD4(+) T cells appeared equally distributed in the lymphocytic mantle and in the internal areas of the granulomas. WC1(+) cells appeared interspersed among the macrophages. We speculated that this could indicate a role for these 2 subsets in the maintenance and the maturation of the granuloma. In stage III/IV lesions, all of the T-cell subsets investigated appeared interspersed among the mononuclear component of the granulomas. In general terms, there was a higher density of CD8(+) cells compared with CD4(+) cells. However, there was no sense of rimming effect for any of the investigated cell populations.
Collapse
Affiliation(s)
- E Liebana
- Department of Pathology, Veterinary Laboratories Agency-Weybridge, Addlestone, KT15 3NB Surrey, England, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
McNair J, Welsh MD, Pollock JM. The immunology of bovine tuberculosis and progression toward improved disease control strategies. Vaccine 2007; 25:5504-11. [PMID: 17363118 DOI: 10.1016/j.vaccine.2007.02.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 01/17/2007] [Accepted: 02/07/2007] [Indexed: 11/20/2022]
Abstract
Failure to remove cattle diseased with Mycobacterium bovis has immense financial implications for disease control, animal health and agricultural trade as well as the zoonotic risk to human health. Current disease control strategies based on DTH skin testing fail to detect all diseased cattle and additional measures are urgently needed to improve detection of disease and to prevent naïve animals becoming exposed to infection. Experimental models of bovine TB traditionally based on intra-nasal instillation, intra-tracheal inoculation or placed in-contact with infected cattle, have been further developed using aerosolised bacteria delivered to the respiratory tract, allowing field-like bovine TB to be recreated under controlled, experimental conditions. Experimental infection models have already been used to improve diagnostic tests. Specificity of DTH skin testing can be improved under experimental conditions, using recombinant ESAT-6, while laboratory assays such as IFN-gamma release have benefited from the use of defined proteins to improve assay specificity. In combination, antigen cocktails may also improve test sensitivity. There is a concerted international effort to evaluate vaccines for use in cattle populations and to define vaccination strategies which will eliminate disease from infected herds. DNA, protein and genetically modified vaccines inoculated in a single dose, given as prime-boost or injected concurrently, will elicit significant protection against challenge with M. bovis under controlled conditions. However, vaccines and vaccination strategies require evaluation under field conditions. Furthermore, complementary strategies are under development to differentiate immune responses that follow vaccination from those following disease. This paper describes those recent advances which may lead to the introduction of improved disease control strategies.
Collapse
Affiliation(s)
- J McNair
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Stoney Road, Stormont, Belfast BT4 3SD, Northern Ireland, United Kingdom.
| | | | | |
Collapse
|
47
|
Simutis FJ, Jones DE, Hostetter JM. Failure of antigen-stimulated gammadelta T cells and CD4+ T cells from sensitized cattle to upregulate nitric oxide and mycobactericidal activity of autologous Mycobacterium avium subsp. paratuberculosis-infected macrophages. Vet Immunol Immunopathol 2007; 116:1-12. [PMID: 17275098 PMCID: PMC1852433 DOI: 10.1016/j.vetimm.2006.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 12/17/2006] [Accepted: 12/27/2006] [Indexed: 02/02/2023]
Abstract
The function of gammadelta T cells during ruminant paratuberculosis (Johne's disease) is presently unknown. An ex vivo system was used to test the hypothesis that gammadelta T cells are capable of activating Mycobacterium avium subsp. paratuberculosis-(M. paratuberculosis)-infected macrophages. Peripheral blood-derived macrophages were infected in vitro with live M. paratuberculosis, and autologous LN-derived gammadelta T cells or CD4+ T cells were co-cultured with infected macrophages for 48h, at which time bacterial survival as well as production of nitrites and IFN-gamma was evaluated. Incubation of M. paratuberculosis-infected macrophages with autologous gammadelta T cells did not result in reduced intracellular bacterial viability compared to infected macrophage cultures without added T cells. IFN-gamma production by-infected cultures containing added gammadelta T cells was not enhanced compared to that of infected macrophages alone. Although infection of macrophage cultures caused increased production of nitrites at both post-infection day (PID) 0 and PID 60, the addition of gammadelta T cells did not further increase nitrite production. In contrast, addition of PPD-stimulated CD4+ T cells obtained at PID 60 to M. paratuberculosis-infected macrophages resulted in significantly increased IFN-gamma production compared to cultures without added T cells or cultures containing unstimulated CD4+ T cells or unstimulated or antigen-stimulated gammadelta T cells. However, the increased production of IFN-gamma by co-cultures containing PPD-stimulated CD4+ T cells did not result in increased bacterial killing or increased production of nitrites compared to cultures without added T cells. In additional in vitro experiments, M. paratuberculosis-infected macrophages, but not uninfected macrophages, were unable to increase nitrite production when stimulated with recombinant IFN-gamma. Taken together, the data suggest that (1) gammadelta T cells do not produce significant IFN-gamma and do not significantly increase NO production from M. paratuberculosis-infected macrophages in vitro, (2) the production of significant IFN-gamma by antigen-stimulated CD4+ T cells from infected calves is insufficient to enhance mycobacterial killing or nitrite production by infected macrophages, and (3) macrophages may have an impaired NO response following intracellular M. paratuberculosis infection, even in the presence of significant concentrations of IFN-gamma.
