1
|
Rodríguez-Expósito RL, Sifaoui I, Salazar-Villatoro L, Bethencourt-Estrella CJ, Fernández JJ, Díaz-Marrero AR, Sutak R, Omaña-Molina M, Piñero JE, Lorenzo-Morales J. Staurosporine as a Potential Treatment for Acanthamoeba Keratitis Using Mouse Cornea as an Ex Vivo Model. Mar Drugs 2024; 22:423. [PMID: 39330304 PMCID: PMC11433162 DOI: 10.3390/md22090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
Acanthamoeba is a ubiquitous genus of amoebae that can trigger a severe and progressive ocular disease known as Acanthamoeba Keratitis (AK). Furthermore, current treatment protocols are based on the combination of different compounds that are not fully effective. Therefore, an urgent need to find new compounds to treat Acanthamoeba infections is clear. In the present study, we evaluated staurosporine as a potential treatment for Acanthamoeba keratitis using mouse cornea as an ex vivo model, and a comparative proteomic analysis was conducted to elucidate a mechanism of action. The obtained results indicate that staurosporine altered the conformation of actin and tubulin in treated trophozoites of A. castellanii. In addition, proteomic analysis of treated trophozoites revealed that this molecule induced overexpression and a downregulation of proteins related to key functions for Acanthamoeba infection pathways. Additionally, the ex vivo assay used validated this model for the study of the pathogenesis and therapies of AK. Finally, staurosporine eliminated the entire amoebic population and prevented the adhesion and infection of amoebae to the epithelium of treated mouse corneas.
Collapse
Affiliation(s)
- Rubén L. Rodríguez-Expósito
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Ines Sifaoui
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico;
| | - Carlos J. Bethencourt-Estrella
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - José J. Fernández
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain; (J.J.F.); (A.R.D.-M.)
- Departamento de Química Orgánica, Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain
| | - Ana R. Díaz-Marrero
- Instituto Universitario de Bio-Orgánica Antonio González (IUBO AG), Universidad de La Laguna (ULL), 38203 San Cristóbal de La Laguna, Tenerife, Spain; (J.J.F.); (A.R.D.-M.)
- Instituto de Productos Naturales y Agrobiología (IPNA), Consejo Superior de Investigaciones Científicas (CSIC), 38203 San Cristóbal de La Laguna, Tenerife, Spain
| | - Robert Sutak
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, 252 50 Vestec, Prague, Czech Republic;
| | - Maritza Omaña-Molina
- Facultad de Estudios Superiores Iztacala, Medicina, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico
| | - José E. Piñero
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Jacob Lorenzo-Morales
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), Avda. Astrofísico Fco. Sánchez, S/N, 38203 San Cristóbal de La Laguna, Tenerife, Spain; (R.L.R.-E.); (I.S.); (C.J.B.-E.); (J.E.P.)
- Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38203 San Cristóbal de La Laguna, Tenerife, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| |
Collapse
|
2
|
Sharma C, Khurana S, Bhatia A, Arora A, Gupta A. The gene expression and proteomic profiling of Acanthamoeba isolates. Exp Parasitol 2023; 255:108630. [PMID: 37820893 DOI: 10.1016/j.exppara.2023.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/27/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
INTRODUCTION The free-living protozoan Acanthamoeba can cause severe keratitis known as Acanthamoeba Keratitis (AK) and granulomatous amoebic encephalitis (GAE). The pathogenesis of Acanthamoeba includes intricate interactions between the organism and the host's immune system. The downstream analysis of a well-annotated genome assembly along with proteomic analysis can unravel several biological processes and aid in the identification of potential genes involved in pathogenicity. METHODS Based on the next-generation sequencing data analysis, genes including lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein were selected as probable pathogenic targets that were validated by conventional PCR in a total of 30 Acanthamoeba isolates. This was followed by real-time PCR for the evaluation of relative gene expression in the keratitis and amoebic encephalitis animal model induced using keratitis (CHA5), encephalitis (CHA24) and non-pathogenic environmental isolate (CHA36). In addition, liquid chromatography-mass spectrometry (LC-MS/MS) was performed for keratitis, encephalitis, and non-pathogenic environmental isolate before and after treatment with polyhexamethylene biguanide (PHMB). RESULTS The conventional PCR demonstrated the successful amplification of lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein genes in clinical and environmental isolates. The expression analysis revealed phospholipase, lysophospholipase, and mannose-binding genes to be significantly upregulated in the keratitis isolate (CHA 5) during AK in the animal model. In the case of the amoebic encephalitis model, phospholipase, lysophospholipase, S8/S53 peptidase, and carboxylesterase were significantly upregulated in the encephalitis isolate compared to the keratitis isolate. The proteomic data revealed differential protein expression in pathogenic versus non-pathogenic isolates in the pre and post-treatment with PHMB. CONCLUSION The gene expression data suggests that lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein (MBP) could play a role in the contact-dependent and independent mechanisms of Acanthamoeba pathogenesis. In addition, the proteomic profiling of the 3 isolates revealed differential protein expression crucial for parasite growth, survival, and virulence. Our results provide baseline data for selecting possible pathogenic targets that could be utilized for designing knockout experiments in the future.
