1
|
Williams B, López-García M, Gillard JJ, Laws TR, Lythe G, Carruthers J, Finnie T, Molina-París C. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity. Front Immunol 2021; 12:688257. [PMID: 34497601 PMCID: PMC8420810 DOI: 10.3389/fimmu.2021.688257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/01/2021] [Indexed: 12/02/2022] Open
Abstract
We present a stochastic mathematical model of the intracellular infection dynamics of Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide intracellularly. This can lead to the eventual death of the host cell and the extracellular release of bacterial progeny. Some macrophages successfully eliminate the intracellular bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is proposed, which includes the mechanism of spore germination and maturation of B. anthracis. The resulting model is used to explore the potential for heterogeneity in the spore germination rate, with the consideration of two extreme cases for the rate distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate Bayesian computation to calibrate our model using experimental measurements from in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of B. anthracis. The calibrated stochastic model allows us to compute the probability of rupture, mean time to rupture, and rupture size distribution, of a macrophage that has been infected with one spore. We also obtain the mean spore and bacterial loads over time for a population of cells, each assumed to be initially infected with a single spore. Our results support the existence of significant heterogeneity in the germination rate, with a subset of spores expected to germinate much later than the majority. Furthermore, in agreement with experimental evidence, our results suggest that most of the spores taken up by macrophages are likely to be eliminated by the host cell, but a few germinated spores may survive phagocytosis and lead to the death of the infected cell. Finally, we discuss how this stochastic modelling approach, together with dose-response data, allows us to quantify and predict individual infection risk following exposure.
Collapse
Affiliation(s)
- Bevelynn Williams
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Martín López-García
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Joseph J. Gillard
- CBR Division, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Thomas R. Laws
- CBR Division, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Grant Lythe
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
| | - Jonathan Carruthers
- Emergency Response Department, Public Health England, Salisbury, United Kingdom
| | - Thomas Finnie
- Emergency Response Department, Public Health England, Salisbury, United Kingdom
| | - Carmen Molina-París
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, United Kingdom
- T-6, Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
2
|
Chiu PJ, Rathod J, Hong YP, Tsai PJ, Hung YP, Ko WC, Chen JW, Paredes-Sabja D, Huang IH. Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe 2021; 70:102381. [PMID: 34082120 DOI: 10.1016/j.anaerobe.2021.102381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is a gram-positive, spore-forming anaerobic bacterium, and the leading cause of antibiotic-associated diarrhea worldwide. During C. difficile infection, spores germinate in the presence of bile acids into vegetative cells that subsequently colonize the large intestine and produce toxins. In this study, we demonstrated that C. difficile spores can universally adhere to, and be phagocytosed by, murine macrophages. Only spores from toxigenic strains were able to significantly stimulate the production of inflammatory cytokines by macrophages and subsequently induce significant cytotoxicity. Spores from the isogenic TcdA and TcdB double mutant induced significantly lower inflammatory cytokines and cytotoxicity in macrophages, and these activities were restored by pre-exposure of the spores to either toxins. These findings suggest that during sporulation, spores might be coated with C. difficile toxins from the environment, which could affect C. difficile pathogenesis in vivo.
Collapse
Affiliation(s)
- Po-Jung Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Hong
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA.
| |
Collapse
|
3
|
Immunogenicity and Protective Efficacy of a Non-Living Anthrax Vaccine versus a Live Spore Vaccine with Simultaneous Penicillin-G Treatment in Cattle. Vaccines (Basel) 2020; 8:vaccines8040595. [PMID: 33050254 PMCID: PMC7711464 DOI: 10.3390/vaccines8040595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
Sterne live spore vaccine (SLSV) is the current veterinary anthrax vaccine of choice. Unlike the non-living anthrax vaccine (NLAV) prototype, SLSV is incompatible with concurrent antibiotics use in an anthrax outbreak scenario. The NLAV candidates used in this study include a crude recombinant protective antigen (CrPA) and a purified recombinant protective antigen (PrPA) complemented by formalin-inactivated spores and Emulsigen-D®/Alhydrogel® adjuvants. Cattle were vaccinated twice (week 0 and 3) with NLAVs plus penicillin-G (Pen-G) treatment and compared to cattle vaccinated twice with SLSV alone and with Pen-G treatment. The immunogenicity was assessed using ELISA against rPA and FIS, toxin neutralisation assay (TNA) and opsonophagocytic assay. The protection was evaluated using an in vivo passive immunisation mouse model. The anti-rPA IgG titres for NLAVs plus Pen-G and SLSV without Pen-G treatment showed a significant increase, whereas the titres for SLSV plus Pen-G were insignificant compared to pre-vaccination values. A similar trend was measured for IgM, IgG1, and IgG2 and TNA titres (NT50) showed similar trends to anti-rPA titres across all vaccine groups. The anti-FIS IgG and IgM titres increased significantly for all vaccination groups at week 3 and 5 when compared to week 0. The spore opsonising capacity increased significantly in the NLAV vaccinated groups including Pen-G treatment and the SLSV without Pen-G but much less in the SLSV group with Pen-G treatment. Passive immunization of A/J mice challenged with a lethal dose of 34F2 spores indicated significant protective capacity of antibodies raised in the SLSV and the PrPA + FIS + adjuvants vaccinated and Pen-G treated groups but not for the NLAV with the CrPA + FIS + adjuvants and the SLSV vaccinated and Pen-G treated group. Our findings indicate that the PrPA + FIS + Emulsigen-D®/Alhydrogel® vaccine candidate may provide the same level of antibody responses and protective capacity as the SLSV. Advantageously, it can be used concurrently with Penicillin-G in an outbreak situation and as prophylactic treatment in feedlots and valuable breeding stocks.
Collapse
|
4
|
Majumder S, Das S, Kingston J, Shivakiran MS, Batra HV, Somani VK, Bhatnagar R. Functional characterization and evaluation of protective efficacy of EA752-862 monoclonal antibody against B. anthracis vegetative cell and spores. Med Microbiol Immunol 2019; 209:125-137. [PMID: 31811379 DOI: 10.1007/s00430-019-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 11/22/2019] [Indexed: 08/30/2023]
Abstract
The most promising means of controlling anthrax, a lethal zoonotic disease during the early infection stages, entail restricting the resilient infectious form, i.e., the spores from proliferating to replicating bacilli in the host. The extractible antigen (EA1), a major S-layer protein present on the vegetative cells and spores of Bacillus anthracis, is highly immunogenic and protects mice against lethal challenge upon immunization. In the present study, mice were immunized with r-EA1C, the C terminal crystallization domain of EA1, to generate a neutralizing monoclonal antibody EA752-862, that was evaluated for its anti-spore and anti-bacterial properties. The monoclonal antibody EA752-862 had a minimum inhibitory concentration of 0.08 mg/ml, was bactericidal at a concentration of 0.1 mg/ml and resulted in 100% survival of mice against challenge with B. anthracis vegetative cells. Bacterial cell lysis as observed by scanning electron microscopy and nucleic acid leakage assay could be attributed as a possible mechanism for the bactericidal property. The association of mAb EA752-862 with spores inhibits their subsequent germination to vegetative cells in vitro, enhances phagocytosis of the spores and killing of the vegetative cells within the macrophage, and subsequently resulted in 90% survival of mice upon B. anthracis Ames spore challenge. Therefore, owing to its anti-spore and bactericidal properties, the present study demonstrates mAb EA752-862 as an efficient neutralizing antibody that hinders the establishment of early infection before massive multiplication and toxin release takes place.
Collapse
Affiliation(s)
- Saugata Majumder
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Shreya Das
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Joseph Kingston
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India.
| | - M S Shivakiran
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - H V Batra
- Microbiology Division, Defence Food Research Laboratory, Mysore, 570011, India
| | - Vikas Kumar Somani
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
5
|
Majumder S, Das S, Somani VK, Makam SS, Kingston JJ, Bhatnagar R. A Bivalent Protein r-PAbxpB Comprising PA Domain IV and Exosporium Protein BxpB Confers Protection Against B. anthracis Spores and Toxin. Front Immunol 2019; 10:498. [PMID: 30941133 PMCID: PMC6433990 DOI: 10.3389/fimmu.2019.00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022] Open
Abstract
Anthrax vaccines primarily relying only on protective antigen (PA), the cell binding component in anthrax toxins provide incomplete protection when challenged with spores of virulent encapsulated Bacillus anthracis strains. Alternatively, formaldehyde inactivated spores (FIS) or recombinant spore components generate anti-spore immune responses that inhibit the early stages of infection and augment the PA protective efficacy. In the present study domain IV of PA was spliced with exosporium antigen BxpB via a flexible G4S linker to generate a single functional antigen r-PAbxpB that was further assessed for its protective efficacy against anthrax toxins and spore infection. Immunization of mice with r-PAbxpB elicited significantly high titer antibodies comprising IgG1:IgG2a isotypes in 1:1 ratio, balanced up-regulation of both Th1 (IL2, IL12, IFN-γ) and Th2 (IL4, IL5, IL10) cytokines and high frequencies of CD4+ and CD8+ T cell subsets. The anti-r-PAbxpB antibodies significantly enhanced spore phagocytosis, and killing within macrophages; inhibited their germination to vegetative cells and completely neutralized the anthrax toxins as evidenced by the 100% protection in passive transfer studies. Active immunization with r-PAbxpB provided 100 and 83.3% protection in mice I.P. challenged with 5 × LD100 LD of toxins and 5 × 104 cfu/ml Ames spores, respectively while the sham immunized group succumbed to infection in 48 h. Therefore, the ability of r-PAbxpB to generate protective immune responses against both spores and toxin and provide significant protection suggests it as an efficient vaccine candidate against B. anthracis infection.
