1
|
Mena-Bueno S, Garrido V, Romero F, Zabalza-Baranguá A, Grilló MJ. Rev1Δwzm vaccine candidate is safe in young and adult sheep and protects against Brucella ovis infection in rams. Vaccine 2024; 42:125998. [PMID: 38806353 DOI: 10.1016/j.vaccine.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Small ruminants affected by brucellosis, caused mainly by Brucella melitensis and B. ovis, suffer reproductive disorders, leading to significant economic losses worldwide. Vaccination is an essential tool to prevent the disease in ovine and caprine livestock, but the only vaccine recommended to date is B. melitensis Rev1, which in sheep is only safe for use in lambs aged 3-4 months. This restriction poses considerable practical challenges for the implementation of Rev1 in countries with endemic brucellosis and/or limited resources, where there is a need for mass vaccination with a safe vaccine to control the disease in both animals and humans. We recently developed a B. melitensis strain Rev1Δwzm showing superior vaccine properties in mice and safety in pregnant ewes. Here, we report that Rev1Δwzm (i) is safe in young and adult sheep, both male and female; (ii) induces a transient serological response in the Rose Bengal test in ≤50 % of sheep, confirmed to some extent by the complement fixation test, and a stronger, more persistent anti- rough-LPS response; and (iii) protects rams against a B. ovis challenge 25 weeks after vaccination. To resolve the problem of serological interference, the use of green fluorescent protein tagging strategy allowed us to identify vaccinated sheep with only a single inoculation. These results, together with the previously reported safety in pregnant ewes, position Rev1Δwzm as a firm vaccine candidate and a promising alternative to Rev1. Further experiments are warranted to assess its efficacy against B. melitensis in pregnant ewes.
Collapse
Affiliation(s)
- Sara Mena-Bueno
- Instituto de Agrobiotecnología (IdAB; CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain; Universidad Pública de Navarra (UPNA), Avda. de Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Victoria Garrido
- Instituto de Agrobiotecnología (IdAB; CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - Francisco Romero
- Biomar Microbial Technologies, Parque Tecnológico de León, Parcela M-10.4, 24009 Armunia, León, Spain
| | - Ana Zabalza-Baranguá
- Instituto de Agrobiotecnología (IdAB; CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain
| | - M J Grilló
- Instituto de Agrobiotecnología (IdAB; CSIC-Gobierno de Navarra), Avda. Pamplona 123, 31192 Mutilva, Navarra, Spain.
| |
Collapse
|
2
|
Qureshi KA, Parvez A, Fahmy NA, Abdel Hady BH, Kumar S, Ganguly A, Atiya A, Elhassan GO, Alfadly SO, Parkkila S, Aspatwar A. Brucellosis: epidemiology, pathogenesis, diagnosis and treatment-a comprehensive review. Ann Med 2024; 55:2295398. [PMID: 38165919 PMCID: PMC10769134 DOI: 10.1080/07853890.2023.2295398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
Background: Brucellosis is a pervasive zoonotic disease caused by various Brucella species. It mainly affects livestock and wildlife and poses significant public health threats, especially in regions with suboptimal hygiene, food safety, and veterinary care standards. Human contractions occur by consuming contaminated animal products or interacting with infected animals. Objective: This study aims to provide an updated understanding of brucellosis, from its epidemiology and pathogenesis to diagnosis and treatment strategies. It emphasizes the importance of ongoing research, knowledge exchange, and interdisciplinary collaboration for effective disease control and prevention, highlighting its global health implications. Methods: Pathogenesis involves intricate interactions between bacteria and the host immune system, resulting in chronic infections characterized by diverse clinical manifestations. The diagnostic process is arduous owing to non-specific symptomatology and sampling challenges, necessitating a fusion of clinical and laboratory evaluations, including blood cultures, serological assays, and molecular methods. Management typically entails multiple antibiotics, although the rise in antibiotic-resistant Brucella strains poses a problem. Animal vaccination is a potential strategy to curb the spread of infection, particularly within livestock populations. Results: The study provides insights into the complex pathogenesis of brucellosis, the challenges in its diagnosis, and the management strategies involving antibiotic therapy and animal vaccination. It also highlights the emerging issue of antibiotic-resistant Brucella strains. Conclusions: In conclusion, brucellosis is a significant zoonotic disease with implications for public health. Efforts should be directed towards improved diagnostic methods, antibiotic stewardship to combat antibiotic resistance, and developing and implementing effective animal vaccination programs. Interdisciplinary collaboration and ongoing research are crucial for addressing the global health implications of brucellosis.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Nada A. Fahmy
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Applied Health Science, Galala University, Suez, Egypt
| | - Bassant H. Abdel Hady
- Center for Microbiology and Phage Therapy, Biomedical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Shweta Kumar
- Department of General Medicine, All India Institute of Medical Sciences, Bhopal, India
| | - Anusmita Ganguly
- Department of Biotechnology, Pondicherry University, Puducherry, India
| | - Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Gamal O. Elhassan
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Saeed O. Alfadly
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
- Fimlab Ltd., Tampere University Hospital, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pharmacy Practice, Unaizah College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| |
Collapse
|
3
|
Huang J, Guo Y, Yu S, Wang D, Li S, Wu J, Sun P, Zhu L, Wang H, Pan C. One-step preparation of a self-assembled bioconjugate nanovaccine against Brucella. Virulence 2023; 14:2280377. [PMID: 37981707 PMCID: PMC10732601 DOI: 10.1080/21505594.2023.2280377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Brucellosis, caused by Brucella, is a severe zoonosis, and the current Brucella live attenuated vaccine cannot be used in humans due to major safety risks. Although polysaccharide antigens can be used to prepare the Brucella vaccine, their lower immunogenicity limits them from producing efficient and broad protection. In this study, we produced a high-performance bioconjugate nanovaccine against different species of Brucella by introducing a self-assembly nanoparticle platform and an O-linked glycosylation system into Yersinia enterocolitica serotype O:9, which has an O-polysaccharide composed of the same unit as Brucella. After successfully preparing the vaccine and confirming its stability, we subsequently demonstrated the safety of the vaccine in mice by high-dose immunization. Then, by a series of mouse experiments, we found that the nanovaccine greatly promoted antibody responses. In particular, the increase of IgG2a was more obvious than that of IgG1. Most importantly, this nanovaccine could provide cross-protection against B. abortus, B. melitensis, and B. suis strains by lethal dose challenged models, and could improve the clearance of B. melitensis, the most common pathogenic species in human brucellosis, by non-lethal dose infection. Overall, for the first time, we biocoupled polysaccharide antigens with nano carriers to prepare a Brucella vaccine, which showed pronounced and extensive protective effects in mice. Thus, we provided a potential candidate vaccine and a new direction for Brucella vaccine design.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shujuan Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Dongshu Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Shulei Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
4
|
Zhang T, Wang Y, Li Y, Qi T, Yue Z, Cao L, Zhou B, Jiao H. The outer membrane proteins based seroprevalence strategy for Brucella ovis natural infection in sheep. Front Cell Infect Microbiol 2023; 13:1189368. [PMID: 37389214 PMCID: PMC10302724 DOI: 10.3389/fcimb.2023.1189368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/10/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction The diagnosis of brucellosis largely relies on tiger red plate agglutination test (RBPT). However, it is difficult to distinguish between natural infection antibody positive and vaccination antibody positive, nevertheless, the identification of specific Brucella species natural infection. Methods Here, we analyzed the structure of main outer membrane proteins (OMPs), OMP25 and OMP31 from Brucella ovis (B. ovis) and Brucella melitensis (B. melitensis), which are the main pathogens of sheep brucellosis, and found the OMP25 and OMP31 could be used as the differential antigens for B. ovis and B. melitensis antibody. Then we expressed the OMP25 from B. ovis (OMP25o) and OMP31 from B. melitensis (OMP31m). Results They have equally efficiency in antibody detection of vaccinated sheep serum, consistent with the RBPT results. However, through epidemiological investigations, we found some RBPT positive samples were negative by the OMP31m based serum antibody detection, but these samples gave positive results by the OMP25o. We verified these OMP31m negative but OMP25o positive samples by B. ovis and B. melitensis specific primers based PCR detection, and all these samples were B. melitensis negative. However, four out of six samples are B. ovis positive. These results showed that we could use the OMP25o and OMP31m to diagnose sheep brucellosis antibody, especially to discriminate the infection of the B. ovis. Discussion Currently, China has not yet approved a vaccine based on B. ovis and B. ovis positive samples should be naturally infected. There should be some implicit transmission of B. ovis in Jilin province. Further epidemiological investigation should be conducted to monitor the B. ovis natural infection.