Collapse
Affiliation(s)
- Chayan Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Alka Bhatia
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Arora
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| | - Amit Gupta
- Advanced Eye Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012, India.
| |
Collapse
|
3
|
Sierra-López F, Castelan-Ramírez I, Hernández-Martínez D, Salazar-Villatoro L, Segura-Cobos D, Flores-Maldonado C, Hernández-Ramírez VI, Villamar-Duque TE, Méndez-Cruz AR, Talamás-Rohana P, Omaña-Molina M. Extracellular Vesicles Secreted by Acanthamoeba culbertsoni Have COX and Proteolytic Activity and Induce Hemolysis. Microorganisms 2023; 11:2762. [PMID: 38004773 PMCID: PMC10673465 DOI: 10.3390/microorganisms11112762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Several species of Acanthamoeba genus are potential pathogens and etiological agents of several diseases. The pathogenic mechanisms carried out by these amoebae in different target tissues have been documented, evidencing the relevant role of contact-dependent mechanisms. With the purpose of describing the pathogenic processes carried out by these protozoans more precisely, we considered it important to determine the emission of extracellular vesicles (EVs) as part of the contact-independent pathogenicity mechanisms of A. culbertsoni, a highly pathogenic strain. Through transmission electronic microscopy (TEM) and nanoparticle tracking analysis (NTA), EVs were characterized. EVs showed lipid membrane and a size between 60 and 855 nm. The secretion of large vesicles was corroborated by confocal and TEM microscopy. The SDS-PAGE of EVs showed proteins of 45 to 200 kDa. Antigenic recognition was determined by Western Blot, and the internalization of EVs by trophozoites was observed through Dil-labeled EVs. In addition, some EVs biological characteristics were determined, such as proteolytic, hemolytic and COX activity. Furthermore, we highlighted the presence of leishmanolysin in trophozites and EVs. These results suggest that EVs are part of a contact-independent mechanism, which, together with contact-dependent ones, allow for a better understanding of the pathogenicity carried out by Acanthamoeba culbertsoni.
Collapse
Affiliation(s)
- Francisco Sierra-López
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Ismael Castelan-Ramírez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Dolores Hernández-Martínez
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - David Segura-Cobos
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico;
| | - Verónica Ivonne Hernández-Ramírez
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Tomás Ernesto Villamar-Duque
- General Biotery, Faculty of Superior Studies Iztacala, Biology, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico;
| | - Adolfo René Méndez-Cruz
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| | - Patricia Talamás-Rohana
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, National Polytechnic Institute (IPN), Mexico City 07360, Mexico; (L.S.-V.); (V.I.H.-R.); (P.T.-R.)
| | - Maritza Omaña-Molina
- Laboratory of Amphizoic Amoebae, Faculty of Superior Studies Iztacala, Medicine, National Autonomous University of Mexico (UNAM), Tlalnepantla 54090, Mexico (I.C.-R.); (D.H.-M.); (D.S.-C.); (A.R.M.-C.)
| |
Collapse
|
4
|
Salazar-Villatoro L, Chávez-Munguía B, Guevara-Estrada CE, Lagunes-Guillén A, Hernández-Martínez D, Castelan-Ramírez I, Omaña-Molina M. Taurine, a Component of the Tear Film, Exacerbates the Pathogenic Mechanisms of Acanthamoeba castellanii in the Ex Vivo Amoebic Keratitis Model. Pathogens 2023; 12:1049. [PMID: 37624009 PMCID: PMC10458499 DOI: 10.3390/pathogens12081049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Acanthamoeba spp. is the etiological agent of amoebic keratitis. In this study, the effect of taurine in physiological concentrations in tears (195 μM) on trophozoites of Acanthamoeba castellanii through the ex vivo amoebic keratitis model was evaluated. Trophozoites were coincubated with the Syrian golden hamster cornea (Mesocricetus auratus) for 3 and 6 h. Group 1: Control (-). Corneas coincubated with amoebic culture medium and taurine. Group 2: Control (+). Corneas coincubated with trophozoites without taurine. Group 3: Corneas coincubated with taurine 15 min before adding trophozoites. Group 4: Trophozoites coincubated 15 min with taurine before placing them on the cornea. Group 5: Corneas coincubated for 15 min with trophozoites; subsequently, taurine was added. Results are similar for both times, as evaluated by scanning electron microscopy. As expected, in the corneas of Group 1, no alterations were observed in the corneal epithelium. In the corneas of Group 2, few adhered trophozoites were observed on the corneal surface initiating migrations through cell junctions as previously described; however, in corneas of Groups 3, 4 and 5, abundant trophozoites were observed, penetrating through different corneal cell areas, emitting food cups and destabilizing corneal surface in areas far from cell junctions. Significant differences were confirmed in trophozoites adherence coincubated with taurine (p < 0.05). Taurine does not prevent the adhesion and invasion of the amoebae, nor does it favor its detachment once these have adhered to the cornea, suggesting that taurine in the physiological concentrations found in tears stimulates pathogenic mechanisms of A. castellanii.
