1
|
Gambushe SM, Zishiri OT, El Zowalaty ME. Review of Escherichia coli O157:H7 Prevalence, Pathogenicity, Heavy Metal and Antimicrobial Resistance, African Perspective. Infect Drug Resist 2022; 15:4645-4673. [PMID: 36039321 PMCID: PMC9420067 DOI: 10.2147/idr.s365269] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/23/2022] [Indexed: 12/02/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne and water-borne pathogen that causes hemorrhagic colitis and the hemolytic-uremic syndrome in humans and may cause serious morbidity and large outbreaks worldwide. People with bloody diarrhea have an increased risk of developing serious complications such as acute renal failure and neurological damage. The hemolytic-uremic syndrome (HUS) is a serious condition, and up to 50% of HUS patients can develop long-term renal dysfunction or blood pressure-related complications. Children aged two to six years have an increased risk of developing HUS. Clinical enteropathogenic Escherichia coli (EPEC) infections show fever, vomiting, and diarrhea. The EPEC reservoir is unknown but is suggested to be an asymptomatic or symptomatic child or an asymptomatic adult carrier. Spreading is often through the fecal-oral route. The prevalence of EPEC in infants is low, and EPEC is highly contagious in children. EPEC disease in children tends to be clinically more severe than other diarrheal infections. Some children experience persistent diarrhea that lasts for more than 14 days. Enterotoxigenic Escherichia coli (ETEC) strains are a compelling cause of the problem of diarrheal disease. ETEC strains are a global concern as the bacteria are the leading cause of acute watery diarrhea in children and the leading cause of traveler’s diarrhea. It is contagious to children and can cause chronic diarrhea that can affect the development and well-being of children. Infections with diarrheagenic E. coli are more common in African countries. Antimicrobial agents should be avoided in the acute phase of the disease since studies showed that antimicrobial agents may increase the risk of HUS in children. The South African National Veterinary Surveillance and Monitoring Programme for Resistance to Antimicrobial Drugs has reported increased antimicrobial resistance in E. coli. Pathogenic bacterial strains have developed resistance to a variety of antimicrobial agents due to antimicrobial misuse. The induced heavy metal tolerance may also enhance antimicrobial resistance. The prevalence of antimicrobial resistance depends on the type of the antimicrobial agent, bacterial strain, dose, time, and mode of administration. Developing countries are severely affected by increased resistance to antimicrobial agents due to poverty, lack of proper hygiene, and clean water, which can lead to bacterial infections with limited treatment options due to resistance.
Collapse
Affiliation(s)
- Sydney M Gambushe
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Oliver T Zishiri
- School of Life Sciences, College of Agriculture, Engineering and Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Mohamed E El Zowalaty
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE 75 123, Sweden
| |
Collapse
|
2
|
Jiang L, Yang W, Jiang X, Yao T, Wang L, Yang B. Virulence-related O islands in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2022; 13:1992237. [PMID: 34711138 PMCID: PMC8565820 DOI: 10.1080/19490976.2021.1992237] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a principally foodborne pathogen linked to serious diseases, including bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. Comparative genomics analysis revealed that EHEC O157 contains 177 unique genomic islands, termed O islands, compared with the nonpathogenic E. coli K-12 laboratory strain. These O islands contribute largely to the pathogenicity of EHEC O157:H7 by providing numerous virulence factors, effectors, virulence regulatory proteins, and virulence regulatory sRNAs. The present review aimed to provide a comprehensive understanding of the research progress on the function of O islands, especially focusing on virulence-related O islands.
Collapse
Affiliation(s)
- Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Wen Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Xinlei Jiang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, P. R. China
| | - Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China,CONTACT Bin Yang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin300457, P. R. China
| |
Collapse
|
3
|
Su Z, Tong P, Zhang L, Zhang M, Wang D, Ma K, Zhang Y, Liu Y, Xia L, Xie J. First Isolation and Molecular Characterization of bla CTX-M-121 -Producing Escherichia coli O157:H7 From Cattle in Xinjiang, China. Front Vet Sci 2021; 8:574801. [PMID: 34113667 PMCID: PMC8185162 DOI: 10.3389/fvets.2021.574801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
The bovine Escherichia coli O157:H7 is a major foodborne pathogen causing severe bloody diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome in humans. Cattle are recognized major reservoir and source of E. coli O157:H7. We investigated the antibiotic resistance, molecular profiles, and intrinsic relationship between 21 isolates of E. coli O157:H7 from cattle farms and slaughtering houses in Xinjiang. Using pulsed-field gel electrophoresis (PFGE) molecular typing, two types of PFGE were revealed through cluster analysis, including clusters I and II, with 66 and 100% similarity of PFGE spectra between 21 isolates. We also detected that 18 isolates (86%) carried at least one virulence gene, 16 isolates (76%) carried the eae gene, and 7 (33%) carried the stx1 + stx2 + eae + hly + tccp genes. Eighteen isolates were susceptible to antibiotics. Three isolates were resistant to antibiotics, and two were multidrug resistant. One of the two multidrug-resistant isolates detectably carried the bla CTX-M-121 gene. This is the first finding of the bla CTX-M-121 gene detected in E. coli O157:H7 isolated from cattle in Xinjiang. The bla CTX-M-121 gene is transferable between the bacterial strains via plasmid transmission. The results indicated that E. coli O157:H7 may have undergone clonal propagation in cattle population and cross-regional transmission in Xinjiang, China.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Jinxin Xie
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Ageorges V, Monteiro R, Leroy S, Burgess CM, Pizza M, Chaucheyras-Durand F, Desvaux M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): from bacterial adhesion to biofilm formation. FEMS Microbiol Rev 2021; 44:314-350. [PMID: 32239203 DOI: 10.1093/femsre/fuaa008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/11/2022] Open
Abstract
Escherichia coli is primarily known as a commensal colonising the gastrointestinal tract of infants very early in life but some strains being responsible for diarrhoea, which can be especially severe in young children. Intestinal pathogenic E. coli include six pathotypes of diarrhoeagenic E. coli (DEC), namely, the (i) enterotoxigenic E. coli, (ii) enteroaggregative E. coli, (iii) enteropathogenic E. coli, (iv) enterohemorragic E. coli, (v) enteroinvasive E. coli and (vi) diffusely adherent E. coli. Prior to human infection, DEC can be found in natural environments, animal reservoirs, food processing environments and contaminated food matrices. From an ecophysiological point of view, DEC thus deal with very different biotopes and biocoenoses all along the food chain. In this context, this review focuses on the wide range of surface molecular determinants acting as surface colonisation factors (SCFs) in DEC. In the first instance, SCFs can be broadly discriminated into (i) extracellular polysaccharides, (ii) extracellular DNA and (iii) surface proteins. Surface proteins constitute the most diverse group of SCFs broadly discriminated into (i) monomeric SCFs, such as autotransporter (AT) adhesins, inverted ATs, heat-resistant agglutinins or some moonlighting proteins, (ii) oligomeric SCFs, namely, the trimeric ATs and (iii) supramolecular SCFs, including flagella and numerous pili, e.g. the injectisome, type 4 pili, curli chaperone-usher pili or conjugative pili. This review also details the gene regulatory network of these numerous SCFs at the various stages as it occurs from pre-transcriptional to post-translocational levels, which remains to be fully elucidated in many cases.
