1
|
Lactate-induced dispersal of Neisseria meningitidis microcolonies is mediated by changes in cell density and pilus retraction and is influenced by temperature change. Infect Immun 2021; 89:e0029621. [PMID: 34125601 PMCID: PMC8445170 DOI: 10.1128/iai.00296-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is the etiologic agent of meningococcal meningitis and sepsis. Initial colonization of meningococci to the upper respiratory tract epithelium is crucial for disease development. The colonization occurs in several steps and expression of type IV pili (Tfp) is essential for both attachment and microcolony formation of encapsulated bacteria. Previously, we have shown that host-derived lactate induces synchronized dispersal of meningococcal microcolonies. In this study, we demonstrated that lactate-induced dispersal is dependent on bacterial concentration but not on the quorum sensing system autoinducer-2 or the two-component systems NarP/NarQ, PilR/PilS, NtrY/NtrX, and MisR/MisS. Further, there were no changes in expression of genes related to assembly, elongation, retraction, and modification of Tfp throughout the time course of lactate induction. By using pilT and pptB mutants, however, we found that lactate-induced dispersal was dependent on PilT-retraction but not on phosphoglycerol-modification of Tfp even though the PptB activity was important for preventing re-aggregation post-dispersal. Furthermore, protein synthesis was required for lactate-induced dispersal. Finally, we found that at a lower temperature, lactate-induced dispersal was delayed and unsynchronized, and bacteria reformed microcolonies. We conclude that lactate-induced microcolony dispersal is dependent on bacterial concentration, PilT-dependent Tfp retraction, and protein synthesis and influenced by environmental temperature.
Collapse
|
2
|
The multifunctional enzyme S-adenosylhomocysteine/methylthioadenosine nucleosidase is a key metabolic enzyme in the virulence of Salmonella enterica var Typhimurium. Biochem J 2020; 476:3435-3453. [PMID: 31675053 DOI: 10.1042/bcj20190297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 11/17/2022]
Abstract
Key physiological differences between bacterial and mammalian metabolism provide opportunities for the development of novel antimicrobials. We examined the role of the multifunctional enzyme S-adenosylhomocysteine/Methylthioadenosine (SAH/MTA) nucleosidase (Pfs) in the virulence of S. enterica var Typhimurium (S. Typhimurium) in mice, using a defined Pfs deletion mutant (i.e. Δpfs). Pfs was essential for growth of S. Typhimurium in M9 minimal medium, in tissue cultured cells, and in mice. Studies to resolve which of the three known functions of Pfs were key to murine virulence suggested that downstream production of autoinducer-2, spermidine and methylthioribose were non-essential for Salmonella virulence in a highly sensitive murine model. Mass spectrometry revealed the accumulation of SAH in S. Typhimurium Δpfs and complementation of the Pfs mutant with the specific SAH hydrolase from Legionella pneumophila reduced SAH levels, fully restored growth ex vivo and the virulence of S. Typhimurium Δpfs for mice. The data suggest that Pfs may be a legitimate target for antimicrobial development, and that the key role of Pfs in bacterial virulence may be in reducing the toxic accumulation of SAH which, in turn, suppresses an undefined methyltransferase.
Collapse
|
3
|
Liu H, Wang Y, Xiao J, Wang Q, Liu Q, Zhang Y. An immunochromatographic test strip for rapid detection of fish pathogen Edwardsiella tarda. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Edwardsiella tarda, the etiologic agent of edwardsiellosis, is a devastating fish pathogen prevailing in worldwide aquaculture industries and accounting for severe economic losses. There is a raising concern about E. tarda being a significant zoonotic pathogen, and it is urgent to develop a rapid detection of this pathogen. This is the first study to develop a test strip for rapid detection of E. tarda in turbot.
Results
Mouse monoclonal antibodies (MAbs) and rabbit polyclonal antibody (PAb) against E. tarda were generated from immunization of mice and rabbits with a virulent isolate of E. tarda EIB202. Two MAbs specific to isolates of E. tarda were obtained, and one of them (25C1) was selected to conjugate with colloidal gold as the detector antibody. Rabbit PAb was used as the capture antibody. It was found the strip had no cross-reactivity with non-E. tarda bacterial microbes and the limit of detection (LOD) was 1 × 105 colony-forming units (CFU)/ml. The detection could be visually observed by the naked eye within 5 min. This test strip was verified with a similar detection limit and much less analysis time compared with a dot blot immunoassay (1 × 105 CFU/ml for LOD and 120 min for reaction time). When the samples were mixed with turbot tissue homogenates, strong immunoreactivity was observed over 105 CFU/ml, which suggested that the turbot tissue homogenates did not affect the detection of the strip. Pre-enrichment with homogenized turbot tissue for 12 h could increase the detection limit of the E. tarda present in the sample up to 1 to 10 CFU/ml. In practice, in detecting 20 turbot ascite samples infected by E. tarda, the immunochromatographic test strip showed a high accuracy (100% positive).
Conclusions
The immunochromatographic test strip offers great promise for a rapid, simple, and economical method of E. tarda on-site detection, and with different antibodies, it might be used to detect other aquatic pathogens.
Collapse
|
4
|
Abstract
The exclusive reservoir of the genus Neisseria is the human. Of the broad range of species that comprise the Neisseria, only two are frequently pathogenic, and only one of those is a resident of the nasopharynx. Although Neisseria meningitidis can cause severe disease if it invades the bloodstream, the vast majority of interactions between humans and Neisseria are benign, with the bacteria inhabiting its mucosal niche as a non-invasive commensal. Understandably, with the exception of Neisseria gonorrhoeae, which preferentially colonises the urogenital tract, the neisseriae are extremely well adapted to survival in the human nasopharynx, their sole biological niche. The purpose of this review is to provide an overview of the molecular mechanisms evolved by Neisseria to facilitate colonisation and survival within the nasopharynx, focussing on N. meningitidis. The organism has adapted to survive in aerosolised transmission and to attach to mucosal surfaces. It then has to replicate in a nutrition-poor environment and resist immune and competitive pressure within a polymicrobial complex. Temperature and relative gas concentrations (nitric oxide and oxygen) are likely to be potent initial signals of arrival within the nasopharyngeal environment, and this review will focus on how N. meningitidis responds to these to increase the likelihood of its survival.
Collapse
|
5
|
Pérez-Rodríguez I, Bolognini M, Ricci J, Bini E, Vetriani C. From deep-sea volcanoes to human pathogens: a conserved quorum-sensing signal in Epsilonproteobacteria. ISME JOURNAL 2014; 9:1222-34. [PMID: 25397946 DOI: 10.1038/ismej.2014.214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/27/2022]
Abstract
Chemosynthetic Epsilonproteobacteria from deep-sea hydrothermal vents colonize substrates exposed to steep thermal and redox gradients. In many bacteria, substrate attachment, biofilm formation, expression of virulence genes and host colonization are partly controlled via a cell density-dependent mechanism involving signal molecules, known as quorum sensing. Within the Epsilonproteobacteria, quorum sensing has been investigated only in human pathogens that use the luxS/autoinducer-2 (AI-2) mechanism to control the expression of some of these functions. In this study we showed that luxS is conserved in Epsilonproteobacteria and that pathogenic and mesophilic members of this class inherited this gene from a thermophilic ancestor. Furthermore, we provide evidence that the luxS gene is expressed--and a quorum-sensing signal is produced--during growth of Sulfurovum lithotrophicum and Caminibacter mediatlanticus, two Epsilonproteobacteria from deep-sea hydrothermal vents. Finally, we detected luxS transcripts in Epsilonproteobacteria-dominated biofilm communities collected from deep-sea hydrothermal vents. Taken together, our findings indicate that the epsiloproteobacterial lineage of the LuxS enzyme originated in high-temperature geothermal environments and that, in vent Epsilonproteobacteria, luxS expression is linked to the production of AI-2 signals, which are likely produced in situ at deep-sea vents. We conclude that the luxS gene is part of the ancestral epsilonproteobacterial genome and represents an evolutionary link that connects thermophiles to human pathogens.