Collapse
Affiliation(s)
- Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.); (A.L.-G.)
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.); (A.L.-G.)
| | - Celia Esther Guevara-Estrada
- Laboratorio de Amibas Anfizóicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (C.E.G.-E.); (D.H.-M.); (I.C.-R.)
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de Mexico 07360, Mexico; (L.S.-V.); (B.C.-M.); (A.L.-G.)
| | - Dolores Hernández-Martínez
- Laboratorio de Amibas Anfizóicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (C.E.G.-E.); (D.H.-M.); (I.C.-R.)
| | - Ismael Castelan-Ramírez
- Laboratorio de Amibas Anfizóicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (C.E.G.-E.); (D.H.-M.); (I.C.-R.)
| | - Maritza Omaña-Molina
- Laboratorio de Amibas Anfizóicas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (C.E.G.-E.); (D.H.-M.); (I.C.-R.)
| |
Collapse
|
5
|
Ledbetter EC, Dong L. Susceptibility of the Intact and Traumatized Feline Cornea to In Vitro Binding and Invasion by Acanthamoeba castellanii. Cornea 2023; 42:624-629. [PMID: 36518074 PMCID: PMC10060048 DOI: 10.1097/ico.0000000000003220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE Acanthamoeba castellanii ( A. castellanii ) displays host specificity at the level of the ocular surface. This study determined the susceptibility of the intact and traumatized feline cornea to A. castellanii binding and invasion relative to other host species with established susceptibility and resistance to Acanthamoeba binding. METHODS Full-thickness buttons of fresh feline, porcine, and canine corneas were prepared. The corneal epithelium was confirmed intact by fluorescein staining or lightly scarified with a 25-G needle to simulate corneal trauma. Acanthamoeba castellanii was axenically cultivated. Corneal buttons were incubated with the parasite suspension or parasite-free medium for 18 hours at 35°C. Corneal buttons were rinsed, fixed, and processed for histopathology and immunohistochemistry using immunoperoxidase and immunofluorescence methods of amoeba detection. RESULTS Numerous amoebae were bound to feline and porcine corneas incubated with parasites. In both intact and traumatized corneas, amoebae were detected at all levels in the corneal epithelium and within the anterior stroma. In traumatized corneal sections, amoebae were frequently present in regions of epithelial damage. Corneal architecture was well-preserved in sections incubated with parasite-free medium; however, epithelial cell sloughing, separation of epithelial layers, and epithelial detachment from the stroma were observed in corneas incubated with amoebae. Intact and traumatized canine corneas were relatively free of adherent amoebae, and corneal architecture was indistinguishable between sections incubated with the parasite suspension and parasite-free medium. CONCLUSIONS The feline cornea is highly susceptible to in vitro binding and invasion by A. castellanii . Acanthamoeba binding to the feline cornea does not require a previous epithelial defect.
Collapse
Affiliation(s)
- Eric C. Ledbetter
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Longying Dong
- Departments of Clinical Sciences; and Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
6
|
Acanthamoeba mauritaniensis genotype T4D: An environmental isolate displays pathogenic behavior. Parasitol Int 2019; 74:102002. [PMID: 31669294 DOI: 10.1016/j.parint.2019.102002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Acanthamoeba spp. are free-living amoebae with a worldwide distribution. These amoebae can cause granulomatous amoebic encephalitis and amoebic keratitis in humans. Proteases are considered virulence factors in pathogenic Acanthamoeba. The objective of this study was to evaluate the behavior of Acanthamoeba mauritaniensis, a nonpathogenic amoeba. We analyzed the cytopathic effect of A. mauritaniensis on RCE1(5 T5) and MDCK cells and compared it to that of Acanthamoeba castellanii. A partial biochemical characterization of proteases was performed in total crude extracts (TCE) and conditioned medium (CM). Finally, we evaluated the effect of proteases on tight junction (TJ) proteins and the transepithelial electrical resistance of MDCK cells. The results showed that this amoeba can induce substantial damage to RCE1(5T5) and MDCK cells. Moreover, the zymograms and Azocoll assays of amoebic TCE and CM revealed different protease activities, with serine proteases being the most active. Furthermore, A. mauritaniensis induced the alteration and degradation of MDCK cell TJ proteins with serine proteases. After genotyping this amoeba, we determined that it is an isolate of Acanthamoeba genotype T4D. From these data, we suggest that A. mauritaniensis genotype T4D behaves similarly to the A. castellanii strain.