Collapse
Affiliation(s)
- Valentin Ageorges
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Ricardo Monteiro
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,GSK, Via Fiorentina 1, 53100 Siena, Italy
| | - Sabine Leroy
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| | - Catherine M Burgess
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Frédérique Chaucheyras-Durand
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France.,Lallemand Animal Nutrition SAS, F-31702 Blagnac Cedex, France
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France
| |
Collapse
|
5
|
Menge C. The Role of Escherichia coli Shiga Toxins in STEC Colonization of Cattle. Toxins (Basel) 2020; 12:toxins12090607. [PMID: 32967277 PMCID: PMC7551371 DOI: 10.3390/toxins12090607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022] Open
Abstract
Many cattle are persistently colonized with Shiga toxin-producing Escherichia coli (STEC) and represent a major source of human infections with human-pathogenic STEC strains (syn. enterohemorrhagic E. coli (EHEC)). Intervention strategies most effectively protecting humans best aim at the limitation of bovine STEC shedding. Mechanisms enabling STEC to persist in cattle are only partialy understood. Cattle were long believed to resist the detrimental effects of Shiga toxins (Stxs), potent cytotoxins acting as principal virulence factors in the pathogenesis of human EHEC-associated diseases. However, work by different groups, summarized in this review, has provided substantial evidence that different types of target cells for Stxs exist in cattle. Peripheral and intestinal lymphocytes express the Stx receptor globotriaosylceramide (Gb3syn. CD77) in vitro and in vivo in an activation-dependent fashion with Stx-binding isoforms expressed predominantly at early stages of the activation process. Subpopulations of colonic epithelial cells and macrophage-like cells, residing in the bovine mucosa in proximity to STEC colonies, are also targeted by Stxs. STEC-inoculated calves are depressed in mounting appropriate cellular immune responses which can be overcome by vaccination of the animals against Stxs early in life before encountering STEC. Considering Stx target cells and the resulting effects of Stxs in cattle, which significantly differ from effects implicated in human disease, may open promising opportunities to improve existing yet insufficient measures to limit STEC carriage and shedding by the principal reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, D-07743 Jena, Germany
| |
Collapse
|
6
|
Noll LW, Worley JN, Yang X, Shridhar PB, Ludwig JB, Shi X, Bai J, Caragea D, Meng J, Nagaraja TG. Comparative genomics reveals differences in mobile virulence genes of Escherichia coli O103 pathotypes of bovine fecal origin. PLoS One 2018; 13:e0191362. [PMID: 29389941 PMCID: PMC5794082 DOI: 10.1371/journal.pone.0191362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli O103, harbored in the hindgut and shed in the feces of cattle, can be enterohemorrhagic (EHEC), enteropathogenic (EPEC), or putative non-pathotype. The genetic diversity particularly that of virulence gene profiles within O103 serogroup is likely to be broad, considering the wide range in severity of illness. However, virulence descriptions of the E. coli O103 strains isolated from cattle feces have been primarily limited to major genes, such as Shiga toxin and intimin genes. Less is known about the frequency at which other virulence genes exist or about genes associated with the mobile genetic elements of E. coli O103 pathotypes. Our objective was to utilize whole genome sequencing (WGS) to identify and compare major and putative virulence genes of EHEC O103 (positive for Shiga toxin gene, stx1, and intimin gene, eae; n = 43), EPEC O103 (negative for stx1 and positive for eae; n = 13) and putative non-pathotype O103 strains (negative for stx and eae; n = 13) isolated from cattle feces. Six strains of EHEC O103 from human clinical cases were also included. All bovine EHEC strains (43/43) and a majority of EPEC (12/13) and putative non-pathotype strains (12/13) were O103:H2 serotype. Both bovine and human EHEC strains had significantly larger average genome sizes (P < 0.0001) and were positive for a higher number of adherence and toxin-based virulence genes and genes on mobile elements (prophages, transposable elements, and plasmids) than EPEC or putative non-pathotype strains. The genome size of the three pathotypes positively correlated (R2 = 0.7) with the number of genes carried on mobile genetic elements. Bovine strains clustered phylogenetically by pathotypes, which differed in several key virulence genes. The diversity of E. coli O103 pathotypes shed in cattle feces is likely reflective of the acquisition or loss of virulence genes carried on mobile genetic elements.
Collapse
Affiliation(s)
- Lance W. Noll
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jay N. Worley
- Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Xun Yang
- Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Pragathi B. Shridhar
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Justin B. Ludwig
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Xiaorong Shi
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianfa Bai
- Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, Kansas, United States of America
| | - Doina Caragea
- Department of Computing and Information Sciences, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition and Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - T. G. Nagaraja
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Lorenz SC, Gonzalez-Escalona N, Kotewicz ML, Fischer M, Kase JA. Genome sequencing and comparative genomics of enterohemorrhagic Escherichia coli O145:H25 and O145:H28 reveal distinct evolutionary paths and marked variations in traits associated with virulence & colonization. BMC Microbiol 2017; 17:183. [PMID: 28830351 PMCID: PMC5567499 DOI: 10.1186/s12866-017-1094-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/14/2017] [Indexed: 12/14/2022] Open
Abstract
Background Enterohemorrhagic Escherichia coli (EHEC) O145 are among the top non-O157 serogroups associated with severe human disease worldwide. Two serotypes, O145:H25 and O145:H28 have been isolated from human patients but little information is available regarding the virulence repertoire, origin and evolutionary relatedness of O145:H25. Hence, we sequenced the complete genome of two O145:H25 strains associated with hemolytic uremic syndrome (HUS) and compared the genomes with those of previously sequenced O145:H28 and other EHEC strains. Results The genomes of the two O145:H25 strains were 5.3 Mbp in size; slightly smaller than those of O145:H28 and other EHEC strains. Both strains contained three nearly identical plasmids and several prophages and integrative elements, many of which differed significantly in size, gene content and organization as compared to those present in O145:H28 and other EHECs. Furthermore, notable variations were observed in several fimbrial gene cluster and intimin types possessed by O145:H25 and O145:H28 indicating potential adaptation to distinct areas of host colonization. Comparative genomics further revealed that O145:H25 are genetically more similar to other non-O157 EHEC strains than to O145:H28. Conclusion Phylogenetic analysis accompanied by comparative genomics revealed that O145:H25 and O145:H28 evolved from two separate clonal lineages and that horizontal gene transfer and gene loss played a major role in the divergence of these EHEC serotypes. The data provide further evidence that ruminants might be a possible reservoir for O145:H25 but that they might be impaired in their ability to establish a persistent colonization as compared to other EHEC strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1094-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra C Lorenz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA. .,University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany.
| | - Narjol Gonzalez-Escalona
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| | - Michael L Kotewicz
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Molecular Biology, Laurel, MD, 20708, USA
| | - Markus Fischer
- University of Hamburg, Hamburg School of Food Science, Institute of Food Chemistry, 20146, Hamburg, Germany
| | - Julie A Kase
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Division of Microbiology, College Park, MD, 20740, USA
| |
Collapse
|
8
|
Sharma VK, Bayles DO, Alt DP, Looft T, Brunelle BW, Stasko JA. Disruption of rcsB by a duplicated sequence in a curli-producing Escherichia coli O157:H7 results in differential gene expression in relation to biofilm formation, stress responses and metabolism. BMC Microbiol 2017; 17:56. [PMID: 28274217 PMCID: PMC5343319 DOI: 10.1186/s12866-017-0966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/28/2017] [Indexed: 12/29/2022] Open
Abstract
Background Escherichia coli O157:H7 (O157) strain 86–24, linked to a 1986 disease outbreak, displays curli- and biofilm-negative phenotypes that are correlated with the lack of Congo red (CR) binding and formation of white colonies (CR−) on a CR-containing medium. However, on a CR medium this strain produces red isolates (CR+) capable of producing curli fimbriae and biofilms. Results To identify genes controlling differential expression of curli fimbriae and biofilm formation, the RNA-Seq profile of a CR+ isolate was compared to the CR− parental isolate. Of the 242 genes expressed differentially in the CR+ isolate, 201 genes encoded proteins of known functions while the remaining 41 encoded hypothetical proteins. Among the genes with known functions, 149 were down- and 52 were up-regulated. Some of the upregulated genes were linked to biofilm formation through biosynthesis of curli fimbriae and flagella. The genes encoding transcriptional regulators, such as CsgD, QseB, YkgK, YdeH, Bdm, CspD, BssR and FlhDC, which modulate biofilm formation, were significantly altered in their expression. Several genes of the envelope stress (cpxP), heat shock (rpoH, htpX, degP), oxidative stress (ahpC, katE), nutrient limitation stress (phoB-phoR and pst) response pathways, and amino acid metabolism were downregulated in the CR+ isolate. Many genes mediating acid resistance and colanic acid biosynthesis, which influence biofilm formation directly or indirectly, were also down-regulated. Comparative genomics of CR+ and CR− isolates revealed the presence of a short duplicated sequence in the rcsB gene of the CR+ isolate. The alignment of the amino acid sequences of RcsB of the two isolates showed truncation of RcsB in the CR+ isolate at the insertion site of the duplicated sequence. Complementation of CR+ isolate with rcsB of the CR− parent restored parental phenotypes to the CR+ isolate. Conclusions The results of this study indicate that RcsB is a global regulator affecting bacterial survival in growth-restrictive environments through upregulation of genes promoting biofilm formation while downregulating certain metabolic functions. Understanding whether rcsB inactivation enhances persistence and survival of O157 in carrier animals and the environment would be important in developing strategies for controlling this bacterial pathogen in these niches.
Collapse
Affiliation(s)
- V K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA.
| | - D O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - D P Alt
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| | - T Looft
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - B W Brunelle
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, P. O. Box 70, 1920 Dayton Avenue, Ames, IA, 50010, USA
| | - J A Stasko
- Microscopy Services Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
9
|
Inhibition of Antigen-Specific and Nonspecific Stimulation of Bovine T and B Cells by Lymphostatin from Attaching and Effacing Escherichia coli. Infect Immun 2017; 85:IAI.00845-16. [PMID: 27920212 PMCID: PMC5278176 DOI: 10.1128/iai.00845-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) are enteric bacterial pathogens of worldwide importance. Most EPEC and non-O157 EHEC strains express lymphostatin (also known as LifA), a chromosomally encoded 365-kDa protein. We previously demonstrated that lymphostatin is a putative glycosyltransferase that is important in intestinal colonization of cattle by EHEC serogroup O5, O111, and O26 strains. However, the nature and consequences of the interaction between lymphostatin and immune cells from the bovine host are ill defined. Using purified recombinant protein, we demonstrated that lymphostatin inhibits mitogen-activated proliferation of bovine T cells and, to a lesser extent, proliferation of cytokine-stimulated B cells, but not NK cells. It broadly affected the T cell compartment, inhibiting all cell subsets (CD4, CD8, WC-1, and γδ T cell receptor [γδ-TCR]) and cytokines examined (interleukin 2 [IL-2], IL-4, IL-10, IL-17A, and gamma interferon [IFN-γ]) and rendered T cells refractory to mitogen for a least 18 h after transient exposure. Lymphostatin was also able to inhibit proliferation of T cells stimulated by IL-2 and by antigen presentation using a Theileria-transformed cell line and autologous T cells from Theileria-infected cattle. We conclude that lymphostatin is likely to act early in T cell activation, as stimulation of T cells with concanavalin A, but not phorbol 12-myristate 13-acetate combined with ionomycin, was inhibited. Finally, a homologue of lymphostatin from E. coli O157:H7 (ToxB; L7095) was also found to possess comparable inhibitory activity against T cells, indicating a potentially conserved strategy for interference in adaptive responses by attaching and effacing E. coli.
