1
|
Peterson E, Söderström B, Prins N, Le GHB, Hartley-Tassell LE, Evenhuis C, Grønnemose RB, Andersen TE, Møller-Jensen J, Iosifidis G, Duggin IG, Saunders B, Harry EJ, Bottomley AL. The role of bacterial size, shape and surface in macrophage engulfment of uropathogenic E. coli cells. PLoS Pathog 2024; 20:e1012458. [PMID: 39241059 PMCID: PMC11410268 DOI: 10.1371/journal.ppat.1012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2024] [Accepted: 07/26/2024] [Indexed: 09/08/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) can undergo extensive filamentation in the host during acute urinary tract infections (UTIs). It has been hypothesised that this morphological plasticity allows bacteria to avoid host immune responses such as macrophage engulfment. However, it is still unclear what properties of filaments are important in macrophage-bacteria interactions. The aim of this work was to investigate the contribution of bacterial biophysical parameters, such as cell size and shape, and physiological parameters, such as cell surface and the environment, to macrophage engulfment efficiency. Viable, reversible filaments of known lengths and volumes were produced in the UPEC strain UTI89 using a variety of methods, including exposure to cell-wall targeting antibiotics, genetic manipulation and isolation from an in vitro human bladder cell model. Quantification of the engulfment ability of macrophages using gentamicin-protection assays and fluorescence microscopy demonstrated that the ability of filaments to avoid macrophage engulfment is dependent on a combination of size (length and volume), shape, cell surface and external environmental factors. UTI89 filamentation and macrophage engulfment efficiency were also found to occur independently of the SOS-inducible filamentation genes, sulA and ymfM in both in vivo and in vitro models of infection. Compared to filaments formed via antibiotic inhibition of division, the infection-derived filaments were preferentially targeted by macrophages. With several strains of UPEC now resistant to current antibiotics, our work identifies the importance of bacterial physiological and morphological states during infection.
Collapse
Affiliation(s)
- Elizabeth Peterson
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Bill Söderström
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Nienke Prins
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Giang H B Le
- School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | | | - Chris Evenhuis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Rasmus Birkholm Grønnemose
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas Emil Andersen
- Research Unit of Clinical Microbiology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Gregory Iosifidis
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Iain G Duggin
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | | | - Elizabeth J Harry
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| | - Amy L Bottomley
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Australia
| |
Collapse
|
2
|
Similarities and Differences among Species Closely Related to Candida albicans: C. tropicalis, C. dubliniensis, and C. auris. Cell Microbiol 2022. [DOI: 10.1155/2022/2599136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Although Candida species are widespread commensals of the microflora of healthy individuals, they are also among the most important human fungal pathogens that under certain conditions can cause diseases (candidiases) of varying severity ranging from mild superficial infections of the mucous membranes to life-threatening systemic infections. So far, the vast majority of research aimed at understanding the molecular basis of pathogenesis has been focused on the most common species—Candida albicans. Meanwhile, other closely related species belonging to the CTG clade, namely, Candida tropicalis and Candida dubliniensis, are becoming more important in clinical practice, as well as a relatively newly identified species, Candida auris. Despite the close relationship of these microorganisms, it seems that in the course of evolution, they have developed distinct biochemical, metabolic, and physiological adaptations, which they use to fit to commensal niches and achieve full virulence. Therefore, in this review, we describe the current knowledge on C. tropicalis, C. dubliniensis, and C. auris virulence factors, the formation of a mixed species biofilm and mutual communication, the environmental stress response and related changes in fungal cell metabolism, and the effect of pathogens on host defense response and susceptibility to antifungal agents used, highlighting differences with respect to C. albicans. Special attention is paid to common diagnostic problems resulting from similarities between these species and the emergence of drug resistance mechanisms. Understanding the different strategies to achieve virulence, used by important opportunistic pathogens of the genus Candida, is essential for proper diagnosis and treatment.