Collapse
|
7
|
Betanzos A, Bañuelos C, Orozco E. Host Invasion by Pathogenic Amoebae: Epithelial Disruption by Parasite Proteins. Genes (Basel) 2019; 10:E618. [PMID: 31416298 PMCID: PMC6723116 DOI: 10.3390/genes10080618] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The epithelium represents the first and most extensive line of defence against pathogens, toxins and pollutant agents in humans. In general, pathogens have developed strategies to overcome this barrier and use it as an entrance to the organism. Entamoeba histolytica, Naegleriafowleri and Acanthamoeba spp. are amoebae mainly responsible for intestinal dysentery, meningoencephalitis and keratitis, respectively. These amoebae cause significant morbidity and mortality rates. Thus, the identification, characterization and validation of molecules participating in host-parasite interactions can provide attractive targets to timely intervene disease progress. In this work, we present a compendium of the parasite adhesins, lectins, proteases, hydrolases, kinases, and others, that participate in key pathogenic events. Special focus is made for the analysis of assorted molecules and mechanisms involved in the interaction of the parasites with epithelial surface receptors, changes in epithelial junctional markers, implications on the barrier function, among others. This review allows the assessment of initial host-pathogen interaction, to correlate it to the potential of parasite invasion.
Collapse
Affiliation(s)
- Abigail Betanzos
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City 03940, Mexico
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Cecilia Bañuelos
- Coordinación General de Programas de Posgrado Multidisciplinarios, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, CINVESTAV-IPN, Mexico City 07360, Mexico
| | - Esther Orozco
- Departamento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, Mexico City 07360, Mexico.
| |
Collapse
|
8
|
Acanthamoeba (T4) trophozoites cross the MDCK epithelium without cell damage but increase paracellular permeability and transepithelial resistance by modifying tight junction composition. Exp Parasitol 2017; 183:69-75. [DOI: 10.1016/j.exppara.2017.10.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/12/2017] [Accepted: 10/29/2017] [Indexed: 01/10/2023]
|
9
|
González-Robles A, Omaña-Molina M, Salazar-Villatoro L, Flores-Maldonado C, Lorenzo-Morales J, Reyes-Batlle M, Arnalich-Montiel F, Martínez-Palomo A. Acanthamoeba culbertsoni isolated from a clinical case with intraocular dissemination: Structure and in vitro analysis of the interaction with hamster cornea and MDCK epithelial cell monolayers. Exp Parasitol 2017; 183:245-253. [PMID: 28974450 DOI: 10.1016/j.exppara.2017.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
Acanthamoeba culbertsoni trophozoites, previously isolated from a human keratitis case with severe intraocular damage, were maintained in axenic culture. Co-incubation of amoebae with MDCK cell monolayers demonstrated an apparent preference of the amoebae to introduce themselves between the cells. The trophozoites appeared to cross the cell monolayer through the tight junctions, which resulted in decreased trans-epithelial resistance (TER) measurements. Unexpectedly, after co-incubation of amoebae with hamster corneas, we observed that the trophozoites were able to cross the different cell layers and reach the corneal stroma after only 12 h of interaction, in contrast to other Acanthamoeba species. These observations suggest that this A. culbertsoni isolate is particularly pathogenic. Further research with diverse methodologies needs to be performed to explain the unique behavior of this Acanthamoeba strain.
Collapse
Affiliation(s)
- Arturo González-Robles
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico.
| | - Maritza Omaña-Molina
- Faculty of Superior Studies, UNAM, Iztacala, Tlalnepantla, State of Mexico, Mexico
| | - Lizbeth Salazar-Villatoro
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Catalina Flores-Maldonado
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies, Mexico City, Mexico
| | - Jacob Lorenzo-Morales
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Tenerife, Canary Islands, Spain
| | - María Reyes-Batlle
- Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Tenerife, Canary Islands, Spain
| | | | - Adolfo Martínez-Palomo
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
10
|
Ribeiro LC, Santos C, Benchimol M. Is Trichomonas tenax a Parasite or a Commensal? Protist 2015; 166:196-210. [PMID: 25835639 DOI: 10.1016/j.protis.2015.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/12/2015] [Accepted: 02/13/2015] [Indexed: 10/24/2022]
Abstract
Trichomonas tenax is considered a commensal organism found under poor oral hygiene conditions. T. tenax presents morphological similarities with T. vaginalis, and there are doubts concerning whether this protist is a parasite and whether it is a genetic variant of T. vaginalis. This study aimed to investigate the capacity of T. tenax to cause mammalian cell damage and compare its cytotoxicity with that of T. vaginalis. Protozoan-host cell interaction assays were performed with Madin-Darby canine kidney, HeLa, and gum cells and 3D spheroids, which were examined by scanning electron and transmission electron microscopy. Cellular viability experiments were also performed. T. tenax attached and had different forms when interacting with mammalian cells and caused damage with time-dependent host-cell viability. We observed that T. tenax produced plasma membrane projections and phagocytosed portions of the mammalian cells. In addition, T. tenax caused membrane blebbing and apoptotic bodies in HeLa cells, thus inducing cell death. Spheroids were also used in interaction assays with T. tenax and they were damaged by these cells. This study shows that T. tenax fulfills the requisites of a parasite, causing damage to different mammalian cells and behaving similarly to T. vaginalis when in contact with target cells in vitro.
