1
|
Huber EM. Epipolythiodioxopiperazine-Based Natural Products: Building Blocks, Biosynthesis and Biological Activities. Chembiochem 2022; 23:e202200341. [PMID: 35997236 PMCID: PMC10086836 DOI: 10.1002/cbic.202200341] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Indexed: 01/25/2023]
Abstract
Epipolythiodioxopiperazines (ETPs) are fungal secondary metabolites that share a 2,5-diketopiperazine scaffold built from two amino acids and bridged by a sulfide moiety. Modifications of the core and the amino acid side chains, for example by methylations, acetylations, hydroxylations, prenylations, halogenations, cyclizations, and truncations create the structural diversity of ETPs and contribute to their biological activity. However, the key feature responsible for the bioactivities of ETPs is their sulfide moiety. Over the last years, combinations of genome mining, reverse genetics, metabolomics, biochemistry, and structural biology deciphered principles of ETP production. Sulfurization via glutathione and uncovering of the thiols followed by either oxidation or methylation crystallized as fundamental steps that impact expression of the biosynthesis cluster, toxicity and secretion of the metabolite as well as self-tolerance of the producer. This article showcases structure and activity of prototype ETPs such as gliotoxin and discusses the current knowledge on the biosynthesis routes of these exceptional natural products.
Collapse
Affiliation(s)
- Eva M Huber
- Chair of Biochemistry, Center for Protein Assemblies, Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| |
Collapse
|
2
|
The Toxic Mechanism of Gliotoxins and Biosynthetic Strategies for Toxicity Prevention. Int J Mol Sci 2021; 22:ijms222413510. [PMID: 34948306 PMCID: PMC8705807 DOI: 10.3390/ijms222413510] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
Gliotoxin is a kind of epipolythiodioxopiperazine derived from different fungi that is characterized by a disulfide bridge. Gliotoxins can be biosynthesized by a gli gene cluster and regulated by a positive GliZ regulator. Gliotoxins show cytotoxic effects via the suppression the function of macrophage immune function, inflammation, antiangiogenesis, DNA damage by ROS production, peroxide damage by the inhibition of various enzymes, and apoptosis through different signal pathways. In the other hand, gliotoxins can also be beneficial with different doses. Low doses of gliotoxin can be used as an antioxidant, in the diagnosis and treatment of HIV, and as an anti-tumor agent in the future. Gliotoxins have also been used in the control of plant pathogens, including Pythium ultimum and Sclerotinia sclerotiorum. Thus, it is important to elucidate the toxic mechanism of gliotoxins. The toxic mechanism of gliotoxins and biosynthetic strategies to reduce the toxicity of gliotoxins and their producing strains are summarized in this review.
Collapse
|
3
|
Abstract
The superoxide (O2·-)-generating NADPH oxidase complex of phagocytes comprises a membrane-associated heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of NOX2 and p22phox) and four cytosolic regulatory proteins, p47phox, p67phox, p40phox, and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2·- generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome, a process known as NADPH oxidase assembly. A consequent conformational change in NOX2 initiates the electron flow along a redox gradient, from NADPH to molecular oxygen (O2), leading to the one-electron reduction of O2 to O2·-. Historically, methodological difficulties in the study of the assembled complex derived from stimulated cells, due to its lack of stability, led to the design of "cell-free" systems (also known as "broken cells" or in vitro systems). In a major paradigm shift, the cell-free systems have as their starting point NADPH oxidase components derived from resting (unstimulated) phagocytes, or as in the predominant method at present, recombinant proteins representing the components of the NADPH oxidase complex. In cell-free systems, membrane receptor stimulation and the signal transduction sequence are absent, the accent being placed on the actual process of assembly, all of which takes place in vitro. Thus, a mixture of the individual components of the NADPH oxidase is exposed in vitro to an activating agent, the most common being anionic amphiphiles, resulting in the formation of a complex between cytochrome b 558 and the cytosolic components and O2·- generation in the presence of NADPH. Alternative activating pathways require posttranslational modification of oxidase components or modifying the phospholipid milieu surrounding cytochrome b 558. Activation is commonly quantified by measuring the primary product of the reaction, O2·-, trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of rates of O2·- production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the performance of structure-function studies, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
|
4
|
Zhang C, Chen F, Liu X, Han X, Hu Y, Su X, Chen Y, Sun Y, Han L. Gliotoxin Induces Cofilin Phosphorylation to Promote Actin Cytoskeleton Dynamics and Internalization of Aspergillus fumigatus Into Type II Human Pneumocyte Cells. Front Microbiol 2019; 10:1345. [PMID: 31275272 PMCID: PMC6591310 DOI: 10.3389/fmicb.2019.01345] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Aspergillus fumigatus is able to internalize into lung epithelial cells to escape from immune attack for further dissemination. We previously reported that gliotoxin, a major mycotoxin of A. fumigatus, promotes this internalization; however, the mechanism remained unclear. Here, we report that gliotoxin is able to induce cofilin phosphorylation in A549 type II human pneumocytes. Either too high or too low a level of cofilin phosphorylation blocked the gliotoxin-induced actin cytoskeleton rearrangement and A. fumigatus internalization. LIM domain kinase 1 (LIMK1) and its upstream small GTPases (Cdc42 and RhoA, but not Rac1) predominantly mediated the gliotoxin-induced cofilin phosphorylation and A. fumigatus internalization. Simultaneously, gliotoxin significantly stimulated an increase in cAMP; however, adding an antagonist of PKA did not block gliotoxin-induced A. fumigatus internalization. In vivo, exogenous gliotoxin helped gliotoxin synthesis deficient strain gliPΔ invade into the lung tissue and the lung fungal burden increased markedly in immunosuppressed mice. In conclusion, these data revealed a novel role of gliotoxin in inducing cofilin phosphorylation mostly through the Cdc42/RhoA-LIMK1 signaling pathway to promote actin cytoskeleton rearrangement and internalization of A. fumigatus into type II human pneumocytes.
Collapse
Affiliation(s)
- Changjian Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xiaoyu Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Academy of Military Medical Sciences, Beijing, China
| | - Xuelin Han
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yingsong Hu
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yong Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yansong Sun
- Academy of Military Medical Sciences, Beijing, China
| | - Li Han
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
5
|
König S, Pace S, Pein H, Heinekamp T, Kramer J, Romp E, Straßburger M, Troisi F, Proschak A, Dworschak J, Scherlach K, Rossi A, Sautebin L, Haeggström JZ, Hertweck C, Brakhage AA, Gerstmeier J, Proschak E, Werz O. Gliotoxin from Aspergillus fumigatus Abrogates Leukotriene B 4 Formation through Inhibition of Leukotriene A 4 Hydrolase. Cell Chem Biol 2019; 26:524-534.e5. [PMID: 30745237 DOI: 10.1016/j.chembiol.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/23/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
The epidithiodioxopiperazine gliotoxin is a virulence factor of Aspergillus fumigatus, the most important airborne fungal pathogen of humans. Gliotoxin suppresses innate immunity in invasive aspergillosis, particularly by compromising neutrophils, but the underlying molecular mechanisms remain elusive. Neutrophils are the first responders among innate immune cells recruited to sites of infection by the chemoattractant leukotriene (LT)B4 that is biosynthesized by 5-lipoxygenase and LTA4 hydrolase (LTA4H). Here, we identified gliotoxin as inhibitor of LTA4H that selectively abrogates LTB4 formation in human leukocytes and in distinct animal models. Gliotoxin failed to inhibit the formation of other eicosanoids and the aminopeptidase activity of the bifunctional LTA4H. Suppression of LTB4 formation by gliotoxin required the cellular environment and/or reducing conditions, and only the reduced form of gliotoxin inhibited LTA4H activity. Conclusively, gliotoxin suppresses the biosynthesis of the potent neutrophil chemoattractant LTB4 by direct interference with LTA4H thereby impairing neutrophil functions in invasive aspergillosis.