Collapse
Affiliation(s)
- Ileana Pérez-Rodríguez
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Marie Bolognini
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jessica Ricci
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- 1] Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA [2] Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
6
|
Palaniyandi S, Mitra A, Herren CD, Zhu X, Mukhopadhyay S. LuxS contributes to virulence in avian pathogenic Escherichia coli O78:K80:H9. Vet Microbiol 2013; 166:567-75. [PMID: 23958403 DOI: 10.1016/j.vetmic.2013.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 07/03/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Abstract
Avian pathogenic Escherichia coli (APEC) cause avian colibacillosis, a poultry disease characterized by multiple organ infections resulting in significant economic loss in the poultry industry. Several virulence factors are important for disease manifestation in APEC of which, role of quorum sensing has not been investigated. Quorum sensing is a population dependent cell-cell signaling system which modulates numerous physiological processes such as biofilm formation and virulence in multiple species. LuxS, a well-known controller in the QS, plays a role in regulating virulence in various bacterial species. Here we investigated the role of LuxS in regulating virulence in APEC O78:K80:H9. Mutation of luxS resulted in a significant reduction of virulence in APEC O78:K80:H9, evidenced by both in vivo and in vitro assays such as decreased invasion of internal organs in chicken embryo, reduced lethality in chicken embryo lethality assay, and altered lipopolysaccharide (LPS) profile. In addition, the abilities of the knockout strain to survive in chicken macrophage cell lines and to invade in chicken embryo fibroblast cells were significantly diminished. Further, structure and expression level of the LPS profile was significantly altered in the knockout strain, which may be one of the contributing factors for the persistence and virulence of APEC. Complementation of luxS gene in trans restored the virulence of the knockout strain to the level of wild-type bacteria. Taken together, these results show that LuxS contributes to the virulence in APEC O78:K80:H9 strain and partly explain the role played by LuxS in the pathogenesis of APEC strains.
Collapse
|
7
|
Haigh R, Kumar B, Sandrini S, Freestone P. Mutation design and strain background influence the phenotype ofEscherichia coli luxSmutants. Mol Microbiol 2013; 88:951-69. [DOI: 10.1111/mmi.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Richard Haigh
- Department of Genetics; University of Leicester; Leicester UK
| | - Brijesh Kumar
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Sara Sandrini
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| | - Primrose Freestone
- Department of Infection, Immunity and Inflammation; University of Leicester; Leicester UK
| |
Collapse
|
8
|
Bozue J, Powell BS, Cote CK, Moody KL, Gelhaus HC, Vietri NJ, Rozak DA. Disrupting the luxS quorum sensing gene does not significantly affect Bacillus anthracis virulence in mice or guinea pigs. Virulence 2012; 3:504-9. [PMID: 23076278 PMCID: PMC3524149 DOI: 10.4161/viru.21934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Many bacterial species use secreted quorum-sensing autoinducer molecules to regulate cell density- and growth phase-dependent gene expression, including virulence factor production, as sufficient environmental autoinducer concentrations are achieved. Bacillus anthracis, the causative agent of anthrax, contains a functional autoinducer (AI-2) system, which appears to regulate virulence gene expression. To determine if the AI-2 system is necessary for disease, we constructed a LuxS AI-2 synthase-deficient mutant in the virulent Ames strain of B. anthracis. We found that growth of the LuxS-deficient mutant was inhibited and sporulation was delayed when compared with the parental strain. However, spores of the Ames luxS mutant remained fully virulent in both mice and guinea pigs.
Collapse
Affiliation(s)
- Joel Bozue
- The United States Army of Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Choi J, Shin D, Kim M, Park J, Lim S, Ryu S. LsrR-mediated quorum sensing controls invasiveness of Salmonella typhimurium by regulating SPI-1 and flagella genes. PLoS One 2012; 7:e37059. [PMID: 22623980 PMCID: PMC3356404 DOI: 10.1371/journal.pone.0037059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/12/2012] [Indexed: 12/20/2022] Open
Abstract
Bacterial cell-to-cell communication, termed quorum sensing (QS), controls bacterial behavior by using various signal molecules. Despite the fact that the LuxS/autoinducer-2 (AI-2) QS system is necessary for normal expression of Salmonella pathogenicity island-1 (SPI-1), the mechanism remains unknown. Here, we report that the LsrR protein, a transcriptional regulator known to be involved in LuxS/AI-2-mediated QS, is also associated with the regulation of SPI-1-mediated Salmonella virulence. We determined that LsrR negatively controls SPI-1 and flagella gene expressions. As phosphorylated AI-2 binds to and inactivates LsrR, LsrR remains active and decreases expression of SPI-1 and flagella genes in the luxS mutant. The reduced expression of those genes resulted in impaired invasion of Salmonella into epithelial cells. Expression of SPI-1 and flagella genes was also reduced by overexpression of the LsrR regulator from a plasmid, but was relieved by exogenous AI-2, which binds to and inactivates LsrR. These results imply that LsrR plays an important role in selecting infectious niche of Salmonella in QS dependent mode.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Dongwoo Shin
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Minjeong Kim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Joowon Park
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangyong Lim
- Radiation Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
10
|
Quorum sensing and expression of virulence in pectobacteria. SENSORS 2012; 12:3327-49. [PMID: 22737011 PMCID: PMC3376562 DOI: 10.3390/s120303327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/21/2012] [Accepted: 03/02/2012] [Indexed: 01/23/2023]
Abstract
Quorum sensing (QS) is a population density-dependent regulatory mechanism in which gene expression is coupled to the accumulation of a chemical signaling molecule. QS systems are widespread among the plant soft-rotting bacteria. In Pectobacterium carotovorum, at least two QS systems exist being specified by the nature of chemical signals involved. QS in Pectobacterium carotovorum uses N-acylhomoserine lactone (AHL) based, as well as autoinducer-2 (AI-2) dependent signaling systems. This review will address the importance of the QS in production of virulence factors and interaction of QS with other regulatory systems in Pectobacterium carotovorum.
Collapse
|
11
|
Bandara HMHN, Lam OLT, Jin LJ, Samaranayake L. Microbial chemical signaling: a current perspective. Crit Rev Microbiol 2012; 38:217-49. [PMID: 22300377 DOI: 10.3109/1040841x.2011.652065] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Communication among microorganisms is mediated through quorum sensing. The latter is defined as cell-density linked, coordinated gene expression in microbial populations as a response to threshold signal concentrations followed by induction of a synchronized population response. This phenomenon is used by a variety of microbes to optimize their survival in a constantly challenging, dynamic milieu, by correlating individual cellular functions to community-based requirements. The synthesis, secretion, and perception of quorum-sensing molecules and their target response play a pivotal role in quorum sensing and are tightly controlled by complex, multilayered and interconnected signal transduction pathways that regulate diverse cellular functions. Quorum sensing exemplifies interactive social behavior innate to the microbial world that controls features such as, virulence, biofilm maturation, antibiotic resistance, swarming motility, and conjugal plasmid transfer. Over the past two decades, studies have been performed to rationalize bacterial cell-to-cell communication mediated by structurally and functionally diverse small molecules. This review describes the theoretical aspects of cellular and quorum-sensing mechanisms that affect microbial physiology and pathobiology.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Biosciences, Prince Philip Dental Hospital, 34, Hospital Road, Sai Ying Pun, Hong Kong
| | | | | | | |
Collapse
|
12
|
Parveen N, Cornell KA. Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Mol Microbiol 2010; 79:7-20. [PMID: 21166890 DOI: 10.1111/j.1365-2958.2010.07455.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The importance of methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase in bacteria has started to be appreciated only in the past decade. A comprehensive analysis of its various roles here demonstrates that it is an integral component of the activated methyl cycle, which recycles adenine and methionine through S-adenosylmethionine (SAM)-mediated methylation reactions, and also produces the universal quorum-sensing signal, autoinducer-2 (AI-2). SAM is also essential for synthesis of polyamines, N-acylhomoserine lactone (autoinducer-1), and production of vitamins and other biomolecules formed by SAM radical reactions. MTA, SAH and 5'-deoxyadenosine (5'dADO) are product inhibitors of these reactions, and are substrates of MTA/SAH nucleosidase, underscoring its importance in a wide array of metabolic reactions. Inhibition of this enzyme by certain substrate analogues also limits synthesis of autoinducers and hence causes reduction in biofilm formation and may attenuate virulence. Interestingly, the inhibitors of MTA/SAH nucleosidase are very effective against the Lyme disease causing spirochaete, Borrelia burgdorferi, which uniquely expresses three homologous functional enzymes. These results indicate that inhibition of this enzyme can affect growth of different bacteria by affecting different mechanisms. Therefore, new inhibitors are currently being explored for development of potential novel broad-spectrum antimicrobials.