Collapse
Affiliation(s)
- Tao Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Yu Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Yin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Tingting Qi
- College of Animal Science, Jilin University, Changchun, China
| | - Zhirong Yue
- College of Animal Science, Jilin University, Changchun, China
| | - Lili Cao
- Institute of Zoonosis, Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, China
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, The Academy of Military Medical Sciences, Changchun, China
| | - Huping Jiao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
5
|
Rahimnahal S, Yousefizadeh S, Mohammadi Y. Novel multi-epitope vaccine against bovine brucellosis: approach from immunoinformatics to expression. J Biomol Struct Dyn 2023; 41:15460-15484. [PMID: 36927475 DOI: 10.1080/07391102.2023.2188962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Brucellosis is a zoonotic caused by the Brucella which is a well-known infectious disease agent in domestic animals and if transmitted, it can cause infection in humans. Because brucellosis is contagious, its control depends on the eradication of the animal disease in farms. There are two vaccines based on the killed and/or weakened bacteria against B. melitensis and B. abortus, but no recombinant vaccine is available for preventing the disease. The present study was designed to develop a multi-epitope vaccine against of B. melitensis and B. abortus using virB10, Omp31 and Omp16 antigens by the prediction of T lymphocytes, T cell cytotoxicity and IFN-γ epitopes. 50S L7/L12 Ribosomal protein from Mycobacterium tuberculosis was used as a bovine TLR4 and TLR9 agonist. GPGPG, AAY and KK linkers were used as a linker. Brucella construct was well-integrated in the pET-32a Shuttle vector with BamHI and HindIII restriction enzymes. The final construct contained 769 amino acids, that it was soluble protein of about ∼82 kDa after expression in the Escherichia coli SHuffle host. Modeled protein analysis based on the tertiary structure validation, molecular docking studies, molecular dynamics simulations results like RMSD, Gyration and RMSF as well as MM/PBSA analysis showed that this protein has a stable construct and is capable being in interaction with bovine TLR4 and TLR9. Analysis of the data obtained suggests that the proposed vaccine can induce the immune response by stimulating T- and B-cells, and may be used for prevention and remedial purposes, against B. melitensis and B. abortus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Shahnaz Yousefizadeh
- Department of Laboratory and Clinical Sciences, Faculty of Para-Veterinary, Ilam University, Ilam, Iran
| | - Yahya Mohammadi
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| |
Collapse
|
6
|
Sattarahmady N, Alamian S, Abkar M. Gelatin Micro/Nanoparticles-Based Delivery of Urease and Omp31 in Mice Has a Protective Role Against Brucella melitensis 16 M Infection. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
7
|
Ali A, Waris A, Khan MA, Asim M, Khan AU, Khan S, Zeb J. Recent advancement, immune responses, and mechanism of action of various vaccines against intracellular bacterial infections. Life Sci 2023; 314:121332. [PMID: 36584914 DOI: 10.1016/j.lfs.2022.121332] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Emerging and re-emerging bacterial infections are a serious threat to human and animal health. Extracellular bacteria are free-living, while facultative intracellular bacteria replicate inside eukaryotic host cells. Many serious human illnesses are now known to be caused by intracellular bacteria such as Salmonella enterica, Escherichia coli, Staphylococcus aureus, Rickettsia massiliae, Chlamydia species, Brucella abortus, Mycobacterium tuberculosis and Listeria monocytogenes, which result in substantial morbidity and mortality. Pathogens like Mycobacterium, Brucella, MRSA, Shigella, Listeria, and Salmonella can infiltrate and persist in mammalian host cells, particularly macrophages, where they proliferate and establish a repository, resulting in chronic and recurrent infections. The current treatment for these bacteria involves the application of narrow-spectrum antibiotics. FDA-approved vaccines against obligate intracellular bacterial infections are lacking. The development of vaccines against intracellular pathogenic bacteria are more difficult because host defense against these bacteria requires the activation of the cell-mediated pathway of the immune system, such as CD8+ T and CD4+ T. However, different types of vaccines, including live, attenuated, subunit, killed whole cell, nano-based and DNA vaccines are currently in clinical trials. Substantial development has been made in various vaccine strategies against intracellular pathogenic bacteria. This review focuses on the mechanism of intracellular bacterial infection, host immune response, and recent advancements in vaccine development strategies against various obligate intracellular bacterial infections.
Collapse
Affiliation(s)
- Asmat Ali
- Department of Biotechnology and Genetic Engineering, Hazara University Mansehra, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong.