Collapse
Affiliation(s)
- Saugata Majumder
- Defence Food Research Laboratory, Microbiology Division, Defence Research Development Organisation, Mysore, India
| | - Shreya Das
- Defence Food Research Laboratory, Microbiology Division, Defence Research Development Organisation, Mysore, India
| | | | - Shivakiran S Makam
- Defence Food Research Laboratory, Microbiology Division, Defence Research Development Organisation, Mysore, India
| | - Joseph J Kingston
- Defence Food Research Laboratory, Microbiology Division, Defence Research Development Organisation, Mysore, India
| | - Rakesh Bhatnagar
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Pantha B, Cross A, Lenhart S, Day J. Modeling the macrophage-anthrax spore interaction: Implications for early host-pathogen interactions. Math Biosci 2018; 305:18-28. [PMID: 30165059 DOI: 10.1016/j.mbs.2018.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/07/2018] [Accepted: 08/18/2018] [Indexed: 11/16/2022]
Abstract
Inhalational anthrax, caused by the gram positive bacteria Bacillus anthracis, is a potentially fatal form of anthrax infection. It is initiated after inhaled spores are deposited in the lung, phagocytosed by immune cells, and subsequently transported to nearby lymph nodes. Intracellular spores that successfully germinate and become vegetative bacteria can lyse their host cell and contribute to bacterial outgrowth and toxin production. To better understand the early disease dynamics of the host-pathogen interaction, we develop a mathematical model of ordinary differential Equations and estimate parameters using available data. The model which consists of two subsystems is designed in accordance with an in vitro experimental protocol in which macrophages were challenged with varying doses of spores at spore-to-macrophage ratios of 1:1, 1:2, 1:10, 1:20. Initial modeling results suggested the need to consider two distinct subpopulations of anthrax bacteria: newly germinated bacteria which cannot replicate immediately and fully vegetative bacteria that can. Additional modeling results provide insights into possible reasons why macrophage-induced killing is more effective at the 1:20 ratio.
Collapse
Affiliation(s)
- Buddhi Pantha
- Department of Science and Mathematics, Abraham Baldwin Agricultural College, Tifton, GA, USA.
| | - Alan Cross
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| | - Judy Day
- Department of Mathematics, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
7
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
8
|
Le Gars M, Haustant M, Klezovich-Bénard M, Paget C, Trottein F, Goossens PL, Tournier JN. Mechanisms of Invariant NKT Cell Activity in Restraining Bacillus anthracis Systemic Dissemination. THE JOURNAL OF IMMUNOLOGY 2016; 197:3225-3232. [PMID: 27605012 DOI: 10.4049/jimmunol.1600830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/12/2016] [Indexed: 12/31/2022]
Abstract
Exogenous activation of invariant NKT (iNKT) cells by the superagonist α-galactosylceramide (α-GalCer) can protect against cancer, autoimmune diseases, and infections. In the current study, we investigated the effect of α-GalCer against Bacillus anthracis infection, the agent of anthrax. Using an experimental model of s.c. B. anthracis infection (an encapsulated nontoxigenic strain), we show that concomitant administration of α-GalCer delayed B. anthracis systemic dissemination and prolonged mouse survival. Depletion of subcapsular sinus CD169-positive macrophages by clodronate-containing liposome was associated with a lack of iNKT cell activation in the draining lymph nodes (dLNs) and prevented the protective effect of α-GalCer on bacterial dissemination out of the dLNs. Production of IFN-γ triggered chemokine (C-C motif) ligand 3 synthesis and recruitment of neutrophils in the dLNs, leading to the restraint of B. anthracis dissemination. Our data highlight a novel immunological pathway leading to the control of B. anthracis infection, a finding that might lead to improved therapeutics based on iNKT cells.
Collapse
Affiliation(s)
- Mathieu Le Gars
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France;
| | - Michel Haustant
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Maria Klezovich-Bénard
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Christophe Paget
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, Universitaire de Lille, Centre Hospitalier Régional Universitaire de Lille-Institut Pasteur de Lille, 59000 Lille, France
| | - Pierre L Goossens
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France
| | - Jean-Nicolas Tournier
- Pathogénie des Toxi-Infections Bactériennes, Département de Microbiologie, Institut Pasteur, 75724 Paris, France.,Unité Interactions Hôte-Agents Pathogènes, Institut de Recherche Biomédicale des Armées, 91223 Brétigny-sur-Orge, France; and.,Ecole du Val-de-Grâce, 75005 Paris, France
| |
Collapse
|
9
|
Abstract
In some Bacillus species, including Bacillus subtilis, the coat is the outermost layer of the spore. In others, such as the Bacillus cereus family, there is an additional layer that envelops the coat, called the exosporium. In the case of Bacillus anthracis, a series of fine hair-like projections, also referred to as a "hairy" nap, extends from the exosporium basal layer. The exact role of the exosporium in B. anthracis, or for any of the Bacillus species possessing this structure, remains unclear. However, it has been assumed that the exosporium would play some role in infection for B. anthracis, because it is the outermost structure of the spore and would make initial contact with host and immune cells during infection. Therefore, the exosporium has been a topic of great interest, and over the past decade much progress has been made to understand its composition, biosynthesis, and potential roles. Several key aspects of this spore structure, however, are still debated and remain undetermined. Although insights have been gained on the interaction of exosporium with the host during infection, the exact role and significance of this complex structure remain to be determined. Furthermore, because the exosporium is a highly antigenic structure, future strategies for the next-generation anthrax vaccine should pursue its inclusion as a component to provide protection against the spore itself during the initial stages of anthrax.
Collapse
|
10
|
Maes E, Krzewinski F, Garenaux E, Lequette Y, Coddeville B, Trivelli X, Ronse A, Faille C, Guerardel Y. Glycosylation of BclA Glycoprotein from Bacillus cereus and Bacillus anthracis Exosporium Is Domain-specific. J Biol Chem 2016; 291:9666-77. [PMID: 26921321 DOI: 10.1074/jbc.m116.718171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 11/06/2022] Open
Abstract
The spores of the Bacillus cereus group (B. cereus, Bacillus anthracis, and Bacillus thuringiensis) are surrounded by a paracrystalline flexible yet resistant layer called exosporium that plays a major role in spore adhesion and virulence. The major constituent of its hairlike surface, the trimerized glycoprotein BclA, is attached to the basal layer through an N-terminal domain. It is then followed by a repetitive collagen-like neck bearing a globular head (C-terminal domain) that promotes glycoprotein trimerization. The collagen-like region of B. anthracis is known to be densely substituted by unusual O-glycans that may be used for developing species-specific diagnostics of B. anthracis spores and thus targeted therapeutic interventions. In the present study, we have explored the species and domain specificity of BclA glycosylation within the B. cereus group. First, we have established that the collagen-like regions of both B. anthracis and B. cereus are similarly substituted by short O-glycans that bear the species-specific deoxyhexose residues anthrose and the newly observed cereose, respectively. Second we have discovered that the C-terminal globular domains of BclA from both species are substituted by polysaccharide-like O-linked glycans whose structures are also species-specific. The presence of large carbohydrate polymers covering the surface of Bacillus spores may have a profound impact on the way that spores regulate their interactions with biotic and abiotic surfaces and represents potential new diagnostic targets.