Collapse
|
10
|
The Locus of Enterocyte Effacement and Associated Virulence Factors of Enterohemorrhagic Escherichia coli. Microbiol Spectr 2016; 2:EHEC-0007-2013. [PMID: 26104209 DOI: 10.1128/microbiolspec.ehec-0007-2013] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A subset of Shiga toxin-producing Escherichia coli strains, termed enterohemorrhagic E. coli (EHEC), is defined in part by the ability to produce attaching and effacing (A/E) lesions on intestinal epithelia. Such lesions are characterized by intimate bacterial attachment to the apical surface of enterocytes, cytoskeletal rearrangements beneath adherent bacteria, and destruction of proximal microvilli. A/E lesion formation requires the locus of enterocyte effacement (LEE), which encodes a Type III secretion system that injects bacterial proteins into host cells. The translocated proteins, termed effectors, subvert a plethora of cellular pathways to the benefit of the pathogen, for example, by recruiting cytoskeletal proteins, disrupting epithelial barrier integrity, and interfering with the induction of inflammation, phagocytosis, and apoptosis. The LEE and selected effectors play pivotal roles in intestinal persistence and virulence of EHEC, and it is becoming clear that effectors may act in redundant, synergistic, and antagonistic ways during infection. Vaccines that target the function of the Type III secretion system limit colonization of reservoir hosts by EHEC and may thus aid control of zoonotic infections. Here we review the features and functions of the LEE-encoded Type III secretion system and associated effectors of E. coli O157:H7 and other Shiga toxin-producing E. coli strains.
Collapse
|
11
|
"Preharvest" Food Safety for Escherichia coli O157 and Other Pathogenic Shiga Toxin-Producing Strains. Microbiol Spectr 2016; 2. [PMID: 26104364 DOI: 10.1128/microbiolspec.ehec-0021-2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Preharvest food safety refers to the concept of reducing the rates of contamination of unprocessed foods with food-borne disease pathogens in order to reduce human exposure and disease. This article addresses the search for effective preharvest food safety practices for application to live cattle to reduce both contamination of foods of bovine origin and environmental contamination resulting from cattle. Although this research has resulted in several practices that significantly decrease contamination by Escherichia coli O157, the effects are limited in magnitude and unlikely to affect the incidence of human disease without much wider application and considerably higher efficacy than is presently apparent. Infection of cattle with E. coli O157 is transient and seasonally variable, likely resulting from a complex web of exposures. It is likely that better identification of the true maintenance reservoir of this agent and related Shiga toxin-producing E. coli is required to develop more effective control measures for these important food- and waterborne disease agents.
Collapse
|
12
|
Mutational Analysis of the Chlamydia muridarum Plasticity Zone. Infect Immun 2015; 83:2870-81. [PMID: 25939505 DOI: 10.1128/iai.00106-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Pathogenically diverse Chlamydia spp. can have surprisingly similar genomes. Chlamydia trachomatis isolates that cause trachoma, sexually transmitted genital tract infections (chlamydia), and invasive lymphogranuloma venereum (LGV) and the murine strain Chlamydia muridarum share 99% of their gene content. A region of high genomic diversity between Chlamydia spp. termed the plasticity zone (PZ) may encode niche-specific virulence determinants that dictate pathogenic diversity. We hypothesized that PZ genes might mediate the greater virulence and gamma interferon (IFN-γ) resistance of C. muridarum compared to C. trachomatis in the murine genital tract. To test this hypothesis, we isolated and characterized a series of C. muridarum PZ nonsense mutants. Strains with nonsense mutations in chlamydial cytotoxins, guaBA-add, and a phospholipase D homolog developed normally in cell culture. Two of the cytotoxin mutants were less cytotoxic than the wild type, suggesting that the cytotoxins may be functional. However, none of the PZ nonsense mutants exhibited increased IFN-γ sensitivity in cell culture or were profoundly attenuated in a murine genital tract infection model. Our results suggest that C. muridarum PZ genes are transcribed--and some may produce functional proteins--but are dispensable for infection of the murine genital tract.
Collapse
|
13
|
Cote R, Katani R, Moreau MR, Kudva IT, Arthur TM, DebRoy C, Mwangi MM, Albert I, Raygoza Garay JA, Li L, Brandl MT, Carter MQ, Kapur V. Comparative analysis of super-shedder strains of Escherichia coli O157:H7 reveals distinctive genomic features and a strongly aggregative adherent phenotype on bovine rectoanal junction squamous epithelial cells. PLoS One 2015; 10:e0116743. [PMID: 25664460 PMCID: PMC4321836 DOI: 10.1371/journal.pone.0116743] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli O157:H7 (O157) are significant foodborne pathogens and pose a serious threat to public health worldwide. The major reservoirs of O157 are asymptomatic cattle which harbor the organism in the terminal recto-anal junction (RAJ). Some colonized animals, referred to as “super-shedders” (SS), are known to shed O157 in exceptionally large numbers (>104 CFU/g of feces). Recent studies suggest that SS cattle play a major role in the prevalence and transmission of O157, but little is known about the molecular mechanisms associated with super-shedding. Whole genome sequence analysis of an SS O157 strain (SS17) revealed a genome of 5,523,849 bp chromosome with 5,430 open reading frames and two plasmids, pO157 and pSS17, of 94,645 bp and 37,446 bp, respectively. Comparative analyses showed that SS17 is clustered with spinach-associated O157 outbreak strains, and belongs to the lineage I/II, clade 8, D group, and genotype 1, a subgroup of O157 with predicted hyper-virulence. A large number of non-synonymous SNPs and other polymorphisms were identified in SS17 as compared with other O157 strains (EC4115, EDL933, Sakai, TW14359), including in key adherence- and virulence-related loci. Phenotypic analyses revealed a distinctive and strongly adherent aggregative phenotype of SS17 on bovine RAJ stratified squamous epithelial (RSE) cells that was conserved amongst other SS isolates. Molecular genetic and functional analyses of defined mutants of SS17 suggested that the strongly adherent aggregative phenotype amongst SS isolates is LEE-independent, and likely results from a novel mechanism. Taken together, our study provides a rational framework for investigating the molecular mechanisms associated with SS, and strong evidence that SS O157 isolates have distinctive features and use a LEE-independent mechanism for hyper-adherence to bovine rectal epithelial cells.
Collapse
Affiliation(s)
- Rebecca Cote
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Robab Katani
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew R. Moreau
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa, United States of America
| | - Terrance M. Arthur
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska, United States of America
| | - Chitrita DebRoy
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael M. Mwangi
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Juan Antonio Raygoza Garay
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lingling Li
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Maria T. Brandl
- Produce Safety and Microbiology, Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Michelle Q. Carter
- Produce Safety and Microbiology, Research Unit, Agriculture Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Vivek Kapur
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
15
|
Abstract
ABSTRACT
Coordinated expression of enterohemorrhagic
Escherichia coli
virulence genes enables the bacterium to cause hemorrhagic colitis and the complication known as hemolytic-uremic syndrome. Horizontally acquired genes and those common to
E. coli
contribute to the disease process, and increased virulence gene expression is correlated with more severe disease in humans. Researchers have gained considerable knowledge about how the type III secretion system, secreted effectors, adhesin molecules, and the Shiga toxins are regulated by environmental signals and multiple genetic pathways. Also emergent from the data is an understanding of how enterohemorrhagic
E. coli
regulates response to acid stress, the role of flagellar motility, and how passage through the human host and bovine intestinal tract causes disease and supports carriage in the cattle reservoir, respectively. Particularly exciting areas of discovery include data suggesting how expression of the myriad effectors is coordinately regulated with their cognate type III secretion system and how virulence is correlated with bacterial metabolism and gut physiology.
Collapse
|
16
|
Identification of two allelic variants of toxB gene and investigation of their distribution among Verocytotoxin-producing Escherichia coli. Int J Med Microbiol 2014; 304:730-4. [DOI: 10.1016/j.ijmm.2014.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 11/19/2022] Open
|
17
|
Goldwater PN. Treatment and prevention of enterohemorrhagicEscherichia coliinfection and hemolytic uremic syndrome. Expert Rev Anti Infect Ther 2014; 5:653-63. [PMID: 17678428 DOI: 10.1586/14787210.5.4.653] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Over a quarter century after the discovery of verocytotoxin and the first report by Karmali and colleagues of cases of postdiarrheal hemolytic uremic syndrome (HUS) caused by verotoxigenic Escherichia coli (VTEC), otherwise known as Shiga-toxigenic E. coli (STEC), successful treatment of these infections has remained elusive. This is because the pathological insult producing the clinical picture of HUS occurs early in the disease process and curtails quickly, making treatment intervention a largely vain hope. Nevertheless, understanding of the pathogenesis of HUS has expanded and, as a result, we can expect a future breakthrough in the treatment of this life-threatening condition. This review examines the pathogenesis of HUS and explores targets for treatment, including the reasons why certain therapies have failed and why future therapies could be successful. This review also examines the status of vaccine development in prevention of VTEC/STEC disease.