Collapse
|
3
|
Allert S, Schulz D, Kämmer P, Großmann P, Wolf T, Schäuble S, Panagiotou G, Brunke S, Hube B. From environmental adaptation to host survival: Attributes that mediate pathogenicity of Candida auris. Virulence 2022; 13:191-214. [PMID: 35142597 PMCID: PMC8837256 DOI: 10.1080/21505594.2022.2026037] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Candida species are a major cause of invasive fungal infections. While Candida albicans, C. glabrata, C. parapsilosis, and C. tropicalis are the most dominant species causing life-threatening candidiasis, C. auris recently emerged as a new species causing invasive infections with high rates of clinical treatment failures. To mimic initial phases of systemic Candida infections with dissemination via the bloodstream and to elucidate the pathogenic potential of C. auris, we used an ex vivo whole blood infection model. Similar to other clinically relevant Candida spp., C. auris is efficiently killed in human blood, but showed characteristic patterns of immune cell association, survival rates, and cytokine induction. Dual-species transcriptional profiling of C. auris-infected blood revealed a unique C. auris gene expression program during infection, while the host response proofed similar and conserved compared to other Candida species. C. auris-specific responses included adaptation and survival strategies, such as counteracting oxidative burst of immune cells, but also expression of potential virulence factors, (drug) transporters, and cell surface-associated genes. Despite comparable pathogenicity to other Candida species in our model, C. auris-specific transcriptional adaptations as well as its increased stress resistance and long-term environmental survival, likely contribute to the high risk of contamination and distribution in a nosocomial setting. Moreover, infections of neutrophils with pre-starved C. auris cells suggest that environmental preconditioning can have modulatory effects on the early host interaction. In summary, we present novel insights into C. auris pathogenicity, revealing adaptations to human blood and environmental niches distinctive from other Candida species.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Daniela Schulz
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Philipp Kämmer
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Peter Großmann
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong, China
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell-Institute, Jena, Germany.,Institute of Microbiology, Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
4
|
Ding X, Kambara H, Guo R, Kanneganti A, Acosta-Zaldívar M, Li J, Liu F, Bei T, Qi W, Xie X, Han W, Liu N, Zhang C, Zhang X, Yu H, Zhao L, Ma F, Köhler JR, Luo HR. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat Commun 2021; 12:6699. [PMID: 34795266 PMCID: PMC8602704 DOI: 10.1038/s41467-021-27034-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is the most common cause of fungal sepsis. Inhibition of inflammasome activity confers resistance to polymicrobial and LPS-induced sepsis; however, inflammasome signaling appears to protect against C. albicans infection, so inflammasome inhibitors are not clinically useful for candidiasis. Here we show disruption of GSDMD, a known inflammasome target and key pyroptotic cell death mediator, paradoxically alleviates candidiasis, improving outcomes and survival of Candida-infected mice. Mechanistically, C. albicans hijacked the canonical inflammasome-GSDMD axis-mediated pyroptosis to promote their escape from macrophages, deploying hyphae and candidalysin, a pore-forming toxin expressed by hyphae. GSDMD inhibition alleviated candidiasis by preventing C. albicans escape from macrophages while maintaining inflammasome-dependent but GSDMD-independent IL-1β production for anti-fungal host defenses. This study demonstrates key functions for GSDMD in Candida's escape from host immunity in vitro and in vivo and suggests that GSDMD may be a potential therapeutic target in C. albicans-induced sepsis.
Collapse
Affiliation(s)
- Xionghui Ding
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- Department of Burn and Plastic Surgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China
| | - Hiroto Kambara
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Rongxia Guo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Apurva Kanneganti
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Maikel Acosta-Zaldívar
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Jiajia Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Fei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Ting Bei
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wanjun Qi
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Xuemei Xie
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Wenli Han
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Ningning Liu
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Cunling Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Xiaoyu Zhang
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Hongbo Yu
- VA Boston Healthcare System, Department of Pathology and Laboratory Medicine, 1400 VFW Parkway West Roxbury, Boston, MA, 02132, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhao
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA
| | - Fengxia Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, CAMS Key laboratory for prevention and control of hematological disease treatment related infection, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China
| | - Julia R Köhler
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School; Department of Laboratory Medicine, Boston Children's Hospital, Enders Research Building, Room 814, Boston, MA, 02115, USA.
| |
Collapse
|
5
|
Hoy Z, Wright TW, Elliott M, Malone J, Bhagwat S, Wang J, Gigliotti F. Combination Immunotherapy with Passive Antibody and Sulfasalazine Accelerates Fungal Clearance and Promotes the Resolution of Pneumocystis-Associated Immunopathogenesis. Infect Immun 2020; 88:e00640-19. [PMID: 31611280 PMCID: PMC6977122 DOI: 10.1128/iai.00640-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
The pulmonary immune response protects healthy individuals against Pneumocystis pneumonia (PcP). However, the immune response also drives immunopathogenesis in patients who develop severe PcP, and it is generally accepted that optimal treatment requires combination strategies that promote fungal killing and also provide effective immunomodulation. The anti-inflammatory drug sulfasalazine programs macrophages for enhanced Pneumocystis phagocytosis and also suppresses PcP-related immunopathogenesis. Anti-Pneumocystis antibody opsonizes Pneumocystis organisms for greater phagocytosis and may also mask antigens that drive immunopathogenesis. Thus, we hypothesized that combining antibody and sulfasalazine would have the dual benefit of enhancing fungal clearance while dampening immunopathogenesis and allow the rescue of severe PcP. To model a clinically relevant treatment scenario in mice, therapeutic interventions were withheld until clear symptoms of pneumonia were evident. When administered individually, both passive antibody and sulfasalazine improved pulmonary function and enhanced Pneumocystis clearance to similar degrees. However, combination treatment with antibody and sulfasalazine produced a more rapid improvement, with recovery of body weight, a dramatic improvement in pulmonary function, reduced lung inflammation, and the rapid clearance of the Pneumocystis organisms. Accelerated fungal clearance in the combination treatment group was associated with a significant increase in macrophage phagocytosis of Pneumocystis Both passive antibody and sulfasalazine resulted in the suppression of Th1 cytokines and a marked increase in lung macrophages displaying an alternatively activated phenotype, which were enhanced by combination treatment. Our data support the concept that passive antibody and sulfasalazine could be an effective and specific adjunctive therapy for PcP, with the potential to accelerate fungal clearance while attenuating PcP-associated immunopathogenesis.