Collapse
Affiliation(s)
- Emmanuel Maes
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| | - Frederic Krzewinski
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| | - Estelle Garenaux
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| | | | - Bernadette Coddeville
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| | - Xavier Trivelli
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| | | | | | - Yann Guerardel
- From the Université de Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France and
| |
Collapse
|
11
|
Ramachandran G, Gade P, Tsai P, Lu W, Kalvakolanu DV, Rosen GM, Cross AS. Potential role of autophagy in the bactericidal activity of human PMNs for Bacillus anthracis. Pathog Dis 2015; 73:ftv080. [PMID: 26424808 DOI: 10.1093/femspd/ftv080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, is acquired by mammalian hosts from the environment, as quiescent endospores. These endospores must germinate inside host cells, forming vegetative bacilli, before they can express the virulence factors that enable them to evade host defenses and disseminate throughout the body. While the role of macrophages and dendritic cells in this initial interaction has been established, the role of polymorphonuclear leukocytes (PMNs) has not been adequately defined. We discovered that while B. anthracis 34F2 Sterne endospores germinate poorly within non-activated human PMNs, these phagocytes exhibit rapid microbicidal activity toward the outgrown vegetative bacilli, independent of superoxide and nitric oxide. These findings suggest that a non-free radical pathway kills B. anthracis bacilli. We also find in PMNs an autophagic mechanism of bacterial killing based on the rapid induction of LC-3 conversion, beclin-1 expression, sequestosome 1 (SQSTM1) degradation and inhibition of bactericidal activity by the inhibitor, 3-methyladenine. These findings extend to PMNs an autophagic bactericidal mechanism previously described for other phagocytes.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Padmaja Gade
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pei Tsai
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Wuyuan Lu
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dhananjaya V Kalvakolanu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Rosen
- Department of Pharmaceutical Sciences, and the Center for EPR Imaging In Vivo Physiology, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alan S Cross
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Omotade TO, Bernhards RC, Klimko CP, Matthews ME, Hill AJ, Hunter MS, Webster WM, Bozue JA, Welkos SL, Cote CK. The impact of inducing germination of Bacillus anthracis and Bacillus thuringiensis spores on potential secondary decontamination strategies. J Appl Microbiol 2014; 117:1614-33. [PMID: 25196092 DOI: 10.1111/jam.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 12/22/2022]
Abstract
AIMS Decontamination and remediation of a site contaminated by the accidental or intentional release of fully virulent Bacillus anthracis spores are difficult, costly and potentially damaging to the environment. Development of novel decontamination strategies that have minimal environmental impacts remains a high priority. Although ungerminated spores are amongst the most resilient organisms known, once exposed to germinants, the germinating spores, in some cases, become susceptible to antimicrobial environments. We evaluated the concept that once germinated, B. anthracis spores would be less hazardous and significantly easier to remediate than ungerminated dormant spores. METHODS AND RESULTS Through in vitro germination and sensitivity assays, we demonstrated that upon germination, B. anthracis Ames spores and Bacillus thuringiensis Al Hakam spores (serving as a surrogate for B. anthracis) become susceptible to environmental stressors. The majority of these germinated B. anthracis and B. thuringiensis spores were nonviable after exposure to a defined minimal germination-inducing solution for prolonged periods of time. Additionally, we examined the impact of potential secondary disinfectant strategies including bleach, hydrogen peroxide, formaldehyde and artificial UV-A, UV-B and UV-C radiation, employed after a 60-min germination-induction step. Each secondary disinfectant employs a unique mechanism of killing; as a result, germination-induction strategies are better suited for some secondary disinfectants than others. CONCLUSIONS These results provide evidence that the deployment of an optimal combination strategy of germination-induction/secondary disinfection may be a promising aspect of wide-area decontamination following a B. anthracis contamination event. SIGNIFICANCE AND IMPACT OF THE STUDY By inducing spores to germinate, our data confirm that the resulting cells exhibit sensitivities that can be leveraged when paired with certain decontamination measures. This increased susceptibility could be exploited to devise more efficient and safe decontamination measures and may obviate the need for more stringent methods that are currently in place.
Collapse
Affiliation(s)
- T O Omotade
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Cizauskas CA, Bellan SE, Turner WC, Vance RE, Getz WM. Frequent and seasonally variable sublethal anthrax infections are accompanied by short-lived immunity in an endemic system. J Anim Ecol 2014; 83:1078-90. [PMID: 24499424 DOI: 10.1111/1365-2656.12207] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/25/2014] [Indexed: 01/07/2023]
Abstract
Few studies have examined host-pathogen interactions in wildlife from an immunological perspective, particularly in the context of seasonal and longitudinal dynamics. In addition, though most ecological immunology studies employ serological antibody assays, endpoint titre determination is usually based on subjective criteria and needs to be made more objective. Despite the fact that anthrax is an ancient and emerging zoonotic infectious disease found world-wide, its natural ecology is not well understood. In particular, little is known about the adaptive immune responses of wild herbivore hosts against Bacillus anthracis. Working in the natural anthrax system of Etosha National Park, Namibia, we collected 154 serum samples from plains zebra (Equus quagga), 21 from springbok (Antidorcas marsupialis) and 45 from African elephants (Loxodonta africana) over 2-3 years, resampling individuals when possible for seasonal and longitudinal comparisons. We used enzyme-linked immunosorbent assays to measure anti-anthrax antibody titres and developed three increasingly conservative models to determine endpoint titres with more rigourous, objective mensuration. Between 52 and 87% of zebra, 0-15% of springbok and 3-52% of elephants had measurable anti-anthrax antibody titres, depending on the model used. While the ability of elephants and springbok to mount anti-anthrax adaptive immune responses is still equivocal, our results indicate that zebra in ENP often survive sublethal anthrax infections, encounter most B. anthracis in the wet season and can partially booster their immunity to B. anthracis. Thus, rather than being solely a lethal disease, anthrax often occurs as a sublethal infection in some susceptible hosts. Though we found that adaptive immunity to anthrax wanes rapidly, subsequent and frequent sublethal B. anthracis infections cause maturation of anti-anthrax immunity. By triggering host immune responses, these common sublethal infections may act as immunomodulators and affect population dynamics through indirect immunological and co-infection effects. In addition, with our three endpoint titre models, we introduce more mensuration rigour into serological antibody assays, even under the often-restrictive conditions that come with adapting laboratory immunology methods to wild systems. With these methods, we identified significantly more zebras responding immunologically to anthrax than have previous studies using less comprehensive titre analyses.
Collapse
Affiliation(s)
- Carrie A Cizauskas
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA, USA.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Steven E Bellan
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA, USA.,Center for Computational Biology and Informatics, University of Texas at Austin, Austin, TX, USA
| | - Wendy C Turner
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA, USA.,Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | - Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Wayne M Getz
- Department of Environmental Science, Policy & Management, University of California, Berkeley, Berkeley, CA, USA.,School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
14
|
Rodenburg CM, McPherson SA, Turnbough CL, Dokland T. Cryo-EM analysis of the organization of BclA and BxpB in the Bacillus anthracis exosporium. J Struct Biol 2014; 186:181-7. [PMID: 24607412 DOI: 10.1016/j.jsb.2014.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 02/25/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Bacillus anthracis and other pathogenic Bacillus species form spores that are surrounded by an exosporium, a balloon-like layer that acts as the outer permeability barrier of the spore and contributes to spore survival and virulence. The exosporium consists of a hair-like nap and a paracrystalline basal layer. The filaments of the nap are comprised of trimers of the collagen-like glycoprotein BclA, while the basal layer contains approximately 20 different proteins. One of these proteins, BxpB, forms tight complexes with BclA and is required for attachment of essentially all BclA filaments to the basal layer. Another basal layer protein, ExsB, is required for the stable attachment of the exosporium to the spore. To determine the organization of BclA and BxpB within the exosporium, we used cryo-electron microscopy, cryo-sectioning and crystallographic analysis of negatively stained exosporium fragments to compare wildtype spores and mutant spores lacking BclA, BxpB or ExsB (ΔbclA, ΔbxpB and ΔexsB spores, respectively). The trimeric BclA filaments are attached to basal layer surface protrusions that appear to be trimers of BxpB. The protrusions interact with a crystalline layer of hexagonal subunits formed by other basal layer proteins. Although ΔbxpB spores retain the hexagonal subunits, the basal layer is not organized with crystalline order and lacks basal layer protrusions and most BclA filaments, indicating a central role for BxpB in exosporium organization.
Collapse
Affiliation(s)
- Cynthia M Rodenburg
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Charles L Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
15
|
Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:580-6. [PMID: 24554695 DOI: 10.1128/cvi.00019-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.
Collapse
|
16
|
Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909). Vaccine 2014; 32:6847-54. [PMID: 24530403 DOI: 10.1016/j.vaccine.2014.01.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 11/23/2022]
Abstract
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity.
Collapse
|
17
|
Alvarez Z, Abel-Santos E. Potential use of inhibitors of bacteria spore germination in the prophylactic treatment of anthrax andClostridium difficile-associated disease. Expert Rev Anti Infect Ther 2014; 5:783-92. [PMID: 17914913 DOI: 10.1586/14787210.5.5.783] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spore germination is the first step in establishing Bacillus and Clostridium infections. Germination is triggered by the binding of small molecules by the resting spore. Subsequently, the activated spore secretes dipicolinic acid and calcium, the spore core is rehydrated and spore structures are degraded. Inhibition of any of the germination-related events will prevent development to the vegetative stage. Inhibition of spore germination has been studied intensively in the prevention of food spoilage. In this perspective, we propose that similar approaches could be used in the prophylactic control of Bacillus anthracis and Clostridium difficile infections. Inhibition of B. anthracis spore germination could protect military and first-line emergency personnel at high risk for anthrax exposure. Inhibition of C. difficile could prevent human C. difficile-associated disease during antibiotic treatment of immunocompromised patients.