Collapse
Affiliation(s)
- Stefanie König
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Jan Kramer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Erik Romp
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Maria Straßburger
- Transfer Group Antiinfectives, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Anna Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Jan Dworschak
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany; Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), 07745 Jena, Germany; Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
6
|
Fradin T, Bechor E, Berdichevsky Y, Dahan I, Pick E. Binding of p67phoxto Nox2 is stabilized by disulfide bonds between cysteines in the369Cys-Gly-Cys371triad in Nox2 and in p67phox. J Leukoc Biol 2018; 104:1023-1039. [DOI: 10.1002/jlb.4a0418-173r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/09/2018] [Accepted: 06/23/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Tanya Fradin
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Edna Bechor
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Yevgeny Berdichevsky
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Iris Dahan
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology; Sackler School of Medicine, Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
7
|
Zhang C, Liu X, Chen F, Hu Y, Li Z, Liu Y, Han X, Sun Y, Han L. Gliotoxin destructs the pulmonary epithelium barrier function by reducing cofilin oligomer formation to promote the dissolution of actin stress fibers. Microb Pathog 2018; 123:169-176. [PMID: 30017941 DOI: 10.1016/j.micpath.2018.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023]
Abstract
The destruction of pulmonary epithelium is a major feature of lung diseases caused by the fungal pathogen Aspergillus fumigatus (A. fumigatus). Gliotoxin, a major mycotoxin of A. fumigatus, is widely postulated to be associated with the tissue invasion. However, the mechanism is unclear. In this study, we first discovered that cofilin, a regulator of actin dynamics in the pulmonary epithelial cells, existed mainly in the form of oligomer, which kept it unable to depolymerize actin filaments. Gliotoxin could reduce the formation of cofilin oligomer and promote the release of active cofilin monomer by regulating cofilin phosphorylation balance. Then, the active cofilin induced the dissolution of actin stress fibers to result in the disruption of pulmonary epithelium barrier function. Collectively, our study revealed a novel mechanism of gliotoxin destructing lung epithelium barrier function and for the first time indicated the role of cofilin oligomer in this process.
Collapse
Affiliation(s)
- Changjian Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, PLA, Beijing, China; Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xiaoyu Liu
- Academy of Military Medical Sciences, Academy of Military Sciences, PLA, Beijing, China; Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Fangyan Chen
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yingsong Hu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Zhiqian Li
- Academy of Military Medical Sciences, Academy of Military Sciences, PLA, Beijing, China; Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yanxi Liu
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Xuelin Han
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Yansong Sun
- Academy of Military Medical Sciences, Academy of Military Sciences, PLA, Beijing, China.
| | - Li Han
- Institute for Disease Control and Prevention of PLA, Beijing, China.
| |
Collapse
|
8
|
Sugui JA, Rose SR, Nardone G, Swamydas M, Lee CCR, Kwon-Chung KJ, Lionakis MS. Host immune status-specific production of gliotoxin and bis-methyl-gliotoxin during invasive aspergillosis in mice. Sci Rep 2017; 7:10977. [PMID: 28887465 PMCID: PMC5591180 DOI: 10.1038/s41598-017-10888-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/14/2017] [Indexed: 01/29/2023] Open
Abstract
Delayed diagnosis in invasive aspergillosis (IA) contributes to its high mortality. Gliotoxin (GT) and bis-methyl-gliotoxin (bmGT) are secondary metabolites produced by Aspergillus during invasive, hyphal growth and may prove diagnostically useful. Because IA pathophysiology and GT's role in virulence vary depending on the underlying host immune status, we hypothesized that GT and bmGT production in vivo may differ in three mouse models of IA that mimic human disease. We defined temporal kinetics of GT and bmGT in serum, bronchoalveolar lavage fluid (BALF) and lungs of A. fumigatus-infected chronic granulomatous disease (CGD), hydrocortisone-treated, and neutropenic mice. We harvested lungs for assessment of fungal burden, histology and GT/bmGT biosynthetic genes' mRNA induction. GT levels were higher in neutropenic versus CGD or steroid-treated lungs. bmGT was persistently detected only in CGD lungs. GT, but not bmGT, was detected in 71% of sera and 50% of BALF of neutropenic mice; neither was detected in serum/BALF of CGD or steroid-treated mice. Enrichment of GT in Aspergillus-infected neutropenic lung correlated with fungal burden and hyphal length but not induction of GT biosynthetic genes. In summary, GT is detectable in mouse lungs, serum and BALF during neutropenic IA, suggesting that GT may be useful to diagnose IA in neutropenic patients.
Collapse
Affiliation(s)
- Janyce A Sugui
- Molecular Microbiology Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Stacey R Rose
- Fungal Pathogenesis Unit, LCIM, NIAID, NIH, Bethesda, MD, USA.,Division of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Chyi-Chia R Lee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, MD, USA
| | - Kyung J Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| | | |
Collapse
|
9
|
Nitroarachidonic acid (NO 2AA) inhibits protein disulfide isomerase (PDI) through reversible covalent adduct formation with critical cysteines. Biochim Biophys Acta Gen Subj 2017; 1861:1131-1139. [PMID: 28215702 DOI: 10.1016/j.bbagen.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitroarachidonic acid (NO2AA) exhibits pleiotropic anti-inflammatory actions in a variety of cell types. We have recently shown that NO2AA inhibits phagocytic NADPH oxidase 2 (NOX2) by preventing the formation of the active complex. Recent work indicates the participation of protein disulfide isomerase (PDI) activity in NOX2 activation. Cysteine (Cys) residues at PDI active sites could be targets for NO2AA- nitroalkylation regulating PDI activity which could explain our previous observation. METHODS PDI reductase and chaperone activities were assessed using the insulin and GFP renaturation methods in the presence or absence of NO2AA. To determine the covalent reaction with PDI as well as the site of reaction, the PEG-switch assay and LC-MS/MS studies were performed. RESULTS AND CONCLUSIONS We determined that both activities of PDI were inhibited by NO2AA in a dose- and time- dependent manner and independent from release of nitric oxide. Since nitroalkenes are potent electrophiles and PDI has critical Cys residues for its activity, then formation of a covalent adduct between NO2AA and PDI is feasible. To this end we demonstrated the reversible covalent modification of PDI by NO2AA. Trypsinization of modified PDI confirmed that the Cys residues present in the active site a' of PDI were key targets accounting for nitroalkene modification. GENERAL SIGNIFICANCE PDI may contribute to NOX2 activation. As such, inhibition of PDI by NO2AA might be involved in preventing NOX2 activation. Future work will be directed to determine if the covalent modifications observed play a role in the reported NO2AA inhibition of NOX2 activity.
Collapse
|
10
|
Diebold BA, Smith SM, Li Y, Lambeth JD. NOX2 As a Target for Drug Development: Indications, Possible Complications, and Progress. Antioxid Redox Signal 2015; 23:375-405. [PMID: 24512192 PMCID: PMC4545678 DOI: 10.1089/ars.2014.5862] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/08/2014] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE NOX2 is important for host defense, and yet is implicated in a large number of diseases in which inflammation plays a role in pathogenesis. These include acute and chronic lung inflammatory diseases, stroke, traumatic brain injury, and neurodegenerative diseases, including Alzheimer's and Parkinson's Diseases. RECENT ADVANCES Recent drug development programs have targeted several NOX isoforms that are implicated in a variety of diseases. The focus has been primarily on NOX4 and NOX1 rather than on NOX2, due, in part, to concerns about possible immunosuppressive side effects. Nevertheless, NOX2 clearly contributes to the pathogenesis of many inflammatory diseases, and its inhibition is predicted to provide a novel therapeutic approach. CRITICAL ISSUES Possible side effects that might arise from targeting NOX2 are discussed, including the possibility that such inhibition will contribute to increased infections and/or autoimmune disorders. The state of the field with regard to existing NOX2 inhibitors and targeted development of novel inhibitors is also summarized. FUTURE DIRECTIONS NOX2 inhibitors show particular promise for the treatment of inflammatory diseases, both acute and chronic. Theoretical side effects include pro-inflammatory and autoimmune complications and should be considered in any therapeutic program, but in our opinion, available data do not indicate that they are sufficiently likely to eliminate NOX2 as a drug target, particularly when weighed against the seriousness of many NOX2-related indications. Model studies demonstrating efficacy with minimal side effects are needed to encourage future development of NOX2 inhibitors as therapeutic agents.