Collapse
Affiliation(s)
- Zachary Hoy
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Terry W Wright
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Elliott
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Jane Malone
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Samir Bhagwat
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Jing Wang
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
| | - Francis Gigliotti
- Department of Pediatrics, Division of Infectious Diseases, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Abstract
In the healthy lung, macrophages maintain homeostasis by clearing inhaled particles, bacteria, and removing apoptotic cells from the local pulmonary environment. However, in respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis, macrophages appear to be dysfunctional and may contribute to disease pathogenesis. In COPD, phagocytosis of bacterial species and apoptotic cells by both alveolar macrophages and monocyte-derived macrophages is significantly reduced, leading to colonization of the lung with pathogenic bacteria. COPD macrophages also release high levels of pro-inflammatory cytokines and chemokines, including CXCL8, TGFβ, and CCL2, driving recruitment of other inflammatory cells including neutrophils and monocytes to the lungs and promoting disease progression.In asthma, defective phagocytosis and efferocytosis have also been reported, and macrophages appear to have altered cell surface receptor expression; however, it is as yet unclear how this contributes to disease progression but may be important in driving Th2-mediated inflammation. In cystic fibrosis, macrophages also display defective phagocytosis, and reduced bacterial killing, which may be driven by the pro-inflammatory environment present in the lungs of these patients.The mechanisms behind defective macrophage function in lung diseases are not currently understood, but potential mechanisms include alterations in phagocytic receptor expression levels, oxidative stress, but also the possibility that specific diseases are associated with a specific, altered, macrophage phenotype that displays reduced function. Identification of the mechanisms responsible may present novel therapeutic opportunities for treatment.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Louise E Donnelly
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
7
|
A novel real time imaging platform to quantify macrophage phagocytosis. Biochem Pharmacol 2016; 116:107-19. [PMID: 27475716 PMCID: PMC5012892 DOI: 10.1016/j.bcp.2016.07.011] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022]
Abstract
Phagocytosis of pathogens, apoptotic cells and debris is a key feature of macrophage function in host defense and tissue homeostasis. Quantification of macrophage phagocytosis in vitro has traditionally been technically challenging. Here we report the optimization and validation of the IncuCyte ZOOM® real time imaging platform for macrophage phagocytosis based on pHrodo® pathogen bioparticles, which only fluoresce when localized in the acidic environment of the phagolysosome. Image analysis and fluorescence quantification were performed with the automated IncuCyte™ Basic Software. Titration of the bioparticle number showed that the system is more sensitive than a spectrofluorometer, as it can detect phagocytosis when using 20× less E. coli bioparticles. We exemplified the power of this real time imaging platform by studying phagocytosis of murine alveolar, bone marrow and peritoneal macrophages. We further demonstrate the ability of this platform to study modulation of the phagocytic process, as pharmacological inhibitors of phagocytosis suppressed bioparticle uptake in a concentration-dependent manner, whereas opsonins augmented phagocytosis. We also investigated the effects of macrophage polarization on E. coli phagocytosis. Bone marrow-derived macrophage (BMDM) priming with M2 stimuli, such as IL-4 and IL-10 resulted in higher engulfment of bioparticles in comparison with M1 polarization. Moreover, we demonstrated that tolerization of BMDMs with lipopolysaccharide (LPS) results in impaired E. coli bioparticle phagocytosis. This novel real time assay will enable researchers to quantify macrophage phagocytosis with a higher degree of accuracy and sensitivity and will allow investigation of limited populations of primary phagocytes in vitro.
Collapse
|
8
|
Das K, Rawat K, Patel R, Bohidar HB. Size-dependent CdSe quantum dot–lysozyme interaction and effect on enzymatic activity. RSC Adv 2016. [DOI: 10.1039/c6ra07368a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Size-dependent (2.5 and 6.3 nm) interaction of MPA modified hydrophilic CdSe quantum dots with lysozyme are reported.