Collapse
Affiliation(s)
- Nikhat Parveen
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 225 Warren Street, Newark, NJ 07103-3535, USA.
| | | |
Collapse
|
13
|
Longshaw AI, Adanitsch F, Gutierrez JA, Evans GB, Tyler PC, Schramm VL. Design and synthesis of potent "sulfur-free" transition state analogue inhibitors of 5'-methylthioadenosine nucleosidase and 5'-methylthioadenosine phosphorylase. J Med Chem 2010; 53:6730-46. [PMID: 20718423 DOI: 10.1021/jm100898v] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a dual substrate bacterial enzyme involved in S-adenosylmethionine (SAM) related quorum sensing pathways that regulates virulence in many bacterial species. MTANs from many bacteria are directly involved in the quorum sensing mechanism by regulating the synthesis of autoinducer molecules that are used by bacterial communities to communicate. In humans, 5'-methylthioadenosine phosphorylase (MTAP) is involved in polyamine biosynthesis as well as in purine and SAM salvage pathways and thus has been identified as an anticancer target. Previously we have described the synthesis and biological activity of several aza-C-nucleoside mimics with a sulfur atom at the 5' position that are potent E. coli MTAN and human MTAP inhibitors. Because of the possibility that the sulfur may affect bioavailability, we were interested in synthesizing "sulfur-free" analogues. Herein we describe the preparation of a series of "sulfur-free" transition state analogue inhibitors of E. coli MTAN and human MTAP that have low nano- to picomolar dissociation constants and are potentially novel bacterial anti-infective and anticancer drug candidates.
Collapse
Affiliation(s)
- Alistair I Longshaw
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower Hutt, New Zealand
| | | | | | | | | | | |
Collapse
|
14
|
Zhang Q, Li Y, Tang CM. The role of the exopolyphosphatase PPX in avoidance by Neisseria meningitidis of complement-mediated killing. J Biol Chem 2010; 285:34259-68. [PMID: 20736171 DOI: 10.1074/jbc.m110.154393] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The complement system is critical for immunity against the important human pathogen Neisseria meningitidis. We describe the isolation of a meningococcal mutant lacking PPX, an exopolyphosphatase responsible for cleaving cellular polyphosphate, a polymer of tens to hundreds of orthophosphate residues found in virtually all living cells. Bacteria lacking PPX exhibit increased resistance to complement-mediated killing. By site directed mutagenesis, we define amino acids necessary for the biochemical activity of meningococcal PPX, including a conserved glutamate (Glu(117)) and residues in the Walker B box predicted to be involved in binding to phosphate. We show that the biochemical activity of PPX is necessary for interactions with the complement. The relative resistance of the ppx mutant does not result from changes in structures (such as capsule, lipopolysaccharide, and factor H-binding protein), which are known to be required for evasion of this key aspect of host immunity. Instead, expression of PPX modifies the interaction of N. meningitidis with the alternative pathway of complement activation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Microbiology, Centre for Molecular Microbiology and Infection, Flowers Building, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | |
Collapse
|
15
|
Halliday NM, Hardie KR, Williams P, Winzer K, Barrett DA. Quantitative liquid chromatography-tandem mass spectrometry profiling of activated methyl cycle metabolites involved in LuxS-dependent quorum sensing in Escherichia coli. Anal Biochem 2010; 403:20-9. [PMID: 20417170 DOI: 10.1016/j.ab.2010.04.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/16/2010] [Accepted: 04/17/2010] [Indexed: 10/19/2022]
Abstract
A rapid, selective, and sensitive liquid chromatography-tandem mass spectrometry assay has been developed and validated for the simultaneous quantification of the metabolites and precursors of the activated methyl cycle, reported in preliminary form by Heurlier et al. (2009) [43]. Analytes were extracted from Escherichia coli MG1655 and chemically derivatized as N(O,S)-iso-butyloxycarbonyl iso-butyl esters using iso-butyl chloroformate in an aqueous iso-butanol/pyridine environment. S-Adenosylmethionine, S-adenosylhomocysteine, S-ribosylhomocysteine, homocysteine, methionine, cystathionine, cysteine, and homoserine were quantified by liquid chromatography-positive ion tandem electrospray ionization mass spectrometry. Internal standards were isotopically labeled [(13)CD(3)]methionine and S-adenosylcysteine. Linearity of the assay was established up to a concentration of 700 microg/g cell dry weight for each analyte. The validated assay was used to quantitatively profile the intracellular activated methyl cycle metabolites as a function of growth in E. coli MG1655 and its derivative Deltapfs and DeltaluxS mutants to determine the metabolic consequences of a disruption to the activated methyl cycle and, hence, LuxS-dependent quorum sensing.
Collapse
Affiliation(s)
- N M Halliday
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | |
Collapse
|
16
|
Tunio SA, Oldfield NJ, Berry A, Ala'Aldeen DAA, Wooldridge KG, Turner DPJ. The moonlighting protein fructose-1, 6-bisphosphate aldolase of Neisseria meningitidis: surface localization and role in host cell adhesion. Mol Microbiol 2010; 76:605-15. [PMID: 20199602 DOI: 10.1111/j.1365-2958.2010.07098.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fructose-1, 6-bisphosphate aldolases (FBA) are cytoplasmic glycolytic enzymes, which despite lacking identifiable secretion signals, have also been found localized to the surface of several bacteria where they bind host molecules and exhibit non-glycolytic functions. Neisseria meningitidis is an obligate human nasopharyngeal commensal, which has the capacity to cause life-threatening meningitis and septicemia. Recombinant native N. meningitidis FBA was purified and used in a coupled enzymic assay confirming that it has fructose bisphosphate aldolase activity. Cell fractionation experiments showed that meningococcal FBA is localized both to the cytoplasm and the outer membrane. Flow cytometry demonstrated that outer membrane-localized FBA was surface-accessible to FBA-specific antibodies. Mutational analysis and functional complementation was used to identify additional functions of FBA. An FBA-deficient mutant was not affected in its ability to grow in vitro, but showed a significant reduction in adhesion to human brain microvascular endothelial and HEp-2 cells compared to its isogenic parent and its complemented derivative. In summary, FBA is a highly conserved, surface exposed protein that is required for optimal adhesion of meningococci to human cells.
Collapse
Affiliation(s)
- Sarfraz A Tunio
- Molecular Bacteriology and Immunology Group, Institute of Infection, Immunity & Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
17
|
Holmes K, Tavender TJ, Winzer K, Wells JM, Hardie KR. AI-2 does not function as a quorum sensing molecule in Campylobacter jejuni during exponential growth in vitro. BMC Microbiol 2009; 9:214. [PMID: 19814796 PMCID: PMC2772989 DOI: 10.1186/1471-2180-9-214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 10/08/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Campylobacter jejuni contains a homologue of the luxS gene shown to be responsible for the production of the signalling molecule autoinducer-2 (AI-2) in Vibrio harveyi and Vibrio cholerae. The aim of this study was to determine whether AI-2 acted as a diffusible quorum sensing signal controlling C. jejuni gene expression when it is produced at high levels during mid exponential growth phase. RESULTS AI-2 activity was produced by the parental strain NCTC 11168 when grown in rich Mueller-Hinton broth (MHB) as expected, but interestingly was not present in defined Modified Eagles Medium (MEM-alpha). Consistent with previous studies, the luxS mutant showed comparable growth rates to the parental strain and exhibited decreased motility halos in both MEM-alpha and MHB. Microarray analysis of genes differentially expressed in wild type and luxS mutant strains showed that many effects on mRNA transcript abundance were dependent on the growth medium and linked to metabolic functions including methionine metabolism. Addition of exogenously produced AI-2 to the wild type and the luxS mutant, growing exponentially in either MHB or MEM-alpha did not induce any transcriptional changes as analysed by microarray. CONCLUSION Taken together these results led us to conclude that there is no evidence for the role of AI-2 in cell-to-cell communication in C. jejuni strain NCTC 11168 under the growth conditions used, and that the effects of the luxS mutation on the transcriptome are related to the consequential loss of function in the activated methyl cycle.