Collapse
Affiliation(s)
- Paul N Goldwater
- The Women's & Children's Hospital, North Adelaide, South Australia, Australia.
| |
Collapse
|
18
|
Reiland HA, Omolo MA, Johnson TJ, Baumler DJ. A Survey of <i>Escherichia coli</i> O157:H7 Virulence Factors: The First 25 Years and 13 Genomes. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.47046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 831] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
20
|
Etcheverría AI, Padola NL. Shiga toxin-producing Escherichia coli: factors involved in virulence and cattle colonization. Virulence 2013; 4:366-72. [PMID: 23624795 PMCID: PMC3714128 DOI: 10.4161/viru.24642] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. Outbreaks are linked to bovine food sources. STEC O157:H7 has been responsible for the most severe outbreaks worldwide. However, non-O157 serotypes have emerged as important enteric pathogens in several countries. The main virulence factor of STEC is the production of Shiga toxins 1 and 2. Additional virulence markers are a plasmid-encoded enterohemolysin (ehxA), an autoagglutinating adhesin (Saa), a catalase-peroxidase (katP), an extracellular serine protease (espP), a zinc metalloprotease (stcE), a subtilase cytotoxin (subAB), among others. Other virulence factors are intimin and adhesins that had a roll in the adherence of STEC to bovine colon. This review focuses on the virulence traits of STEC and especially on those related to the adhesion to bovine colon. The known of the interaction between STEC and the bovine host is crucial to develop strategies to control cattle colonization.
Collapse
Affiliation(s)
- Analía Inés Etcheverría
- Laboratorio de Imunoquímica y Biotecnología, Centro de Investigación Veterinaria de Tandil (CIVETAN), CONICET-CICPBA, Facultad de Ciencias Veterinarias, UNCPBA, Tandil, Argentina.
| | | |
Collapse
|
21
|
Yan X, Fratamico PM, Needleman DS, Bayles DO. DNA sequence and analysis of a 90.1-kb plasmid in Shiga toxin-producing Escherichia coli (STEC) O145:NM 83-75. Plasmid 2012; 68:25-32. [DOI: 10.1016/j.plasmid.2012.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 02/09/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
|
22
|
Deng W, Yu HB, de Hoog CL, Stoynov N, Li Y, Foster LJ, Finlay BB. Quantitative proteomic analysis of type III secretome of enteropathogenic Escherichia coli reveals an expanded effector repertoire for attaching/effacing bacterial pathogens. Mol Cell Proteomics 2012; 11:692-709. [PMID: 22661456 DOI: 10.1074/mcp.m111.013672] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Type III secretion systems are central to the pathogenesis and virulence of many important Gram-negative bacterial pathogens, and elucidation of the secretion mechanism and identification of the secreted substrates are critical to our understanding of their pathogenic mechanisms and developing potential therapeutics. Stable isotope labeling with amino acids in cell culture-based mass spectrometry is a quantitative and highly sensitive proteomics tool that we have previously used to successfully analyze the type III secretomes of Citrobacter rodentium and Salmonella enterica serovar Typhimurium. In this report, stable isotope labeling with amino acids in cell culture was used to analyze the type III secretome of enteropathogenic Escherichia coli (EPEC), an important human pathogen, which, together with enterohemorrhagic E. coli and C. rodentium, represents the family of attaching and effacing bacterial pathogens. We not only confirmed all 25 known EPEC type III-secreted proteins and effectors previously identified by conventional molecular and bioinformatical techniques but also identified several new type III-secreted proteins, including two novel effectors, C_0814/NleJ and LifA, that were shown to be translocated into host cells. LifA is a known virulence factor believed to act as a toxin as well as an adhesin, but its mechanism of secretion and function is not understood. With a predicted molecular mass of 366 kDa, LifA is the largest type III effector identified thus far in any pathogen. We further demonstrated that Efa1, ToxB, and Z4332 (homologs of LifA in enterohemorrhagic E. coli) are also type III effectors. This study has comprehensively characterized the type III secretome of EPEC, expanded the repertoire of type III-secreted effectors for the attaching and effacing pathogens, and provided new insights into the mode of function for LifA/Efa1/ToxB/Z4332, an important family of virulence factors.
Collapse
Affiliation(s)
- Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 2012; 80:903-13. [PMID: 22144484 PMCID: PMC3294676 DOI: 10.1128/iai.05907-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogens which cause gastrointestinal disease in humans and have been associated with numerous food-borne outbreaks worldwide. The intimin adhesin has been considered for many years to be the only colonization factor in these strains. However, the rapid progress in whole-genome sequencing of different STEC serotypes has accelerated the discovery of other adhesins (fimbrial and afimbrial), which have emerged as important contributors to the intestinal colonization occurring during STEC infection. This review summarizes recent progress to identify and characterize, at the molecular level, novel adhesion and colonization factors in STEC strains, with an emphasis on their contribution to virulence traits, their host-pathogen interactions, the regulatory mechanisms controlling their expression, and their role as targets eliciting immune responses in the host.
Collapse
Affiliation(s)
- Mauricio J. Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, Department of Pathology, Sealy Center for Vaccine Development, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
24
|
Slanec T, Schmidt H. Specific expression of adherence-related genes in Escherichia coli O157:H7 strain EDL933 after heat treatment in ground beef. J Food Prot 2011; 74:1434-40. [PMID: 21902911 DOI: 10.4315/0362-028x.jfp-11-018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, the expression of particular stress- and virulence-associated genes of Escherichia coli O157:H7 strain EDL933 in ground beef was investigated using real-time PCR. Specific gene expression in the food matrix was found in combination with heat treatment. In contrast to a treatment at 37°C, treatment at 48°C for 10 min resulted in increased expression of the genes eae, hcpA, iha, lpfA, and toxB. Adherence to human intestinal HT-29 cells was enhanced in bacterial cells inoculated and heat treated in ground beef. The expression of gadE, which encodes a main regulator of the glutamate system of the acid response, was reduced under these conditions. However, expression of rpoS and recA, which are involved in the establishment of stress responses, and Shiga toxin genes was not significantly different under the same conditions.
Collapse
Affiliation(s)
- T Slanec
- Department of Food Microbiology, Institute of Food Science and Biotechnology, Garbenstraße 28, University of Hohenheim, 70599 Stuttgart, Germany
| | | |
Collapse
|
25
|
Bai J, McAteer SP, Paxton E, Mahajan A, Gally DL, Tree JJ. Screening of an E. coli O157:H7 Bacterial Artificial Chromosome Library by Comparative Genomic Hybridization to Identify Genomic Regions Contributing to Growth in Bovine Gastrointestinal Mucus and Epithelial Cell Colonization. Front Microbiol 2011; 2:168. [PMID: 21887152 PMCID: PMC3157008 DOI: 10.3389/fmicb.2011.00168] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/24/2011] [Indexed: 01/06/2023] Open
Abstract
Enterohemorrhagic E. coli (EHEC) O157:H7 can cause serious gastrointestinal and systemic disease in humans following direct or indirect exposure to ruminant feces containing the bacterium. The main colonization site of EHEC O157:H7 in cattle is the terminal rectum where the bacteria intimately attach to the epithelium and multiply in the intestinal mucus. This study aimed to identify genomic regions of EHEC O157:H7 that contribute to colonization and multiplication at this site. A bacterial artificial chromosome (BAC) library was generated from a derivative of the sequenced E. coli O157:H7 Sakai strain. The library contains 1152 clones averaging 150 kbp. To verify the library, clones containing a complete locus of enterocyte effacement (LEE) were identified by DNA hybridization. In line with a previous report, these did not confer a type III secretion (T3S) capacity to the K-12 host strain. However, conjugation of one of the BAC clones into a strain containing a partial LEE deletion restored T3S. Three hundred eighty-four clones from the library were subjected to two different selective screens; one involved three rounds of adherence assays to bovine primary rectal epithelial cells while the other competed the clones over three rounds of growth in bovine rectal mucus. The input strain DNA was then compared with the selected strains using comparative genomic hybridization (CGH) on an E. coli microarray. The adherence assay enriched for pO157 DNA indicating the importance of this plasmid for colonization of rectal epithelial cells. The mucus assay enriched for multiple regions involved in carbohydrate utilization, including hexuronate uptake, indicating that these regions provide a competitive growth advantage in bovine mucus. This BAC-CGH approach provides a positive selection screen that complements negative selection transposon-based screens. As demonstrated, this may be of particular use for identifying genes with redundant functions such as adhesion and carbon metabolism.