Collapse
Affiliation(s)
- Luiz Carlos Ribeiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; Instituto Nacional de Metrologia e Qualidade Ambiental, Inmetro, Rio de Janeiro, Brazil
| | - Carlos Santos
- Instituto Nacional de Metrologia e Qualidade Ambiental, Inmetro, Rio de Janeiro, Brazil
| | - Marlene Benchimol
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Brazil; UNIGRANRIO - Universidade do Grande Rio, Rio de Janeiro, Brazil; INBEB -Instituto Nacional de Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
11
|
Silicone Hydrogel Contact Lenses Surface Promote Acanthamoeba castellanii Trophozoites Adherence. Eye Contact Lens 2014; 40:132-9. [DOI: 10.1097/icl.0000000000000024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Biochemical and cellular mechanisms regulatingAcanthamoeba castellaniiadherence to host cells. Parasitology 2013; 141:531-41. [DOI: 10.1017/s0031182013001923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYFree-living amoebae belonging to the genusAcanthamoebaare the causative agents of infections such as amoebic keratitis (AK), granulomatous amoebic encephalitis (GAE) and cutaneous lesions. The mechanisms involved in the establishment of infection are unknown. However, it is accepted that the initial phase of pathogenesis involves adherence to the host tissue. In this work, we analysed surface molecules with an affinity for epithelial and neuronal cells from the trophozoites ofAcanthamoeba castellanii. We also investigated the cellular mechanisms that govern the process of trophozoite adhesion to the host cells. We first used confocal and epifluorescence microscopy to examine the distribution of theA. castellaniiactin cytoskeleton during interaction with the host cells. The use of drugs, as cytochalasin B (CB) and latrunculin B (LB), revealed the participation of cytoskeletal filaments in the adhesion process. In addition, to identify the proteins and glycoproteins on the surface ofA. castellanii, the trophozoites were labelled with biotin and biotinylated lectins. The results revealed bands of surface proteins, some of which were glycoproteins with mannose andN-acetylglucosamine residues. Interaction assays of biotinylated amoebae proteins with epithelial and neuronal cells showed that some surface proteins had affinity for both cell types. The results of this study provide insight into the biochemical and cellular mechanisms of theAcanthamoebainfection process.
Collapse
|
13
|
Proteases from Entamoeba spp. and Pathogenic Free-Living Amoebae as Virulence Factors. J Trop Med 2013; 2013:890603. [PMID: 23476670 PMCID: PMC3582061 DOI: 10.1155/2013/890603] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 02/01/2023] Open
Abstract
The standard reference for pathogenic and nonpathogenic amoebae is the human parasite Entamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenic Entamoeba species and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.
Collapse
|
14
|
Omaña-Molina M, González-Robles A, Iliana Salazar-Villatoro L, Lorenzo-Morales J, Cristóbal-Ramos AR, Hernández-Ramírez VI, Talamás-Rohana P, Méndez Cruz AR, Martínez-Palomo A. Reevaluating the role of Acanthamoeba proteases in tissue invasion: observation of cytopathogenic mechanisms on MDCK cell monolayers and hamster corneal cells. BIOMED RESEARCH INTERNATIONAL 2013; 2013:461329. [PMID: 23484119 PMCID: PMC3581277 DOI: 10.1155/2013/461329] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/04/2012] [Accepted: 12/07/2012] [Indexed: 11/25/2022]
Abstract
The morphological analysis of the cytopathic effect on MDCK cell monolayers and hamster cornea and qualitative and quantitative analyses of conditioned medium and proteases were evaluated and compared between two strains of Acanthamoeba genotype T4. Further than highlighting the biological differences found between both strains, the most important observation in this study was the fact that proteases both in total extracts and in conditioned medium are apparently not determinant in tissue destruction. An interestingly finding was that no lysis of corneal tissue was observed as it was previously suggested. These results, together with previous studies, allow us to conclude that the invasion and disruption of corneal tissue is performed by the penetration of the amoebae through cell junctions, either by the action of proteases promoting cellular separation but not by their destruction and/or a mechanical effect exerted by amoebae. Therefore, contact-dependent mechanisms in Acanthamoeba pathogenesis are more relevant than it has been previously considered. This is supported because the phagocytosis of recently detached cells as well as those attached to the corneal epithelium leads to the modification of the cellular architecture facilitating the migration and destruction of deeper layers of the corneal epithelium.