Collapse
Affiliation(s)
- Becky A. Diebold
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Susan M.E. Smith
- Department of Biology and Physics, Kennesaw State University, Kennesaw, Georgia
| | - Yang Li
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - J. David Lambeth
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Bechor E, Dahan I, Fradin T, Berdichevsky Y, Zahavi A, Federman Gross A, Rafalowski M, Pick E. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67 (phox.). Front Chem 2015; 3:3. [PMID: 25699251 PMCID: PMC4316792 DOI: 10.3389/fchem.2015.00003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/09/2015] [Indexed: 11/28/2022] Open
Abstract
The superoxide (O(·-) 2)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b 558 (a heterodimer of Nox2 and p22 (phox) ), and four cytosolic components, p47 (phox) , p67 (phox) , p40 (phox) , and Rac. The catalytic component, responsible for O(·-) 2 generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67 (phox) . Using a peptide-protein binding assay, we found that Nox2 peptides containing a (369)CysGlyCys(371) triad (CGC) bound p67 (phox) with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67 (phox) only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67 (phox) via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: (1) Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; (2) Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; (3) Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; (4) Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; (5) A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; (6) p67 (phox) , in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67 (phox) to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Edgar Pick
- The Julius Friedrich Cohnheim Laboratory of Phagocyte Research, Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv UniversityTel Aviv, Israel
| |
Collapse
|
12
|
Yoshida LS, Kohri S, Tsunawaki S, Kakegawa T, Taniguchi T, Takano-Ohmuro H, Fujii H. Evaluation of radical scavenging properties of shikonin. J Clin Biochem Nutr 2014; 55:90-6. [PMID: 25320455 PMCID: PMC4186383 DOI: 10.3164/jcbn.13-107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/10/2014] [Indexed: 11/22/2022] Open
Abstract
With the aim of developing effective anti-inflammatory drugs, we have been investigating the biochemical effects of shikonin of “Shikon” roots, which is a naphthoquinone with anti-inflammatory and antioxidative properties. Shikonin scavenged reactive oxygen species like hydroxyl radical, superoxide anion (O2•−) and singlet oxygen in previous studies, but its reactivity with reactive oxygen species is not completely understood, and comparison with standard antioxidants is lacking. This study aimed elucidation of the reactivity of shikonin with nitric oxide radical and reactive oxygen species such as alkyl-oxy radical and O2•−. By using electron paramagnetic resonance spectrometry, shikonin was found unable of reacting with nitric oxide radical in a competition assay with oxyhemoglobin. However, shikonin scavenged alkyl-oxy radical from 2,2'-azobis(2-aminopropane) dihydrochloride with oxygen radical absorbance capacity, ORAC of 0.25 relative to Trolox, and showed a strong O2•−-scavenging ability (42-fold of Trolox; estimated reaction rate constant: 1.7 × 105 M−1s−1) in electron paramagnetic resonance assays with CYPMPO as spin trap. Concerning another source of O2•−, the phagocyte NADPH oxidase (Nox2), shikonin inhibited the Nox2 activity by impairing catalysis when added before enzyme activation (IC50: 1.1 µM; NADPH oxidation assay). However, shikonin did not affect the preactivated Nox2 activity, although having potential to scavenge produced O2•−. In conclusion, shikonin scavenged O2•− and alkyl-oxy radical, but not nitric oxide radical.
Collapse
Affiliation(s)
- Lucia S Yoshida
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunji Kohri
- Center for Medical Education, Sapporo Medical University, South-1 West-17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| | - Shohko Tsunawaki
- Department of Biochemistry, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Tomohito Kakegawa
- Faculty of Pharmaceutical Sciences, Josai International University, 1 Gunmyo, Togane, Chiba 283-8555, Japan
| | - Taizo Taniguchi
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kami-Ono, Himeji, Okayama 670-8524, Japan
| | - Hiromi Takano-Ohmuro
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan
| | - Hirotada Fujii
- Center for Medical Education, Sapporo Medical University, South-1 West-17, Chuo-ku, Sapporo, Hokkaido 060-8556, Japan
| |
Collapse
|
13
|
Jia X, Chen F, Pan W, Yu R, Tian S, Han G, Fang H, Wang S, Zhao J, Li X, Zheng D, Tao S, Liao W, Han X, Han L. Gliotoxin promotes Aspergillus fumigatus internalization into type II human pneumocyte A549 cells by inducing host phospholipase D activation. Microbes Infect 2014; 16:491-501. [PMID: 24637030 DOI: 10.1016/j.micinf.2014.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/27/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
The internalization of Aspergillus fumigatus into lung epithelial cells is critical for the infection process in the host. Gliotoxin is the most potent toxin produced by A. fumigatus. However, its role in A. fumigatus internalization into the lung epithelial cells is still largely unknown. In the present study, the deletion of the gliP gene regulating the production of gliotoxin in A. fumigatus suppressed the internalization of conidia into the A549 lung epithelial cells, and this suppression could be rescued by the exogenous addition of gliotoxin. At lower concentrations, gliotoxin enhanced the internalization of the conidia of A. fumigatus into A549 cells; in contrast, it inhibited the phagocytosis of J774 macrophages in a dose-dependent manner. Under a concentration of 100 ng/ml, gliotoxin had no effect on A549 cell viability but attenuated ROS production in a dose-dependent manner. Gliotoxin significantly stimulated the phospholipase D activity in the A549 cells at a concentration of 50 ng/ml. This stimulation was blocked by the pretreatment of host cells with PLD1- but not PLD2-specific inhibitor. Morphological cell changes induced by gliotoxin were observed in the A549 cells accompanying with obvious actin cytoskeleton rearrangement and a moderate alteration of phospholipase D distribution. Our data indicated that gliotoxin might be responsible for modulating the A. fumigatus internalization into epithelial cells through phospholipase D1 activation and actin cytoskeleton rearrangement.
Collapse
Affiliation(s)
- Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Weihua Pan
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rentao Yu
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China; Patent Examination Cooperation Center of the Patent Office, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Gaige Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Haiqin Fang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xianping Li
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Dongyu Zheng
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Sha Tao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Wanqing Liao
- Shanghai Key Laboratory of Molecular Mycology, Department of Dermatology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Abstract
The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).