| | - Muhammad Ajmal Khan
- Division of Life Sciences, Center for Cancer Research and State Key Laboratory of Molecular Neurosciences, The Hong Kong University of Science and Technology, Hong Kong
| | - Muhammad Asim
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Atta Ullah Khan
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China
| | - Sahrish Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jehan Zeb
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Hong Kong
| |
Collapse
|
8
|
Tarrahimofrad H, Zamani J, Hamblin MR, Darvish M, Mirzaei H. A designed peptide-based vaccine to combat Brucella melitensis, B. suis and B. abortus: Harnessing an epitope mapping and immunoinformatics approach. Biomed Pharmacother 2022; 155:113557. [PMID: 36115112 DOI: 10.1016/j.biopha.2022.113557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Vaccines against Brucella abortus, B. melitensis and B. suis have been based on weakened or killed bacteria, however there is no recombinant vaccine for disease prevention or therapy. This study attempted to predict IFN-γ epitopes, T cell cytotoxicity, and T lymphocytes in order to produce a multiepitope vaccine based on BtpA, Omp16, Omp28, virB10, Omp25, and Omp31 antigens against B. melitensis, B. abortus, and B. suis. AAY, GPGPG, and EAAAK peptides were used as epitope linkers, while the PADRE sequence was used as a Toll-like receptor 2 (TLR2) and TLR4 agonist. The final construct included 389 amino acids, and was a soluble protein with a molecular weight of 41.3 kDa, and nonallergenic and antigenic properties. Based on molecular docking studies, molecular dynamics simulations such as Gyration, RMSF, and RMSD, as well as tertiary structure validation methods, the modeled protein had a stable structure capable of interacting with TLR2/4. As a result, this novel vaccine may stimulate immune responses in B and T cells, and could prevent infection by B. suis, B. abortus, and B. melitensis.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Oliveira KC, Brancaglion GA, Santos NCM, Araújo LP, Novaes E, Santos RDL, Oliveira SC, Corsetti PP, de Almeida LA. Epitope-Based Vaccine of a Brucella abortus Putative Small RNA Target Induces Protection and Less Tissue Damage in Mice. Front Immunol 2021; 12:778475. [PMID: 34992597 PMCID: PMC8724193 DOI: 10.3389/fimmu.2021.778475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/03/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis in humans and animals. Currently available live attenuated vaccines against brucellosis still have drawbacks. Therefore, subunit vaccines, produced using epitope-based antigens, have the advantage of being safe, cost-effective and efficacious. Here, we identified B. abortus small RNAs expressed during early infection with bone marrow-derived macrophages (BMDMs) and an apolipoprotein N-acyltransferase (Int) was identified as the putative target of the greatest expressed small RNA. Decreased expression of Int was observed during BMDM infection and the protein sequence was evaluated to rationally select a putative immunogenic epitope by immunoinformatic, which was explored as a vaccinal candidate. C57BL/6 mice were immunized and challenged with B. abortus, showing lower recovery in the number of viable bacteria in the liver, spleen, and axillary lymph node and greater production of IgG and fractions when compared to non-vaccinated mice. The vaccinated and infected mice showed the increased expression of TNF-α, IFN-γ, and IL-6 following expression of the anti-inflammatory genes IL-10 and TGF-β in the liver, justifying the reduction in the number and size of the observed granulomas. BMDMs stimulated with splenocyte supernatants from vaccinated and infected mice increase the CD86+ marker, as well as expressing greater amounts of iNOS and the consequent increase in NO production, suggesting an increase in the phagocytic and microbicidal capacity of these cells to eliminate the bacteria.
Collapse
Affiliation(s)
- Karen Cristina Oliveira
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | | | - Natália C. M. Santos
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo P. Araújo
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
| | - Evandro Novaes
- Department of Biology, Federal University of Lavras, Lavras, Brazil
| | - Renato de Lima Santos
- Department of Clinic and Veterinary Surgery, Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Patrícia Paiva Corsetti
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| | - Leonardo Augusto de Almeida
- Laboratory of Molecular Biology of Microorganisms, Federal University of Alfenas, Alfenas, Brazil
- *Correspondence: Leonardo Augusto de Almeida, ; Patrícia Paiva Corsetti,
| |
Collapse
|
10
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Brucella antigens (BhuA, 7α-HSDH, FliC) in poly I:C adjuvant as potential vaccine candidates against brucellosis. J Immunol Methods 2021; 500:113172. [PMID: 34673003 DOI: 10.1016/j.jim.2021.113172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/11/2021] [Accepted: 10/14/2021] [Indexed: 11/29/2022]
Abstract
A promising strategy for controlling animal brucellosis is vaccination with commercial vaccine strains (Brucella melitensis Rev.1 and Brucella abortus RB51). Owing to safety concerns associated with these vaccines, developing a more effective and safe vaccine is essential. In this study, we examined the capacity of BhuA, 7α-HSDH or FliC antigens in the presence or absence of adjuvant in eliciting immune responses against brucellosis. After cloning, expression and purification, these proteins were used to examine immunologic responses. All immunized mice induced a vigorous IgG, with a predominant IgG2a response. Moreover, splenocytes of immunized mice proliferated and produced IL-2 and IFN-γ, suggesting the induction of cellular immunity. The high IgG2a/IgG1 ratio and IL-2 and IFN-γ indicated a Th1-oriented immune response in test groups. BhuA-, 7α-HSDH- or FliC- poly I:C formulations were the most effective at inducing Th1 immune response compared to groups immunized with naked proteins. Immunization with proteins protected mice against B. melitensis 16M and B. abortus 544. The proteins in adjuvant induced higher levels of protection than proteins only and exhibited similar degree of protection to live attenuated vaccines. Our results, for first time, introduced five potential candidates for subunit vaccine development against B. melitensis and B. abortus infection.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
13
|
Ryskeldinova S, Zinina N, Kydyrbayev Z, Yespembetov B, Kozhamkulov Y, Inkarbekov D, Assanzhanova N, Mailybayeva A, Bugybayeva D, Sarmykova M, Khairullin B, Tabynov K, Bulashev A, Aitzhanov B, Abeuov K, Sansyzbay A, Yespolov T, Renukaradhya GJ, Olsen S, Oñate A, Tabynov K. Registered Influenza Viral Vector Based Brucella abortus Vaccine for Cattle in Kazakhstan: Age-Wise Safety and Efficacy Studies. Front Cell Infect Microbiol 2021; 11:669196. [PMID: 34290993 PMCID: PMC8288105 DOI: 10.3389/fcimb.2021.669196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022] Open
Abstract
A novel influenza viral vector based Brucella abortus vaccine (Flu-BA) was introduced for use in cattle in Kazakhstan in 2019. In this study, the safety and efficacy of the vaccine was evaluated in male and female cattle at different ages, and during pregnancy as a part of its registration process. Our data demonstrated that the Flu-BA vaccine was safe after prime or booster vaccination in calves (5–7 months old male and female), heifers (15–17 months old) and cows (6–7 years old) and was not abortogenic in pregnant animals. A mild, localized granuloma was observed at the Flu-BA injection site. Vaccinated animals did not show signs of influenza infection or reduced milk production in dairy cows, and the influenza viral vector (IVV) was not recovered from nasal swabs or milk. Vaccinated animals in all age groups demonstrated increased IgG antibody responses against Brucella Omp16 and L7/L12 proteins with calves demonstrating the greatest increase in humoral responses. Following experimental challenge with B. abortus 544, vaccinates demonstrated greater protection and no signs of clinical disease, including abortion, were observed. The vaccine effectiveness against B. abortus 544 infection was 75, 60 and 60%, respectively, in calves, heifers and adult cows. Brucella were not isolated from calves of vaccinated cattle that were experimentally challenged during pregnancy. Our data suggests that the Flu-BA vaccine is safe and efficacious in cattle, including pregnant animals; and can therefore be administered to cattle of any age.