Collapse
Affiliation(s)
- Zadkiel Alvarez
- Department of Chemistry, University of Nevada, 4505 Maryland Parkway, Campus Box 4003, Las Vegas, NV 89154, USA.
| | | |
Collapse
|
18
|
Harris KM, Ramachandran G, Basu S, Rollins S, Mann D, Cross AS. The IL-23/Th17 axis is involved in the adaptive immune response to Bacillus anthracis in humans. Eur J Immunol 2014; 44:752-62. [PMID: 24643777 DOI: 10.1002/eji.201343784] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/10/2013] [Accepted: 11/27/2013] [Indexed: 01/09/2023]
Abstract
The neutralization of toxins is considered essential for protection against lethal infection with Bacillus anthracis (BA), a select agent and bioterrorism threat. However, toxin-neutralizing activity alone would not be expected to provide sterile immunity. Therefore, we hypothesized that the development of an adaptive immune response against BA is required for bacterial clearance. We found that human monocyte-derived dendritic cells (hDCs) kill germinated BA bacilli, but not nongerminated BA spores. hDCs produce IL-1β, IL-6, IL-12, and IL-23, and these cytokines are differentially regulated by germination-proficient versus germination-deficient BA spores. Moreover, the IL-23 response to BA spores is regulated by IL-1R-mediated signaling. hDCs infected with germinating BA spores stimulated autologous CD4(+) T cells to secrete IL-17A and IFN-γ in a contact-dependent and antigen-specific manner. The T-cell response to BA spores was not recapitulated by hDCs infected with germination-deficient BA spores, implying that the germination of spores into replicating bacilli triggers the proinflammatory cytokine response in hDCs. Our results provide primary evidence that hDCs can generate a BA-specific Th17 response, and help elucidate the mechanisms involved. These novel findings suggest that the IL-23/Th17 axis is involved in the immune response to anthrax in humans.
Collapse
Affiliation(s)
- Kristina M Harris
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
19
|
Omotade TO, Heffron JD, Klimko CP, Marchand CL, Miller LL, Halasahoris SA, Bozue JA, Welkos SL, Cote CK. D-cycloserine or similar physiochemical compounds may be uniquely suited for use in Bacillus anthracis spore decontamination strategies. J Appl Microbiol 2013; 115:1343-56. [PMID: 23927578 DOI: 10.1111/jam.12322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 02/06/2023]
Abstract
AIMS As observed in the aftermath of the anthrax attacks of 2001, decontamination and remediation of a site contaminated by the accidental or intentional release of Bacillus anthracis spores is difficult, costly and potentially damaging to the environment. The identification of novel strategies that neutralize the threat of spores while minimizing environmental damage remains a high priority. We investigated the efficacy of d-cycloserine (DCS), an antibiotic and inhibitor of the spore-associated enzyme (alanine racemase) responsible for converting l-alanine to d-alanine, as a spore germination enhancer and antimicrobial agent. METHODS AND RESULTS We characterized the impact of DCS exposure on both germinating spores and vegetative cells of fully virulent B. anthracis by evaluating spore germination kinetics, determining the minimum inhibitory concentrations (MICs) required to affect growth of the bacteria and performing macrophage viability assays. DCS enhanced germination induced by l-alanine and also efficiently killed the newly germinated spores. Furthermore, DCS proved nontoxic to macrophages at concentrations that provided protection from the killing effects of spores. Similar tests were conducted with Bacillus thuringiensis (subspecies kurstaki and Al Hakam) to determine its potential as a possible surrogate for B. anthracis field trials. Bacillus thuringiensis spores responded in a similar manner to B. anthracis spores when exposed to DCS. CONCLUSIONS These results further support that DCS augments the germination response of spores in the presence of l-alanine but also reveal that DCS is bactericidal towards germinating spores. SIGNIFICANCE AND IMPACT OF THE STUDY DCS (or similar compounds) may be uniquely suited for use as part of decontamination strategies by augmenting the induction of spore germination and then rendering the germinated spores nonviable.
Collapse
Affiliation(s)
- T O Omotade
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Toxin inhibition of antimicrobial factors induced by Bacillus anthracis peptidoglycan in human blood. Infect Immun 2013; 81:3693-702. [PMID: 23876807 DOI: 10.1128/iai.00709-13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we describe the capacity of Bacillus anthracis peptidoglycan (BaPGN) to trigger an antimicrobial response in human white blood cells (WBCs). Analysis of freshly isolated human blood cells found that monocytes and neutrophils, but not B and T cells, were highly responsive to BaPGN and produced a variety of cytokines and chemokines. This BaPGN-induced response was suppressed by anthrax lethal toxin (LT) and edema toxin (ET), with the most pronounced effect on human monocytes, and this corresponded with the higher levels of anthrax toxin receptor 1 (ANTXR1) in these cells than in neutrophils. The supernatant from BaPGN-treated cells altered the growth of B. anthracis Sterne, and this effect was blocked by LT, but not by ET. An FtsX mutant of B. anthracis known to be resistant to the antimicrobial effects of interferon-inducible Glu-Leu-Arg (ELR)-negative CXC chemokines was not affected by the BaPGN-induced antimicrobial effects. Collectively, these findings describe a system in which BaPGN triggers expression of antimicrobial factors in human WBCs and reveal a distinctive role, not shared with ET, in LT's capacity to suppress this response.
Collapse
|
21
|
Jenkins SA, Xu Y. Characterization of Bacillus anthracis persistence in vivo. PLoS One 2013; 8:e66177. [PMID: 23750280 PMCID: PMC3672131 DOI: 10.1371/journal.pone.0066177] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 05/07/2013] [Indexed: 02/07/2023] Open
Abstract
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.
Collapse
Affiliation(s)
- Sarah A. Jenkins
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Yi Xu
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Sinha K, Bhatnagar R. Recombinant GroEL enhances protective antigen-mediated protection against Bacillus anthracis spore challenge. Med Microbiol Immunol 2012; 202:153-65. [PMID: 23263010 DOI: 10.1007/s00430-012-0280-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 11/27/2012] [Indexed: 11/27/2022]
Abstract
The fatal inhalation infection caused by Bacillus anthracis results from a complex pathogenic cycle involving release of toxins by bacteria that germinate from spores. Currently available vaccines against anthrax consist of protective antigen (PA), one of the anthrax toxin components. However, these PA-based vaccines are only partially protective against spore challenge in mice. This shows that exclusive elicitation of high anti-PA titer does not directly correlate with protection. Here, we demonstrate that inclusion of GroEL of B. anthracis with PA elicits enhanced protection against anthrax spore challenge in mice. GroEL was included as it has been reported to be present both on the exosporium and in the secretome in addition to the cell surface of B. anthracis. It has also been found protective against other pathogens. In the present study, immunization with GroEL alone was also potent enough to induce high humoral and cell-mediated response and significantly prolonged the mean time to death in spore-challenged mice. As a surface antigen, opsonization of spores with anti-GroEL IgG showed increased uptake of treated spores and therefore accelerated rate of spore destruction by phagocytic cells leading to the protection of mice. We found that GroEL was able to enhance nitric oxide release from lymphocytes and also reduce bacterial load from the organs, probably through the activation of macrophages and over-expression of certain innate immunity receptors. Therefore, the present study emphasizes that GroEL is an effective immunomodulator against B. anthracis infection.
Collapse
Affiliation(s)
- Kanchan Sinha
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.
| | | |
Collapse
|
23
|
Corre JP, Piris-Gimenez A, Moya-Nilges M, Jouvion G, Fouet A, Glomski IJ, Mock M, Sirard JC, Goossens PL. In vivo germination of Bacillus anthracis spores during murine cutaneous infection. J Infect Dis 2012; 207:450-7. [PMID: 23148288 DOI: 10.1093/infdis/jis686] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Germination is a key step for successful Bacillus anthracis colonization and systemic dissemination. Few data are available on spore germination in vivo, and the necessity of spore and host cell interactions to initiate germination is unclear. METHODS To investigate the early interactions between B. anthracis spores and cutaneous tissue, spores were inoculated in an intraperitoneal cell-free device in guinea pigs or into the pinna of mice. Germination and bacterial growth were analyzed through colony-forming unit enumeration and electron microscopy. RESULTS In the guinea pig model, germination occurred in vivo in the absence of cell contact. Similarly, in the mouse ear, germination started within 15 minutes after inoculation, and germinating spores were found in the absence of surrounding cells. Germination was not observed in macrophage-rich draining lymph nodes, liver, and spleen. Edema and lethal toxin production were not required for germination, as a toxin-deficient strain was as effective as a Sterne-like strain. B. anthracis growth was locally controlled for 6 hours. CONCLUSIONS Spore germination involving no cell interactions can occur in vivo, suggesting that diffusible germinants or other signals appear sufficient. Different host tissues display drastic differences in germination-triggering capacity. Initial control of bacterial growth suggests a therapeutic means to exploit host innate defenses to hinder B. anthracis colonization.