Collapse
Affiliation(s)
- Kathryn Holmes
- Pathogens: Molecular Microbiology, BBSRC Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- Department of Clinical Medicine, Trinity College, Adelaide and Meath Hospital, Dublin 24, Ireland
| | - Tim J Tavender
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Clifton Boulevard, University Park, Nottingham NG7 2RD, UK
- Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Klaus Winzer
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Clifton Boulevard, University Park, Nottingham NG7 2RD, UK
| | - Jerry M Wells
- Pathogens: Molecular Microbiology, BBSRC Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- Host-Microbe Interactomics, Animal Sciences Department, University of Wageningen, The Netherlands
| | - Kim R Hardie
- School of Molecular Medical Sciences, Centre for Biomolecular Sciences, The University of Nottingham, Clifton Boulevard, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
18
|
LuxS promotes biofilm maturation and persistence of nontypeable haemophilus influenzae in vivo via modulation of lipooligosaccharides on the bacterial surface. Infect Immun 2009; 77:4081-91. [PMID: 19564381 DOI: 10.1128/iai.00320-09] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an extremely common airway commensal which can cause opportunistic infections that are usually localized to airway mucosal surfaces. During many of these infections, NTHI forms biofilm communities that promote persistence in vivo. For many bacterial species, density-dependent quorum-signaling networks can affect biofilm formation and/or maturation. Mutation of luxS, a determinant of the autoinducer 2 (AI-2) quorum signal pathway, increases NTHI virulence in the chinchilla model for otitis media infections. For example, bacterial counts in middle-ear fluids and the severity of the host inflammatory response were increased in luxS mutants compared with parental strains. As these phenotypes are consistent with those that we have observed for biofilm-defective NTHI mutants, we hypothesized that luxS may affect NTHI biofilms. A luxS mutant was generated using the well-characterized NTHI 86-028NP strain and tested to determine the effects of the mutation on biofilm phenotypes in vitro and bacterial persistence and disease severity during experimental otitis media. Quantitation of the biofilm structure by confocal microscopy and COMSTAT analysis revealed significantly reduced biomass for NTHI 86-028NP luxS biofilms, which was restored by a soluble mediator in NTHI 86-028NP supernatants. Analysis of lipooligosaccharide moieties using an enzyme-linked immunosorbent assay and immunoblotting showed decreased levels of biofilm-associated glycoforms in the NTHI 86-028NP luxS strain. Infection studies showed that NTHI 86-028NP luxS had a significant persistence defect in vivo during chronic otitis media infection. Based on these data, we concluded that a luxS-dependent soluble mediator modulates the composition of the NTHI lipooligosaccharides, resulting in effects on biofilm maturation and bacterial persistence in vivo.
Collapse
|
19
|
Attenuation of Edwardsiella tarda virulence by small peptides that interfere with LuxS/autoinducer type 2 quorum sensing. Appl Environ Microbiol 2009; 75:3882-90. [PMID: 19411415 DOI: 10.1128/aem.02690-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Edwardsiella tarda is a gram-negative pathogen with a broad host range that includes humans, animals, and fish. Recent studies have shown that the LuxS/autoinducer type 2 (AI-2) quorum sensing system is involved in the virulence of E. tarda. In the present study, it was found that the E. tarda LuxS mutants bearing deletions of the catalytic site (C site) and the tyrosine kinase phosphorylation site, respectively, are functionally inactive and that these dysfunctional mutants can interfere with the activity of the wild-type LuxS. Two small peptides, 5411 and 5906, which share sequence identities with the C site of LuxS, were identified. 5411 and 5906 proved to be inhibitors of AI-2 activity and could vitiate the infectivity of the pathogenic E. tarda strain TX1. The inhibitory effect of 5411 and 5906 on AI-2 activity is exerted on LuxS, with which these peptides specifically interact. The expression of 5411 and 5906 in TX1 has multiple effects (altering biofilm production and the expression of certain virulence-associated genes), which are similar to those caused by interruption of luxS expression. Further study found that it is very likely that 5411 and 5906 can be released from the strains expressing them and, should TX1 be in the vicinity, captured by TX1. Based on this observation, a constitutive 5411 producer (Pseudomonas sp. strain FP3/pT5411) was constructed in the form of a fish commensal isolate that expresses 5411 from a plasmid source. The presence of FP3/pT5411 in fish attenuates the virulence of TX1. Finally, it was demonstrated that fish expressing 5411 directly from tissues exhibit enhanced resistance against TX1 infection.
Collapse
|
20
|
Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 2009; 5:251-7. [PMID: 19270684 PMCID: PMC2743263 DOI: 10.1038/nchembio.153] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Accepted: 02/04/2009] [Indexed: 02/07/2023]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC(50) values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC(50) values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.
Collapse
|
21
|
Transition state analogs of 5'-methylthioadenosine nucleosidase disrupt quorum sensing. Nat Chem Biol 2009. [PMID: 19270684 DOI: 10.1038/nchembio.153.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
5'-Methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) is a bacterial enzyme involved in S-adenosylmethionine-related quorum sensing pathways that induce bacterial pathogenesis factors. Transition state analogs MT-DADMe-Immucillin-A, EtT-DADMe-Immucillin-A and BuT-DADMe-Immucillin-A are slow-onset, tight-binding inhibitors of Vibrio cholerae MTAN (VcMTAN), with equilibrium dissociation constants of 73, 70 and 208 pM, respectively. Structural analysis of VcMTAN with BuT-DADMe-Immucillin-A revealed interactions contributing to the high affinity. We found that in V. cholerae cells, these compounds are potent MTAN inhibitors with IC(50) values of 27, 31 and 6 nM for MT-, EtT- and BuT-DADMe-Immucillin-A, respectively; the compounds disrupt autoinducer production in a dose-dependent manner without affecting growth. MT- and BuT-DADMe-Immucillin-A also inhibited autoinducer-2 production in enterohemorrhagic Escherichia coli O157:H7 with IC(50) values of 600 and 125 nM, respectively. BuT-DADMe-Immucillin-A inhibition of autoinducer-2 production in both strains persisted for several generations and caused reduction in biofilm formation. These results support MTAN's role in quorum sensing and its potential as a target for bacterial anti-infective drug design.
Collapse
|
22
|
Growth deficiencies of Neisseria meningitidis pfs and luxS mutants are not due to inactivation of quorum sensing. J Bacteriol 2008; 191:1293-302. [PMID: 19074394 DOI: 10.1128/jb.01170-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The activated methyl cycle (AMC) is a central metabolic pathway used to generate (and recycle) several important metabolites and enable methylation. Pfs and LuxS are considered integral components of this pathway because they convert S-adenosylhomocysteine (SAH) to S-ribosylhomocysteine (SRH) and S-ribosylhomocysteine to homocysteine (HCY), respectively. The latter reaction has a second function since it also generates the precursor of the quorum-sensing molecule autoinducer 2 (AI-2). By demonstrating that there was a complete lack of AI-2 production in pfs mutants of the causative agent of meningitis and septicemia, Neisseria meningitidis, we showed that the Pfs reaction is the sole intracellular source of the AI-2 signal. Analysis of lacZ reporters and real-time PCR experiments indicated that pfs is expressed constitutively from a promoter immediately upstream, and careful study of the pfs mutants revealed a growth defect that could not be attributed to a lack of AI-2. Metabolite profiling of the wild type and of a pfs mutant under various growth conditions revealed changes in the concentrations of several AMC metabolites, particularly SRH and SAH and under some conditions also HCY. Similar studies established that an N. meningitidis luxS mutant also has metabolite pool changes and growth defects in line with the function of LuxS downstream of Pfs in the AMC. Thus, the observed growth defect of N. meningitidis pfs and luxS mutants is not due to quorum sensing but is probably due to metabolic imbalance and, in the case of pfs inactivation, is most likely due to toxic accumulation of SAH.
Collapse
|
23
|
Identification of meningococcal genes necessary for colonization of human upper airway tissue. Infect Immun 2008; 77:45-51. [PMID: 18936183 DOI: 10.1128/iai.00968-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neisseria meningitidis is an exclusively human pathogen that has evolved primarily to colonize the nasopharynx rather than to cause systemic disease. Colonization is the most frequent outcome following meningococcal infection and a prerequisite for invasive disease. The mechanism of colonization involves attachment of the organism to epithelial cells via bacterial type IV pili (Tfp), but subsequent events during colonization remain largely unknown. We analyzed 576 N. meningitidis mutants for their capacity to colonize human nasopharyngeal tissue in an organ culture model to identify bacterial genes required for colonization. Eight colonization-defective mutants were isolated. Two mutants were unable to express Tfp and were defective for adhesion to epithelial cells, which is likely to be the basis of their attenuation in nasopharyngeal tissue. Three other mutants are predicted to have lost previously uncharacterized surface molecules, while the remaining mutants have transposon insertions in genes of unknown function. We have identified novel meningococcal colonization factors, and this should provide insights into the survival of this important pathogen in its natural habitat.