Collapse
Affiliation(s)
- Kishan Das
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
| | - Kamla Rawat
- Special Center for Nanosciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Inter University Accelerator Centre (IUAC)
| | - Rajan Patel
- Centre for Interdisciplinary Research in Basic Sciences
- Jamia Millia Islamia
- New Delhi-110025
- India
| | - H. B. Bohidar
- School of Physical Sciences
- Jawaharlal Nehru University
- New Delhi 110067
- India
- Special Center for Nanosciences
| |
Collapse
|
9
|
Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood 2014; 124:590-7. [PMID: 24948657 DOI: 10.1182/blood-2014-01-551473] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Invasive fungal infections, accompanied by high rates of mortality, represent an increasing problem in medicine. Neutrophils are the major effector immune cells in fungal killing. Based on studies with neutrophils from patients with defined genetic defects, we provide evidence that human neutrophils use 2 distinct and independent phagolysosomal mechanisms to kill Candida albicans. The first mechanism for the killing of unopsonized C albicans was found to be dependent on complement receptor 3 (CR3) and the signaling proteins phosphatidylinositol-3-kinase and caspase recruitment domain-containing protein 9 (CARD9), but was independent of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. The second mechanism for the killing of opsonized C albicans was strictly dependent on Fcγ receptors, protein kinase C (PKC), and reactive oxygen species production by the NADPH oxidase system. Each of the 2 pathways of Candida killing required Syk tyrosine kinase activity, but dectin-1 was dispensable for both of them. These data provide an explanation for the variable clinical presentation of fungal infection in patients suffering from different immune defects, including dectin-1 deficiency, CARD9 deficiency, or chronic granulomatous disease.
Collapse
|
10
|
A new method for yeast phagocytosis analysis by flow cytometry. J Microbiol Methods 2014; 101:56-62. [DOI: 10.1016/j.mimet.2014.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/25/2014] [Accepted: 03/25/2014] [Indexed: 02/04/2023]
|
11
|
Montenegro JM, Grazu V, Sukhanova A, Agarwal S, de la Fuente JM, Nabiev I, Greiner A, Parak WJ. Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Adv Drug Deliv Rev 2013; 65:677-88. [PMID: 23280372 DOI: 10.1016/j.addr.2012.12.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 12/05/2012] [Accepted: 12/21/2012] [Indexed: 12/29/2022]
Abstract
Arguably targeting is one of the biggest problems for controlled drug delivery. In the case that drugs can be directed with high efficiency to the target tissue, side effects of medication are drastically reduced. Colloidal inorganic nanoparticles (NPs) have been proposed and described in the last 10years as new platforms for in vivo delivery. However, though NPs can introduce plentiful functional properties (such as controlled destruction of tissue by local heating or local generation of free radicals), targeting remains an issue of intense research efforts. While passive targeting of NPs has been reported (the so-called enhanced permeation and retention, EPR effect), still improved active targeting would be highly desirable. One classical approach for active targeting is mediated by molecular recognition via capture molecules, i.e. antibodies (Abs) specific for the target. In order to apply this strategy for NPs, they need to be conjugated with Abs against specific biomarkers. Though many approaches have been reported in this direction, the controlled bioconjugation of NPs is still a challenge. In this article the strategies of controlled bioconjugation of NPs will be reviewed giving particular emphasis to the following questions: 1) how can the number of capture molecules per NP be precisely adjusted, and 2) how can the Abs be attached to NP surfaces in an oriented way. Solution of both questions is a cornerstone in controlled targeting of the inorganic NPs bioconjugates.
Collapse
|
12
|
Svobodová E, Staib P, Losse J, Hennicke F, Barz D, Józsi M. Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils. THE JOURNAL OF IMMUNOLOGY 2012; 189:2502-11. [PMID: 22851712 DOI: 10.4049/jimmunol.1200185] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.
Collapse
Affiliation(s)
- Eliska Svobodová
- Junior Research Group Cellular Immunobiology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, D-07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Cabezas J, Albaina O, Montañez D, Sevilla MJ, Moragues MD, Pontón J. Potential of anti-Candida antibodies in immunoprophylaxis. Immunotherapy 2010; 2:171-83. [PMID: 20635926 DOI: 10.2217/imt.09.76] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The need for new options for the treatment of invasive candidiasis has fuelled the use of antibodies in combination with conventional antifungal therapy. After a long period of time in which antibodies were considered irrelevant in the resistance against invasive candidiasis, it was demonstrated that a number of antibodies or their engineered derivatives directed against Candida albicans cell-wall polysaccharides and glycopeptides, as well as against some protein epitopes, confer protection against invasive candidiasis. This has confirmed this approach as a new strategy for the prophylaxis of invasive candidiasis. Of particular interest is Mycograb, a human recombinant monoclonal antibody that inhibits heat shock protein 90, and has been administrated in combination with lipid-associated amphotericin B to patients with invasive candidiasis, and the fungicidal anti-beta-glucan antibodies induced by the glycoconjugate vaccine composed of a beta-glucan polysaccharide conjugated with the diphtheria toxoid CRM 197. However, despite the promising data obtained in vitro and in animal models, at present there is very little clinical experience on the use of antibodies in Candida immunoprophylaxis.