Collapse
Affiliation(s)
- Jean-Philippe Corre
- Toxines et Pathogénie Bactériennes, Pathogénie des Toxi-Infections Bactériennes, Centre National de la Recherche Scientifique, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Paredes-Sabja D, Cofre-Araneda G, Brito-Silva C, Pizarro-Guajardo M, Sarker MR. Clostridium difficile spore-macrophage interactions: spore survival. PLoS One 2012; 7:e43635. [PMID: 22952726 PMCID: PMC3428350 DOI: 10.1371/journal.pone.0043635] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/24/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clostridium difficile is the main cause of nosocomial infections including antibiotic associated diarrhea, pseudomembranous colitis and toxic megacolon. During the course of Clostridium difficile infections (CDI), C. difficile undergoes sporulation and releases spores to the colonic environment. The elevated relapse rates of CDI suggest that C. difficile spores has a mechanism(s) to efficiently persist in the host colonic environment. METHODOLOGY/PRINCIPAL FINDINGS In this work, we provide evidence that C. difficile spores are well suited to survive the host's innate immune system. Electron microscopy results show that C. difficile spores are recognized by discrete patchy regions on the surface of macrophage Raw 264.7 cells, and phagocytosis was actin polymerization dependent. Fluorescence microscopy results show that >80% of Raw 264.7 cells had at least one C. difficile spore adhered, and that ∼60% of C. difficile spores were phagocytosed by Raw 264.7 cells. Strikingly, presence of complement decreased Raw 264.7 cells' ability to phagocytose C. difficile spores. Due to the ability of C. difficile spores to remain dormant inside Raw 264.7 cells, they were able to survive up to 72 h of macrophage infection. Interestingly, transmission electron micrographs showed interactions between the surface proteins of C. difficile spores and the phagosome membrane of Raw 264.7 cells. In addition, infection of Raw 264.7 cells with C. difficile spores for 48 h produced significant Raw 264.7 cell death as demonstrated by trypan blue assay, and nuclei staining by ethidium homodimer-1. CONCLUSIONS/SIGNIFICANCE These results demonstrate that despite efficient recognition and phagocytosis of C. difficile spores by Raw 264.7 cells, spores remain dormant and are able to survive and produce cytotoxic effects on Raw 264.7 cells.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | |
Collapse
|
25
|
Bacillus anthracis factors for phagosomal escape. Toxins (Basel) 2012; 4:536-53. [PMID: 22852067 PMCID: PMC3407891 DOI: 10.3390/toxins4070536] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 12/27/2022] Open
Abstract
The mechanism of phagosome escape by intracellular pathogens is an important step in the infectious cycle. During the establishment of anthrax, Bacillus anthracis undergoes a transient intracellular phase in which spores are engulfed by local phagocytes. Spores germinate inside phagosomes and grow to vegetative bacilli, which emerge from their resident intracellular compartments, replicate and eventually exit from the plasma membrane. During germination, B. anthracis secretes multiple factors that can help its resistance to the phagocytes. Here the possible role of B. anthracis toxins, phospholipases, antioxidant enzymes and capsules in the phagosomal escape and survival, is analyzed and compared with that of factors of other microbial pathogens involved in the same type of process.
Collapse
|
26
|
An IFN-γ-stimulated ATF6-C/EBP-β-signaling pathway critical for the expression of Death Associated Protein Kinase 1 and induction of autophagy. Proc Natl Acad Sci U S A 2012; 109:10316-21. [PMID: 22699507 DOI: 10.1073/pnas.1119273109] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The IFN family of cytokines operates a frontline defense against pathogens and neoplastic cells in vivo by controlling the expression of several genes. The death-associated protein kinase 1 (DAPK1), an IFN-γ-induced enzyme, controls cell cycle, apoptosis, autophagy, and tumor metastasis, and its expression is frequently down-regulated in a number of human tumors. Although the biochemical action of DAPK1 is well understood, mechanisms that regulate its expression are unclear. Previously, we have shown that transcription factor C/EBP-β is required for the basal and IFN-γ-induced expression of DAPK1. Here, we show that ATF6, an ER stress-induced transcription factor, interacts with C/EBP-β in an IFN-stimulated manner and is obligatory for Dapk1 expression. IFN-stimulated proteolytic processing of ATF6 and ERK1/2-mediated phosphorylation of C/EBP-β are necessary for these interactions. More importantly, IFN-γ failed to activate autophagic response in cells lacking either ATF6 or C/EBP-β. Consistent with these observations, the Atf6(-/-) mice were highly susceptible to lethal bacterial infections compared with the wild-type mice. These studies not only unravel an IFN signaling pathway that controls cell growth and antibacterial defense, but also expand the role of ATF6 beyond ER stress.
Collapse
|
27
|
Bensman MD, Mackie RS, Minter ZA, Gutting BW. Effect of animal sera on Bacillus anthracis Sterne spore germination and vegetative cell growth. J Appl Microbiol 2012; 113:276-83. [PMID: 22515644 DOI: 10.1111/j.1365-2672.2012.05314.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS The aims of this work were to investigate the effects of sera on B. anthracis Sterne germination and growth. Sera examined included human, monkey and rabbit sera, as well as sera from eight other species. METHODS AND RESULTS Standard dilution plate assay (with and without heat kill) was used as a measure of germination, and spectroscopy was used to measure growth. In addition, a Coulter Counter particle counter was used to monitor germination and growth based on bacterial size. Spores germinated best in foetal bovine and monkey sera, moderately with human sera and showed limited germination in the presence of rabbit or rat sera. Vegetative bacteria grew best in foetal bovine sera and moderately in rabbit sera. Human and monkey sera supported little growth of vegetative bacteria. CONCLUSION The data suggested sera can have a significant impact on germination and growth of Sterne bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY These data should be considered when conducting in vitro cell culture studies and may aid in interpreting in vivo infection studies.
Collapse
Affiliation(s)
- M D Bensman
- Dahlgren Division, CBR Concepts and Experimentation Branch-Z21, Naval Surface Warfare Center, Dahlgren, VA, USA
| | | | | | | |
Collapse
|
28
|
Paredes-Sabja D, Sarker MR. Adherence of Clostridium difficile spores to Caco-2 cells in culture. J Med Microbiol 2012; 61:1208-1218. [PMID: 22595914 DOI: 10.1099/jmm.0.043687-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile is the causative agent of the majority of antibiotic associated diarrhoea cases. C. difficile spores are recognized as the persistent and infectious morphotype as well as the vehicle of transmission of CDI. However, there is a lack of knowledge on how C. difficile spores interact with the host's epithelial surfaces. In this context, we have characterized the ability of C. difficile spores to adhere to human Caco-2 cells. Despite the similarities in spore-surface hydrophobicity between spores of C. difficile and Clostridium perfringens (another enteric pathogen that also sporulates in the gut), spores of C. difficile adhere better to Caco-2 cells. Adherence to Caco-2 cells was significantly reduced when C. difficile spores were treated with trypsin. Sonication of C. difficile spores altered the ultrastructure of the outermost exosporium-like structure, releasing two protein species of ~40 kDa and significantly reduced spore hydrophobicity and adherence to Caco-2 cells. Using a trifunctional cross-linker, we were able to co-immunoprecipitate four protein species from the surface of Caco-2 cells. In conclusion, this study provides evidence that C. difficile spores adhere to human intestinal enterocyte-like cells through spore- and enterocytic-surface-specific ligand(s) and/or receptor(s).
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA.,Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mahfuzur R Sarker
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.,Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
29
|
Tonry JH, McNichol BA, Ramarao N, Chertow DS, Kim KS, Stibitz S, Schneewind O, Kashanchi F, Bailey CL, Popov S, Chung MC. Bacillus anthracis protease InhA regulates BslA-mediated adhesion in human endothelial cells. Cell Microbiol 2012; 14:1219-30. [PMID: 22452315 DOI: 10.1111/j.1462-5822.2012.01791.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To achieve widespread dissemination in the host, Bacillus anthracis cells regulate their attachment to host endothelium during infection. Previous studies identified BslA (Bacillus anthracis S-layer Protein A), a virulence factor of B. anthracis, as necessary and sufficient for adhesion of vegetative cells to human endothelial cells. While some factors have been identified, bacteria-specific contributions to BslA mediated adhesion remain unclear. Using the attenuated vaccine Sterne 7702 strain of B. anthracis, we tested the hypothesis that InhA (immune inhibitor A), a B. anthracis protease, regulates BslA levels affecting the bacteria's ability to bind to endothelium. To test this, a combination of inhA mutant and complementation analysis in adhesion and invasion assays, Western blot and InhA inhibitor assays were employed. Results show InhA downregulates BslA activity reducing B. anthracis adhesion and invasion in human brain endothelial cells. BslA protein levels in ΔinhA bacteria were significantly higher than wild-type and complemented strains showing InhA levels and BslA expression are inversely related. BslA was sensitive to purified InhA degradation in a concentration- and time-dependent manner. Taken together these data support the role of InhA regulation of BslA-mediated vegetative cell adhesion and invasion.