Collapse
Affiliation(s)
- Sholpan Ryskeldinova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nadezhda Zinina
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Zhailaubay Kydyrbayev
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Bolat Yespembetov
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Yerken Kozhamkulov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dulat Inkarbekov
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Nurika Assanzhanova
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Aigerim Mailybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Dina Bugybayeva
- Infectious Disease Prevention Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan.,International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Makhpal Sarmykova
- Microbiology Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Berik Khairullin
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Aitbay Bulashev
- Department of Microbiology and Biotechnology, S. Seifullin Kazakh Agrotechnical University, Nur-Sultan, Kazakhstan
| | - Batyrbek Aitzhanov
- Department of Clinical Veterinary Medicine, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Khairulla Abeuov
- Infectious Disease Monitoring Laboratory, Research Institute for Biological Safety Problems, Gvardeiskiy, Kazakhstan
| | - Abylay Sansyzbay
- Department of Biological Safety, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Tlektes Yespolov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Department of Veterinary Preventive Medicine, The Ohio State University (OSU), Wooster, OH, United States
| | - Steven Olsen
- Independent Researcher, McCallsburg, IA, United States
| | - Angel Oñate
- Laboratory of Molecular Immunology, Department of Microbiology, Faculty of Biological Sciences, University of Concepcion, Concepcion, Chile
| | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian University (KazNAU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
| |
Collapse
|
14
|
Shirdast H, Ebrahimzadeh F, Taromchi AH, Mortazavi Y, Esmaeilzadeh A, Sekhavati MH, Nedaei K, Mirabzadeh E. Recombinant Lactococcus Lactis Displaying Omp31 Antigen of Brucella melitensis Can Induce an Immunogenic Response in BALB/c Mice. Probiotics Antimicrob Proteins 2021; 13:80-89. [PMID: 32661939 DOI: 10.1007/s12602-020-09684-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since Brucella infection mostly occurs through the mucosal surfaces, immune response induced by vaccine that is delivered by a way of mucosal route can be drastically enhanced to control the brucellosis. Omp31is the major outer membrane protein of Brucella, and is considered as a protective antigen against Brucella infection. Accordingly, Lactococcus lactis has been used as an antigen-delivering vector to develop a vaccine-induced mucosal response for having a safer vaccination against brucellosis. A designed omp31 gene fused to the usp45 signal peptide and M6 cell wall anchor was sub cloned in the pNZ7021 expression vector, and a recombinant L. lactis displaying Omp31 was constructed. Omp31 protein expression was confirmed using Western blotting and immunofluorescence analysis. Animals were orally and intraperitoneally immunized with live or killed L. lactis expressing Omp31, respectively. The humoral and cellular immune responses were evaluated by measuring the specific cytokines and antibodies. sIgA, serum IgA, IgM, and total IgG antibodies significantly increased in the mice immunized with live recombinant L. lactis expressing Omp31 and also serum IgM, and total IgG antibodies significantly increased in mice immunized with killed recombinant L. lactis expressing Omp31. Among IgG subtypes, IgG2a response was significantly higher in both groups compared to IgG1. In mice groups immunized with recombinant L. lactis, the IFN-γ and IL-10 level elevated; however, there was no change in the level of IL-4. These results indicated that recombinants L. lactis induce both humoral and cellular immune responses in mice, and also vaccines based on L. lactis-derived live carriers are promising interventions against Brucella melitensis infections.
Collapse
Affiliation(s)
- Hoda Shirdast
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Ebrahimzadeh
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hossein Taromchi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran. .,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Yousef Mortazavi
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Immunology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Keivan Nedaei
- Department of Medical Biotechnology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Esmat Mirabzadeh
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Atabey T, Acar T, Derman S, Ordu E, Erdemir A, Taşlı PN, Gür GK, Şahin F, Güllüce M, Arasoğlu T. In Vitro Evaluation of Immunogenicity of Recombinant OMP25 Protein Obtained from Endemic Brucella abortus Biovar 3 as Vaccine Candidate Molecule Against Animal Brucellosis. Protein Pept Lett 2021; 28:1138-1147. [PMID: 34132177 DOI: 10.2174/0929866528666210615104334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/20/2021] [Accepted: 04/18/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Brucellosis is a zoonotic disease that causes serious economic losses due to factors such as miscarriages and decreased milk yield in animals. Existing live vaccines have some disadvantages, so effective vaccines need to be developed with new technological approaches. OBJECTIVES The primary objectives of this study were the expression and purification of recombinant Omp25 fusion protein from B. abortus and the evaluation of the effect of the Omp25 protein on cell viability and inflammatory response. METHODS The omp25 gene region was amplified by a polymerase chain reaction and cloned into a Pet102/D-TOPO expression vector. The protein expression was carried out using the procaryotic expression system. The recombinant Omp25 protein was purified with affinity chromatography followed by GPC (Gel Permeation Chromatography). The MTS assay and cytokine-release measurements were carried out to evaluate cell viability and inflammatory response, respectively. RESULTS It was determined that doses of the recombinant Omp25 protein doses greater than 0.1 μg/mL are toxic to RAW cells. Doses of 1 µg/mL and lower significantly increased inflammation due to nitric oxide (NO) levels. ELISA results show that IFN-γ was produced in stimulated RAW 264.7 cells at a dose that did not affect the viability (0.05 µg/mL). However, IL-12, which is known to have a dual role in the activation of macrophages, did not show a statistically significant difference at the same dose. CONCLUSION Studies of cell viability and Th1-related cytokine release suggest that Omp25 protein is a promising candidate molecule for vaccine development.
Collapse
Affiliation(s)
- Tuğba Atabey
- Yildiz Technical University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Istanbul, Turkey
| | - Tayfun Acar
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Istanbul, Turkey
| | - Serap Derman
- Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Bioengineering Department, Istanbul, Turkey
| | - Emel Ordu
- Yildiz Technical University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Istanbul, Turkey
| | - Ayşegül Erdemir
- Yildiz Technical University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Istanbul, Turkey
| | - Pakize Neslihan Taşlı
- Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Istanbul, Turkey
| | - Günseli Kurt Gür
- Yildiz Technical University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Istanbul, Turkey
| | - Fikrettin Şahin
- Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Istanbul, Turkey
| | - Medine Güllüce
- Atatürk University, Faculty of Science, Biology Department, Erzurum, Turkey
| | - Tülin Arasoğlu
- Yildiz Technical University, Faculty of Arts and Sciences, Molecular Biology and Genetics Department, Istanbul, Turkey
| |
Collapse
|
16
|
Golshani M, Amani M, Amirzadeh F, Nazeri E, Davar Siadat S, Nejati-Moheimani M, Arsang A, Bouzari S. Evaluation of Poly(I:C) and combination of CpG ODN plus Montanide ISA adjuvants to enhance the efficacy of outer membrane vesicles as an acellular vaccine against Brucella melitensis infection in mice. Int Immunopharmacol 2020; 84:106573. [PMID: 32454410 DOI: 10.1016/j.intimp.2020.106573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023]
Abstract
Brucellosis is the most common zoonotic disease worldwide and still there is no vaccine for human use. The commercial animal vaccines also have major problems that limit their use. Therefore, there is a need for an effective Brucella vaccine which is multivalent and produces a good protective immunity with minimal disadvantages. Due to their heterogeneous composition and diverse functions, OMVs are promising acellular vaccine candidates against brucellosis. In the present study, the potential of Poly(I:C) or CpG ODN 1826+ Montanide ISA 70 VG adjuvant formulations were evaluated to enhance the immunity and protection levels conferred by OMVs against Brucella challenge in mice. The results indicated that both vaccine regimens were able to induce strong Th1-biased responses and confer protective levels significantly higher than REV.1 live vaccine. With regard to the results, it is concluded that OMVs in either adjuvant can be introduced as a new vaccine candidate against B. melitensis infection.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Amani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Amirzadeh
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Nazeri
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Arsang
- Bacterial Vaccine and Antigen Production Branch, Pasteur Institute of Iran, Karaj, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
17
|
Paci V, Krasteva I, Orsini M, Di Febo T, Luciani M, Perletta F, Di Pasquale A, Mattioli M, Tittarelli M. Proteomic analysis of Brucella melitensis and Brucella ovis for identification of virulence factor using bioinformatics approachs. Mol Cell Probes 2020; 53:101581. [PMID: 32428653 DOI: 10.1016/j.mcp.2020.101581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/10/2020] [Accepted: 04/18/2020] [Indexed: 11/15/2022]
Abstract
The genus Brucella includes several genetically monomorphic species but with different phenotypic and virulence characteristics. In this study, proteins of two Brucella species, B. melitensis type strain 16 M and B. ovis REO198 were compared by proteomics approach, in order to explain the phenotypic and pathophysiological differences among Brucella species and correlate them with virulence factors. Protein extracts from the two Brucella species were separated by SDS-PAGE and 5 areas, which resulted qualitatively and quantitatively different, were analyzed by nLC-MS/MS. A total of 880 proteins (274 proteins of B. melitensis and 606 proteins of B. ovis) were identified; their functional and structural features were analyzed by bioinformatics tools. Four unique peptides belonging to 3 proteins for B. ovis and 10 peptides derived from 7 proteins for B. melitensis were chosen for the high amount of predicted B-cell epitopes exposed to the solvent. Among these proteins, outer-membrane immunogenic protein (N8LTS7) and 25 kDa outer-membrane immunogenic protein (Q45321), respectively of B. ovis and B. melitensis, could be interesting candidates for improving diagnostics tests and vaccines. Moreover, 8 and 13 outer and periplasmic non homologue proteins of B. ovis and B. melitensis were identified to screen the phenotypic differences between the two Brucella strains. These proteins will be used to unravel pathogenesis and ameliorate current diagnostic assays.