Collapse
Affiliation(s)
- Maritza Omaña-Molina
- UIICSE Faculty of Superior Studies Iztacala, Medicine, UNAM, Los Reyes Iztacala, 54090 Tlalnepantla, MEX, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri are mitochondria-bearing, free-living eukaryotic amebae that have been known to cause infections of the central nervous system (CNS) of humans and other animals. Several species of Acanthamoeba belonging to several different genotypes cause an insidious and chronic disease, granulomatous amebic encephalitis (GAE), principally in immunocompromised hosts including persons infected with HIV/AIDS. Acanthamoeba spp., belonging to mostly group 2, also cause infection of the human cornea, Acanthamoeba keratitis. Balamuthia mandrillaris causes GAE in both immunocompromised and immunocompetent hosts mostly in the very young or very old individuals. Both Acanthamoeba spp. and B. mandrillaris also cause a disseminated disease including the lungs, skin, kidneys, and uterus. Naegleria fowleri, on the other hand, causes an acute and fulminating, necrotizing infection of the CNS called primary amebic meningoencephalitis (PAM) in children and young adults with a history of recent exposure to warm fresh water. Additionally, another free-living ameba Sappinia pedata, previously described as S. diploidea, also has caused a single case of amebic meningoencephalitis. In this review the biology of these amebae, clinical manifestations, molecular and immunological diagnosis, and epidemiological features associated with GAE and PAM are discussed.
Collapse
Affiliation(s)
- Govinda S Visvesvara
- Division of Foodborne, Waterborne & Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
16
|
Alves DDSMM, Moraes AS, Nitz N, de Oliveira MGC, Hecht MM, Gurgel-Gonçalves R, Cuba CAC. Occurrence and characterization of Acanthamoeba similar to genotypes T4, T5, and T2/T6 isolated from environmental sources in Brasília, Federal District, Brazil. Exp Parasitol 2012; 131:239-44. [PMID: 22546341 DOI: 10.1016/j.exppara.2012.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 04/08/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Species of Acanthamoeba can cause keratitis and brain infections. The characterization of environmental isolates is necessary to analyze the risk of human infection. We aimed at identifying and genotyping Acanthamoeba isolates from soil, swimming pools, and water features in Brasília, Federal District, Brazil, as well as determining their physiological characteristics and pathogenic potential. Among the 18 isolates studied, eight were similar to genotype T5, five to T4, and one to T2/T6, classified by the sequence analysis of 18S rDNA. Genotypes of four isolates were not determined. Ten isolates (55%) grew at 37 °C and seven (39%) grew in media with 1.5M mannitol, which are the physiological parameters associated with pathogenic Acanthamoeba; also, four isolates from swimming pools presented high pathogenic potential. Our results indicate a widespread distribution of potentially pathogenic Acanthamoeba T4, T5, and T2/T6 in different environmental sources in Brasília, revealing the potential risk of human infection and the need of preventive measures.
Collapse
Affiliation(s)
- Daniella de Sousa Mendes Moreira Alves
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, Brazil.
| | | | | | | | | | | | | |
Collapse
|
17
|
Acanthamoeba castellanii: Morphological analysis of the interaction with human cornea. Exp Parasitol 2010; 126:73-8. [DOI: 10.1016/j.exppara.2010.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/23/2022]
|
18
|
VISVESVARA GOVINDAS, SRIRAM RAMA, QVARNSTROM YVONNE, BANDYOPADHYAY KAKALI, DA SILVA ALEXANDREJ, PIENIAZEK NORMANJ, CABRAL GUYA. Paravahlkampfia francinaen. sp. Masquerading as an Agent of Primary Amoebic Meningoencephalitis. J Eukaryot Microbiol 2009; 56:357-66. [DOI: 10.1111/j.1550-7408.2009.00410.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
ROCHA-AZEVEDO BRUNODA, JAMERSON MELISSA, CABRAL GUYA, SILVA-FILHO FERNANDOC, MARCIANO-CABRAL FRANCINE. AcanthamoebaInteraction with Extracellular Matrix Glycoproteins: Biological and Biochemical Characterization and Role in Cytotoxicity and Invasiveness. J Eukaryot Microbiol 2009; 56:270-8. [DOI: 10.1111/j.1550-7408.2009.00399.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
In vitro activity of Acanthamoeba castellanii on human platelets and erythrocytes. Infect Immun 2008; 77:733-8. [PMID: 19015256 DOI: 10.1128/iai.00202-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The effect of Acanthamoeba on human platelets and erythrocytes has not been fully elucidated. This paper reports that cell-free supernatants prepared from A. castellanii can activate human platelets, causing both a significant increase in the cytosolic free-calcium concentration and platelet aggregation. In addition, we demonstrated that platelet activation depends on the activity of ADP constitutively secreted into the medium by trophozoites. This study also showed that A. castellanii can affect human red blood cells, causing hemolysis, and provided evidence that hemolysis occurs in both contact-dependent and contact-independent ways; there are differences in kinetics, hemolytic activity, and calcium dependency between the contact-dependent and contact-independent mechanisms. Partial characterization of contact-independent hemolysis indicated that ADP does not affect the plasma membrane permeability of erythrocytes and that heat treatment of amoebic cell-free supernatant abolishes its hemolytic activity. These findings suggest that some heat-labile molecules released by A. castellanii trophozoites are involved in this phenomenon. Finally, our data suggest that human platelets and erythrocytes may be potential cell targets during Acanthamoeba infection.