Collapse
Affiliation(s)
- Jonathan Cabezas
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, Vizcaya, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Linden JR, Maccani MA, Laforce-Nesbitt SS, Bliss JM. High efficiency opsonin-independent phagocytosis of Candida parapsilosis by human neutrophils. Med Mycol 2010; 48:355-64. [PMID: 19672781 DOI: 10.1080/13693780903164566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Candida species are associated with invasive fungal infections, and C. parapsilosis has become increasingly prevalent. As key antifungal effector cells, the function of human neutrophils confronting C. parapsilosis was investigated. We hypothesized that interaction between neutrophils and Candida species may not be uniform. Opsonins were omitted from these studies to understand the antifungal mechanisms at their most basic level. Human neutrophils underwent phagocytosis of C. parapsilosis with much higher efficiency than with C. albicans. Immunofluorescence assays with ss-glucan specific antibody detected more surface exposed ss-glucan on C. parapsilosis than C. albicans. However, blockade of the ss-glucan receptor Dectin-1, reduced phagocytosis of C. albicans but not C. parapsilosis. Inclusion of excess beta-glucan, mannan, or chitin also had no effect on phagocytosis of C. parapsilosis. Consistent with the differences noted in phagocytosis, neutrophils mediated damage to C. parapsilosis but not C. albicans in assays of residual metabolic activity. C. parapsilosis was more sensitive to oxidative stress, and inclusion of antioxidant in toxicity assays decreased neutrophil mediated damage, suggesting that generation of reactive oxygen species contributes to the toxicity mechanism. These data suggest that the interaction between neutrophils and Candida species is not uniform and may partially account for differences observed in the epidemiology and natural history of infections caused by these species.
Collapse
Affiliation(s)
- Jennifer R Linden
- Graduate Program in Pathobiology, Brown University, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
15
|
Linden JR, Maccani MA, Laforce-Nesbitt SS, Bliss JM. High efficiency opsonin-independent phagocytosis ofCandida parapsilosisby human neutrophils. Med Mycol 2010. [DOI: 10.3109/13693780903164566] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
16
|
Deletion of Candida albicans SPT6 is not lethal but results in defective hyphal growth. Fungal Genet Biol 2010; 47:288-96. [PMID: 20060921 DOI: 10.1016/j.fgb.2010.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/23/2022]
Abstract
As a means to study surface proteins involved in the yeast to hypha transition, human monoclonal antibody fragments (single-chain variable fragments, scFv) have been generated that bind to antigens expressed on the surface of Candida albicans yeast and/or hyphae. A cDNA expression library was constructed from hyphae, and screened for immunoreactivity with scFv5 as a means to identify its cognate antigen. A reactive clone contained the 3' end of the C. albicans gene, orf 19.7136, designated SPT6 based on homology to Saccharomyces cerevisiae, where its product functions as a transcription elongation factor. A mutant containing a homozygous deletion of SPT6 was isolated, demonstrating that unlike S. cerevisiae, deletion of this gene in C. albicans is not lethal. Growth of this strain was severely impaired, however, as was its capacity to undergo filamentous growth. Reactivity with scFv5 was not detected in the mutant strain, although its impaired growth complicates the interpretation of this finding. To assess C. albicansSPT6 function, expression of the C. albicans gene was induced in a defined S. cerevisiaespt6 mutant. Partial complementation was seen, confirming that the C. albicans and S. cerevisiae genes are functionally related in these species.