Collapse
Affiliation(s)
- Edgar Pick
- The Julius Friedrich Cohnheim-Minerva Center for Phagocyte Research and the Ela Kodesz Institute of Host Defense against Infectious Diseases, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Mueller A, Schlink U, Wichmann G, Bauer M, Graebsch C, Schüürmann G, Herbarth O. Individual and combined effects of mycotoxins from typical indoor moulds. Toxicol In Vitro 2013; 27:1970-8. [DOI: 10.1016/j.tiv.2013.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 06/11/2013] [Accepted: 06/26/2013] [Indexed: 10/26/2022]
|
16
|
Rodiño-Janeiro BK, Paradela-Dobarro B, Castiñeiras-Landeira MI, Raposeiras-Roubín S, González-Juanatey JR, Álvarez E. Current status of NADPH oxidase research in cardiovascular pharmacology. Vasc Health Risk Manag 2013; 9:401-28. [PMID: 23983473 PMCID: PMC3750863 DOI: 10.2147/vhrm.s33053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The implications of reactive oxygen species in cardiovascular disease have been known for some decades. Rationally, therapeutic antioxidant strategies combating oxidative stress have been developed, but the results of clinical trials have not been as good as expected. Therefore, to move forward in the design of new therapeutic strategies for cardiovascular disease based on prevention of production of reactive oxygen species, steps must be taken on two fronts, ie, comprehension of reduction-oxidation signaling pathways and the pathophysiologic roles of reactive oxygen species, and development of new, less toxic, and more selective nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors, to clarify both the role of each NADPH oxidase isoform and their utility in clinical practice. In this review, we analyze the value of NADPH oxidase as a therapeutic target for cardiovascular disease and the old and new pharmacologic agents or strategies to prevent NADPH oxidase activity. Some inhibitors and different direct or indirect approaches are available. Regarding direct NADPH oxidase inhibition, the specificity of NADPH oxidase is the focus of current investigations, whereas the chemical structure-activity relationship studies of known inhibitors have provided pharmacophore models with which to search for new molecules. From a general point of view, small-molecule inhibitors are preferred because of their hydrosolubility and oral bioavailability. However, other possibilities are not closed, with peptide inhibitors or monoclonal antibodies against NADPH oxidase isoforms continuing to be under investigation as well as the ongoing search for naturally occurring compounds. Likewise, some different approaches include inhibition of assembly of the NADPH oxidase complex, subcellular translocation, post-transductional modifications, calcium entry/release, electron transfer, and genetic expression. High-throughput screens for any of these activities could provide new inhibitors. All this knowledge and the research presently underway will likely result in development of new drugs for inhibition of NADPH oxidase and application of therapeutic approaches based on their action, for the treatment of cardiovascular disease in the next few years.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- European Molecular Biology Laboratory, Grenoble, France
| | | | | | - Sergio Raposeiras-Roubín
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
| | - José R González-Juanatey
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Cardiology Department, University Clinic Hospital of Santiago de Compostela,
Santiago de Compostela, Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| | - Ezequiel Álvarez
- Health Research Institute of Santiago de Compostela, Santiago de Compostela,
Spain
- Medicine Department, University of Santiago de Compostela, Santiago de Compostela,
Spain
| |
Collapse
|
17
|
Kang DH, Lee DJ, Kim J, Lee JY, Kim HW, Kwon K, Taylor WR, Jo H, Kang SW. Vascular injury involves the overoxidation of peroxiredoxin type II and is recovered by the peroxiredoxin activity mimetic that induces reendothelialization. Circulation 2013; 128:834-44. [PMID: 23820076 DOI: 10.1161/circulationaha.113.001725] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Typical 2-Cys peroxiredoxin (Prx) is inactivated by overoxidation of the peroxidatic cysteine residue under oxidative stress. However, the significance in the context of vascular disease is unknown. METHODS AND RESULTS Immunohistochemical analyses revealed that 2-Cys Prxs, particularly Prx type II, are heavily overoxidized in balloon-injured rodent carotid vessels and in human atherosclerotic lesions. Consistent with this observation, the selective depletion of Prx II exacerbated neointimal hyperplasia in injured carotid vessels. We also found that the epipolythiodioxopiperazine class of fungal metabolites exhibited an enzyme-like activity mimicking 2-Cys Prx peroxidase and manifestly eliminated the intracellular H₂O₂ in the vascular cells. Functionally, the epipolythiodioxopiperazines reciprocally regulated the platelet-derived growth factor receptor-β- and vascular endothelial growth factor receptor-mediated signaling in these vascular cells by replacing Prx II. As a consequence, the epipolythiodioxopiperazines inhibited the proliferative and migratory activities of smooth muscle cells but promoted those of endothelial cells in vitro. Moreover, administration of the epipolythiodioxopiperazines to the injured carotid vessels resulted in a successful recovery by inhibiting neointimal hyperplasia without causing cytotoxicity and simultaneously inducing reendothelialization. CONCLUSIONS This study reveals for the first time the involvement of the 2-Cys Prx overoxidation and thus the therapeutic use of their activity mimetic in vascular injuries like stenting.
Collapse
Affiliation(s)
- Dong Hoon Kang
- Division of Life and Pharmaceutical Science and Center for Cell Signaling and Drug Discovery Research, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Boyer N, Morrison KC, Kim J, Hergenrother PJ, Movassaghi M. Synthesis and Anticancer Activity of Epipolythiodiketopiperazine Alkaloids. Chem Sci 2013; 4:1646-1657. [PMID: 23914293 PMCID: PMC3728915 DOI: 10.1039/c3sc50174d] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The epipolythiodiketopiperazine (ETP) alkaloids are a highly complex class of natural products with potent anticancer activity. Herein, we report the application of a flexible and scalable synthesis, allowing the construction of dozens of ETP derivatives. The evaluation of these compounds against cancer cell lines in culture allows for the first expansive structure-activity relationship (SAR) to be defined for monomeric and dimeric ETP-containing natural products and their synthetic cognates. Many ETP derivatives demonstrate potent anticancer activity across a broad range of cancer cell lines, and kill cancer cellsviainduction of apoptosis. Several traits thatbode well for the translational potential of the ETP class of natural products includeconcise and efficient synthetic access, potent induction of apoptotic cell death, activity against a wide range of cancer types, and a broad tolerance for modifications at multiple sitesthat should facilitate small-molecule drug development, mechanistic studies, and evaluation in vivo.
Collapse
Affiliation(s)
- Nicolas Boyer
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| | - Karen C. Morrison
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois 61801, USA
| | - Justin Kim
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| | - Paul J. Hergenrother
- University of Illinois at Urbana-Champaign, Department of Chemistry, Urbana, Illinois 61801, USA
| | - Mohammad Movassaghi
- Massachusetts Institute of Technology, Department of Chemistry, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Carberry S, Molloy E, Hammel S, O’Keeffe G, Jones GW, Kavanagh K, Doyle S. Gliotoxin effects on fungal growth: Mechanisms and exploitation. Fungal Genet Biol 2012; 49:302-12. [DOI: 10.1016/j.fgb.2012.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
20
|
The role of glutathione S-transferase GliG in gliotoxin biosynthesis in Aspergillus fumigatus. ACTA ACUST UNITED AC 2011; 18:542-52. [PMID: 21513890 DOI: 10.1016/j.chembiol.2010.12.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 12/15/2010] [Accepted: 12/29/2010] [Indexed: 01/29/2023]
Abstract
Gliotoxin, a redox-active metabolite, is produced by the opportunistic fungal pathogen Aspergillus fumigatus, and its biosynthesis is directed by the gli gene cluster. Knowledge of the biosynthetic pathway to gliotoxin, which contains a disulfide bridge of unknown origin, is limited, although L-Phe and L-Ser are known biosynthetic precursors. Deletion of gliG from the gli cluster, herein functionally confirmed as a glutathione S-transferase, results in abrogation of gliotoxin biosynthesis and accumulation of 6-benzyl-6-hydroxy-1-methoxy-3-methylenepiperazine-2,5-dione. This putative shunt metabolite from the gliotoxin biosynthetic pathway contains an intriguing hydroxyl group at C-6, consistent with a gliotoxin biosynthetic pathway involving thiolation via addition of the glutathione thiol group to a reactive acyl imine intermediate. Complementation of gliG restored gliotoxin production and, unlike gliT, gliG was found not to be involved in fungal self-protection against gliotoxin.
Collapse
|
21
|
Speth C, Kupfahl C, Pfaller K, Hagleitner M, Deutinger M, Würzner R, Mohsenipour I, Lass-Flörl C, Rambach G. Gliotoxin as putative virulence factor and immunotherapeutic target in a cell culture model of cerebral aspergillosis. Mol Immunol 2011; 48:2122-9. [DOI: 10.1016/j.molimm.2011.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 12/01/2022]
|
22
|
Hasenberg M, Behnsen J, Krappmann S, Brakhage A, Gunzer M. Phagocyte responses towards Aspergillus fumigatus. Int J Med Microbiol 2011; 301:436-44. [PMID: 21571589 DOI: 10.1016/j.ijmm.2011.04.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The saprophytic fungus Aspergillus fumigatus is a mold which is ubiquitously present in the environment. It produces large numbers of spores, called conidia that we constantly inhale with the breathing air. Healthy individuals normally do not suffer from true fungal infections with this pathogen. A normally robust resistance against Aspergillus is based on the presence of a very effective immunological defense system in the vertebrate body. Inhaled conidia are first encountered by lung-resident alveolar macrophages and then by neutrophil granulocytes. Both cell types are able to effectively ingest and destroy the fungus. Although some responses of the adaptive immune system develop, the key protection is mediated by innate immunity. The importance of phagocytes for defense against aspergillosis is also supported by large numbers of animal studies. Despite the production of aggressive chemicals that can extracellularly destroy fungal pathogens, the main effector mechanism of the innate immune system is phagocytosis. Very recently, the production of extracellular neutrophil extracellular traps (NETs) consisting of nuclear DNA has been added to the armamentarium that innate immune cells use against infection with Aspergillus. Phagocyte responses to Aspergillus are very broad, and a number of new observations have added to this complexity in recent years. To summarize established and newer findings, we will give an overview on current knowledge of the phagocyte system for the protection against Aspergillus.