Collapse
|
24
|
Gao Y, Song J, Hu B, Zhang L, Liu Q, Liu F. The luxS Gene Is Involved in AI-2 Production, Pathogenicity, and Some Phenotypes in Erwinia amylovora. Curr Microbiol 2008; 58:1-10. [DOI: 10.1007/s00284-008-9256-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 07/18/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
25
|
Rezzonico F, Duffy B. Lack of genomic evidence of AI-2 receptors suggests a non-quorum sensing role for luxS in most bacteria. BMC Microbiol 2008; 8:154. [PMID: 18803868 PMCID: PMC2561040 DOI: 10.1186/1471-2180-8-154] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 09/20/2008] [Indexed: 01/08/2023] Open
Abstract
Background Great excitement accompanied discoveries over the last decade in several Gram-negative and Gram-positive bacteria of the LuxS protein, which catalyzes production of the AI-2 autoinducer molecule for a second quorum sensing system (QS-2). Since the luxS gene was found to be widespread among the most diverse bacterial taxa, it was hypothesized that AI-2 may constitute the basis of a universal microbial language, a kind of bacterial Esperanto. Many of the studies published in this field have drawn a direct correlation between the occurrence of the luxS gene in a given organism and the presence and functionality of a QS-2 therein. However, rarely hathe existence of potential AI-2 receptors been examined. This is important, since it is now well recognized that LuxS also holds a central role as a metabolic enzyme in the activated methyl cycle which is responsible for the generation of S-adenosyl-L-methionine, the major methyl donor in the cell. Results In order to assess whether the role of LuxS in these bacteria is indeed related to AI-2 mediated quorum sensing we analyzed genomic databases searching for established AI-2 receptors (i.e., LuxPQ-receptor of Vibrio harveyi and Lsr ABC-transporter of Salmonella typhimurium) and other presumed QS-related proteins and compared the outcome with published results about the role of QS-2 in these organisms. An unequivocal AI-2 related behavior was restricted primarily to organisms bearing known AI-2 receptor genes, while phenotypes of luxS mutant bacteria lacking these genes could often be explained simply by assuming deficiencies in sulfur metabolism. Conclusion Genomic analysis shows that while LuxPQ is restricted to Vibrionales, the Lsr-receptor complex is mainly present in pathogenic bacteria associated with endotherms. This suggests that QS-2 may play an important role in interactions with animal hosts. In most other species, however, the role of LuxS appears to be limited to metabolism, although in a few cases the presence of yet unknown receptors or the adaptation of pre-existent effectors to QS-2 must be postulated.
Collapse
Affiliation(s)
- Fabio Rezzonico
- Agroscope Changins-Wädenswil ACW, Division of Plant Protection, CH-8820 Wädenswil, Switzerland.
| | | |
Collapse
|
26
|
Zhang M, Sun K, Sun L. Regulation of autoinducer 2 production and luxS expression in a pathogenic Edwardsiella tarda strain. Microbiology (Reading) 2008; 154:2060-2069. [DOI: 10.1099/mic.0.2008/017343-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Min Zhang
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Kun Sun
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Li Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
27
|
Abstract
Some bacterial species engage in two well-documented social behaviors: the formation of surface-associated communities known as biofilms, and intercellular signaling, or quorum sensing. Recent studies have begun to reveal how these two social behaviors are related in different species. This chapter will review the role quorum sensing plays in biofilm formation for different species. In addition, different aspects of quorum sensing in the context of multispecies biofilms will be discussed.
Collapse
|
28
|
Turovskiy Y, Kashtanov D, Paskhover B, Chikindas ML. Quorum sensing: fact, fiction, and everything in between. ADVANCES IN APPLIED MICROBIOLOGY 2007; 62:191-234. [PMID: 17869606 PMCID: PMC2391307 DOI: 10.1016/s0065-2164(07)62007-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yevgeniy Turovskiy
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
29
|
Barnard AM, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GP. Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci 2007; 362:1165-83. [PMID: 17360277 PMCID: PMC2435580 DOI: 10.1098/rstb.2007.2042] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing describes the ability of bacteria to sense their population density and respond by modulating gene expression. In the plant soft-rotting bacteria, such as Erwinia, an arsenal of plant cell wall-degrading enzymes is produced in a cell density-dependent manner, which causes maceration of plant tissue. However, quorum sensing is central not only to controlling the production of such destructive enzymes, but also to the control of a number of other virulence determinants and secondary metabolites. Erwinia synthesizes both N-acylhomoserine lactone (AHL) and autoinducer-2 types of quorum sensing signal, which both play a role in regulating gene expression in the phytopathogen. We review the models for AHL-based regulation of carbapenem antibiotic production in Erwinia. We also discuss the importance of quorum sensing in the production and secretion of virulence determinants by Erwinia, and its interplay with other regulatory systems.
Collapse
Affiliation(s)
| | | | | | | | | | - George P.C Salmond
- Department of Biochemistry, University of CambridgeTennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
30
|
Williams P, Winzer K, Chan WC, Cámara M. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 2007; 362:1119-34. [PMID: 17360280 PMCID: PMC2435577 DOI: 10.1098/rstb.2007.2039] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many years bacteria were considered primarily as autonomous unicellular organisms with little capacity for collective behaviour. However, we now appreciate that bacterial cells are in fact, highly communicative. The generic term 'quorum sensing' has been adopted to describe the bacterial cell-to-cell communication mechanisms which co-ordinate gene expression usually, but not always, when the population has reached a high cell density. Quorum sensing depends on the synthesis of small molecules (often referred to as pheromones or autoinducers) that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of quorum sensing signal molecules, and consequently, their concentration in the external environment rises. Once a critical threshold concentration has been reached, a target sensor kinase or response regulator is activated (or repressed) so facilitating the expression of quorum sensing-dependent genes. Quorum sensing enables a bacterial population to mount a co-operative response that improves access to nutrients or specific environmental niches, promotes collective defence against other competitor prokaryotes or eukaryotic defence mechanisms and facilitates survival through differentiation into morphological forms better able to combat environmental threats. Quorum sensing also crosses the prokaryotic-eukaryotic boundary since quorum sensing-dependent signalling can be exploited or inactivated by both plants and mammals.
Collapse
Affiliation(s)
- Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, School of Molecular Medical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | | | | | | |
Collapse
|
31
|
Choi J, Shin D, Ryu S. Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: the luxS gene is necessary for expression of genes in pathogenicity island 1. Infect Immun 2007; 75:4885-90. [PMID: 17620352 PMCID: PMC2044537 DOI: 10.1128/iai.01942-06] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the fact that the regulatory system sensing density of cell population and its signaling molecule have been identified in Salmonella enterica, the biological significance of this phenomenon termed as quorum sensing remains unknown. In this report, we provide evidence that the luxS gene is necessary for Salmonella virulence phenotypes. Transcription assays showed that the cell-density-dependent induction of the invF gene was abolished in a Salmonella strain with the luxS gene deleted. The effect of the luxS deletion was also investigated in other InvF-regulated genes expressed from Salmonella pathogenicity island 1 (SPI-1). The decreased expression of SPI-1 genes in the strain with luxS deleted could be restored by either the addition of a synthetic signal molecule or the introduction of a plasmid copy of the luxS gene. Thus, the reduced expression of invF and its regulated genes in Salmonella cells lacking quorum sensing resulted in the attenuation of virulence phenotypes both in vitro and in vivo.
Collapse
Affiliation(s)
- Jeongjoon Choi
- Department of Food and Animal Biotechnology, School of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | | | | |
Collapse
|
32
|
Claus H, Vogel U, Swiderek H, Frosch M, Schoen C. Microarray analyses of meningococcal genome composition and gene regulation: a review of the recent literature: Table 1. FEMS Microbiol Rev 2007; 31:43-51. [PMID: 17096662 DOI: 10.1111/j.1574-6976.2006.00047.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The development of microarrays for genome comparison and transcriptional profiling along with the public availability of several meningococcal genome sequences has promoted studies elucidating (i) intraspecific and interspecific genomic differences of members of the genus Neisseria, and (ii) the transcriptional response of meningococci to a variety of environmental stresses such as heat shock, iron starvation, serum treatment, and contact with eukaryotic cells. Furthermore, microarray-based finetyping of meningococci is in development. It will remain a difficult, but important, goal to identify sets of genes determining the virulence potential of hypervirulent meningococcal lineages in comparison with apathogenic ones. The recent identification of the meningococcal disease-associated island through the application of microarray analyses has been a step towards this aim. Transcriptional profiling of meningococci has brought about the compilation of large datasets, which also provide information about several regulons. Meningococcal microarray analysis has established a basis for studies clarifying the function of previously unknown genes, and has supported the identification of interesting vaccine candidates. However, harmonization of protocols and tools, as well as central databases are needed to foster the comparability of studies and the integration of knowledge.