Collapse
Affiliation(s)
- Jessica H Tonry
- Department of Biosciences and Biomedical Research Laboratory, George Mason University, 10650 Pyramid Place, Manassas, Virginia 20110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Updating perspectives on the initiation of Bacillus anthracis growth and dissemination through its host. Infect Immun 2012; 80:1626-33. [PMID: 22354031 DOI: 10.1128/iai.06061-11] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since 1957, it has been proposed that the dissemination of inhalational anthrax required spores to be transported from the lumena of the lungs into the lymphatic system. In 2002, this idea was expanded to state that alveolar macrophages act as a "Trojan horse" capable of transporting spores across the lung epithelium into draining mediastinal lymph nodes. Since then, the Trojan horse model of dissemination has become the most widely cited model of inhalational infection as well as the focus of the majority of studies aiming to understand events initiating inhalational anthrax infections. However, recent observations derived from animal models of Bacillus anthracis infection are inconsistent with aspects of the Trojan horse model and imply that bacterial dissemination patterns during inhalational infection may be more similar to the cutaneous and gastrointestinal forms than previously thought. In light of these studies, it is of significant importance to reassess the mechanisms of inhalational anthrax dissemination, since it is this form of anthrax that is most lethal and of greatest concern when B. anthracis is weaponized. Here we propose a new "jailbreak" model of B. anthracis dissemination which applies to the dissemination of all common manifestations of the disease anthrax. The proposed model impacts the field by deemphasizing the role of host cells as conduits for dissemination and increasing the role of phagocytes as central players in innate defenses, while moving the focus toward interactions between B. anthracis and lymphoid and epithelial tissues.
Collapse
|
31
|
Klezovich-Bénard M, Corre JP, Jusforgues-Saklani H, Fiole D, Burjek N, Tournier JN, Goossens PL. Mechanisms of NK cell-macrophage Bacillus anthracis crosstalk: a balance between stimulation by spores and differential disruption by toxins. PLoS Pathog 2012; 8:e1002481. [PMID: 22253596 PMCID: PMC3257302 DOI: 10.1371/journal.ppat.1002481] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023] Open
Abstract
NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms. NK cells are important immune effectors that perform a surveillance task and react to transformed, stressed, and virally infected cells. They represent a first-line defence against cancer and pathogen invasion. Different pathogens trigger distinct NK-cell activation pathways. The Bacillus anthracis spore is the highly resistant form that enters the host and provokes anthrax. This microbe kills through a combination of acute bacterial infection and devastating toxemia. In the present study, we characterise the crosstalk between NK cells and spores, as well as the strategies used by B. anthracis to evade initial control mechanisms and impact anthrax pathogenesis. Our findings exemplify the spores' property to efficiently drive a high production of IFN-γ by NK cells, as well as the complex pathways used for activation which require both cytokine and cellular signaling. B. anthracis subverts this response through its toxins by paralysing essential NK cell functions. Furthermore, edema toxin from B. anthracis blocks natural cytotoxicity without affecting IFN-γ secretion. The CyaA toxin of Bordetella pertussis possesses the same enzymatic activity and has a similar effect. The high efficiency of these toxins in blocking cytotoxicity in vivo implies possible exploitation of their subverting activity to modulate excessive cytotoxic responses in immunopathological diseases.
Collapse
MESH Headings
- Animals
- Bacillus anthracis/immunology
- Bacterial Toxins/pharmacology
- Cells, Cultured
- Female
- Homeostasis/drug effects
- Homeostasis/immunology
- Immunity, Cellular/drug effects
- Immunity, Cellular/immunology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Macrophage Activation/drug effects
- Macrophage Activation/immunology
- Macrophages/drug effects
- Macrophages/immunology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Receptor Cross-Talk/drug effects
- Receptor Cross-Talk/immunology
- Spores, Bacterial/immunology
- Spores, Bacterial/physiology
Collapse
Affiliation(s)
- Maria Klezovich-Bénard
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Philippe Corre
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | | | - Daniel Fiole
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- Laboratoire Interdisciplinaire de Physique, UMR 5588 CNRS/Université Joseph Fourier, St-Martin-d'Hères, France
| | - Nick Burjek
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
| | - Jean-Nicolas Tournier
- Unité Interactions Hôte-Agents Pathogènes, Département de Microbiologie, Institut de Recherche Biomédicale des Armées, La Tronche, France
- École du Val-de-Grâce, Paris, France
| | - Pierre L. Goossens
- Laboratoire Pathogénie et Toxi-Infections Bactériennes, Institut Pasteur, Paris, France
- CNRS URA 2172, Paris, France
- * E-mail:
| |
Collapse
|
32
|
Cote CK, Welkos SL, Bozue J. Key aspects of the molecular and cellular basis of inhalational anthrax. Microbes Infect 2011; 13:1146-55. [DOI: 10.1016/j.micinf.2011.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 01/25/2023]
|
33
|
Drygiannakis I, Ernst PB, Lowe D, Glomski IJ. Immunological alterations mediated by adenosine during host-microbial interactions. Immunol Res 2011; 50:69-77. [PMID: 21479929 DOI: 10.1007/s12026-011-8207-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine accumulates in inflammation and ischemia but it is more than an end-product of ATP catabolism. Signaling through different receptors with distinct, cell-specific cytoplasmic pathways, adenosine is now recognized as an inducible switch that regulates the immune system. By acting through the A(2A)AR, adenosine shapes T cell function, largely by conferring an anti-inflammatory tone on effector Th cells (Teff) and natural killer (NK)T cells. In contrast, both the A(2A)AR and A(2B)AR are expressed by antigen-presenting cells (APC) which have been shown to regulate innate responses and the transition to adaptive immunity. There is also emerging evidence that adenosine production is one mechanism that allows some pathogens as well as neoplasms to evade host defenses. This review discusses the immunoregulatory functions of adenosine and some of the interactions it may have in regulating host-microbial interactions.
Collapse
Affiliation(s)
- Ioannis Drygiannakis
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Virginia, Charlottesville, 22908-0708, USA
| | | | | | | |
Collapse
|
34
|
Chitlaru T, Altboum Z, Reuveny S, Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol Rev 2011; 239:221-36. [PMID: 21198675 DOI: 10.1111/j.1600-065x.2010.00969.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lethal anthrax disease is caused by spores of the gram-positive Bacillus anthracis, a member of the cereus group of bacilli. Although the disease is very rare in the Western world, development of anthrax countermeasures gains increasing attention due to the potential use of B. anthracis spores as a bio-terror weapon. Protective antigen (PA), the non-toxic subunit of the bacterial secreted exotoxin, fulfills the role of recognizing a specific receptor and mediating the entry of the toxin into the host target cells. PA elicits a protective immune response and represents the basis for all current anthrax vaccines. Anti-PA neutralizing antibodies are useful correlates for protection and for vaccine efficacy evaluation. Post exposure anti-toxemic and anti-bacteremic prophylactic treatment of anthrax requires prolonged antibiotic administration. Shorter efficient postexposure treatments may require active or passive immunization, in addition to antibiotics. Although anthrax is acknowledged as a toxinogenic disease, additional factors, other than the bacterial toxin, may be involved in the virulence of B. anthracis and may be needed for the long-lasting protection conferred by PA immunization. The search for such novel factors is the focus of several high throughput genomic and proteomic studies that are already leading to identification of novel targets for therapeutics, for vaccine candidates, as well as biomarkers for detection and diagnosis.
Collapse
Affiliation(s)
- Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | | | | | | |
Collapse
|
35
|
Proteins involved in formation of the outermost layer of Bacillus subtilis spores. J Bacteriol 2011; 193:4075-80. [PMID: 21665972 DOI: 10.1128/jb.05310-11] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate the outermost structure of the Bacillus subtilis spore, we analyzed the accessibility of antibodies to proteins on spores of B. subtilis. Anti-green fluorescent protein (GFP) antibodies efficiently accessed GFP fused to CgeA or CotZ, which were previously assigned to the outermost layer termed the spore crust. However, anti-GFP antibodies did not bind to spores of strains expressing GFP fused to 14 outer coat, inner coat, or cortex proteins. Anti-CgeA antibodies bound to spores of wild-type and CgeA-GFP strains but not cgeA mutant spores. These results suggest that the spore crust covers the spore coat and is the externally exposed, outermost layer of the B. subtilis spore. We found that CotZ was essential for the spore crust to surround the spore but not for spore coat formation, indicating that CotZ plays a critical role in spore crust formation. In addition, we found that CotY-GFP was exposed on the surface of the spore, suggesting that CotY is an additional component of the spore crust. Moreover, the localization of CotY-GFP around the spore depended on CotZ, and CotY and CotZ depended on each other for spore assembly. Furthermore, a disruption of cotW affected the assembly of CotV-GFP, and a disruption of cotX affected the assembly of both CotV-GFP and CgeA-GFP. These results suggest that cgeA and genes in the cotVWXYZ cluster are involved in spore crust formation.
Collapse
|
36
|
Bacillus anthracis spore interactions with mammalian cells: relationship between germination state and the outcome of in vitro. BMC Microbiol 2011; 11:46. [PMID: 21356113 PMCID: PMC3060849 DOI: 10.1186/1471-2180-11-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/28/2011] [Indexed: 11/10/2022] Open
Abstract
Background During inhalational anthrax, internalization of Bacillus anthracis spores by host cells within the lung is believed to be a key step for initiating the transition from the localized to disseminated stages of infection. Despite compelling in vivo evidence that spores remain dormant within the bronchioalveolar spaces of the lungs, and germinate only after uptake into host cells, most in vitro studies of infection have been conducted under conditions that promote rapid germination of spores within the culture medium. Results Using an in vitro model of infection, we evaluated the influence of the germination state of B. anthracis spores, as controlled by defined culture conditions, on the outcome of infection. Spores prepared from B. anthracis Sterne 7702 germinated in a variety of common cell culture media supplemented with fetal bovine serum (FBS) while, in the absence of FBS, germination was strictly dependent on medium composition. RAW264.7 macrophage-like cells internalized spores to the same extent in either germinating or non-germinating media. However, significantly more viable, intracellular B. anthracis were recovered from cells infected under non-germinating conditions compared to germinating conditions. At the same time, RAW264.7 cells demonstrated a significant loss in viability when infected under non-germinating conditions. Conclusions These results suggest that the outcome of host cell infection is sensitive to the germination state of spores at the time of uptake. Moreover, this study demonstrates the efficacy of studying B. anthracis spore infection of host cells within a defined, non-germinating, in vitro environment.