Collapse
Affiliation(s)
- Mike Hasenberg
- Otto-von-Guericke University Magdeburg, Institute for Molecular and Clinical Immunology, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
23
|
Schrettl M, Carberry S, Kavanagh K, Haas H, Jones GW, O'Brien J, Nolan A, Stephens J, Fenelon O, Doyle S. Self-protection against gliotoxin--a component of the gliotoxin biosynthetic cluster, GliT, completely protects Aspergillus fumigatus against exogenous gliotoxin. PLoS Pathog 2010; 6:e1000952. [PMID: 20548963 PMCID: PMC2883607 DOI: 10.1371/journal.ppat.1000952] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/12/2010] [Indexed: 11/29/2022] Open
Abstract
Gliotoxin, and other related molecules, are encoded by multi-gene clusters and biosynthesized by fungi using non-ribosomal biosynthetic mechanisms. Almost universally described in terms of its toxicity towards mammalian cells, gliotoxin has come to be considered as a component of the virulence arsenal of Aspergillus fumigatus. Here we show that deletion of a single gene, gliT, in the gliotoxin biosynthetic cluster of two A. fumigatus strains, rendered the organism highly sensitive to exogenous gliotoxin and completely disrupted gliotoxin secretion. Addition of glutathione to both A. fumigatus ΔgliT strains relieved gliotoxin inhibition. Moreover, expression of gliT appears to be independently regulated compared to all other cluster components and is up-regulated by exogenous gliotoxin presence, at both the transcript and protein level. Upon gliotoxin exposure, gliT is also expressed in A. fumigatus ΔgliZ, which cannot express any other genes in the gliotoxin biosynthetic cluster, indicating that gliT is primarily responsible for protecting this strain against exogenous gliotoxin. GliT exhibits a gliotoxin reductase activity up to 9 µM gliotoxin and appears to prevent irreversible depletion of intracellular glutathione stores by reduction of the oxidized form of gliotoxin. Cross-species resistance to exogenous gliotoxin is acquired by A. nidulans and Saccharomyces cerevisiae, respectively, when transformed with gliT. We hypothesise that the primary role of gliotoxin may be as an antioxidant and that in addition to GliT functionality, gliotoxin secretion may be a component of an auto-protective mechanism, deployed by A. fumigatus to protect itself against this potent biomolecule. The pathogenic fungus Aspergillus fumigatus causes disease in immunocompromised individuals such as cancer patients. The fungus makes a small molecule called gliotoxin which helps A. fumigatus bypass the immune system in ill people, and cause disease. Although a small molecule, gliotoxin biosynthesis is enabled by a complex series of enzymes, one of which is called GliT, in A. fumigatus. Amazingly, nobody has really considered that gliotoxin might be toxic to A. fumigatus itself. Here we show that absence of GliT makes A. fumigatus highly sensitive to added gliotoxin and inhibits fungal growth, both of which can be reversed by restoring GliT. Neither can the fungus make or release its own gliotoxin when GliT is missing. We also show that gliotoxin sensitivity can be totally overcome by adding glutathione, which is an important anti-oxidant within cells. We demonstrate that gliotoxin addition increases the production of GliT, and that GliT breaks the disulphide bond in gliotoxin which may be a step in the pathway for gliotoxin protection or release from A. fumigatus. We conclude that gliotoxin may mainly be involved in protecting A. fumigatus against oxidative stress and that it is an accidental toxin.
Collapse
Affiliation(s)
- Markus Schrettl
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- Biocenter-Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Stephen Carberry
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Hubertus Haas
- Biocenter-Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Gary W. Jones
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Jennifer O'Brien
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Aine Nolan
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - John Stephens
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Orla Fenelon
- Department of Chemistry, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology and National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
- * E-mail:
| |
Collapse
|
24
|
Gbetagamma-mediated growth and developmental control in Aspergillus fumigatus. Curr Genet 2009; 55:631-41. [PMID: 19915845 DOI: 10.1007/s00294-009-0276-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
The roles of the Gbetagamma subunits of the opportunistic human pathogen Aspergillus fumigatus were investigated. The predicted AfuSfaD (Gbeta) protein consists of 353 amino acids and shows 94-98% similarity with other Aspergillus Gbeta subunits. AfuGpgA consists of 90 amino acids showing 95-98% identity with other fungal G-protein gamma subunits. The deletion (Delta) of AfusfaD or AfugpgA resulted in severe impairment in vegetative growth, conidial germination and conidial trehalose breakdown. While the total number of conidia produced by DeltaAfusfaD and DeltaAfugpgA strains on solid medium was only about 1% of wild type, the growth-adjusted conidiation levels were twofold higher than those of wild type. Enhanced formation of conidiophores and elevated AfubrlA mRNA levels were observable in DeltaAfusfaD or DeltaAfugpgA strains in liquid submerged culture. Moreover, overexpression of AfusfaD or AfugpgA caused reduced levels of submerged culture conidiation, indicating that Gbetagamma is involved in negative regulation of conidiation. Gliotoxin and other metabolites were not detected in the chloroform extracts of DeltaAfusfaD and DeltaAfugpgA culture filtrates. Northern blot analyses revealed that, while AfulaeA mRNA levels unchanged, accumulation of gliZ mRNA was delayed by DeltaAfusfaD or DeltaAfugpgA. A model summarizing the roles of AfusfaD and AfugpgA in A. fumigatus is presented.
Collapse
|
25
|
Tomilov AA, Bicocca V, Schoenfeld RA, Giorgio M, Migliaccio E, Ramsey JJ, Hagopian K, Pelicci PG, Cortopassi GA. Decreased superoxide production in macrophages of long-lived p66Shc knock-out mice. J Biol Chem 2009; 285:1153-65. [PMID: 19892704 DOI: 10.1074/jbc.m109.017491] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A decrease in reactive oxygen species (ROS) production has been associated with extended life span in animal models of longevity. Mice deficient in the p66Shc gene are long-lived, and their cells are both resistant to oxidative stress and produce less ROS. Our microarray analysis of p66Shc(-/-) mouse tissues showed alterations in transcripts involved in heme and superoxide production and insulin signaling. Thus, we carried out analysis of ROS production by NADPH oxidase (PHOX) in macrophages of control and p66Shc knock-out mice. p66Shc(-/-) mice had a 40% reduction in PHOX-dependent superoxide production. To confirm whether the defect in superoxide production was a direct consequence of p66Shc deficiency, p66Shc was knocked down with siRNA in the macrophage cell line RAW264, and a 30% defect in superoxide generation was observed. The pathway of PHOX-dependent superoxide generation was investigated. PHOX protein levels were not decreased in mutant macrophages; however, the rate and extent of phosphorylation of p47phox was decreased in mutants, as was membrane translocation of the complex. Consistently, phosphorylation of protein kinase Cdelta, Akt, and ERK (the kinases responsible for phosphorylation of p47phox) was decreased. Thus, p66Shc deficiency causes a defect in activation of the PHOX complex that results in decreased superoxide production. p66Shc-deficient mice have recently been observed to be resistant to atherosclerosis and to oxidant injury in kidney and brain. Because phagocyte-derived superoxide is often a component of oxidant injury and inflammation, we suggest that the decreased superoxide production by PHOX in p66Shc-deficient mice could contribute significantly to their relative protection from oxidant injury and consequent longevity.