Collapse
Affiliation(s)
- Heike Claus
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
33
|
Krin E, Chakroun N, Turlin E, Givaudan A, Gaboriau F, Bonne I, Rousselle JC, Frangeul L, Lacroix C, Hullo MF, Marisa L, Danchin A, Derzelle S. Pleiotropic role of quorum-sensing autoinducer 2 in Photorhabdus luminescens. Appl Environ Microbiol 2006; 72:6439-51. [PMID: 17021191 PMCID: PMC1610301 DOI: 10.1128/aem.00398-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial virulence is an integrative process that may involve quorum sensing. In this work, we compared by global expression profiling the wild-type entomopathogenic Photorhabdus luminescens subsp. laumondii TT01 to a luxS-deficient mutant unable to synthesize the type 2 quorum-sensing inducer AI-2. AI-2 was shown to regulate more than 300 targets involved in most compartments and metabolic pathways of the cell. AI-2 is located high in the hierarchy, as it controls the expression of several transcriptional regulators. The regulatory effect of AI-2 appeared to be dose dependent. The luxS-deficient strain exhibited decreased biofilm formation and increased type IV/V pilus-dependent twitching motility. AI-2 activated its own synthesis and transport. It also modulated bioluminescence by regulating the synthesis of spermidine. AI-2 was further shown to increase oxidative stress resistance, which is necessary to overcome part of the innate immune response of the host insect involving reactive oxygen species. Finally, we showed that the luxS-deficient strain had attenuated virulence against the lepidopteran Spodoptera littoralis. We concluded that AI-2 is involved mainly in early steps of insect invasion in P. luminescens.
Collapse
Affiliation(s)
- Evelyne Krin
- Unité de Génétique des Génomes Bactériens (URA2171), Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Doherty N, Holden MTG, Qazi SN, Williams P, Winzer K. Functional analysis of luxS in Staphylococcus aureus reveals a role in metabolism but not quorum sensing. J Bacteriol 2006; 188:2885-97. [PMID: 16585750 PMCID: PMC1446992 DOI: 10.1128/jb.188.8.2885-2897.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The function of AI-2 in many bacteria and the physiological role of LuxS, the enzyme responsible for its production, remain matters of debate. Here, we show that in Staphylococcus aureus the luxS gene forms a monocistronic transcriptional unit under the control of a sigma(70)-dependent promoter. The gene was transcribed throughout growth under a variety of conditions, including intracellular growth in MAC-T cells. AI-2 was produced in rich media under aerobic and anaerobic conditions, peaking during the transition to stationary phase, but was hardly detectable in a sulfur-limited defined medium. In the presence of glucose or under anaerobic conditions, cultures retained considerable AI-2 activity after entry into stationary phase. Inactivation of luxS in various S. aureus strains did not affect virulence-associated traits, such as production of hemolysins and extracellular proteases, biofilm formation, and the agr signaling system. Conversely, AI-2 production remained unchanged in an agr mutant. However, luxS mutants grown in a sulfur-limited defined medium exhibited a growth defect. When grown together with the wild type in mixed culture, luxS mutants of various S. aureus strains showed reduced ability to compete for growth under these conditions. In contrast, a complemented luxS mutant grew as well as the parent strain, suggesting that the observed growth defect was of an intracellular nature and had not been caused by either second-site mutations or the lack of a diffusible factor. However, the LuxS/AI-2 system does not appear to contribute to the overall fitness of S. aureus RN6390B during intracellular growth in epithelial cells: the wild type and a luxS mutant showed very similar growth patterns after their internalization by MAC-T cells.
Collapse
Affiliation(s)
- Neil Doherty
- Institute of Infections, Immunity, and Inflammation, University of Nottingham, Centre for Biomolecular Sciences, Nottingham NG7 2RD, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Tannock GW, Ghazally S, Walter J, Loach D, Brooks H, Cook G, Surette M, Simmers C, Bremer P, Dal Bello F, Hertel C. Ecological behavior of Lactobacillus reuteri 100-23 is affected by mutation of the luxS gene. Appl Environ Microbiol 2006; 71:8419-25. [PMID: 16332830 PMCID: PMC1317450 DOI: 10.1128/aem.71.12.8419-8425.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The luxS gene of Lactobacillus reuteri 100-23C was amplified by PCR, cloned, and then sequenced. To define a physiological and ecological role for the luxS gene in L. reuteri 100-23C, a luxS mutant was constructed by insertional mutagenesis. The luxS mutant did not produce autoinducers AI-2 or AI-3. Complementation of the luxS mutation by a plasmid construct containing luxS restored AI-2 and AI-3 synthesis. In vitro experiments revealed that neither the growth rate, nor the cell yield, nor cell survival in the stationary phase were compromised in the luxS mutant relative to the wild type and complemented mutant. The ATP content of exponentially growing cells of the luxS mutant was, however, 65% of that of wild-type cells. Biofilms formed by the luxS mutant on plastic surfaces in a bioreactor were thicker than those formed by the wild type. Biofilm thickness was not restored to wild-type values by the addition of purified AI-2 to the culture medium. In vivo experiments, conducted with ex-Lactobacillus-free mice, showed that biofilms formed by the mutant strain on the epithelial surface of the forestomach were approximately twice as thick as those formed by the wild type. The ecological performance of the luxS mutant, when in competition with L. reuteri strain 100-93 in the mouse cecum, was reduced compared to that of a xylA mutant of 100-23C. These results demonstrate that LuxS influences important ecological attributes of L. reuteri 100-23C, the consequences of which are niche specific.
Collapse
Affiliation(s)
- Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Xu L, Li H, Vuong C, Vadyvaloo V, Wang J, Yao Y, Otto M, Gao Q. Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 2006; 74:488-96. [PMID: 16369005 PMCID: PMC1346618 DOI: 10.1128/iai.74.1.488-496.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nosocomial infections caused by Staphylococcus epidermidis are characterized by biofilm formation on implanted medical devices. Quorum-sensing regulation plays a major role in the biofilm development of many bacterial pathogens. Here, we describe luxS, a quorum-sensing system in staphylococci that has a significant impact on biofilm development and virulence. We constructed an isogenic DeltaluxS mutant strain of a biofilm-forming clinical isolate of S. epidermidis and demonstrated that luxS signaling is functional in S. epidermidis. The mutant strain showed increased biofilm formation in vitro and enhanced virulence in a rat model of biofilm-associated infection. Genetic complementation and addition of autoinducer 2-containing culture filtrate restored the wild-type phenotype, demonstrating that luxS repressed biofilm formation through a cell-cell signaling mechanism based on autoinducer 2 secretion. Enhanced production of the biofilm exopolysaccharide polysaccharide intercellular adhesin in the mutant strain is presumably the major cause of the observed phenotype. The agr quorum-sensing system has previously been shown to impact biofilm development and biofilm-associated infection in a way similar to that of luxS, although by regulation of different factors. Our study indicates a general scheme of quorum-sensing regulation of biofilm development in staphylococci, which contrasts with that observed in many other bacterial pathogens.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Coulthurst SJ, Lilley KS, Salmond GPC. Genetic and proteomic analysis of the role of luxS in the enteric phytopathogen, Erwinia carotovora. MOLECULAR PLANT PATHOLOGY 2006; 7:31-45. [PMID: 20507426 DOI: 10.1111/j.1364-3703.2005.00314.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Erwinia carotovora is a Gram-negative phytopathogen that is an important cause of soft rot disease, including stem and tuber rot in potatoes. Quorum sensing is the process by which bacteria detect their population density and regulate gene expression accordingly. Quorum sensing, an important example of intercellular communication, involves the production and detection of chemical signal molecules. The enzyme LuxS is responsible for the production of Autoinducer-2 (AI-2), a molecule that has been implicated in quorum sensing in many bacterial species. In this study, the role of luxS in Erwinia carotovora ssp. carotovora strain ATTn10 and Erwinia carotovora ssp. atroseptica SCRI1043 has been examined. Both strains have been shown to produce luxS-dependent extracellular AI-2 activity and the phenotypes of defined luxS mutants in these strains have been characterized. Inactivation of luxS in Er. carotovora was found to have a strain-dependent impact on the intracellular proteome (using two-dimensional difference in gel electrophoresis), secreted proteins, motility and virulence in planta. No link was detected with the N-acyl-l-homoserine lactone quorum sensing system in these organisms. Although the molecular mechanism(s) of luxS regulation in Erwinia remain to be determined, this is the first report of any luxS-dependent phenotypes in a plant pathogen.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
38
|
Wooldridge KG, Kizil M, Wells DB, Ala'aldeen DAA. Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis. Infect Immun 2005; 73:5554-67. [PMID: 16113272 PMCID: PMC1231126 DOI: 10.1128/iai.73.9.5554-5567.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins secreted by Neisseria meningitidis are thought to play important roles in the pathogenesis of meningococcal disease. These proteins include the iron-repressible repeat-in-toxin (RTX) exoprotein FrpC. Related proteins in other pathogens are secreted via a type I secretion system (TOSS), but such a system has not been demonstrated in N. meningitidis. An in silico search of the group B meningococcal genome suggested the presence of a uniquely organized TOSS. Genes encoding homologs of the Escherichia coli HlyB (ATP-binding), HlyD (membrane fusion), and TolC (outer membrane channel) proteins were identified. In contrast to the cistronic organization of the secretion genes in most other rtx operons, the hlyD and tolC genes were adjacent but unlinked to hlyB; neither locus was part of an operon containing genes encoding putative TOSS substrates. Both loci were flanked by genes normally associated with mobile genetic elements. The three genes were shown to be expressed independently. Mutation at either locus resulted in an inability to secrete FrpC and a related protein, here called FrpC2. Successful complementation of these mutations at an ectopic site confirmed the observed phenotypes were caused by loss of function of the putative TOSS genes. We show that genes scattered in the meningococcal genome encode a functional TOSS required for secretion of the meningococcal RTX proteins.