Collapse
Affiliation(s)
- Jianing Bai
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
- College of Life Science, Hebei Normal UniversityShijiazhuang, Hebei Province, China
| | - Sean P. McAteer
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - Edith Paxton
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - Arvind Mahajan
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - David L. Gally
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| | - Jai J. Tree
- Infection and Immunity Division, The Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of EdinburghEdinburgh, UK
| |
Collapse
|
26
|
Belyi Y, Jank T, Aktories K. Effector glycosyltransferases in legionella. Front Microbiol 2011; 2:76. [PMID: 21833323 PMCID: PMC3153043 DOI: 10.3389/fmicb.2011.00076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/31/2011] [Indexed: 11/13/2022] Open
Abstract
Legionella causes severe pneumonia in humans. The pathogen produces an array of effectors, which interfere with host cell functions. Among them are the glucosyltransferases Lgt1, Lgt2 and Lgt3 from L. pneumophila. Lgt1 and Lgt2 are produced predominately in the post-exponential phase of bacterial growth, while synthesis of Lgt3 is induced mainly in the lag-phase before intracellular replication of bacteria starts. Lgt glucosyltransferases are structurally similar to clostridial glucosylating toxins. The enzymes use UDP–glucose as a donor substrate and modify eukaryotic elongation factor eEF1A at serine-53. This modification results in inhibition of protein synthesis and death of target cells.In addition to Lgts, Legionella genomes disclose several genes, coding for effector proteins likely to possess glycosyltransferase activities, including SetA (subversion of eukaryotic vesicle trafficking A), which influences vesicular trafficking in the yeast model system and displays tropism for late endosomal/lysosomal compartments of mammalian cells. This review mainly discusses recent results on the structure–function relationship of Lgt glucosyltransferases.
Collapse
Affiliation(s)
- Yury Belyi
- Gamaleya Research Institute Moscow, Russia
| | | | | |
Collapse
|
27
|
Eckert SE, Dziva F, Chaudhuri RR, Langridge GC, Turner DJ, Pickard DJ, Maskell DJ, Thomson NR, Stevens MP. Retrospective application of transposon-directed insertion site sequencing to a library of signature-tagged mini-Tn5Km2 mutants of Escherichia coli O157:H7 screened in cattle. J Bacteriol 2011; 193:1771-6. [PMID: 21278291 PMCID: PMC3067669 DOI: 10.1128/jb.01292-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/17/2011] [Indexed: 01/27/2023] Open
Abstract
Massively parallel sequencing of transposon-flanking regions assigned the genotype and fitness score to 91% of Escherichia coli O157:H7 mutants previously screened in cattle by signature-tagged mutagenesis (STM). The method obviates the limitations of STM and markedly extended the functional annotation of the prototype E. coli O157:H7 genome without further animal use.
Collapse
Affiliation(s)
- Sabine E. Eckert
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Francis Dziva
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Roy R. Chaudhuri
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Gemma C. Langridge
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Daniel J. Turner
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Derek J. Pickard
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Duncan J. Maskell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Nicholas R. Thomson
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| | - Mark P. Stevens
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom, Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom, Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Bush Farm Road, Roslin, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
28
|
Yin X, Zhu J, Feng Y, Chambers JR, Gong J, Gyles CL. Differential gene expression and adherence of Escherichia coli O157:H7 in vitro and in ligated pig intestines. PLoS One 2011; 6:e17424. [PMID: 21387009 PMCID: PMC3046156 DOI: 10.1371/journal.pone.0017424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/01/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Escherichia coli O157:H7 strain 86-24 grown in MacConkey broth (MB) shows almost no adherence to cultured epithelial cells but adheres well in pig ligated intestines. This study investigated the mechanisms associated with the difference between in-vitro and in-vivo adherence of the MB culture. METHODOLOGY/PRINCIPAL FINDINGS It was found that decreased adherence in vitro by bacteria grown in MB was mainly due to lactose, possibly implicating the involvement of carbon catabolite repression (CCR). Expression of selected virulence-related genes associated with adherence and CCR was then examined by quantitative PCR. When bacteria were grown in MB and Brain Heart Infusion with NaHCO(3) (BHIN) plus lactose, pH was reduced to 5.5-5.9 and there was a significant decrease in expression of the locus of enterocyte effacement (LEE) genes eae, tir, espD, grlA/R and ler, and an increase in cya (cAMP), and two negative regulators of the LEE, gadE and hfq. Putative virulence genes stcE, hlyA, ent and nleA were also decreased in vitro. Reversal of these changes was noted for bacteria recovered from the intestine, where transcripts for qseF and fis and putative virulence factors AidA(15), TerC and Ent/EspL2 were significantly increased, and transcripts for AIDA(48), Iha, UreC, Efa1A, Efa1B, ToxB, EhxA, StcE, NleA and NleB were expressed at high levels. CONCLUSIONS/SIGNIFICANCE Presence of lactose resulted in decreased expression of LEE genes and the failure of EHEC O157:H7 to adhere to epithelial cells in vitro but this repression was overcome in vivo. CCR and/or acidic pH may have played a role in repression of the LEE genes. Bacterial pathogens need to integrate their nutritional metabolism with expression of virulence genes but little is known of how this is done in E. coli O157:H7. This study indicates one aspect of the subject that should be investigated further.
Collapse
Affiliation(s)
- Xianhua Yin
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jing Zhu
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanni Feng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - James R. Chambers
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Joshua Gong
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlton L. Gyles
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
29
|
OI-57, a genomic island of Escherichia coli O157, is present in other seropathotypes of Shiga toxin-producing E. coli associated with severe human disease. Infect Immun 2010; 78:4697-704. [PMID: 20823207 DOI: 10.1128/iai.00512-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Strains of Shiga toxin-producing Escherichia coli (STEC) are a heterogeneous E. coli group that may cause severe disease in humans. STEC have been categorized into seropathotypes (SPTs) based on their phenotypic and molecular characteristics and the clinical features of the associated diseases. SPTs range from A to E, according to a decreasing rank of pathogenicity. To define the virulence gene asset ("virulome") characterizing the highly pathogenic SPTs, we used microarray hybridization to compare the whole genomes of STEC belonging to SPTs B, C, and D with that of STEC O157 (SPT A). The presence of the open reading frames (ORFs) associated with SPTs A and B was subsequently investigated by PCR in a larger panel of STEC and in other E. coli strains. A genomic island termed OI-57 was present in SPTs A and B but not in the other SPTs. OI-57 harbors the putative virulence gene adfO, encoding a factor enhancing the adhesivity of STEC O157, and ckf, encoding a putative killing factor for the bacterial cell. PCR analyses showed that OI-57 was present in its entirety in the majority of the STEC genomes examined, indicating that it represents a stable acquisition of the positive clonal lineages. OI-57 was also present in a high proportion of the human enteropathogenic E. coli genomes assayed, suggesting that it could be involved in the attaching-and-effacing colonization of the intestinal mucosa. In conclusion, OI-57 appears to be part of the virulome of pathogenic STEC and further studies are needed to elucidate its role in the pathogenesis of STEC infections.
Collapse
|
30
|
Deacon V, Dziva F, van Diemen PM, Frankel G, Stevens MP. Efa-1/LifA mediates intestinal colonization of calves by enterohaemorrhagic Escherichia coli O26 : H- in a manner independent of glycosyltransferase and cysteine protease motifs or effects on type III secretion. MICROBIOLOGY (READING, ENGLAND) 2010; 156:2527-2536. [PMID: 20466763 DOI: 10.1099/mic.0.039685-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of animal and zoonotic pathogens of worldwide importance. Our previous research established that intestinal colonization of calves by EHEC serotypes O5 : H- and O111 : H- requires EHEC factor for adherence (Efa-1), also known as lymphostatin (LifA). Towards an understanding of the mode of action of Efa-1/LifA, chromosomal in-frame deletions of predicted glycosyltransferase (DXD) and cysteine protease (CHD) motifs were created in a Deltastx1 derivative of EHEC O26 : H-. The magnitude and duration of faecal excretion of EHEC O26 : H- were significantly reduced by null mutation of efa-1/lifA, but were not impaired by DeltaDXD or DeltaCHD mutations, in contrast to observations made with truncated Efa-1/LifA mutants of Citrobacter rodentium in mice. Although C. rodentium Efa-1/LifA influences the induction of colonic hyperplasia in mice, EHEC O26 : H- Efa-1/LifA was not required for fluid accumulation or neutrophil recruitment in bovine ileal loops. In contrast to observations with EHEC O5 : H- or O111 : H- mutants, inactivation of efa-1/lifA in EHEC O26 : H- did not significantly affect adherence or secretion of type III secreted proteins that play pivotal roles in calf colonization. Lymphostatin activity could not be reliably demonstrated in lysates of EHEC O26 : H-; however, deletion of the glycosyltransferase and cysteine protease motifs in Efa-1/LifA from enteropathogenic E. coli O127 : H6 abolished lymphostatin activity. Our data uncouple the role of Efa-1/LifA in calf colonization from effects on type III secretion and reinforce the potential for pathotype- and serotype-specific phenotypes.