Collapse
Affiliation(s)
- Alexey A Tomilov
- Department of Molecular Biosciences, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jaquet V, Scapozza L, Clark RA, Krause KH, Lambeth JD. Small-molecule NOX inhibitors: ROS-generating NADPH oxidases as therapeutic targets. Antioxid Redox Signal 2009; 11:2535-52. [PMID: 19309261 DOI: 10.1089/ars.2009.2585] [Citation(s) in RCA: 206] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
NOX NADPH oxidases are electron-transporting membrane enzymes whose primary function is the generation of reactive oxygen species (ROS). ROS produced by NOX enzymes show a variety of biologic functions, such as microbial killing, blood pressure regulation, and otoconia formation. Strong evidence suggests that NOX enzymes are major contributors to oxidative damage in pathologic conditions. Blocking the undesirable actions of NOX enzymes, therefore, is a therapeutic strategy for treating oxidative stress-related pathologies, such as ischemia/reperfusion tissue injury, and neurodegenerative and metabolic diseases. Most currently available NOX inhibitors have low selectivity, potency, and bioavailability, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. This review has two main purposes. First, we describe a systematic approach that we believe should be followed in the search for truly selective NOX inhibitors. Second, we present a critical review of small-molecule NOX inhibitors described over the last two decades, including recently published patents from the pharmaceutical industry. Structures, activities, and in vitro/in vivo specificity of these NOX inhibitors are discussed. We conclude that NOX inhibition is a pertinent and promising novel pharmacologic concept, but that major efforts will be necessary to develop specific NOX inhibitors suited for clinical application.
Collapse
Affiliation(s)
- Vincent Jaquet
- Department of Pathology and Immunology, Centre Médical Universitaire, School of Pharmaceutical Sciences, University of Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors. Mycotoxin Res 2009; 25:123-31. [DOI: 10.1007/s12550-009-0020-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 11/26/2022]
|
28
|
Puri A, Ahmad A, Panda BP. Development of an HPTLC-based diagnostic method for invasive aspergillosis. Biomed Chromatogr 2009; 24:887-92. [DOI: 10.1002/bmc.1382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Selemidis S, Sobey CG, Wingler K, Schmidt HH, Drummond GR. NADPH oxidases in the vasculature: Molecular features, roles in disease and pharmacological inhibition. Pharmacol Ther 2008; 120:254-91. [DOI: 10.1016/j.pharmthera.2008.08.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 02/07/2023]
|
30
|
Luengo-Blanco M, Prando C, Bustamante J, Aragão-Filho WC, Pereira PVS, Rehder J, Padden C, Casanova JL, Newburger PE, Condino-Neto A. Essential role of nuclear factor-kappaB for NADPH oxidase activity in normal and anhidrotic ectodermal dysplasia leukocytes. Blood 2008; 112:1453-60. [PMID: 18523147 PMCID: PMC2515116 DOI: 10.1182/blood-2007-07-099267] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 04/01/2008] [Indexed: 12/23/2022] Open
Abstract
This work investigated the functional role of nuclear factor-kappaB (NF-kappaB) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappaB (IkappaBalpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorder of NF-kappaB function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91(0) CGD). NCF1 gene expression in EDA-ID S32I cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47(0)) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappaB site 5' to the CYBB gene in U937 cells treated with NF-kappaB inhibitors, repressor-transfected U937 cells, and EDA-ID patients' cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappaB repressor. These studies show that NF-kappaB is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.
Collapse
Affiliation(s)
- Marcos Luengo-Blanco
- Department of Pediatrics and Pharmacology, Center for Investigation in Pediatrics, State University of Campinas Medical School, Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kupfahl C, Ruppert T, Dietz A, Geginat G, Hof H. Candidaspecies fail to produce the immunosuppressive secondary metabolite gliotoxinin vitro. FEMS Yeast Res 2007; 7:986-92. [PMID: 17537180 DOI: 10.1111/j.1567-1364.2007.00256.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Yeasts of the genus Candida are a major cause of morbidity and mortality in immunocompromised patients. Despite new insights in recent years, the pathogenesis of Candida infection is still incompletely understood. Previous studies have suggested that gliotoxin, a secondary fungal metabolite with well-known immunosuppressive effects, is produced by various species of the genus Candida, and a possible role of gliotoxin as a virulence factor of C. albicans has also been discussed. However, until now, no definitive evidence has been provided that members of the genus Candida are able to produce gliotoxin. To clarify this question, we tested a total of 100 clinical isolates of C. albicans, C. glabrata, C. tropicalis, C. krusei and C. parapsilosis for gliotoxin production using a highly sensitive HPLC protocol, and, for selected isolates, confirmed our findings by tandem MS. This approach did not detect intracellular or extracellular gliotoxin production by any of the isolates examined, although various culture conditions were applied. Therefore, in contrast to previous studies, our data strongly suggest that at least the Candida species investigated in this study are not able to produce the secondary metabolite gliotoxin.
Collapse
Affiliation(s)
- Claudio Kupfahl
- Institute for Medical Microbiology and Hygiene, Faculty for Clinical Medicine Mannheim of the University Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
32
|
Serrander L, Cartier L, Bedard K, Banfi B, Lardy B, Plastre O, Sienkiewicz A, Fórró L, Schlegel W, Krause KH. NOX4 activity is determined by mRNA levels and reveals a unique pattern of ROS generation. Biochem J 2007; 406:105-14. [PMID: 17501721 PMCID: PMC1948990 DOI: 10.1042/bj20061903] [Citation(s) in RCA: 511] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NOX4 is an enigmatic member of the NOX (NADPH oxidase) family of ROS (reactive oxygen species)-generating NADPH oxidases. NOX4 has a wide tissue distribution, but the physiological function and activation mechanisms are largely unknown, and its pharmacology is poorly understood. We have generated cell lines expressing NOX4 upon tetracycline induction. Tetracycline induced a rapid increase in NOX4 mRNA (1 h) followed closely (2 h) by a release of ROS. Upon tetracycline withdrawal, NOX4 mRNA levels and ROS release decreased rapidly (<24 h). In membrane preparations, NOX4 activity was selective for NADPH over NADH and did not require the addition of cytosol. The pharmacological profile of NOX4 was distinct from other NOX isoforms: DPI (diphenyleneiodonium chloride) and thioridazine inhibited the enzyme efficiently, whereas apocynin and gliotoxin did not (IC(50)>100 muM). The pattern of NOX4-dependent ROS generation was unique: (i) ROS release upon NOX4 induction was spontaneous without need for a stimulus, and (ii) the type of ROS released from NOX4-expressing cells was H(2)O(2), whereas superoxide (O(2)(-)) was almost undetectable. Probes that allow detection of intracellular O(2)(-) generation yielded differential results: DHE (dihydroethidium) fluorescence and ACP (1-acetoxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine) ESR measurements did not detect any NOX4 signal, whereas a robust signal was observed with NBT. Thus NOX4 probably generates O(2)(-) within an intracellular compartment that is accessible to NBT (Nitro Blue Tetrazolium), but not to DHE or ACP. In conclusion, NOX4 has a distinct pharmacology and pattern of ROS generation. The close correlation between NOX4 mRNA and ROS generation might hint towards a function as an inducible NOX isoform.
Collapse
Affiliation(s)
- Lena Serrander
- Foundation for Medical Research, University of Geneva, 64 av de la Roseraie, 1205, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Orciuolo E, Stanzani M, Canestraro M, Galimberti S, Carulli G, Lewis R, Petrini M, Komanduri KV. Effectsof Aspergillus fumigatusgliotoxin and methylprednisolone on human neutrophils: implications for the pathogenesis of invasive aspergillosis. J Leukoc Biol 2007; 82:839-48. [PMID: 17626149 DOI: 10.1189/jlb.0207090] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aspergillus fumigatus (AF) is a ubiquitous mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. In stem cell transplant recipients, IA now occurs most frequently in the setting of therapy with corticosteroids, including methylprednisolone (MP). We showed previously that gliotoxin (GT), an AF-derived mycotoxin, induces apoptosis in monocytes and dendritic cells, resulting in the suppression of AF-specific T cell responses. We examined the ability of GT to induce apoptosis in polymorphonuclear leukocytes (PMN) and assessed GT effects on important neutrophil functions, including phagocytic function, degranulation, myeloperoxidase activity, and the production of reactive oxygen species (ROS). In contrast to its effects on monocytes, PMN remained resistant to GT-mediated apoptosis. Although many essential neutrophil functions were unaffected, GT inhibited phagocytosis and also induced a decrease in ROS generation by PMN. In contrast, MP therapy potentiated ROS production, suggesting a mechanism that may facilitate tissue injury in IA. Distinct from its effects on untreated PMN, GT augmented ROS production in MP-treated PMN. Our results suggest that although GT may suppress the adaptive immune response, GT may also serve to increase PMN-mediated inflammation, which is likely to play an important role in tissue destruction in the setting of IA.