Collapse
|
21
|
|
22
|
da Rocha-Azevedo B, Costa e Silva-Filho F. Biological characterization of a clinical and an environmental isolate of Acanthamoeba polyphaga: analysis of relevant parameters to decode pathogenicity. Arch Microbiol 2007; 188:441-9. [PMID: 17569030 DOI: 10.1007/s00203-007-0264-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/22/2007] [Accepted: 05/20/2007] [Indexed: 11/25/2022]
Abstract
Acanthamoeba spp. consists of free-living amoebae, widespread in nature, which occasionally can cause human infections including granulomatous amoebic encephalitis and amoebic keratitis. Acanthamoeba pathogenesis is not entirely known and correlations between pathogenic potential and taxonomy are complex issues. In order to decipher the definition of a pathogenic amoeba, the objective of this work was to decipher the definition of pathogenic amoeba by characterizing two isolates of Acanthamoeba polyphaga obtained from different origins (a keratitis patient and freshwater), looking for differences among them. The clinical isolate grew faster in Peptone-yeast extract-glucose (PYG) medium, transformed more rapidly from a trophozoite to cyst and exhibited increased cytopathic effect on cultured cells. Morphological differences were also noted, since freshwater amoebae presented more acanthopodia than the clinical isolate. Moreover, actin labeling demonstrated that microfilament organization varies between isolates, with the presence of locomotory structures as lobopodia and lamellipodia in the keratitis isolate, which were less adherent on plastic. Zymography demonstrated that the keratitis isolates presented higher proteolytic activity and also were more able to invade collagen matrices. Altogether, we conclude that a group of stable physiological characteristics exist in Acanthamoeba that can be related to pathogenicity.
Collapse
Affiliation(s)
- Bruno da Rocha-Azevedo
- Programa de Bioengenharia e Biotecnologia Animal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ-CCS, bloco G, sala G0-044, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, CEP 21949-900, Brazil
| | | |
Collapse
|
23
|
Omaña-Molina M, Hernández D, González-Robles A, Salazar-Villatoro L, Castañón G, Campos-Rodríguez R, Bonilla P. Relationship between adhesion and cytopathic effect of four strains of Acanthamoeba spp. J Eukaryot Microbiol 2006; 53 Suppl 1:S18-9. [PMID: 17169053 DOI: 10.1111/j.1550-7408.2006.00159.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
González-Robles A, Castañón G, Cristóbal-Ramos AR, Lázaro-Haller A, Omaña-Molina M, Bonilla P, Martínez-Palomo A. Acanthamoeba castellanii: Structural basis of the cytopathic mechanisms. Exp Parasitol 2006; 114:133-40. [DOI: 10.1016/j.exppara.2006.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 02/24/2006] [Accepted: 02/26/2006] [Indexed: 11/26/2022]
|
25
|
Serrano-Luna JDJ, Cervantes-Sandoval I, Calderón J, Navarro-García F, Tsutsumi V, Shibayama M. Protease activities of Acanthamoeba polyphaga and Acanthamoeba castellanii. Can J Microbiol 2006; 52:16-23. [PMID: 16541155 DOI: 10.1139/w05-114] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acanthamoeba spp. are free-living amoebae that cause amoebic granulomatous encephalitis, skin lesions, and ocular amoebic keratitis in humans. Several authors have suggested that proteases could play a role in the pathogenesis of these diseases. In the present work, we performed a partial biochemical characterization of proteases in crude extracts of Acanthamoeba spp. and in conditioned medium using 7.5% SDS-PAGE copolymerized with 0.1% m/v gelatin as substrate. We distinguished a total of 17 bands with proteolytic activity distributed in two species of Acanthamoeba. The bands ranged from 30 to 188 kDa in A. castellanii and from 34 to 144 kDa in A. polyphaga. Additionally, we showed that the pattern of protease activity differed in the two species of Acanthamoeba when pH was altered. By using protease inhibitors, we found that the proteolytic activities belonged mostly to the serine protease family and secondly to cysteine proteases and that the proteolytic activities from A. castellanii were higher than those in A. polyphaga. Furthermore, aprotinin was found to inhibit crude extract protease activity on Madin-Darby canine kidney (MDCK) monolayers. These data suggest that protease patterns could be more complex than previously reported.