Collapse
Affiliation(s)
- Victoria Deacon
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Francis Dziva
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Pauline M van Diemen
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| | - Gad Frankel
- Centre for Molecular Microbiology and Infection, Division of Cell and Molecular Biology, Imperial College, London SW7 2AZ, UK
| | - Mark P Stevens
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, UK
| |
Collapse
|
31
|
Klapproth JMA. The role of lymphostatin/EHEC factor for adherence-1 in the pathogenesis of gram negative infection. Toxins (Basel) 2010; 2:954-62. [PMID: 22069619 PMCID: PMC3153230 DOI: 10.3390/toxins2050954] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2010] [Revised: 04/22/2010] [Accepted: 04/27/2010] [Indexed: 02/02/2023] Open
Abstract
Lymphostatin/EHEC factor for adherence-1 is a novel large toxin represented in various Gram negative bacteria, highly associated with the development of infectious diarrhea and hemolytic uremic syndrome. In vitro and in vivo experiments identified lymphostatin/EFA-1 as a toxin with a central role in the pathogenesis of Gram negative bacteria, responsible for bacterial adhesion, intestinal colonization, immunosuppression, and disruption of gut epithelial barrier function.
Collapse
|
32
|
Bardiau M, Szalo M, Mainil JG. Initial adherence of EPEC, EHEC and VTEC to host cells. Vet Res 2010; 41:57. [PMID: 20423697 PMCID: PMC2881418 DOI: 10.1051/vetres/2010029] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 04/27/2010] [Indexed: 12/26/2022] Open
Abstract
Initial adherence to host cells is the first step of the infection of enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic Escherichia coli (EHEC) and verotoxigenic Escherichia coli (VTEC) strains. The importance of this step in the infection resides in the fact that (1) adherence is the first contact between bacteria and intestinal cells without which the other steps cannot occur and (2) adherence is the basis of host specificity for a lot of pathogens. This review describes the initial adhesins of the EPEC, EHEC and VTEC strains. During the last few years, several new adhesins and putative colonisation factors have been described, especially in EHEC strains. Only a few adhesins (BfpA, AF/R1, AF/R2, Ral, F18 adhesins) appear to be host and pathotype specific. The others are found in more than one species and/or pathotype (EPEC, EHEC, VTEC). Initial adherence of EPEC, EHEC and VTEC strains to host cells is probably mediated by multiple mechanisms.
Collapse
Affiliation(s)
- Marjorie Bardiau
- Department of Infectious and Parasitic Diseases, Bacteriology, Faculty of Veterinary Medicine, University of Liège, Liège B4000, Belgium.
| | | | | |
Collapse
|
33
|
Abu-Ali GS, Ouellette LM, Henderson ST, Lacher DW, Riordan JT, Whittam TS, Manning SD. Increased adherence and expression of virulence genes in a lineage of Escherichia coli O157:H7 commonly associated with human infections. PLoS One 2010; 5:e10167. [PMID: 20422047 PMCID: PMC2858043 DOI: 10.1371/journal.pone.0010167] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 03/22/2010] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O157:H7, a food and waterborne pathogen, can be classified into nine phylogenetically distinct lineages, as determined by single nucleotide polymorphism genotyping. One lineage (clade 8) was found to be associated with hemolytic uremic syndrome (HUS), which can lead to kidney failure and death in some cases, particularly young children. Another lineage (clade 2) differs considerably in gene content and is phylogenetically distinct from clade 8, but caused significantly fewer cases of HUS in a prior study. Little is known, however, about how these two lineages vary with regard to phenotypic traits important for disease pathogenesis and in the expression of shared virulence genes. METHODOLOGY/PRINCIPAL FINDINGS Here, we quantified the level of adherence to and invasion of MAC-T bovine epithelial cells, and examined the transcriptomes of 24 EHEC O157:H7 strains with varying Shiga toxin profiles from two common lineages. Adherence to epithelial cells was >2-fold higher for EHEC O157:H7 strains belonging to clade 8 versus clade 2, while no difference in invasiveness was observed between the two lineages. Whole-genome 70-mer oligo microarrays, which probe for 6088 genes from O157:H7 Sakai, O157:H7 EDL 933, pO157, and K12 MG1655, detected significant differential expression between clades in 604 genes following co-incubation with epithelial cells for 30 min; 186 of the 604 genes had a >1.5 fold change difference. Relative to clade 2, clade 8 strains showed upregulation of major virulence genes, including 29 of the 41 locus of enterocyte effacement (LEE) pathogenicity island genes, which are critical for adherence, as well as Shiga toxin genes and pO157 plasmid-encoded virulence genes. Differences in expression of 16 genes that encode colonization factors, toxins, and regulators were confirmed by qRT-PCR, which revealed a greater magnitude of change than microarrays. CONCLUSIONS/SIGNIFICANCE These findings demonstrate that the EHEC O157:H7 lineage associated with HUS expresses higher levels of virulence genes and has an enhanced ability to attach to epithelial cells relative to another common lineage.
Collapse
Affiliation(s)
- Galeb S. Abu-Ali
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Lindsey M. Ouellette
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Scott T. Henderson
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - David W. Lacher
- Division of Molecular Biology, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, Maryland, United States of America
| | - James T. Riordan
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Thomas S. Whittam
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
| | - Shannon D. Manning
- Microbial Evolution Laboratory, National Food Safety & Toxicology Center, Michigan State University, East Lansing, Michigan, United States of America
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
34
|
Prevalence and characteristics of the O122 pathogenicity island in typical and atypical enteropathogenic Escherichia coli strains. J Clin Microbiol 2010; 48:1452-5. [PMID: 20181917 DOI: 10.1128/jcm.01944-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of the pathogenicity island (PAI) O122 genes, efa1 (lifA), sen, pagC, nleB, and nleE, in typical and atypical enteropathogenic Escherichia coli (EPEC) strains was investigated. The simultaneous occurrence of all genes was statistically associated with diarrhea due to atypical EPEC. Detection of the complete PAI O122 could aid in the identification of potential pathogenic strains of atypical EPEC.
Collapse
|
35
|
Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 2010; 78:1457-67. [PMID: 20123719 DOI: 10.1128/iai.01260-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Urinary tract infections (UTIs), the majority of which are caused by uropathogenic Escherichia coli (UPEC), afflict nearly 60% of women within their lifetimes. Studies in mice and humans have revealed that UPEC strains undergo a complex pathogenesis cycle that involves both the formation of intracellular bacterial communities (IBC) and the colonization of extracellular niches. Despite the commonality of the UPEC pathogenesis cycle, no specific urovirulence genetic profile has been determined; this is likely due to the fluid nature of the UPEC genome as the result of horizontal gene transfer and numerous genes of unknown function. UTI89 has a large extrachromosomal element termed pUTI89 with many characteristics of UPEC pathogenicity islands and that likely arose due to horizontal gene transfer. The pUTI89 plasmid has characteristics of both F plasmids and other known virulence plasmids. We sought to determine whether pUTI89 is important for virulence. Both in vitro and in vivo assays were used to examine the function of pUTI89 using plasmid-cured UTI89. No differences were observed between UTI89 and plasmid-cured UTI89 based on growth, type 1 pilus expression, or biofilm formation. However, in a mouse model of UTI, a significant decrease in bacterial invasion, CFU and IBC formation of the pUTI89-cured strain was observed at early time points postinfection compared to the wild type. Through directed deletions of specific operons on pUTI89, the cjr operon was partially implicated in this observed defect. Our findings implicate pUTI89 in the early aspects of infection.
Collapse
|
36
|
Derivation of Escherichia coli O157:H7 from its O55:H7 precursor. PLoS One 2010; 5:e8700. [PMID: 20090843 PMCID: PMC2806823 DOI: 10.1371/journal.pone.0008700] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 12/14/2009] [Indexed: 11/25/2022] Open
Abstract
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage.
Collapse
|
37
|
Lim JY, Yoon JW, Hovde CJ. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J Microbiol Biotechnol 2010; 20:5-14. [PMID: 20134227 PMCID: PMC3645889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enterohemorrhagic Escherichia coli O157:H7 is a major food-borne pathogen causing severe disease in humans worldwide. Healthy cattle are a reservoir of E. coli O157:H7 and bovine food products and fresh produce contaminated with bovine waste are the most common sources for disease outbreaks in the United States. E. coli O157:H7 also survives well in the environment. The ability to cause human disease, colonize the bovine gastrointestinal tract, and survive in the environment, requires that E. coli O157:H7 adapt to a wide variety of conditions. Three major virulence factors of E. coli O157:H7 have been identified including Shiga toxins, a pathogenicity island called the locus of enterocyte effacement, and an F-like plasmid, pO157. Among these virulence factors, the role of the pO157 is least understood. This review provides a board overview of E. coli O157:H7 with an emphasis on the pO157.
Collapse
Affiliation(s)
- Ji Youn Lim
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844, U.S.A
| | - Jang W. Yoon
- Advanced Human Resource and Research Group for Medical Science (BK21), Konkuk University School of Medicine, Seoul 143-701, Korea
| | - Carolyn J. Hovde
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844, U.S.A
| |
Collapse
|
38
|
Interactions of typical and atypical enteropathogenic Escherichia coli strains with the calf intestinal mucosa ex vivo. Appl Environ Microbiol 2009; 75:5991-5. [PMID: 19633123 DOI: 10.1128/aem.01170-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) can be found in healthy and diarrheic cattle; however, little is known about the role of attaching and effacing (A/E) lesion formation in colonization of bovine intestinal mucosa by such strains. We show that typical and atypical EPEC induce A/E lesions on calf intestinal explants independently of Tir tyrosine phosphorylation and TccP. Our data support the existence of conserved Tir- and TccP-independent mechanisms of A/E lesion formation in a range of hosts and reinforce the zoonotic potential of EPEC in cattle.