Collapse
Affiliation(s)
- Valentina Paci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy; University of Teramo, Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy.
| | - Massimiliano Orsini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Tiziana Di Febo
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Fabrizia Perletta
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Mauro Mattioli
- University of Teramo, Faculty of Bioscience and Agro-Food and Environmental Technology, Teramo, Italy
| | - Manuela Tittarelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Teramo, Italy
| |
Collapse
|
18
|
Gupta S, Mohan S, Somani VK, Aggarwal S, Bhatnagar R. Simultaneous Immunization with Omp25 and L7/L12 Provides Protection against Brucellosis in Mice. Pathogens 2020; 9:pathogens9020152. [PMID: 32102449 PMCID: PMC7175130 DOI: 10.3390/pathogens9020152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 01/18/2023] Open
Abstract
Currently used Brucella vaccines, Brucella abortus strain 19 and RB51, comprises of live attenuated Brucella strains and prevent infection in animals. However, these vaccines pose potential risks to recipient animals such as attenuation reversal and virulence in susceptible hosts on administration. In this context, recombinant subunit vaccines emerge as a safe and competent alternative in combating the disease. In this study, we formulated a divalent recombinant vaccine consisting of Omp25 and L7/L12 of B. abortus and evaluated vaccine potential individually as well as in combination. Sera obtained from divalent vaccine (Omp25+L7/L12) immunized mice group exhibited enhanced IgG titers against both components and indicated specificity upon immunoblotting reiterating its authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen predicted a predominant Th2 immune response in the Omp25+L7/L12 immunized mice group. Upon infection with virulent B. abortus 544, Omp25+L7/L12 infected mice exhibited superior Log10 protection compared to individual vaccines. Consequently, this study recommends that simultaneous immunization of Omp25 and L7/L12 as a divalent vaccine complements and triggers a Th2 mediated immune response in mice competent of providing protection against brucellosis.
Collapse
Affiliation(s)
- Sonal Gupta
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Surender Mohan
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
| | - Vikas Kumar Somani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Somya Aggarwal
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India; (S.G.); (S.M.); (V.K.S.); (S.A.)
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Correspondence: ; Tel.: +91-11-26704079; Fax: +91-11-26717040
| |
Collapse
|
19
|
Sadeghi Z, Fasihi-Ramandi M, Azizi M, Bouzari S. Mannosylated chitosan nanoparticles loaded with FliC antigen as a novel vaccine candidate against Brucella melitensis and Brucella abortus infection. J Biotechnol 2020; 310:89-96. [PMID: 32017955 DOI: 10.1016/j.jbiotec.2020.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/27/2022]
Abstract
Brucellosis is a worldwide bacterial zoonosis disease. Live attenuated Brucella vaccines have several drawbacks. Thus development of a safe and effective vaccine for brucellosis is a concern of many scientists. FliC protein contributes in virulence of Brucella; hence, it is a promising target for brucellosis vaccine. In this study, Mannosylated Chitosan Nanoparticles (MCN) loaded with FliC protein were synthesized as a targeted vaccine delivery system. The immunogenicity and protective efficacy of FliC and FliC-MCN against Brucella infection were evaluated in BALB/c mice. After cloning, expression and purification, FliC protein was loaded on MCN. The particle size, loading efficiency and in vitro release of the NPs were determined. Our investigation revealed that FliC and FliC-MCN could significantly increase specific IgG response (higher IgG2a titers). Besides, spleen cells from immunized mice produced high level of IFN-γ and IL-2 and low level IL-10 cytokines. Immunization with FliC and FliC-MCN conferred significant degree of protection against B. melitensis 16 M and B. abortus 544 infections. Overall these results indicate that FliC protein would be a novel potential antigen candidate for the development of a subunit vaccine against B. melitensis and B. abortus. Moreover, MCN could be used as an adjuvant and targeted vaccine delivery system.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Azizi
- Department of Medical Biotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Gupta S, Singh D, Gupta M, Bhatnagar R. A combined subunit vaccine comprising BP26, Omp25 and L7/L12 against brucellosis. Pathog Dis 2020; 77:5714751. [DOI: 10.1093/femspd/ftaa002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/22/2020] [Indexed: 01/27/2023] Open
Abstract
ABSTRACT
The current vaccines against brucellosis, namely Brucella abortus strains 19 and RB51, prevent infection in animals but pose potential risks like virulence and attenuation reversal. In this milieu, although subunit vaccination using a single potent immunogen of B. abortus, e.g. BP26 or Omp25 or L7/L12 etc., appears as a safer alternative, nonetheless it confers inadequate protection against the zoonosis compared to attenuated vaccines. Hence, we have investigated the prophylactic potential of a combined subunit vaccine (CSV) comprising the BP26, Omp25 and L7/L12 antigens of B. abortus, in mice model. Sera obtained from CSV immunized mice groups showed heightened IgG titers against all the three components and exhibited specificity upon immunoblotting, reiterating their authenticity. Further, the IgG1/IgG2a ratio obtained against each antigen revealed a predominant Th2 immune response in CSV immunized mice group. However, on assessing the levels of Th1-dependent (IFN-γ and TNF-α) and Th2-dependent (IL-4 and IL-10) cytokines in different formulations, prominent IFN-γ levels were elicited in CSV immunized mice. Further, upon infection with virulent B. abortus 544, the combined subunit vaccinated mice displayed superior degree of protection (Log10 reduction) than the individual vaccines; however, B. abortus S19 showed the highest protection. Altogether, this study suggests that co-immunization of three B. abortus immunogens as a CSV complements and triggers a mixed Th1/Th2 immune response leading to superior degree of protection against pathogenic B. abortus 544 infection.