Collapse
Affiliation(s)
- Frank J Simutis
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, United States.
| | | | | |
Collapse
|
48
|
Blumerman SL, Wang F, Herzig CTA, Baldwin CL. Molecular cloning of bovine chemokine receptors and expression by WC1+ gammadelta T cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:87-102. [PMID: 16762412 DOI: 10.1016/j.dci.2006.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Revised: 03/24/2006] [Accepted: 03/25/2006] [Indexed: 05/10/2023]
Abstract
Chemokine receptors mediate leukocyte migration into secondary lymphoid tissues and localization to peripheral inflammation sites. We describe full-length cDNA sequences of bovine chemokine receptors CCR5, CCR7, CXCR3 and CXCR5 and transcript expression by WC1(+)gammadelta T cells, a unique cell population with proinflammatory characteristics that comprises a large proportion of mononuclear cells in young ruminants. Bovine chemokine sequences were more similar to those of humans than were murine sequences to humans', ranging from 84% to 91%. Transcript analysis showed that antigen stimulation of WC1(+)gammadelta T cells induced IFN-gamma production and substantially increased CCR5 and CXCR3 expression when compared with freshly isolated (ex vivo) cells. CCR7 transcripts were minimally expressed in ex vivo and proliferating WC1(+)gammadelta T cells and CXCR5 expression was negligible. These results confirm the proinflammatory nature of WC1(+)gammadelta T cells is reflected by its chemokine receptor expression and suggest WC1(+)gammadelta T cells are unlikely to transit through secondary lymphoid tissues.
Collapse
Affiliation(s)
- Seth L Blumerman
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
49
|
Price SJ, Sopp P, Howard CJ, Hope JC. Workshop cluster 1+ gammadelta T-cell receptor T cells from calves express high levels of interferon-gamma in response to stimulation with interleukin-12 and -18. Immunology 2006; 120:57-65. [PMID: 17034425 PMCID: PMC2265877 DOI: 10.1111/j.1365-2567.2006.02477.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Gammadelta T-cell receptor(+) T lymphocytes are an important element of the innate immune system. Early production of interferon (IFN)-gamma by gammadelta T cells may have a role in linking innate and adaptive immune responses and contribute to T helper-1 bias. We investigated the role of cytokines in the activation and induction of IFN-gamma secretion by bovine workshop cluster 1(+) (WC1(+)) gammadelta T cells. The effects of culture with interleukin (IL)-12, IL-18, IL-15 and IL-2 were investigated; these cytokines are known to influence murine and human gammadelta T cells. We report that bovine WC1(+)gammadelta T cells are synergistically stimulated by IL-12 and IL-18 to secrete large quantities of IFN-gamma. Neonatal calves were shown to have significantly higher numbers of circulating WC1(+)gammadelta T cells than adult animals. In addition, the response of peripheral blood WC1(+)gammadelta T cells was significantly higher in neonatal calves compared with adult animals. However, in adult animals the response of lymph node WC1(+)gammadelta T cells to IL-12/IL-18 was more pronounced than that of peripheral blood WC1(+)gammadelta T cells. We hypothesize that the induction of IFN-gamma secretion from WC1(+)gammadelta T cells by IL-12 and IL-18 is likely to be an important element of the innate response to pathogens such as Mycobacterium bovis. The high numbers of WC1(+)gammadelta T cells in neonatal calves, and their inherent ability to respond to inflammatory cytokines, could be a key factor in the enhanced responses seen in calves to BCG vaccination.
Collapse
Affiliation(s)
- Sally J Price
- Institute for Animal Health, Compton, Newbury, Berkshire, United Kingdom
| | | | | | | |
Collapse
|
50
|
Blumerman SL, Herzig CTA, Rogers AN, Telfer JC, Baldwin CL. Differential TCR gene usage between WC1 − and WC1 + ruminant γδ T cell subpopulations including those responding to bacterial antigen. Immunogenetics 2006; 58:680-92. [PMID: 16799810 DOI: 10.1007/s00251-006-0122-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Accepted: 04/20/2006] [Indexed: 10/24/2022]
Abstract
Ruminant gammadelta T cells are divided into subpopulations based on the presence or absence of WC1 co-receptors (scavenger-receptor-cysteine-rich family members uniquely expressed on gammadelta T cells). Evidence suggests WC1+ are inflammatory while WC1- are regulatory and that they also differ in their tissue distribution. Recently, this paradigm was refined further as cells that produce interferon-gamma and proliferate to autologous antigens, leptospira antigens, or IL-12 were largely found within the WC1+ subpopulation that bears the WC1.1 antigenic epitope but not that bearing the WC1.2 epitope. Here, the T cell receptor gene expression by these different subpopulations (WC1-, WC1.1+, and WC1.2+) was compared using flow cytometrically-purified cells and reverse transcriptase-polymerase chain reaction (RT-PCR). The WC1- gammadelta T cells had transcripts for all 11 possible combinations of the TRG subgroup V and C genes while those in both WC1+ subpopulations were restricted to TRGV3-TRGC5 and TRGV7-TRGC5. In contrast, all three subpopulations expressed transcripts from all four known bovine TRDV genes. Further analysis of the WC1+ gammadelta T cells that proliferated in leptospira antigen-stimulated cultures indicated that they do not represent a unique subpopulation within the larger WC1+ population based on their TCR gene usage. Moreover, sequencing of 65 transcripts showed that their junctional regions were diverse as TRGJ5-1, TRGJ5-2, TRDJ1, and TRDJ3 were used, and CDR3s ranged from 9 to 24 amino acids. The restricted but shared gammadelta TCR gene usage for WC1.1+, WC1.2+, and WC1(+)-antigen-responsive cells leaves open the possibility that the WC1 co-receptor is an important determining element in the activation process and subsequent response.
Collapse
Affiliation(s)
- Seth L Blumerman
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|