Collapse
|
39
|
La Ragione RM, Best A, Woodward MJ, Wales AD. Escherichia coli O157:H7 colonization in small domestic ruminants. FEMS Microbiol Rev 2008; 33:394-410. [PMID: 19207740 DOI: 10.1111/j.1574-6976.2008.00138.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli O157:H7 was first implicated in human disease in the early 1980s, with ruminants cited as the primary reservoirs. Preliminary studies indicated cattle to be the sole source of E. coli O157:H7 outbreaks in humans; however, further epidemiological studies soon demonstrated that E. coli O157:H7 was widespread in other food sources and that a number of transmission routes existed. More recently, small domestic ruminants (sheep and goats) have emerged as important sources of E. coli O157:H7 human infection, particularly with the widespread popularity of petting farms and the increased use of sheep and goat food products, including unpasteurized cheeses. Although the colonization and persistence characteristics of E. coli O157:H7 in the bovine host have been studied intensively, this is not the case for small ruminants. Despite many similarities to the bovine host, the pathobiology of E. coli O157:H7 in small domestic ruminants does appear to differ significantly from that described in cattle. This review aims to critically review the current knowledge regarding colonization and persistence of E. coli O157:H7 in small domestic ruminants, including comparisons with the bovine host where appropriate.
Collapse
Affiliation(s)
- Roberto M La Ragione
- Department of Food and Environmental Safety, Veterinary Laboratories Agency, Addlestone, Surrey, UK.
| | | | | | | |
Collapse
|
40
|
Systematic identification and sequence analysis of the genomic islands of the enteropathogenic Escherichia coli strain B171-8 by the combined use of whole-genome PCR scanning and fosmid mapping. J Bacteriol 2008; 190:6948-60. [PMID: 18757547 DOI: 10.1128/jb.00625-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) are diarrheagenic pathogens that colonize the intestinal tract through the formation of attaching and effacing lesions, induced by effectors translocated via a type III secretion system (T3SS) encoded on the locus of enterocyte effacement (LEE). In EHEC O157, numerous virulence factors, including around 40 T3SS effectors, have been identified. Most of them are encoded on genomic islands (GEIs) such as prophages and integrative elements. For EPEC, however, no systematic search of GEIs and virulence-related genes carried therein has been done, and only a limited number of virulence factors have been identified so far. In this study, we performed a systemic and genome-wide survey of the GEIs in strain B171-8, one of the prototype strains of EPEC, by the combined use of whole-genome PCR scanning and fosmid mapping and identified 22 large GEIs, including nine lambda-like prophages, three P2-like prophages, the LEE, and three additional integrative elements. On these prophages and integrative elements, we found genes for a set of T3SS proteins, a total of 33 T3SS effectors or effector homologues, and 12 other virulence factors which include five nonfimbrial adhesins. Most of the T3SS effector families identified are also present in EHEC O157, but B171-8 possesses a significantly smaller number of effectors. Not only the presence or absence of Shiga toxin genes but also the difference in the T3SS effector repertoire should be considered in analyzing the pathogenicity of EPEC and EHEC strains.
Collapse
|
41
|
Role of NleH, a type III secreted effector from attaching and effacing pathogens, in colonization of the bovine, ovine, and murine gut. Infect Immun 2008; 76:4804-13. [PMID: 18725419 DOI: 10.1128/iai.00742-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen enterohemorrhagic Escherichia coli (EHEC) O157:H7 colonizes human and animal gut via formation of attaching and effacing lesions. EHEC strains use a type III secretion system to translocate a battery of effector proteins into the mammalian host cell, which subvert diverse signal transduction pathways implicated in actin dynamics, phagocytosis, and innate immunity. The genomes of sequenced EHEC O157:H7 strains contain two copies of the effector protein gene nleH, which share 49% sequence similarity with the gene for the Shigella effector OspG, recently implicated in inhibition of migration of the transcriptional regulator NF-kappaB to the nucleus. In this study we investigated the role of NleH during EHEC O157:H7 infection of calves and lambs. We found that while EHEC DeltanleH colonized the bovine gut more efficiently than the wild-type strain, in lambs the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. Using the mouse pathogen Citrobacter rodentium, which shares many virulence factors with EHEC O157:H7, including NleH, we observed that the wild-type strain exhibited a competitive advantage over the mutant during mixed infection. We found no measurable differences in T-cell infiltration or hyperplasia in colons of mice inoculated with the wild-type or the nleH mutant strain. Using NF-kappaB reporter mice carrying a transgene containing a luciferase reporter driven by three NF-kappaB response elements, we found that NleH causes an increase in NF-kappaB activity in the colonic mucosa. Consistent with this, we found that the nleH mutant triggered a significantly lower tumor necrosis factor alpha response than the wild-type strain.
Collapse
|
42
|
Girard F, Frankel G, Phillips AD, Cooley W, Weyer U, Dugdale AH, Woodward MJ, La Ragione RM. Interaction of enterohemorrhagic Escherichia coli O157:H7 with mouse intestinal mucosa. FEMS Microbiol Lett 2008; 283:196-202. [DOI: 10.1111/j.1574-6968.2008.01166.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
43
|
Type 2 secretion promotes enterohemorrhagic Escherichia coli adherence and intestinal colonization. Infect Immun 2008; 76:1858-65. [PMID: 18316380 DOI: 10.1128/iai.01688-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a noninvasive food-borne pathogen that colonizes the distal ileum and colon. Proteins encoded in the EHEC locus of enterocyte effacement (LEE) pathogenicity island are known to contribute to this pathogen's adherence to epithelial cells and intestinal colonization. The role of non-LEE-encoded proteins in these processes is not as clear. We found that the Z2053 gene (designated adfO here), a gene located in a cryptic EHEC prophage, exhibits similarity to adherence and/or colonization factor genes found in several other enteric pathogens. An EHEC adfO mutant exhibited marked reductions in adherence to HeLa cells and in the secretion of several proteins into the supernatant. YodA, one of these secreted proteins, was found to be a substrate of the EHEC pO157-encoded type 2 secretion system (T2SS). Both the T2SS and YodA proved to be essential for EHEC adherence to cultured HeLa cell monolayers. Using an infant rabbit model of infection, we found that the adfO mutation did not affect colonization but that the colonization of an etpC (T2SS) mutant was reduced approximately 5-fold. A strain deficient in YodA had a more severe colonization defect; however, this strain also exhibited a growth defect in vitro. Overall, our findings indicate that the pO157-encoded T2SS contributes to EHEC adherence and intestinal colonization and thus show that EHEC pathogenicity depends on type 2 secretion as well as type 3 secretion.
Collapse
|
44
|
Marchès O, Covarelli V, Dahan S, Cougoule C, Bhatta P, Frankel G, Caron E. EspJ of enteropathogenic and enterohaemorrhagic Escherichia coli inhibits opsono-phagocytosis. Cell Microbiol 2008; 10:1104-15. [PMID: 18201246 PMCID: PMC2344115 DOI: 10.1111/j.1462-5822.2007.01112.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A key strategy in microbial pathogenesis is the subversion of the first line of cellular immune defences presented by professional phagocytes. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC respectively) remain extracellular while colonizing the gut mucosa by attaching and effacing mechanism. EPEC use the type three secretion system effector protein EspF to prevent their own uptake into macrophages. EPEC can also block in trans the internalization of IgG-opsonized particles. In this study, we show that EspJ is the type three secretion system effector protein responsible for trans-inhibition of macrophage opsono-phagocytosis by both EPEC and EHEC. While EspF plays no role in trans-inhibition of opsono-phagocytosis, espJ mutants of EPEC or EHEC are unable to block uptake of opsonized sheep red blood cells (RBC), a phenotype that is rescued upon complementation with the espJ gene. Importantly, ectopic expression of EspJ(EHEC) in phagocytes is sufficient to inhibit internalization of both IgG- and C3bi-opsonized RBC. These results suggest that EspJ targets a basic mechanism common to these two unrelated phagocytic receptors. Moreover, EspF and EspJ target independent aspects of the phagocytic function of mammalian macrophages in vitro.
Collapse
Affiliation(s)
- Oliver Marchès
- Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK
| | | | | | | | | | | | | |
Collapse
|
45
|
Shoaf-Sweeney KD, Hutkins RW. Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 55:101-61. [PMID: 18772103 DOI: 10.1016/s1043-4526(08)00402-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For many pathogenic bacteria, infections are initiated only after the organism has first adhered to the host cell surface. If adherence can be inhibited, then the subsequent infection can also be inhibited. This approach forms the basis of anti-adherence strategies, which have been devised to prevent a variety of bacterial infections. In this chapter, the molecular basis by which respiratory, urinary, and gastrointestinal tract pathogens adhere to host cells will be described. The five general types of anti-adherence agents will also be reviewed. The most well-studied are the receptor analogs, which include oligosaccharides produced synthetically or derived from natural sources, including milk, berries, and other plants. Their ability to inhibit pathogen adherence may lead to development of novel, food-grade anti-infective agents that are inexpensive and safe.