Collapse
Affiliation(s)
- Enrico Orciuolo
- Department of Oncology, Transplant and Advances in Medicine, University of Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Müllbacher A, Gallin JI, Simon MM, Kwon-Chung KJ. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. EUKARYOTIC CELL 2007; 6:1562-9. [PMID: 17601876 PMCID: PMC2043361 DOI: 10.1128/ec.00141-07] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gliotoxin is an immunosuppressive mycotoxin long suspected to be a potential virulence factor of Aspergillus fumigatus. Recent studies using mutants lacking gliotoxin production, however, suggested that the mycotoxin is not important for pathogenesis of A. fumigatus in neutropenic mice resulting from treatment with cyclophosphomide and hydrocortisone. In this study, we report on the pathobiological role of gliotoxin in two different mouse strains, 129/Sv and BALB/c, that were immunosuppressed by hydrocortisone alone to avoid neutropenia. These strains of mice were infected using the isogenic set of a wild type strain (B-5233) and its mutant strain (gliPDelta) and the the glip reconstituted strain (gliP(R)). The gliP gene encodes a nonribosomal peptide synthase that catalyzes the first step in gliotoxin biosynthesis. The gliPDelta strain was significantly less virulent than strain B-5233 or gliP(R) in both mouse models. In vitro assays with culture filtrates (CFs) of B-5233, gliPDelta, and gliP(R) strains showed the following: (i) deletion of gliP abrogated gliotoxin production, as determined by high-performance liquid chromatography analysis; (ii) unlike the CFs from strains B-5233 and gliP(R), gliPDelta CFs failed to induce proapoptotic processes in EL4 thymoma cells, as tested by Bak conformational change, mitochondrial-membrane potential disruption, superoxide production, caspase 3 activation, and phosphatidylserine translocation. Furthermore, superoxide production in human neutrophils was strongly inhibited by CFs from strain B-5233 and the gliP(R) strain, but not the gliPDelta strain. Our study confirms that gliotoxin is an important virulence determinant of A. fumigatus and that the type of immunosuppression regimen used is important to reveal the pathogenic potential of gliotoxin.
Collapse
Affiliation(s)
- Janyce A Sugui
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kupfahl C, Michalka A, Lass-Flörl C, Fischer G, Haase G, Ruppert T, Geginat G, Hof H. Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol 2007; 298:319-27. [PMID: 17574915 DOI: 10.1016/j.ijmm.2007.04.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 03/22/2007] [Accepted: 04/13/2007] [Indexed: 11/15/2022] Open
Abstract
The mycotoxin gliotoxin is produced by fungi of the genus Aspergillus, including the important human pathogen Aspergillus fumigatus. Gliotoxin exerts a broad spectrum of immunosuppressive effects in vitro and is detectable in the sera of patients suffering from invasive aspergillosis. In order to correlate the pathogenic potential of A. fumigatus with the ability to produce gliotoxin and to investigate the taxonomic distribution of gliotoxin-producing Aspergillus strains among clinical isolates, a total of 158 Aspergillus isolates comprising four different species (A. fumigatus, n=100; A. terreus, n=27; A. niger, n=16; A. flavus, n=15) were collected from different medical centers (some originating from probable cases of aspergillosis) and from environmental samples in Germany and Austria. Remarkably, gliotoxin was detected in most culture filtrates of A. fumigatus of both clinical (98%) and environmental (96%) origin. The toxin was also detected, with decreasing frequency, in culture filtrates of A. niger (56%), A. terreus (37%), and A. flavus (13%). The highest gliotoxin concentrations were detected in A. fumigatus strains of clinical (max. 21.35 microg/ml, mean 5.75 microg/ml) and environmental (max. 26.25 microg/ml, mean 5.27 microg/ml) origin. Gliotoxin productivity of other Aspergillus species was significantly lower. Culture supernatants of A. fumigatus strains lacking gliotoxin production showed a significantly lower cytotoxicity on macrophage-like cells and T-cells in vitro. In contrast, lack of gliotoxin production in the other Aspergillus species tested had no significant influence on the cytotoxic effect of culture supernatant on these immune cells.
Collapse
Affiliation(s)
- Claudio Kupfahl
- Faculty for Clinical Medicine Mannheim, University of Heidelberg, Institute for Medical Microbiology and Hygiene, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Renwick J, Reeves EP, Wientjes FB, Kavanagh K. Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:347-59. [PMID: 16920193 DOI: 10.1016/j.dci.2006.06.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Revised: 06/18/2006] [Accepted: 06/20/2006] [Indexed: 05/11/2023]
Abstract
Activation of the superoxide forming respiratory burst oxidase of human neutrophils, crucial in host defence, requires the cytosolic proteins p47phox and p67phox which translocate to the plasma membrane upon cell stimulation and activate flavocytochrome b558, the redox centre of this enzyme system. We have previously demonstrated the presence of proteins (67 and 47kDa) in hemocytes of the insect Galleria mellonella homologous to proteins of the superoxide-forming NADPH oxidase complex of neutrophils. The work presented here illustrates for the first time translocation of homologous hemocyte proteins, 67 and 47kDa from the cytosol to the plasma membrane upon phorbol 12-myristate 13 acetate (PMA) activation. In hemocytes, gliotoxin (GT), the fungal secondary metabolite significantly suppressed PMA-induced superoxide generation in a concentration dependent manner and reduced translocation to basel nonstimulated levels. Primarily these results correlate translocation of hemocyte 47 and 67kDa proteins with PMA induced oxidase activity. Collectively results presented here, demonstrate further cellular and functional similarities between phagocytes of insects and mammals and further justify the use of insects in place of mammals for modelling the innate immune response to microbial pathogens.
Collapse
Affiliation(s)
- Julie Renwick
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | | | | | | |
Collapse
|
37
|
Bok JW, Chung D, Balajee SA, Marr KA, Andes D, Nielsen KF, Frisvad JC, Kirby KA, Keller NP. GliZ, a transcriptional regulator of gliotoxin biosynthesis, contributes to Aspergillus fumigatus virulence. Infect Immun 2006; 74:6761-8. [PMID: 17030582 PMCID: PMC1698057 DOI: 10.1128/iai.00780-06] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gliotoxin is a nonribosomal peptide produced by Aspergillus fumigatus. This compound has been proposed as an A. fumigatus virulence factor due to its cytotoxic, genotoxic, and apoptotic properties. Recent identification of the gliotoxin gene cluster identified several genes (gli genes) likely involved in gliotoxin production, including gliZ, encoding a putative Zn(2)Cys(6) binuclear transcription factor. Replacement of gliZ with a marker gene (DeltagliZ) resulted in no detectable gliotoxin production and loss of gene expression of other gli cluster genes. Placement of multiple copies of gliZ in the genome increased gliotoxin production. Using endpoint survival data, the DeltagliZ and a multiple-copy gliZ strain were not statistically different from the wild type in a murine pulmonary model; however, both the wild-type and the multiple-copy gliZ strain were more virulent than DeltalaeA (a mutant reduced in production of gliotoxin and other toxins). A flow-cytometric analysis of polymorphonuclear leukocytes (PMNs) exposed to supernatants from wild-type, DeltagliZ, complemented DeltagliZ, and DeltalaeA strains supported a role for gliotoxin in apoptotic but not necrotic PMN cell death. This may indicate that several secondary metabolites are involved in A. fumigatus virulence.