Collapse
|
37
|
Thompson BM, Binkley JM, Stewart GC. Current physical and SDS extraction methods do not efficiently remove exosporium proteins from Bacillus anthracis spores. J Microbiol Methods 2011; 85:143-8. [PMID: 21338631 DOI: 10.1016/j.mimet.2011.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Biochemical studies of the outermost spore layers of the Bacillus cereus family are hindered by difficulties in efficient dispersal of the external spore layers and difficulties in dissociating protein complexes that comprise the exosporium layer. Detergent and physical methods have been utilized to disrupt the exosporium layer. Herein we compare commonly used SDS extraction buffers used to extract spore proteins and demonstrate the incomplete extractability of the exosporium layer by these methods. Sonication and bead beating methods for exosporium layer removal were also examined. A combination of genetic and physical methods is the most effective for isolating proteins found in the spore exosporium.
Collapse
Affiliation(s)
- Brian M Thompson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
38
|
Stranzl GR, Santelli E, Bankston LA, La Clair C, Bobkov A, Schwarzenbacher R, Godzik A, Perego M, Grynberg M, Liddington RC. Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. J Biol Chem 2011; 286:8448-8458. [PMID: 21216948 DOI: 10.1074/jbc.m110.207126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.
Collapse
Affiliation(s)
- Gudrun R Stranzl
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eugenio Santelli
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Laurie A Bankston
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Chandra La Clair
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Andrey Bobkov
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert Schwarzenbacher
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Adam Godzik
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Marta Perego
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Marcin Grynberg
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,; the Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Robert C Liddington
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,.
| |
Collapse
|
39
|
Lee GS, Choi JY, Choi YJ, Yim DS, Kang TJ, Cheong JH. The Wound Healing Effect of Hydnocarpi Semen Extract on Ulcer in Diabetic Mice. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.3.329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
40
|
Characterization of the enzymes encoded by the anthrose biosynthetic operon of Bacillus anthracis. J Bacteriol 2010; 192:5053-62. [PMID: 20675481 DOI: 10.1128/jb.00568-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus anthracis spores, the etiological agents of anthrax, possess a loosely fitting outer layer called the exosporium that is composed of a basal layer and an external hairlike nap. The filaments of the nap are formed by trimers of the collagenlike glycoprotein BclA. Multiple pentasaccharide and trisaccharide side chains are O linked to BclA. The nonreducing terminal residue of the pentasaccharide side chain is the unusual sugar anthrose. A plausible biosynthetic pathway for anthrose biosynthesis has been proposed, and an antABCD operon encoding four putative anthrose biosynthetic enzymes has been identified. In this study, we genetically and biochemically characterized the activities of these enzymes. We also used mutant B. anthracis strains to determine the effects on BclA glycosylation of individually inactivating the genes of the anthrose operon. The inactivation of antA resulted in the appearance of BclA pentasaccharides containing anthrose analogs possessing shorter side chains linked to the amino group of the sugar. The inactivation of antB resulted in BclA being replaced with only trisaccharides, suggesting that the enzyme encoded by the gene is a dTDP-β-L-rhamnose α-1,3-L-rhamnosyl transferase that attaches the fourth residue of the pentasaccharide side chain. The inactivation of antC and antD resulted in the disappearance of BclA pentasaccharides and the appearance of a tetrasaccharide lacking anthrose. These phenotypes are entirely consistent with the proposed roles for the antABCD-encoded enzymes in anthrose biosynthesis. Purified AntA was then shown to exhibit β-methylcrotonyl-coenzyme A (CoA) hydratase activity, as we predicted. Similarly, we confirmed that purified AntC had aminotransferase activity and that purified AntD displayed N-acyltransferase activity.
Collapse
|
41
|
Bacillus anthracis spore entry into epithelial cells is an actin-dependent process requiring c-Src and PI3K. PLoS One 2010; 5:e11665. [PMID: 20652027 PMCID: PMC2907395 DOI: 10.1371/journal.pone.0011665] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/26/2010] [Indexed: 11/19/2022] Open
Abstract
Dissemination of Bacillus anthracis from the respiratory mucosa is a critical step in the establishment of inhalational anthrax. Recent in vitro and in vivo studies indicated that this organism was able to penetrate the lung epithelium by directly entering into epithelial cells of the lung; however the molecular details of B. anthracis breaching the epithelium were lacking. Here, using a combination of pharmacological inhibitors, dominant negative mutants, and colocalization experiments, we demonstrated that internalization of spores by epithelial cells was actin-dependent and was mediated by the Rho-family GTPase Cdc42 but not RhoA or Rac1. Phosphatidylinositol 3-kinase (PI3K) activity was also required as indicated by the inhibitory effects of PI3K inhibitors, wortmannin and LY294002, and a PI3K dominant negative (DN) mutant Deltap85alpha. In addition, spore entry into epithelial cells (but not into macrophages) required the activity of Src as indicated by the inhibitory effect of Src family kinase (SFK) inhibitors, PP2 and SU6656, and specific siRNA knockdown of Src. Enrichment of PI3K and F-actin around spore attachment sites was observed and was significantly reduced by treatment with SFK and PI3K inhibitors, respectively. Moreover, B. anthracis translocation through cultured lung epithelial cells was significantly impaired by SFK inhibitors, suggesting that this signaling pathway is important for bacterial dissemination. The effect of the inhibitor on dissemination in vivo was then evaluated. SU6656 treatment of mice significantly reduced B. anthracis dissemination from the lung to distal organs and prolonged the median survival time of mice compared to the untreated control group. Together these results described a signaling pathway specifically required for spore entry into epithelial cells and provided evidence suggesting that this pathway is important for dissemination and virulence in vivo.
Collapse
|
42
|
Ramirez K, Ditamo Y, Galen JE, Baillie LWJ, Pasetti MF. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies. Vaccine 2010; 28:6065-75. [PMID: 20619377 DOI: 10.1016/j.vaccine.2010.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/20/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-gamma-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life.
Collapse
Affiliation(s)
- Karina Ramirez
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore St. Room 480, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
43
|
Comparison of two mice strains, A/J and C57BL/6, in caspase-1 activity and IL-1beta secretion of macrophage to Mycobacterium leprae infection. Mediators Inflamm 2010; 2010:708713. [PMID: 20671924 PMCID: PMC2910506 DOI: 10.1155/2010/708713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 05/26/2010] [Indexed: 12/20/2022] Open
Abstract
A/J mice were found to have amino acid differences in Naip5, one of the NOD-like receptors (NLRs) involved in the cytosolic recognition of pathogen-associated molecular patterns and one of the adaptor proteins for caspase-1 activation. This defect was associated with a susceptibility to Legionella infection, suggesting an important role for Naip5 in the immune response also to other intracellular pathogens, such as Mycobacterium leprae. In this study, the immune responses of macrophages from A/J mice against M. leprae were compared to those of macrophages from C57BL/6 mice. Infection with M. leprae induced high levels of TNF-α production and NF-κB activation in A/J and C57BL/6 macrophages. Caspase-1 activation and IL-1β secretion were also induced in both macrophages. However, macrophages from A/J mice exhibited reduced caspase-1 activation and IL-1β secretion compared to C57BL/6 macrophages. These results suggest that NLR family proteins may have a role in the innate immune response to M. leprae.
Collapse
|
44
|
McPherson SA, Li M, Kearney JF, Turnbough CL. ExsB, an unusually highly phosphorylated protein required for the stable attachment of the exosporium of Bacillus anthracis. Mol Microbiol 2010; 76:1527-38. [PMID: 20444088 DOI: 10.1111/j.1365-2958.2010.07182.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The outermost layer of the Bacillus anthracis spore, the exosporium, is composed of a paracrystalline basal layer and an external hair-like nap. The nap is formed from a single collagen-like glycoprotein, while the basal layer contains many different proteins, including a 186-amino acid protein called ExsB. In this study, we discovered that ExsB is unusually highly phosphorylated, with at least 14 of its 19 threonine residues modified. The phosphorylated threonines are included in seven contiguous approximately 12-residue imperfect repeats, which presumably contain kinase recognition sequences. We demonstrated that a B. anthracis DeltaexsB mutant unable to synthesize ExsB produced spores with an exosporium that was readily sloughed, indicating that ExsB was required for stable exosporium attachment. This unstable exosporium also lacked the enzyme alanine racemase, which is normally tightly associated with the exosporium. Additionally, purified DeltaexsB spores lacking a visible exosporium were devoid of most exosporium proteins but, surprisingly, retained the putative exosporium proteins BxpC and CotB-1. Finally, we showed that transcription of the exsB gene occurred only during the late stages of sporulation, and we used an active and phosphorylated ExsB-EGFP fusion protein to monitor ExsB localization to wild-type and DeltabxpB mutant exosporia.