Collapse
Affiliation(s)
- Sonal Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Damini Singh
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manish Gupta
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Molecular Biology and Genetic Engineering Laboratory, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
21
|
Nazifi N, Tahmoorespur M, Sekhavati MH, Haghparast A, Behroozikhah AM. In vivo immunogenicity assessment and vaccine efficacy evaluation of a chimeric tandem repeat of epitopic region of OMP31 antigen fused to interleukin 2 (IL-2) against Brucella melitensis in BALB/c mice. BMC Vet Res 2019; 15:402. [PMID: 31703683 PMCID: PMC6842255 DOI: 10.1186/s12917-019-2074-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
Background Designing a potent recombinant vaccine, using the appropriate subunits with the greatest effect on stimulating the immune system, especially in the case of intracellular pathogens such as gram negative Brucella Melitensis bacteria, is of great importance. In this study, three repeats of 27 amino acids of the immunogenic epitope derived from OMP31 antigen (3E) from the Brucella melitensis, in a protective manner against Brucellosis have been used. To fortify the delivery system of recombinant antigens, IL-2 cytokine as a molecular adjuvant was fused to recombinant constructs. Recombinant proteins were evaluated for immunological studies in a mouse model (BALB/c). Results The results showed that all recombinant proteins could stimulate the immune system to produce Th1 cytokines and antibodies in compare to the negative control treatments. 3E-IL2 and then OMP31-IL2 proteins stimulated higher levels of IFN-γ and IL-2 compared to the other treatments (p < 0.05). Also, the results indicated that experimental treatments produced a higher level of IgG2a isotype than IgG1 isotype. In addition, the findings of the experiment showed that the presence of chemical adjuvant (IFA) along with molecular adjuvant can play a significant role in stimulating the immune system. After determining the potency of recombinant structures, their efficacy in stimulating the immune system were also evaluated. B. melitensis M16 strain was used to challenge 30 days after last immunization. The microbial load of the splenocyte in the treatments receiving chimeric proteins were significantly lower. Also, Wright serological test confirmed that these treatments had the lowest agglutination rate, as well as the positive treatment, while in the negative treatments in excess of blood serum dilutions, agglutination rate were more than 2 + . Conclusions 3E-IL2 treatment showed the best performance compared to other recombinant proteins and could be considered as the suitable candidate for further research on the production of recombinant vaccine against Brucella.
Collapse
Affiliation(s)
- Narges Nazifi
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Mohammad Hadi Sekhavati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Mohammad Behroozikhah
- Department of Brucellosis, Razi Vaccine and Serum Research institute, agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
22
|
Sadeghi Z, Fasihi-Ramandi M, Bouzari S. Evaluation of immunogenicity of novel multi-epitope subunit vaccines in combination with poly I:C against Brucella melitensis and Brucella abortus infection. Int Immunopharmacol 2019; 75:105829. [PMID: 31437796 DOI: 10.1016/j.intimp.2019.105829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
Brucellosis is a worldwide zoonotic disease affecting domestic animals and humans. Due to several safety problems associated with live attenuated vaccines (Rev1 and RB51), it is necessary to produce an efficient and safer vaccine against Brucella. In this study, we evaluated efficacy of two novel multi-peptide vaccine candidates of FliC, 7α-HSDH, BhuA antigens with and without poly I:C adjuvant. Hence, humoral and cellular immune responses and protective efficacy were determined in immunized mice. Our investigation indicated that multi-epitope antigens showed a significant induction of Th1 immunity with high levels of specific IgG (especially the IgG2a), as well as IFN-γ and IL-2 compared to the control group. The addition of poly I:C to multi-epitope antigens improved the humoral and cellular immune responses. The multi-epitope antigens with and without poly I:C also provided cross protection against B. melitensis16M and B. abortus544 infections. The present study suggests that the novel multi-epitope vaccine candidates based on B cell, CD4+ and CD8+T-cell epitopes of FliC, 7α-HSDH, BhuA proteins would be potential vaccine candidate against B. melitensis and B. abortus infections. Furthermore, poly I:C could be considered as a strong Th1-inducing adjuvant in designing vaccine formulation against brucellosis.
Collapse
Affiliation(s)
- Zohre Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
23
|
Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Prediction of the Omp16 Epitopes for the Development of an Epitope-based Vaccine Against Brucellosis. Infect Disord Drug Targets 2019; 19:36-45. [PMID: 29984663 DOI: 10.2174/1871526518666180709121653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/07/2018] [Accepted: 07/06/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Brucellosis is an infectious disease caused by Brucella bacteria that cause disease in animals and humans. Brucellosis is one of the most common zoonotic diseases transmitted from animals-to-human through direct contact with infected animals and also consumption of unpasteurized dairy products. Due to the wide incidence of brucellosis in Iran and economical costs in industrial animal husbandry, Vaccination is the best way to prevent this disease. All of the available commercial vaccines against brucellosis are derived from live attenuated strains of Brucella but because of the disadvantage of live attenuated vaccines, protective subunit vaccine against Brucella may be a good candidate for the production of new recombinant vaccines based on Brucella Outer Membrane Protein (OMP) antigens. In the present study, comprehensive bioinformatics analysis has been conducted on prediction software to predict T and B cell epitopes, the secondary and tertiary structures and antigenicity of Omp16 antigen and the validation of used software confirmed by experimental results. CONCLUSION The final epitope prediction results have proposed that the three epitopes were predicted for the Omp16 protein with antigenicity ability. We hypothesized that these epitopes likely have the protective capacity to stimulate both the B-cell and T-cell mediated immune responses and so may be effective as an immunogenic candidate for the development of an epitope-based vaccine against brucellosis.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | | | | | - Rahman Emamzadeh
- Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Science, Arak, Iran
| |
Collapse
|
24
|
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine 2019; 37:3981-3988. [PMID: 31176541 DOI: 10.1016/j.vaccine.2019.05.084] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/04/2019] [Accepted: 05/21/2019] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonosis affecting animal and human health. Till now, there is no effective vaccine licensed for brucellosis in humans. Although M5, H38 and 45/20 vaccines were used to prevent animal brucellosis in the early stages, the currently used animal vaccines are S19, Rev.1, S2, RB51 and SR82. However, these vaccines still have several drawbacks such as residual virulence and interfering conventional serological tests. With the development of DNA recombination technologies and the completion of the sequence of Brucella genome, much research focuses on the search for potential safer and more effective vaccines. Preliminary studies have demonstrated that new vaccines, including genetically engineered attenuated vaccines, subunit vaccines and other potential vaccines, have higher levels of protection, but there are still some problems. In this paper, we briefly review the main vaccines that have been used in controlling the brucellosis for decades and the progress in the development of new brucellosis vaccines.
Collapse
Affiliation(s)
- Huanhuan Hou
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China
| | - Xiaofeng Liu
- Tumor Hospital of Jilin Province, Changchun 130021, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| |
Collapse
|
25
|
Masjedian Jezi F, Razavi S, Mirnejad R, Zamani K. Immunogenic and protective antigens of Brucella as vaccine candidates. Comp Immunol Microbiol Infect Dis 2019; 65:29-36. [PMID: 31300122 DOI: 10.1016/j.cimid.2019.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 01/18/2023]
Abstract
Brucella is an intracellular pathogen that causes abortion in domestic animals and undulant fever in humans. Due to the lack of a human vaccine against brucellosis, animal vaccines play an important role in the management of animal and human brucellosis for decades. Strain 19, RB51 and Rev1 are the approved Brucella spp. vaccine strains that are most commonly used to protect livestock against infection and abortion. However, due to some disadvantages of these vaccines, numerous studies have been conducted for the development of effective vaccines that could also be used in other susceptible animals. In this review, we compare different aspects of immunogenic antigens that have been a candidate for the brucellosis vaccine.