Collapse
|
17
|
Destin KG, Linden JR, Laforce-Nesbitt SS, Bliss JM. Oxidative burst and phagocytosis of neonatal neutrophils confronting Candida albicans and Candida parapsilosis. Early Hum Dev 2009; 85:531-5. [PMID: 19481378 PMCID: PMC2752422 DOI: 10.1016/j.earlhumdev.2009.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 04/23/2009] [Accepted: 05/09/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Candida albicans and Candida parapsilosis are important causes of sepsis among premature neonates. The neutrophil is a key element in the control of Candida infections, yet specific neutrophil mechanisms that may contribute to the susceptibility of the premature neonate to candidiasis are not well understood. AIMS The hypothesis for this study is that neonatal neutrophils have a developmental deficiency in their capacity to generate an oxidative burst in response to Candida species. STUDY DESIGN Neutrophils were isolated from cord blood of term and preterm infants and from peripheral blood of adult volunteers. Neutrophils were exposed to Candida species, and assays of oxidative burst and phagocytosis were conducted. RESULTS Oxidative burst of neutrophils from term and preterm (22-29 weeks) neonates exposed to C. albicans hyphae was similar to adult neutrophils. No detectable burst was induced in either group by exposure to C. parapsilosis yeast, and was attenuated by exposure to C. albicans yeast. Because no deficiency in oxidative burst was seen, phagocytosis was also studied. Phagocytosis of unopsonized C. albicans yeast was low in both adult and neonatal neutrophils (10-12%), but was more efficient with C. parapsilosis as target (76-88%). Neutrophils from both term and preterm infants were capable of phagocytosis equivalent to adults. CONCLUSION A deficiency in generation of an oxidative burst or phagocytosis may not contribute to the increased susceptibility of preterm neonates to infections with Candida.
Collapse
Affiliation(s)
| | | | - Sonia S. Laforce-Nesbitt
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI
| | - Joseph M. Bliss
- Graduate Program in Pathobiology, Brown University, Providence, RI
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI
- Corresponding Author: Dept. of Pediatrics, Women & Infants Hospital of RI, 101 Dudley St., Providence, RI 02905, Phone: 401-274-1100; Fax: 401-453-7571,
| |
Collapse
|
18
|
Abstract
Both innate resistance and acquired cell-mediated immunity are involved in an anti-Candida response. Essential components of both the arms of the immune defense against infections by Candida spp. include phagocytic cells, i.e., polymorphonuclear neutrophils (PMNs) and mononuclear phagocytes. A powerful in vitro assay to assess host-pathogen interactions and study pathogenesis is the co-culture of phagocytic cells with a test fungus. The precise contribution of phagocytes to the host defense is usually assessed by determining phagocytosis and killing of Candida spp. blastoconidia. Dissection of the roles of various virulence factors in the infection process will involve the use of both in vitro and ex vivo assays. These assays are very useful as one of the approaches to determine the virulence factors of Candida spp., now that specific gene mutants are relatively easy to construct. In vitro studies involving specific cultured immune system cells can permit the analysis of interactions under controlled conditions. These studies provide an opportunity to monitor and compare host cell behavior upon challenge with wild-type or mutant strains of the pathogen.
Collapse
|
19
|
Immune defence mechanisms and immunoenhancement strategies in oropharyngeal candidiasis. Expert Rev Mol Med 2008; 10:e29. [PMID: 18847522 DOI: 10.1017/s1462399408000835] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The prevalence of oropharyngeal candidiasis continues to be high, mainly because of an increasing population of immunocompromised patients. Traditional treatment of oropharyngeal candidiasis has relied on the use of antimicrobial drugs. However, unsatisfactory results with drug monotherapy and the emergence of resistant strains have prompted investigations into the potential use of adjunctive immunoenhancing therapies for the treatment of these infections. Here we review the host-recognition systems of Candida albicans, the immune and inflammatory response to infection, and antifungal effector mechanisms. The potential of immune modulation as a therapeutic strategy in oropharyngeal candidiasis is also discussed.
Collapse
|
20
|
Laforce-Nesbitt SS, Sullivan MA, Hoyer LL, Bliss JM. Inhibition of Candida albicans adhesion by recombinant human antibody single-chain variable fragment specific for Als3p. ACTA ACUST UNITED AC 2008; 54:195-202. [PMID: 18662314 DOI: 10.1111/j.1574-695x.2008.00465.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Candida albicans adhesin, Als3p, was identified as a potential cognate antigen for previously described human antibody fragments [single-chain variable fragment (scFv)] based on similarity of the binding pattern of the scFv to the distribution of this protein on the hyphal surface. Although all scFv bound avidly to wild type, scFv3 showed no detectable binding via immunofluorescence assay to strain 1843, containing a homozygous deletion of ALS3. Binding to the ALS3 reintegrant strain, 2322, was preserved, and scFv3 also bound to Saccharomyces cerevisiae expressing ALS3. Other scFv retained binding to 1843, but with a markedly altered pattern. To determine if scFv3 could interfere with Als3p function, adhesion assays were conducted using human epithelial or endothelial cells as target. Treatment of wild-type C. albicans with scFv3 reduced adhesion of the fungus to both cell types to levels comparable to the als3Delta/als3Delta mutant. These experiments confirm that phage display is a viable method to isolate human scFv specific to an antigen implicated in C. albicans virulence, and that the scFv interfere with adhesion to human cells. The altered pattern of immunostaining with other scFv that retain binding to the als3Delta/als3Delta mutant suggest that Als3p may also have a role in structural organization of the C. albicans cell surface.