Collapse
Affiliation(s)
- Karl G Wooldridge
- Division of Microbiology and Infectious Diseases, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | |
Collapse
|
39
|
Daines DA, Bothwell M, Furrer J, Unrath W, Nelson K, Jarisch J, Melrose N, Greiner L, Apicella M, Smith AL. Haemophilus influenzae luxS mutants form a biofilm and have increased virulence. Microb Pathog 2005; 39:87-96. [PMID: 16099134 DOI: 10.1016/j.micpath.2005.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 05/23/2005] [Accepted: 06/20/2005] [Indexed: 01/22/2023]
Abstract
To gain insight into the role of luxSHi in disease pathogenesis, we inactivated that gene in several non-typeable Haemophilus influenzae isolates with an antibiotic resistance cassette. Gene inactivation was confirmed by PCR and by Southern blot analysis in each strain. Culture filtrates from luxSHi mutants contained a decreased amount of autoinducer-2 (AI-2) activity in comparison to the wild-type isolates using the Vibrio harveyi BB170 bioassay. Culture filtrates from Escherichia coli strain DH5alpha expressing a cloned luxSHi contained 350-fold more AI-2 activity per cell than E. coli DH5alpha containing the vector alone. The growth rate in several liquid media, and the cell density after overnight growth were not significantly different between the parents and the luxSHi mutants. Two clinical H. influenzae and their luxSHi mutants produced an identical biofilm in a flow system. Invasion of human cells by the luxSHi mutants, in comparison to the wild-type parents was strain-dependent, and cell type-dependent, but the luxSHi mutants tended to be more invasive. The luxSHi mutant of an otitis media isolate, strain R3157 appeared more virulent in the chinchilla model of otitis media: there were more bacteria in the middle ear, a greater inflammatory response and more goblet cell hyperplasia 10 days after the inoculation. We conclude that the H. influenzae homologue of luxS modulates certain virulence traits.
Collapse
Affiliation(s)
- Dayle A Daines
- Section on Microbial Pathogens, Seattle Biomedical Research Institute, 307 Westlake Ave North, Suite 500, Seattle, WA 98109-5219, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Exley RM, Shaw J, Mowe E, Sun YH, West NP, Williamson M, Botto M, Smith H, Tang CM. Available carbon source influences the resistance of Neisseria meningitidis against complement. ACTA ACUST UNITED AC 2005; 201:1637-45. [PMID: 15897277 PMCID: PMC2212924 DOI: 10.1084/jem.20041548] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neisseria meningitidis is an important cause of septicaemia and meningitis. To cause disease, the bacterium must acquire essential nutrients for replication in the systemic circulation, while avoiding exclusion by host innate immunity. Here we show that the utilization of carbon sources by N. meningitidis determines its ability to withstand complement-mediated lysis, through the intimate relationship between metabolism and virulence in the bacterium. The gene encoding the lactate permease, lctP, was identified and disrupted. The lctP mutant had a reduced growth rate in cerebrospinal fluid compared with the wild type, and was attenuated during bloodstream infection through loss of resistance against complement-mediated killing. The link between lactate and complement was demonstrated by the restoration of virulence of the lctP mutant in complement (C3(-/-))-deficient animals. The underlying mechanism for attenuation is mediated through the sialic acid biosynthesis pathway, which is directly connected to central carbon metabolism. The findings highlight the intimate relationship between bacterial physiology and resistance to innate immune killing in the meningococcus.
Collapse
Affiliation(s)
- Rachel M Exley
- The Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Brandl MT, Miller WG, Bates AH, Mandrell RE. Production of autoinducer 2 in Salmonella enterica serovar Thompson contributes to its fitness in chickens but not on cilantro leaf surfaces. Appl Environ Microbiol 2005; 71:2653-62. [PMID: 15870357 PMCID: PMC1087538 DOI: 10.1128/aem.71.5.2653-2662.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Food-borne illness caused by Salmonella enterica has been linked traditionally to poultry products but is associated increasingly with fresh fruits and vegetables. We have investigated the role of the production of autoinducer 2 (AI-2) in the ability of S. enterica serovar Thompson to colonize the chicken intestine and the cilantro phyllosphere. A mutant of S. enterica serovar Thompson that is defective in AI-2 production was constructed by insertional mutagenesis of luxS. The population size of the S. enterica serovar Thompson parental strain was significantly higher than that of its LuxS(-) mutant in the intestine, spleen, and droppings of chicks 12 days after their oral inoculation with the strains in a ratio of 1:1. In contrast, no significant difference in the population dynamics of the parental and LuxS(-) strain was observed after their inoculation singly or in mixtures onto cilantro plants. Digital image analysis revealed that 54% of S. enterica serovar Thompson cells were present in large aggregates on cilantro leaves but that the frequency distributions of the size of aggregates formed by the parental strain and the LuxS(-) mutant were not significantly different. Carbon utilization profiles indicated that the AI-2-producing strain utilized a variety of amino and organic acids more efficiently than its LuxS(-) mutant but that most sugars were utilized similarly in both strains. Thus, inherent differences in the nutrients available to S. enterica in the phyllosphere and in the chicken intestine may underlie the differential contribution of AI-2 synthesis to the fitness of S. enterica in these environments.
Collapse
Affiliation(s)
- M T Brandl
- Produce Safety and Microbiology Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | | | | | | |
Collapse
|
42
|
Vendeville A, Winzer K, Heurlier K, Tang CM, Hardie KR. Making 'sense' of metabolism: autoinducer-2, LUXS and pathogenic bacteria. Nat Rev Microbiol 2005; 3:383-96. [PMID: 15864263 DOI: 10.1038/nrmicro1146] [Citation(s) in RCA: 435] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacteria exploit many mechanisms to communicate with each other and their surroundings. Mechanisms using small diffusible signals to coordinate behaviour with cell density (quorum sensing) frequently contribute to pathogenicity. However, pathogens must also be able to acquire nutrients and replicate to successfully invade their host. One quorum-sensing system, based on the possession of LuxS, bears the unique feature of contributing directly to metabolism, and therefore has the potential to influence both gene regulation and bacterial fitness. Here, we discuss the influence that LuxS and its product, autoinducer-2, have on virulence, relating the current evidence to the preferred niche of the pathogen and the underlying mechanisms involved.
Collapse
Affiliation(s)
- Agnès Vendeville
- Centre for Molecular Microbiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Flowers Building, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
43
|
Sun YH, Exley R, Li Y, Goulding D, Tang C. Identification and characterization of genes required for competence in Neisseria meningitidis. J Bacteriol 2005; 187:3273-6. [PMID: 15838056 PMCID: PMC1082832 DOI: 10.1128/jb.187.9.3273-3276.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 01/29/2005] [Indexed: 11/20/2022] Open
Abstract
We have identified genes required for competence of Neisseria meningitidis, a naturally transformable human pathogen. Although not comprehensive, our analysis identified competence-defective mutants with transposon insertions in genes not previously implicated in this process in Neisseria.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Centre for Molecular Microiology and Infection, Department of Infectious Diseases, Faculty of Medicine, Armstrong Road, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | |
Collapse
|
44
|
Carter GP, Purdy D, Williams P, Minton NP. Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system. J Med Microbiol 2005; 54:119-127. [PMID: 15673504 DOI: 10.1099/jmm.0.45817-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing incidence of Clostridium difficile-associated disease, and the problems associated with its control, highlight the need for additional countermeasures. The attenuation of virulence through the blockade of bacterial cell-to-cell communication (quorum sensing) is one potential therapeutic target. Preliminary studies have shown that C. difficile produces at least one potential signalling molecule. Through the molecule's ability to induce bioluminescence in a Vibrio harveyi luxS reporter strain, it has been shown to correspond to autoinducer 2 (AI-2). In keeping with this observation, a homologue of luxS has been identified in the genome of C. difficile. Adjacent to luxS(Cd) a potential transcriptional regulator and sensor kinase, rolA and rolB, have been located. RT-PCR has been used to confirm the genetic organization of the luxS(Cd) locus. While AI-2 production has not been blocked so far using antisense technology, AI-2 levels could be modulated by controlling expression of the putative transcriptional regulator rolA. RolA, therefore, acts as a negative regulator of AI-2 production. Finally, it has been shown that the exogenous addition of AI-2 or 4-hydroxy-5-methyl-3(2H) furanone has no discernible effect on the production of toxins by C. difficile.