Collapse
Affiliation(s)
- Faramarz Masjedian Jezi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Shabnam Razavi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I
| | - Reza Mirnejad
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Khosrow Zamani
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, I; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
A comparison between adjuvant and delivering functions of calcium phosphate, aluminum hydroxide and chitosan nanoparticles, using a model protein of Brucella melitensis Omp31. Immunol Lett 2019; 207:28-35. [DOI: 10.1016/j.imlet.2019.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 12/16/2022]
|
27
|
Golshani M, Amani M, Siadat SD, Nejati-Moheimani M, Arsang A, Bouzari S. Comparison of the protective immunity elicited by a Brucella cocktail protein vaccine (rL7/L12+rTOmp31+rSOmp2b) in two different adjuvant formulations in BALB/c mice. Mol Immunol 2018; 103:306-311. [PMID: 30343119 DOI: 10.1016/j.molimm.2018.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022]
Abstract
In the present study, protective efficacy conferred by a cocktail protein consisted of Brucella L7/L12 ribosomal, truncated outer membrane protein 31 (TOmp31) and SOmp2b recombinant proteins in CpG ODN 1826+ Montanide ISA 70VG or Poly (I:C) adjuvants was evaluated and compared in BALB/c mice. Immunization of mice with both vaccine regimens elicited strong specific IgG responses (higher IgG2a titers over IgG1 titers), provided T helper1 (Th1) oriented immune responses and conferred protection levels compatible to the live vaccines against Brucella challenge. Vaccination of BALB/c mice with the cocktail protein in CpG ODN 1826+ Montanide ISA 70 V G adjuvants induced higher levels of antibody, IFN-γ/IL-2 and conferred more protection levels against B. melitenisis and B. abortus challenge than did the cocktail protein in Poly (I:C) formulation. In conclusion, both vaccine regimens are capable of stimulating specific Th1- biased immune responses and conferring cross protection against B. melitensis and B. abortus infections. Therefore, they could be introduced as new potential candidates for the development of subunit vaccines against Brucella infection.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Mona Amani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Davar Siadat
- Tuberculosis and Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | | | - Amin Arsang
- Bacterial Vaccine and Antigen Production Branch, Pasteur Institute of Iran, Karaj, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
28
|
The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity. PLoS One 2018; 13:e0198659. [PMID: 29897958 PMCID: PMC5999269 DOI: 10.1371/journal.pone.0198659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Brucellosis is a serious infectious disease that continues to be a significant cause of morbidity worldwide and across all ages. Despite early diagnosis and treatment, 10–30% of patients develop chronic brucellosis. Although there have been recent advances in our knowledge of Brucella virulence factors and hosts’ immune response to the infection, there is a lack of clear data regarding how the infection bypasses the immune system and becomes chronic. The present study investigated immunological factors and their roles in the transition of brucellosis from an acute to a chronic infection in CD4+ T cells. CD4+ T cells sorted from peripheral blood samples of patients with acute or chronic brucellosis and healthy controls using flow cytometry as well as more than 2000 miRNAs were screened using the GeneSpring GX (Agilent) 13.0 miRNA microarray software and were validated using reverse transcription polymerase chain reaction (RT-qPCR). Compared to acute cases, the expression levels of 28 miRNAs were significantly altered in chronic cases. Apart from one miRNA (miR-4649-3p), 27 miRNAs were not expressed in the acute cases (p <0.05, fold change> 2). According to KEGG pathway analysis, these miRNAs are involved in the regulation of target genes that were previously involved in the MAPK signalling pathway, regulation of the actin cytoskeleton, endocytosis, and protein processing in the endoplasmic reticulum. This indicates the potential role of these miRNAs in the development of chronic brucellosis. We suggest that these miRNAs can be used as markers to determine the transition of the disease into chronicity. This is the first study of miRNA expression that analyses human CD4+ T cells to clarify the mechanism of chronicity in brucellosis.
Collapse
|
29
|
Abadi AH, Mahdavi M, Khaledi A, Esmaeili SA, Esmaeili D, Sahebkar A. Study of serum bactericidal and splenic activity of Total-OMP- CagA combination from Brucella abortus and Helicobacter pylori in BALB/c mouse model. Microb Pathog 2018; 121:100-105. [PMID: 29709690 DOI: 10.1016/j.micpath.2018.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Brucella is a Gram-negative and facultative intracellular organism that causes brucellosis, a common zoonotic disease. Over 500,000 people are annually affected by brucellosis. Brucella is highly infectious through inhalation route; for this reason it is used for biological warfare aims. This study aimed to study the serum bactericidal and splenic activity of Total-OMP-r CagA immunogens from Brucella abortus and Helicobacter pylori in a BALB/c mouse model. METHODS Immunization of BALB/c mice was performed with immunogenic proteins three times subcutaneously (S.C.) at 14-day intervals. The protective effects of two component vaccines with CpG adjuvant were evaluated after mice were challenged with H. pylori ss1 and Brucella abortus strain 544. The specific IgG1 and IgG2a antibodies in sera were assessed using ELISA test. For measuring the antigen-specific IL-4, IL-12 and IFN-γ responses in sera of immunized mice after challenge, RT-PCR technique was applied. Twenty days after the challenge, mice were killed then gastric, splenic and serum samples were assessed and bacterial colony count was measured based on the pour plate count agar. RESULTS The results indicated that rCagA + OMP decreased bacterial colonization in these tissues, and significant difference was observed between test and control groups (p value˂0.001). CONCLUSION Our results showed that the combination vaccine was effective against an oral exposure and the bacterial burden in the spleen, serum and gastric tissues were reduced in mice immunized with the Total- OMP-CagA.
Collapse
Affiliation(s)
- Amir Hossein Abadi
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mahdavi
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, IR, Iran; Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed-Alireza Esmaeili
- Student Research Committee, Immunology Research Center, Buali Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
30
|
Immunization of BALB/c mice with a combination of four recombinant Brucella abortus proteins, AspC, Dps, InpB and Ndk, confers a marked protection against a virulent strain of Brucella abortus. Vaccine 2018; 36:3027-3033. [PMID: 29678458 DOI: 10.1016/j.vaccine.2018.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 11/21/2022]
Abstract
In this study, we assessed the protective efficacy of single subunit vaccines, encoded by the B. abortus 544 genes aspC, dps, yaeC and inpB, against B. abortus infection in mice. First, immunization with these antigens, with the exception of the YaeC protein, was found to elicit both humoral and cellular immune responses with IgG2a being dominant over IgG1. In addition, a massive production of IFN-γ but lower degree of IL-10 was observed, suggesting that all three antigens were able to induce predominantly cell-mediated immunity in response to B. abortus infection. Further investigation of a combined subunit vaccine (CSV) consisting of purified AspC, Dps, InpB and Ndk proteins showed a superior protective effect in mice against brucellosis. The intraperitoneal injection of this combination was shown to induce a remarkable production of IFN-γ and IL-2, which occurred in conjunction with an increase of blood CD4+ and CD8+ T cell proportions. In addition, the higher titer of IgG2a compared to IgG1 elicited by this CSV was obtained, suggesting that this CSV induced a typical T-helper-1-dominated immune response in vivo. Furthermore, the protection level induced by this combination was significantly higher than that induced by single antigens and was not significantly different compared to a group immunized with a live attenuated vaccine (RB51). Altogether, our findings suggest that the combination of different immunogenic antigens could be a useful approach for the development of a new, effective and safe brucellosis vaccine that can replace current vaccine strains.