Collapse
Affiliation(s)
- Jin Woo Bok
- Department of Plant Pathology, University of Wisconsin-Madison, 882 Russell Labs, 1630 Linden Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kupfahl C, Heinekamp T, Geginat G, Ruppert T, Härtl A, Hof H, Brakhage AA. Deletion of the gliP gene of Aspergillus fumigatus results in loss of gliotoxin production but has no effect on virulence of the fungus in a low-dose mouse infection model. Mol Microbiol 2006; 62:292-302. [PMID: 16956378 DOI: 10.1111/j.1365-2958.2006.05373.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gliotoxin is a secondary metabolite produced by several fungi including the opportunistic human pathogen Aspergillus fumigatus. As gliotoxin exerts immunosuppressive effects in vitro and in vivo, a role as a virulence determinant in invasive aspergillosis has been discussed for a long time but evidence has not been provided until now. Here, by the use of different selection marker genes A. fumigatus knock-out strains were generated that are deficient for the non-ribosomal peptide synthetase GliP, the putative key enzyme of the gliotoxin biosynthesis. Deletion of the gliP gene resulted in loss of gliotoxin production, as analysed by high performance liquid chromatography and tandem mass spectrometry. No differences in morphology or growth kinetics between wild-type and gliP-deletion strains were observed. In vitro, the culture supernatant of the gliP-deficient strains showed a reduced cytotoxic effect on both macrophage-like cells and T cell lines. In a low-dose murine infection model of invasive aspergillosis, gliotoxin was detected in the lung and absent when mice were infected with the gliP deletion strain. However, gliP deletion strains showed no difference in virulence compared with the corresponding wild-type strains. Taken together, the non-ribosomal peptide synthetase GliP is essential for gliotoxin production in A. fumigatus. Gliotoxin is not required for pathogenicity of the fungus in immunocompromised mice, despite the fact that a reduced cytotoxicity of the culture supernatant of gliP deletion strains was demonstrated.
Collapse
Affiliation(s)
- Claudio Kupfahl
- Institute for Medical Microbiology and Hygiene, Faculty for Clinical Medicine Mannheim of the University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Grovel O, Kerzaon I, Petit K, Robiou Du Pont T, Pouchus YF. A new and rapid bioassay for the detection of gliotoxin and related epipolythiodioxopiperazines produced by fungi. J Microbiol Methods 2006; 66:286-93. [PMID: 16451813 DOI: 10.1016/j.mimet.2005.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/06/2005] [Accepted: 12/13/2005] [Indexed: 11/21/2022]
Abstract
Gliotoxin is an immunosuppressive cytotoxin produced by numerous environmental or pathogenic fungal species. For this reason, it is one of the mycotoxins which must be systematically searched for in samples for biological control. In this study, a new, rapid and sensitive method for detecting gliotoxin has been developed. This bioassay is based on the induction of morphological changes in cultured cells (human KB cell line) by gliotoxin. Interpretation of the assay can be carried out after 1 h of incubation, either by direct microscopic observation, or with an automated microplate-reader at 630 nm. The limit of detection is 18-20 ng of gliotoxin in the well, depending on the used observation method. A high degree of specificity of the detection is brought about by the ability of the reducing reactant dithiothreitol to inhibit the biological activities of epipolythiodioxopiperazines (ETPs), such as gliotoxin, by reducing their polysulfide bridge. The bioassay allows a rapid primary screening of samples and a semi-quantitative evaluation of the gliotoxin concentration in extracts. The method has been used to study the gliotoxin production by different fungal strains, allowing to highlight 3 strains of Aspergillus fumigatus producing gliotoxin in various extracts.
Collapse
Affiliation(s)
- Olivier Grovel
- S.M.A.B., Université de Nantes, Pôle Mer et Littoral - Faculté de Pharmacie, BP53508- 44035 Nantes cedex 01, France.
| | | | | | | | | |
Collapse
|
40
|
Reeves EP, Nagl M, O'Keeffe J, Kelly J, Kavanagh K. Effect of N-chlorotaurine on Aspergillus, with particular reference to destruction of secreted gliotoxin. J Med Microbiol 2006; 55:913-918. [PMID: 16772419 DOI: 10.1099/jmm.0.46405-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fungistatic and fungicidal activity ofN-chlorotaurine (NCT), a long-lived oxidant produced by stimulated neutrophils, was investigated. Physiological concentrations (75–100 μM) of NCT showed clear fungicidal activity against a range ofAspergillusisolates. Moreover, killing by NCT was significantly increased in the presence of ammonium chloride, explained by the formation of monochloramine by halogenation of ammonium. One clinical isolate ofAspergillus fumigatuswas characterized for the production of the immunosuppressive agent gliotoxin, and NCT was shown to cause destruction of gliotoxin, possibly via reduction of the disulphide bridge. Because of its endogenous nature and its high antifungal activity, NCT appears to be a good choice for topical treatment ofAspergillusinfections, and the results of this study further substantiate its therapeutic efficacy.
Collapse
Affiliation(s)
- Emer P Reeves
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | - Markus Nagl
- Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Joseph O'Keeffe
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | - Judy Kelly
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Medical Mycology Unit, National Institute for Cellular Biotechnology, Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| |
Collapse
|
41
|
Kupfahl C, Geginat G, Hof H. Gliotoxin-mediated suppression of innate and adaptive immune functions directed againstListeria monocytogenes. Med Mycol 2006; 44:591-9. [PMID: 17071552 DOI: 10.1080/13693780600815411] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Gliotoxin is an immunosuppressive apoptogenic mycotoxin produced by a number of fungi including important human pathogens as Aspergillus fumigatus. In order to elucidate the potential role of gliotoxin as immunoevasive fungal virulence factor we studied the effects of gliotoxin on the innate and adaptive T cell-mediated immune response against the facultatively intracellular bacterium Listeria monocytogenes. Gliotoxin induced apoptosis of bone marrow-derived macrophages, dendritic cells and CD8 T cells in a dose- and cell type-dependent manner. In vitro the apoptogenic effect of gliotoxin correlated with a strong reduction of TNF-alpha and interleukin (IL)-12 production by dendritic cells and bone marrow-derived macrophages infected with L. monocytogenes and in the case of infected macrophages also in reduced NO-production and recognition by L. monocytogenes-specific CD8 T cells. Further gliotoxin pre-treatment of CD8 T cells reduced target cell lysis. In vivo, treatment of mice with gliotoxin increased the bacterial burden during the innate and the adaptive phase of primary L. monocytogenes infection. Taken together, these results demonstrate the suppressive effects of gliotoxin on the innate and also on the adaptive T cell-mediated antilisterial immunity.
Collapse
Affiliation(s)
- C Kupfahl
- Institut für Medizinische Mikrobiologie und Hygiene, Fakultät für klinische Medizin Mannheim der Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | | | | |
Collapse
|
42
|
Gardiner DM, Waring P, Howlett BJ. The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology (Reading) 2005; 151:1021-1032. [PMID: 15817772 DOI: 10.1099/mic.0.27847-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epipolythiodioxopiperazines (ETPs) are toxic secondary metabolites made only by fungi. The best-known ETP is gliotoxin, which appears to be a virulence factor associated with invasive aspergillosis of immunocompromised patients. The toxicity of ETPs is due to the presence of a disulphide bridge, which can inactivate proteins via reaction with thiol groups, and to the generation of reactive oxygen species by redox cycling. With the availability of complete fungal genome sequences and efficient gene-disruption techniques for fungi, approaches are now feasible to delineate biosynthetic pathways for ETPs and to gain insights into the evolution of such gene clusters.
Collapse
Affiliation(s)
- Donald M Gardiner
- School of Botany, The University of Melbourne, Victoria 3010, Australia
| | - Paul Waring
- School of Chemistry, Australian National University, ACT 0200, Australia
| | - Barbara J Howlett
- School of Botany, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|