Collapse
Affiliation(s)
- Glen P Carter
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Des Purdy
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Paul Williams
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Nigel P Minton
- Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK 2Health Protection Agency, Porton Down, Salisbury SP4 0JG, UK
| |
Collapse
|
45
|
Schauder S, Penna L, Ritton A, Manin C, Parker F, Renauld-Mongénie G. Proteomics analysis by two-dimensional differential gel electrophoresis reveals the lack of a broad response of Neisseria meningitidis to in vitro-produced AI-2. J Bacteriol 2005; 187:392-5. [PMID: 15601725 PMCID: PMC538835 DOI: 10.1128/jb.187.1.392-395.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the effect of the autoinducer AI-2 on protein expression in Neisseria meningitidis, a luxS mutant of strain MC58 was grown in the presence and absence of in vitro-produced AI-2, and differential protein expression was assessed by two-dimensional differential gel electrophoresis. N. meningitidis did not show a global response to AI-2 signaling activity.
Collapse
Affiliation(s)
- Stephan Schauder
- Research Department, Microbiology, Aventis Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | | | | | | | | | | |
Collapse
|
46
|
Is autoinducer-2 a universal signal for interspecies communication: a comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol Biol 2004; 4:36. [PMID: 15456522 PMCID: PMC524169 DOI: 10.1186/1471-2148-4-36] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2004] [Accepted: 09/29/2004] [Indexed: 11/10/2022] Open
Abstract
Background Quorum sensing is a process of bacterial cell-to-cell communication involving the production and detection of extracellular signaling molecules called autoinducers. Recently, it has been proposed that autoinducer-2 (AI-2), a furanosyl borate diester derived from the recycling of S-adenosyl-homocysteine (SAH) to homocysteine, serves as a universal signal for interspecies communication. Results In this study, 138 completed genomes were examined for the genes involved in the synthesis and detection of AI-2. Except for some symbionts and parasites, all organisms have a pathway to recycle SAH, either using a two-step enzymatic conversion by the Pfs and LuxS enzymes or a one-step conversion using SAH-hydrolase (SahH). 51 organisms including most Gamma-, Beta-, and Epsilonproteobacteria, and Firmicutes possess the Pfs-LuxS pathway, while Archaea, Eukarya, Alphaproteobacteria, Actinobacteria and Cyanobacteria prefer the SahH pathway. In all 138 organisms, only the three Vibrio strains had strong, bidirectional matches to the periplasmic AI-2 binding protein LuxP and the central signal relay protein LuxU. The initial two-component sensor kinase protein LuxQ, and the terminal response regulator luxO are found in most Proteobacteria, as well as in some Firmicutes, often in several copies. Conclusions The genomic analysis indicates that the LuxS enzyme required for AI-2 synthesis is widespread in bacteria, while the periplasmic binding protein LuxP is only present in Vibrio strains. Thus, other organisms may either use components different from the AI-2 signal transduction system of Vibrio strains to sense the signal of AI-2, or they do not have such a quorum sensing system at all.
Collapse
|
47
|
Coulthurst SJ, Kurz CL, Salmond GPC. luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiology (Reading) 2004; 150:1901-1910. [PMID: 15184576 DOI: 10.1099/mic.0.26946-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The enzyme LuxS is responsible for the production of autoinducer-2 (AI-2), a molecule that has been implicated in quorum sensing in many bacterial species. This study investigated whether there is aluxS-dependent signalling system in the Gram-negative bacteriaSerratiaspp.Serratia marcescensis a broad-host-range pathogen and an important cause of nosocomial infections. Production of AI-2 activity was detected inS. marcescensATCC 274 andSerratiaATCC 39006 and theirluxSgenes were sequenced.luxSmutants were constructed in these strains and were analysed to determine which phenotypes are regulated byluxSand therefore, potentially, by AI-2. The phenotypes of theluxSmutants included decreased carbapenem antibiotic production inSerratiaATCC 39006 and decreased prodigiosin and secreted haemolysin production inS. marcescensATCC 274. TheluxSmutant ofS. marcescensATCC 274 was also found to exhibit modestly reduced virulence in aCaenorhabditis elegansmodel. Finally, it was shown that the culture supernatant of a wild-type strain contains a signal, presumably AI-2, capable of complementing the prodigiosin defect of theluxSmutant of another strain, even when substantially diluted. It is concluded thatluxSmodulates virulence and antibiotic production inSerratia, in a strain-dependent manner, and that, for at least one phenotype, this regulation is via extracellular signalling.
Collapse
Affiliation(s)
- Sarah J Coulthurst
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - C Léopold Kurz
- Centre d'Immunologie de Marseille Luminy, Case 906, 13288 Marseille-Cedex 9, France
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
48
|
Abstract
Quorum sensing is a signaling mechanism through which bacteria modulate a number of cellular functions (genes), including sporulation, biofilm formation, bacteriocin production, virulence responses, as well as others. Quorum sensing is a mechanism of cell-to-cell communication and is mediated by extracellular chemical signals generated by the bacteria when specific cell densities are reached. When the concentration of the signal (and cell population) is sufficiently high, the target gene or genes are either activated or repressed. Quorum sensing increases the ability of the bacteria to have access to nutrients or to more favorable environmental niches and enhances bacterial defenses against eukaryotic hosts, competing bacteria, and environmental stresses. The physiological and clinical aspects of quorum sensing have received considerable attention and have been studied at the molecular level. Little is known, however, on the role of quorum sensing in food spoilage or in the growth and/or toxin production of pathogens present in food. A number of compounds have been isolated or synthesized that antagonize quorum sensors, and application of these antagonists may potentially be useful in inhibiting the growth or virulence mechanisms of bacteria in different environments, including food. It is important that food microbiologists have an awareness and an understanding of the mechanisms involved in bacterial quorum sensing, since strategies targeting quorum sensing may offer a means to control the growth of undesirable bacteria in foods.
Collapse
Affiliation(s)
- James L Smith
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
49
|
Winzer K, Hardie KR, Williams P. LuxS and autoinducer-2: their contribution to quorum sensing and metabolism in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2004; 53:291-396. [PMID: 14696323 DOI: 10.1016/s0065-2164(03)53009-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Klaus Winzer
- Institute of Infection, Immunity and Inflammation, Queen's Medical Centre, C-Floor, West Block, Nottingham, NG7 2UH, U.K
| | | | | |
Collapse
|
50
|
Duan K, Dammel C, Stein J, Rabin H, Surette MG. Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 2003; 50:1477-91. [PMID: 14651632 DOI: 10.1046/j.1365-2958.2003.03803.x] [Citation(s) in RCA: 374] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The change in gene expression patterns in response to host environments is a prerequisite for bacterial infection. Bacterial diseases often occur as an outcome of the complex interactions between pathogens and the host. The indigenous, usually non-pathogenic microflora is a ubiquitous constituent of the host. In order to understand the interactions between pathogens and the resident microflora and how they affect the gene expression patterns of the pathogens and contribute to bacterial diseases, the interactions between pathogenic Pseudomonas aeruginosa and avirulent oropharyngeal flora (OF) strains isolated from sputum samples of cystic fibrosis (CF) patients were investigated. Animal experiments using a rat lung infection model indicate that the presence of OF bacteria enhanced lung damage caused by P. aeruginosa. Genome-wide transcriptional analysis with a lux reporter-based promoter library demonstrated that approximately 4% of genes in the genome responded to the presence of OF strains using an in vitro system. Characterization of a subset of the regulated genes indicates that they fall into seven functional classes, and large portions of the upregulated genes are genes important for P. aeruginosa pathogenesis. Autoinducer-2 (AI-2)-mediated quorum sensing, a proposed interspecies signalling system, accounted for some, but not all, of the gene regulation. A substantial amount of AI-2 was detected directly in sputum samples from CF patients and in cultures of most non-pseudomonad bacteria isolated from the sputa. Transcriptional profiling of a set of defined P. aeruginosa virulence factor promoters revealed that OF and exogenous AI-2 could upregulate overlapping subsets of these genes. These results suggest important contributions of the host microflora to P. aeruginosa infection by modulating gene expression via interspecies communications.
Collapse
Affiliation(s)
- Kangmin Duan
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | | | | | |
Collapse
|