Collapse
|
26
|
Clarke DW, Niederkorn JY. The pathophysiology of Acanthamoeba keratitis. Trends Parasitol 2006; 22:175-80. [PMID: 16500148 DOI: 10.1016/j.pt.2006.02.004] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 01/04/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
Acanthamoeba keratitis is a sight-threatening infection of the ocular surface that is produced by several free-living amebae of the genus Acanthamoeba. Infection is usually initiated by Acanthamoeba-contaminated contact lenses and produces exquisite pain and ulceration of the ocular surface. The pathophysiology of this infection involves an intricate series of sequential events that includes the production of several pathogenic proteases that degrade basement membranes and induce cytolysis and apoptosis of the cellular elements of the cornea, culminating in dissolution of the collagenous corneal stroma. Targeting such proteases could lead to the development of vaccines that target the disease process rather than the pathogen itself.
Collapse
Affiliation(s)
- Daniel W Clarke
- Department of Ophthalmology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9057, USA
| | | |
Collapse
|
27
|
Rocha-Azevedo BD, Menezes GC, Silva-Filho FCE. The interaction between Acanthamoeba polyphaga and human osteoblastic cells in vitro. Microb Pathog 2005; 40:8-14. [PMID: 16325369 DOI: 10.1016/j.micpath.2005.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 09/20/2005] [Accepted: 09/29/2005] [Indexed: 10/25/2022]
Abstract
Acanthamoeba spp. contains a group of free-living amoebae widespread in nature. These microorganisms may cause several diseases in humans including osteomyelitis. Here we characterize the cellular interaction between clinical and freshwater isolates of A. polyphaga with human osteoblasts. Amoeba cytoadherence was evaluated quantitatively and qualitatively. We observed that the clinical isolate readily adheres to human osteoblastic cells (HOB) in a saturable and time-dependent fashion. The cytoadhesion appears to be in part dependent on mannose-associated surface glycoconjugates, since prior incubation of the amoebae with alpha-mannose reduced cytoadhesion approximately 75%. Scanning electron microscopy revealed various amoebae exhibiting acanthapodia contacting the surface of osteoblasts. Some osteoblasts developed morphologies resembling apoptotic cells. The clinical isolate was highly toxic to HOB cells during 24 h of cell-protozoan interaction. Cytotoxicity was also dependent on the amoeba-cell ratio. During the cytopathogenic process we observed amoebae in the apparent process of ingestion of target cells and also amoebae extending projections or digipodia into osteoblast targets. The results indicate that A. polyphaga trophozoites attach and destroy human osteoblasts.
Collapse
Affiliation(s)
- Bruno da Rocha-Azevedo
- Programa de Bioengenharia e Biotecnologia Animal, Laboratório de Biologia da Superfície Celular, UFRJ, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
28
|
Chávez-Munguía B, Omaña-Molina M, González-Lázaro M, González-Robles A, Bonilla P, Martínez-Palomo A. Ultrastructural study of encystation and excystation in Acanthamoeba castellanii. J Eukaryot Microbiol 2005; 52:153-8. [PMID: 15817120 DOI: 10.1111/j.1550-7408.2005.04-3273.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Encystation and excystation of Acanthamoeba castellanii were studied by transmission electron microscopy. The differentiation process was induced in asynchronous cultures grown axenically. Cytoplasmic vesicles containing a dense fibrous material very similar in appearance to the cyst wall were observed in trophozoites induced to encyst. When these trophozoites were incubated with calcofluor white m2r, fluorescence was observed in cytoplasmic vesicles, suggesting that the material contained in these vesicles corresponded to cyst wall precursors. Semithin cryosections of mature cysts with the same treatment showed fluorescence in the ectocyst and a less intense fluorescence in the endocyst, suggesting the presence of cellulose in both structures of the cyst wall. In mature cysts induced to excystation, small structures very similar to electron-dense granules (EDG) previously described in other amoebae were frequently observed. The EDGs were either sparsely distributed in the cytoplasm or associated with the cytoplasmic face of the plasma membrane. Many of them were located near the ostiole. In advanced phases of excystation, endocytic activity was suggested by the formation of endocytic structures and the presence of vacuoles with fibrous content similar to that of the cyst wall. Electron-dense granules in the process of dissolution were also observed in these vacuoles. Furthermore, the formation of a pseudopod suggests a displacement of the amoeba toward the ostiole.
Collapse
Affiliation(s)
- Bibiana Chávez-Munguía
- Departament of Experimental Pathology, Center for Research and Advanced Studies, Av. IPN 2508, Zacatenco, 07360 Mexico City, Mexico.
| | | | | | | | | | | |
Collapse
|