Collapse
Affiliation(s)
- Sonia S Laforce-Nesbitt
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI 02905, USA
| | | | | | | |
Collapse
|
21
|
Wellington M, Dolan K, Haidaris CG. Monocyte responses to Candida albicans are enhanced by antibody in cooperation with antibody-independent pathogen recognition. ACTA ACUST UNITED AC 2007; 51:70-83. [PMID: 17610517 DOI: 10.1111/j.1574-695x.2007.00278.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although most individuals are colonized with Candida albicans, only patients with insufficient or nonfunctional phagocytes develop life-threatening C. albicans disease. Because recognition of bacterial pathogens through phagocyte receptors for IgG (FcgammaR) is known to augment phagocyte responses, we postulated that antibody opsonization would enhance monocyte damage to C. albicans and subsequent tumor necrosis factor-alpha (TNF-alpha) production. After exposure to the human monocytic cell line THP-1, opsonized yeast showed an 89% decrease in metabolic activity, compared with 40% for unopsonized yeast (P<0.05). Culture supernatants contained 1316 pg mL(-1) of TNF-alpha after monocytes were exposed to opsonized yeast vs. 341 pg mL(-1) for unopsonized yeast (P=0.003). Similar results were obtained using peripheral blood mononuclear cells. Antibody opsonization of C. albicans germ tubes enhanced TNF-alpha production but did not affect organism damage. Antibody-dependent and antibody-independent factors were found to act synergistically to increase TNF-alpha production. ERK activation was important for both antibody-dependent and antibody-independent stimulation of TNF-alpha production, but not for monocyte-mediated organism damage. These data suggest that FcgammaR cooperates positively with antibody-independent recognition mechanisms in what may be a novel link between innate and adaptive immunity to C. albicans.
Collapse
Affiliation(s)
- Melanie Wellington
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
22
|
Corbucci C, Cenci E, Skrzypek F, Gabrielli E, Mosci P, Ernst JF, Bistoni F, Vecchiarelli A. Immune response toCandida albicansis preserved despite defect inO-mannosylation of secretory proteins. Med Mycol 2007; 45:709-19. [PMID: 17885949 DOI: 10.1080/13693780701537922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The PMT gene family in Candida albicans encodes five isoforms of the protein mannosyltransferases that initiate O-mannosylation of secretory proteins. Mutations at the Pmt level have been associated with differences in pathogenicity, e.g. in contrast to pmt5/pmt5, pmt2/PMT2 mutants showed poor virulence. Our objective was to determine whether these differences were related to the capacity of pmt2/PMT2 and pmt5/pmt5 to (i) express differences in selected virulence factors, and (ii) stimulate the natural immune system. The results show that pmt mutants (i) form hyphae in serum, (ii) show defective production of proteases but not of phospholipases with respect to the parental strain, (iii) undergo mycelial transition in the kidneys of hematogenously infected animals, (iv) are phagocytosed and killed by macrophages similar to the parental strain, although neutrophils are unable to destroy pmt5/pmt5, (v) engage TLR4 and stimulate MyD88 leading to NF-kappaB activation, and (vi) stimulate cytokine production by macrophages. Collectively our findings suggest that the defect in protein O-mannosylation in C. albicans cause attenuation of the virulence although the antigenic factors that retain the capacity to stimulate an efficient immune response are preserved.