Collapse
Affiliation(s)
- Kari D Shoaf-Sweeney
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
46
|
Dziva F, Mahajan A, Cameron P, Currie C, McKendrick IJ, Wallis TS, Smith DGE, Stevens MP. EspP, a Type V-secreted serine protease of enterohaemorrhagic Escherichia coli O157:H7, influences intestinal colonization of calves and adherence to bovine primary intestinal epithelial cells. FEMS Microbiol Lett 2007; 271:258-64. [PMID: 17451446 DOI: 10.1111/j.1574-6968.2007.00724.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) comprise a group of zoonotic diarrhoeal pathogens of worldwide importance. Cattle are a key reservoir; however the molecular mechanisms that promote persistent colonization of the bovine intestines by EHEC are ill-defined. The large plasmid of EHEC O157:H7 encodes several putative virulence factors. Here, it is reported that the pO157-encoded Type V-secreted serine protease EspP influences the intestinal colonization of calves. To dissect the basis of attenuation, a bovine primary rectal epithelial cell line was developed. Adherence of E. coli O157:H7 to such cells was significantly impaired by espP mutation but restored upon addition of highly purified exogenous EspP. Data of this study add to the growing body of evidence that cytotoxins facilitate intestinal colonization by EHEC.
Collapse
Affiliation(s)
- Francis Dziva
- Division of Microbiology, Institute for Animal Health, Compton, Newbury, Berkshire, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Girard F, Dziva F, van Diemen P, Phillips AD, Stevens MP, Frankel G. Adherence of enterohemorrhagic Escherichia coli O157, O26, and O111 strains to bovine intestinal explants ex vivo. Appl Environ Microbiol 2007; 73:3084-90. [PMID: 17351088 PMCID: PMC1892882 DOI: 10.1128/aem.02893-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used bovine intestinal organ culture to study infection by enterohemorrhagic Escherichia coli serogroups O157, O26, and O111. We show colonization and attaching and effacing lesion formation on explants derived from the ileum, colon, and rectum. Intimin and Tir were detected at the sites of adherent bacteria; Tir was essential for colonization.
Collapse
Affiliation(s)
- Francis Girard
- Division of Cell and Molecular Biology, Imperial College London, London, UK
| | | | | | | | | | | |
Collapse
|
48
|
Lim JY, Sheng H, Seo KS, Park YH, Hovde CJ. Characterization of an Escherichia coli O157:H7 plasmid O157 deletion mutant and its survival and persistence in cattle. Appl Environ Microbiol 2007; 73:2037-47. [PMID: 17277224 PMCID: PMC1855633 DOI: 10.1128/aem.02643-06] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli O157:H7 causes hemorrhagic colitis and hemolytic-uremic syndrome in humans, and its major reservoir is healthy cattle. An F-like 92-kb plasmid, pO157, is found in most E. coli O157:H7 clinical isolates, and pO157 shares sequence similarities with plasmids present in other enterohemorrhagic E. coli serotypes. We compared wild-type (WT) E. coli O157:H7 and an isogenic DeltapO157 mutant for (i) growth rates and antibiotic susceptibilities, (ii) survival in environments with various acidity, salt, or heat conditions, (iii) protein expression, and (iv) survival and persistence in cattle following oral challenge. Growth, metabolic reactions, and antibiotic resistance of the DeltapO157 mutant were indistinguishable from those of its complement and the WT. However, in cell competition assays, the WT was more abundant than the DeltapO157 mutant. The DeltapO157 mutant was more resistant to acidic synthetic bovine gastric fluid and bile than the WT. In vivo, the DeltapO157 mutant survived passage through the bovine gastrointestinal tract better than the WT but, interestingly, did not colonize the bovine rectoanal junction mucosa as well as the WT. Many proteins were differentially expressed between the DeltapO157 mutant and the WT. Proteins from whole-cell lysates and membrane fractions of cell lysates were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and two-dimensional gel electrophoresis. Ten differentially expressed approximately 50-kDa proteins were identified by quadrupole-time of flight mass spectrometry and sequence matching with the peptide fragment database. Most of these proteins, including tryptophanase and glutamate decarboxylase isozymes, were related to survival under salvage conditions, and expression was increased by the deletion of pO157. This suggested that the genes on pO157 regulate some chromosomal genes.
Collapse
Affiliation(s)
- Ji Youn Lim
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83844-3052, USA
| | | | | | | | | |
Collapse
|
49
|
van Diemen PM, Dziva F, Abu-Median A, Wallis TS, van den Bosch H, Dougan G, Chanter N, Frankel G, Stevens MP. Subunit vaccines based on intimin and Efa-1 polypeptides induce humoral immunity in cattle but do not protect against intestinal colonisation by enterohaemorrhagic Escherichia coli O157:H7 or O26:H-. Vet Immunol Immunopathol 2007; 116:47-58. [PMID: 17258324 PMCID: PMC2656997 DOI: 10.1016/j.vetimm.2006.12.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 12/19/2006] [Accepted: 12/29/2006] [Indexed: 11/17/2022]
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) infections in humans are an important public health concern and are commonly acquired via contact with ruminant faeces. Cattle are a key control point however cross-protective vaccines for the control of EHEC in the bovine reservoir do not yet exist. The EHEC serogroups that are predominantly associated with human infection in Europe and North America are O157 and O26. Intimin and EHEC factor for adherence (Efa-1) play important roles in intestinal colonisation of cattle by EHEC and are thus attractive candidates for the development of subunit vaccines. Immunisation of calves with the cell-binding domain of intimin subtypes β or γ via the intramuscular route induced antigen-specific serum IgG1 and, in some cases salivary IgA responses, but did not reduce the magnitude or duration of faecal excretion of EHEC O26:H- (Int280-β) or EHEC O157:H7 (Int280-γ) upon subsequent experimental challenge. Similarly, immunisation of calves via the intramuscular route with the truncated Efa-1 protein (Efa-1′) from EHEC O157:H7 or a mixture of the amino-terminal and central thirds of the full-length protein (Efa-1-N and M) did not protect against intestinal colonisation by EHEC O157:H7 (Efa-1′) or EHEC O26:H- (Efa-1-N and M) despite the induction of humoral immunity. A portion of the serum IgG1 elicited by the truncated recombinant antigens in calves was confirmed to recognise native protein exposed on the bacterial surface. Calves immunised with a mixture of Int280-γ and Efa-1′ or an EHEC O157:H7 bacterin via the intramuscular route then boosted via the intranasal route with the same antigens using cholera toxin B subunit as an adjuvant were also not protected against intestinal colonisation by EHEC O157:H7. These studies highlight the need for further studies to develop and test novel vaccines or treatments for control of this important foodborne pathogen.
Collapse
Affiliation(s)
- P M van Diemen
- Institute for Animal Health, Compton, Berkshire RG20 7NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Afset JE, Bruant G, Brousseau R, Harel J, Anderssen E, Bevanger L, Bergh K. Identification of virulence genes linked with diarrhea due to atypical enteropathogenic Escherichia coli by DNA microarray analysis and PCR. J Clin Microbiol 2006; 44:3703-11. [PMID: 17021100 PMCID: PMC1594803 DOI: 10.1128/jcm.00429-06] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The role of atypical enteropathogenic Escherichia coli (EPEC) in childhood diarrhea is controversial. The aim of the present study was to search for genes linked with diarrhea in atypical EPEC strains from a case-control study among Norwegian children. Using DNA microarray analysis, genomic DNAs from strains isolated from children with (n = 37) and without (n = 20) diarrhea were hybridized against 242 different oligonucleotide probes specific for 182 virulence genes or markers from all known E. coli pathotypes. PCR was performed to test the strains for seven putative virulence genes not included in the microarray panel. The OI-122 gene efa1/lifA was the gene with the strongest statistical association with diarrhea (P = 0.0008). Other OI-122 genes (set/ent, nleB, and nleE) and genes with other locations (lpfA, paa, ehxA, and ureD) were also associated with diarrheal disease. The phylogenetic marker gene yjaA was negatively associated with diarrhea (P = 0.0004). Atypical EPEC strains could be classified in two main virulence groups based on their content of OI-122, lpfA, and yjaA genes. Among children with diarrhea, atypical EPEC isolates belonging to virulence group I (OI-122 and lpfA positive, yjaA negative) were the most common, while the majority of isolates from healthy children were classified as virulence group II strains (OI-122 negative, lpfA and yjaA positive; P < 0.001). In conclusion, using DNA microarray analysis to determine the virulence gene profile of atypical EPEC isolates, several genes were found to be significantly associated with diarrhea. Based on their composition of virulence genes, the majority of strains could be classified in two virulence groups, of which one was seen mainly in children with diarrhea.
Collapse
Affiliation(s)
- Jan Egil Afset
- Department of Medical Microbiology, St. Olavs University Hospital, N-7006 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|