Collapse
Affiliation(s)
- Sylvia A McPherson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
45
|
Ross C, Abel-Santos E. The Ger receptor family from sporulating bacteria. Curr Issues Mol Biol 2010; 12:147-58. [PMID: 20472940 PMCID: PMC3081667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023] Open
Abstract
Bacterial spores are specialized cells that are exceptionally resistant to environmental stress. Spores convert back to actively growing cells, a process called germination, upon nutrient detection. The most common, initial step in the germination process is the recognition of small molecule germinants by germination (Ger) receptors. Ger receptors are inner-membrane heterocomplexes formed by three distinct protein products, the A-, B-, and C-subunits. In this review, we discuss and contrast published reports on representative Ger receptors from different Bacilli and Clostridia. We also present evidence for unrecognized germination pathways independent of Ger receptors. We further emphasize the function of L-alanine as a universal germinant. We also comment on biochemical aspects of germinant recognition and interaction between Ger receptor proteins. We propose that there are six general strategies used by Bacilli and Clostridia to integrate multiple germination signals. The use of different germinant recognition strategies results in germination response flexibility. Consequently, sporulating bacterial species that use the same biomolecules as germination signals can have different germination profiles. Finally, we discuss future directions for understanding the function of Ger receptors.
Collapse
Affiliation(s)
- Christian Ross
- School of Life Science, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Ernesto Abel-Santos
- Department of Chemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
46
|
Moody KL, Driks A, Rother GL, Cote CK, Brueggemann EE, Hines HB, Friedlander AM, Bozue J. Processing, assembly and localization of a Bacillus anthracis spore protein. MICROBIOLOGY-SGM 2009; 156:174-183. [PMID: 19833771 DOI: 10.1099/mic.0.033407-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All Bacillus spores are encased in macromolecular shells. One of these is a proteinacious shell called the coat that, in Bacillus subtilis, provides critical protective functions. The Bacillus anthracis spore is the infectious particle for the disease anthrax. Therefore, the coat is of particular interest because it may provide essential protective functions required for the appearance of anthrax. Here, we analyse a protein component of the spore outer layers that was previously designated BxpA. Our data indicate that a significant amount of BxpA is located below the spore coat and associated with the cortex. By SDS-PAGE, BxpA migrates as a 9 kDa species when extracted from Sterne strain spores, and as 11 and 14 kDa species from Ames strain spores, even though it has predicted masses of 27 and 29 kDa, respectively, in these two strains. We investigated the possibility that BxpA is subject to post-translational processing as previously suggested. In B. subtilis, a subset of coat proteins is proteolysed or cross-linked by the spore proteins YabG or Tgl, respectively. To investigate the possibility that similar processing occurs in B. anthracis, we generated mutations in the yabG or tgl genes in the Sterne and Ames strains and analysed the consequences for BxpA assembly by SDS-PAGE. We found that in a tgl mutant of B. anthracis, the apparent mass of BxpA increased. This is consistent with the possibility that Tgl directs the cross-linking of BxpA into a form that normally does not enter the gel. Unexpectedly, the apparent mass of BxpA also increased in a yabG mutant, suggesting a relatively complex role for proteolysis in spore protein maturation in B. anthracis. These data reveal a previously unobserved event in spore protein maturation in B. anthracis. We speculate that proteolysis and cross-linking are ubiquitous spore assembly mechanisms throughout the genus Bacillus.
Collapse
Affiliation(s)
- K L Moody
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - A Driks
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - G L Rother
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - C K Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - E E Brueggemann
- Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - H B Hines
- Integrated Toxicology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - A M Friedlander
- Headquarters, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| | - J Bozue
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, MD 21702, USA
| |
Collapse
|
47
|
Identification of the UDP-N-acetylglucosamine 4-epimerase involved in exosporium protein glycosylation in Bacillus anthracis. J Bacteriol 2009; 191:7094-101. [PMID: 19749053 DOI: 10.1128/jb.01050-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus anthracis, the causative agent of anthrax, are enclosed by a loosely fitting exosporium composed of a basal layer and an external hair-like nap. The filaments of the nap are formed by trimers of the collagen-like glycoprotein BclA. The side chains of BclA include multiple copies of two linear rhamnose-containing oligosaccharides, a trisaccharide and a pentasaccharide. The pentasaccharide terminates with the unusual deoxyamino sugar anthrose. Both oligosaccharide side chains are linked to the BclA protein backbone through an N-acetylgalactosamine (GalNAc) residue. To identify the gene encoding the epimerase required to produce GalNAc for BclA oligosaccharide biosynthesis, three annotated UDP-glucose 4-epimerase genes of B. anthracis were cloned and expressed in Escherichia coli. The candidate proteins were purified, and their enzymatic activities were assessed. Only two proteins, encoded by the BAS5114 and BAS5304 genes (B. anthracis Sterne designations), exhibited epimerase activity. Both proteins were able to convert UDP-glucose (Glc) to UDP-Gal, but only the BAS5304-encoded protein could convert UDP-GlcNAc to UDP-GalNAc, indicating that BAS5304 was the gene sought. Surprisingly, spores produced by a mutant strain lacking the BAS5304-encoded enzyme still contained normal levels of BclA-attached oligosaccharides. However, monosaccharide analysis of the oligosaccharides revealed that GlcNAc had replaced GalNAc. Thus, while GalNAc appears to be the preferred amino sugar for the linkage of oligosaccharides to the BclA protein backbone, in its absence, GlcNAc can serve as a substitute linker. Finally, we demonstrated that the expression of the BAS5304 gene occurred in a biphasic manner during both the early and late stages of sporulation.
Collapse
|
48
|
Chen WH, Kang TJ, Bhattacharjee AK, Cross AS. Intranasal administration of a detoxified endotoxin vaccine protects mice against heterologous Gram-negative bacterial pneumonia. Innate Immun 2009; 14:269-78. [PMID: 18809651 DOI: 10.1177/1753425908095959] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
When given passively or elicited actively, antibodies induced by a detoxified Escherichia coli J5 mutant lipopolysaccharide (J5dLPS)-group B meningococcal outer membrane protein (-OMP) vaccine previously protected animals from lethal sepsis. To assess the use of this vaccine for the treatment of Gram-negative bacillary pneumonia, we vaccinated mice, with or without the adjuvant CpG, by intranasal (i.n.) or intraperitoneal (i.p.) routes of administration. Local and systemic IgG levels were 2-3 logs higher following i.p. immunization compared to i.n. However, i.n. immunization elicited both local and systemic IgA, unlike i.p. administration. The addition of CpG to the vaccine, by either route of administration, elicited greater levels of antibody. Intranasal immunization protected mice against lethal heterologous Gram-negative bacillary pneumonia and post-immunization serum and broncho-alveolar lavage fluid mediated enhanced bacterial killing with peritoneal and alveolar macrophages in vitro. We conclude that further studies on the use of J5dLPS-OMP for the prevention of nosocomial pneumonia are warranted.
Collapse
Affiliation(s)
- Wilbur H Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | |
Collapse
|
49
|
Nod1/Nod2-mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure. Infect Immun 2009; 77:4529-37. [PMID: 19620350 DOI: 10.1128/iai.00563-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Toll-like receptors and Nod-like receptors (NLR) play an important role in sensing invading microorganisms for pathogen clearance and eliciting adaptive immunity for protection against rechallenge. Nod1 and Nod2, members of the NLR family, are capable of detecting bacterial peptidoglycan motifs in the host cytosol for triggering proinflammatory cytokine production. In the current study, we sought to determine if Nod1/Nod2 are involved in sensing Bacillus anthracis infection and eliciting protective immune responses. Using mice deficient in both Nod1 and Nod2 proteins, we showed that Nod1/Nod2 are involved in detecting B. anthracis for production of tumor necrosis factor alpha, interleukin-1 alpha (IL-1 alpha), IL-1 beta, CCL5, IL-6, and KC. Proinflammatory responses were higher when cells were exposed to viable spores than when they were exposed to irradiated spores, indicating that recognition of vegetative bacilli through Nod1/Nod2 is significant. We also identify a critical role for Nod1/Nod2 in priming responses after B. anthracis aerosol exposure, as mice deficient in Nod1/Nod2 were impaired in their ability to mount an anamnestic antibody response and were more susceptible to secondary lethal challenge than wild-type mice.
Collapse
|
50
|
Abstract
Zoonoses are infectious diseases that can be transmitted from animals to humans. Transmission occurs directly or through vectors such as ticks, mosquitoes, or flies. The causative agents include bacteria, parasites, viruses, and fungi. Domestic pets and livestock, as well as wild animals, can be the source of disease. In this summary, we will focus on a number of dermatologically relevant examples.
Collapse
Affiliation(s)
- Morgan Wilson
- Department of Dermatology, Geisinger Medical Center, Danville, Pennsylvania 17822, USA
| | | | | |
Collapse
|