Collapse
Affiliation(s)
- Cristina Corbucci
- Microbiology Section, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The Neutrophil. IMMUNOLOGY OF FUNGAL INFECTIONS 2007. [PMCID: PMC7122062 DOI: 10.1007/1-4020-5492-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Rodrigo WWSI, Jin X, Blackley SD, Rose RC, Schlesinger JJ. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human Fcgamma RIA (CD64) or FcgammaRIIA (CD32). J Virol 2006; 80:10128-38. [PMID: 17005690 PMCID: PMC1617290 DOI: 10.1128/jvi.00792-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fcgamma receptor (FcgammaR)-mediated entry of infectious dengue virus immune complexes into monocytes/macrophages is hypothesized to be a key event in the pathogenesis of complicated dengue fever. FcgammaRIA (CD64) and FcgammaRIIA (CD32), which predominate on the surface of such dengue virus-permissive cells, were compared for their influence on the infectivity of dengue 2 virus immune complexes formed with human dengue virus antibodies. A signaling immunoreceptor tyrosine-based activation motif (ITAM) incorporated into the accessory gamma-chain subunit that associates with FcgammaRIA and constitutively in FcgammaRIIA is required for phagocytosis mediated by these receptors. To determine whether FcgammaRIA and FcgammaRIIA activation functions are also required for internalization of infectious dengue virus immune complexes, we generated native and signaling-incompetent versions of each receptor by site-directed mutagenesis of ITAM tyrosine residues. Plasmids designed to express these receptors were transfected into COS-7 cells, and dengue virus replication was measured by plaque assay and flow cytometry. We found that both receptors mediated enhanced dengue virus immune complex infectivity but that FcgammaRIIA appeared to do so far more effectively. Abrogation of FcgammaRIA signaling competency, either by expression without gamma-chain or by coexpression with gamma-chain mutants, was associated with significant impairment of phagocytosis and of dengue virus immune complex infectivity. Abrogation of FcgammaRIIA signaling competency was also associated with equally impaired phagocytosis but had no discernible effect on dengue virus immune complex infectivity. These findings point to fundamental differences between FcgammaRIA and FcgammaRIIA with respect to their immune-enhancing capabilities and suggest that different mechanisms of dengue virus immune complex internalization may operate between these FcgammaRs.
Collapse
Affiliation(s)
- W W Shanaka I Rodrigo
- Division of Infectious Diseases, Department of Medicine, University of Rochester School of Medicine and Dentistry, Box 689, 601 Crittenden Avenue, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
25
|
Zhang MX, Bohlman MC, Itatani C, Burton DR, Parren PWHI, St Jeor SC, Kozel TR. Human recombinant antimannan immunoglobulin G1 antibody confers resistance to hematogenously disseminated candidiasis in mice. Infect Immun 2006; 74:362-9. [PMID: 16368991 PMCID: PMC1346657 DOI: 10.1128/iai.74.1.362-369.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 09/21/2005] [Accepted: 10/08/2005] [Indexed: 11/20/2022] Open
Abstract
Mannan is a major cell wall component found in Candida species. Natural antimannan antibody is present in sera from most normal adults, but its role in host resistance to hematogenously disseminated candidiasis is unknown. The purpose of this study was to develop recombinant human antimannan antibody and to study its protective function. A phage Fab display combinatorial library containing Fab genes from bone marrow lymphocytes was screened with Candida albicans yeast cells and chemically purified mannan. One antimannan Fab, termed M1, was converted to a full-length immunoglobulin G1 antibody, M1g1, and M1g1 was produced in CHO cells. The M1g1 epitope was found in C. albicans serotypes A and B, Candida tropicalis, Candida guilliermondii, Candida glabrata, and Candida parapsilosis. Its expression was active at both 23 degrees C and 37 degrees C and uniform over the cell surface. BALB/c mice passively immunized with M1g1 were more resistant than control mice to a lethal hematogenous infection by C. albicans, as evidenced by extension of survival in an M1g1 dose-dependent manner (P, 0.08 to <0.001) and by reduction in number of infection foci and their size in the kidney. In vitro studies found that M1g1 promoted phagocytosis and phagocytic killing of C. albicans yeast cells by mouse peritoneal macrophages and was required for activation of the mouse complement cascade. Thus, human antimannan antibody may have a protective role in host resistance to systemic candidiasis.
Collapse
Affiliation(s)
- Mason X Zhang
- Department of Biological Sciences, California State University-Long Beach, 1250 Bellflower Boulevard, Long Beach, CA 90840, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ishibashi KI, Yoshida M, Nakabayashi I, Shinohara H, Miura NN, Adachi Y, Ohno N. Role of anti-beta-glucan antibody in host defense against fungi. ACTA ACUST UNITED AC 2005; 44:99-109. [PMID: 15780582 DOI: 10.1016/j.femsim.2004.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Revised: 12/08/2004] [Accepted: 12/13/2004] [Indexed: 11/23/2022]
Abstract
We have recently detected an anti-beta-glucan antibody in normal human and normal mouse sera. The anti-beta-glucan antibody showed reactivity to pathogenic fungal Aspergillus and Candida cell wall glucan. Anti-beta-glucan antibody could bind whole Candida cells. It also enhanced the candidacidal activity of macrophages in vitro. The anti-beta-glucan antibody titer of DBA/2 mice intravenously administered either Candida or Aspergillus solubilized cell wall beta-glucan decreased remarkably dependent on dose. Moreover, in deep mycosis patients, the anti-beta-glucan antibody titer decreased, and this change correlated with clinical symptoms and other parameters such as C-reactive protein. It was suggested that the anti-beta-glucan antibody formed an antigen-antibody complex and participated in the immune response as a molecule recognizing pathogenic fungi.
Collapse
Affiliation(s)
- Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | |
Collapse
|