Collapse
|
31
|
Golshani M, Ghasemian M, Gheibi N, Bouzari S. In silico Design, and In vitro Expression of a Fusion Protein Encoding Brucella abortus L7/L12 and SOmp2b Antigens. Adv Biomed Res 2018. [PMID: 29531919 PMCID: PMC5840964 DOI: 10.4103/abr.abr_10_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: L7/L12 is a protective antigen conserved in main Brucella pathogens and is considered as potential vaccine candidate. Outer membrane protein 2b is an immunogen conserved in all Brucella pathogens. Materials and Methods: The purpose of the current study was to in silico design a L7/L12-SOmp2b fusion protein and in vitro production of the chimera. Two possible fusion forms, L7/L12-SOmp2b and SOmp2b-L7/L12, were subjected to in silico modeling and analysis. Cloning and expression of the fusion protein has been done in the pET28a vector and Escherichia coli Bl21 (DE3), respectively. Results: Analysis and validation of the fusion proteins three-dimensional models showed that both models are in the range of native proteins. However, L7/L12-SOmp2b structure was more valid than the SOmp2b-L7/L12 model and subjected to in vitro production. The major histocompatibility complex II (MHC-II) epitope mapping using Immune Epitope DataBase indicated that the model contained good MHC-II binders. The L7/L12-Omp2b coding sequence was cloned in pET28a vector. The fusion was successfully expressed in E. coli BL21 by induction with isopropyl-β-d-thiogalactopyranoside. The rL7/L12-SOmp2b was purified with Ni-NTA column. The yield of the purified rL7/L12-SOmp2b was estimated by Bradford method to be 240 μg/ml of the culture. Western blot analysis revealed a specific reactivity with purified rL7/L12-SOmp2b produced in E. coli cells and showed the expression in the prokaryotic system. Conclusions: Our data indicates that L7/L12-SOmp2b fusion protein has a potential to induce both B- and T-cell-mediated immune responses and it can be evaluated as a new subunit vaccine candidate against brucellosis.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Melina Ghasemian
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Department of Biotechemistry, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Saeid Bouzari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
|
33
|
Abkar M, Fasihi-Ramandi M, Kooshki H, Sahebghadam Lotfi A. Oral immunization of mice with Omp31-loaded N-trimethyl chitosan nanoparticles induces high protection against Brucella melitensis infection. Int J Nanomedicine 2017; 12:8769-8778. [PMID: 29263667 PMCID: PMC5732559 DOI: 10.2147/ijn.s149774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Brucellosis is a group of closely associated zoonotic bacterial illnesses caused by members of the genus Brucella. B. melitensis Omp31 is a promising candidate for a subunit vaccine against brucellosis. This study surveyed the immunogenicity of Omp31 alone and with incomplete Freund’s adjuvant (Omp31-IFA) and N-trimethyl chitosan (TMC/Omp31) nanoparticles (NPs), as well as the effect of Omp31 immunization route on immunological responses and protection. After expression and purification, the recombinant Omp31 (rOmp31) was loaded onto TMC NPs by ionic gelation. The particle size, loading efficiency and in vitro release of the NPs were examined. Omp31-IFA was administered intraperitoneally, while TMC/Omp31 NPs were administered orally and intraperitoneally. According to the antibody subclasses and cytokine profile, intraperitoneal immunization by Omp31-IFA and TMC/Omp31 NPs induced T helper 1 (Th1) and Th1–Th2 immune responses, respectively. On the other hand, oral immunization with TMC/Omp31 NPs elicited a mixed Th1–Th17 immune response. Data obtained from the cell proliferation assay showed that vaccination with Omp31 stimulated a vigorous antigen-specific cell proliferative response, which could be further increased after oral immunization with TMC/Omp31 NPs. Vaccinated groups of mice when challenged with B. melitensis 16M were found to be significantly protected in the orally administered group in comparison with the intraperitoneally immunized mice. Results of this study indicated that the reason for high protection after oral vaccination can be via elicited Th17 response.
Collapse
Affiliation(s)
- Morteza Abkar
- Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz
| | | | - Hamid Kooshki
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medicine, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
34
|
Abbassi-Daloii T, Yousefi S, Sekhavati MH, Tahmoorespur M. Impact of heat shock protein 60KD in combination with outer membrane proteins on immune response against Brucella melitensis. APMIS 2017; 126:65-75. [PMID: 29154438 DOI: 10.1111/apm.12778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Brucellosis caused by the bacterium Brucella affects various domestic and wild species. The outer membrane proteins 25 and 31 play key roles on stimulation of cell-mediated immune response against Brucella. GroEL as one of the major Brucella antigens stimulates the immune system and increases intracellular survival of bacteria. In the present study, we assumed injection of GroEL in combination with OMP25 and OMP31 would offer higher immunity levels. So, the impact of GroEL with different concentrations of recombinant outer membrane proteins emulsified in Chitosan Nanoparticles on immune responses was evaluated in mice model. Results showed both univalent (except rGroEL) and divalent immunized groups induced higher IFN-γ, TNF-α, and IL-4 titers in comparison to negative control groups. While GroEL showed negative effect on TNF-α titer, there were positive increase trends in IFN-γ in some treatments. Analysis of humoral antibody response revealed both univalent and divalent immunized groups induced higher IgG2a titer than IgG1 titer, indicating strong bent of Th1 immune response. Also, results showed GroEL can have positive impact on lymphocyte proliferation response. Overall, mice immunization using individual OMP25 or OMP31 demonstrated more effective cell-mediated immunity, although some combinations of rGroEL and rOMP31 vaccines were more efficient than other divalent ones.
Collapse
Affiliation(s)
- Tooba Abbassi-Daloii
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Department of Human Genetics, Leiden University of Medical Center, Leiden, The Netherlands
| | - Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | |
Collapse
|
35
|
Golshani M, Buozari S. A review of Brucellosis in Iran: Epidemiology, Risk Factors, Diagnosis, Control, and Prevention. IRANIAN BIOMEDICAL JOURNAL 2017; 21:349-59. [PMID: 28766326 PMCID: PMC5572431 DOI: 10.18869/acadpub.ibj.21.6.349] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 02/02/2023]
Abstract
Brucellosis caused by species of Brucella is among the most prevalent zoonoses with the annual incidence of half a million cases globally. Most parts of Iran are endemic for brucellosis, and the annual incidence of the human and animal brucellosis is still high. At present, there is no safe and protective human vaccine against brucellosis, and the only preventive strategy is animal vaccination, which harbors significant disadvantages. Considering the identification of many immunogenic proteins in Brucella, several studies have recently been performed to evaluate the vaccine potency of such antigens as a new subunit vaccine candidate. This review represents an overview of brucellosis in Iran, including epidemiology, transmission routs, diagnosis, and treatment. Moreover, it mainly highlights the history of brucellosis control and prevention in Iran, including eradication programs, vast livestock vaccination programs, and subunit vaccine studies. It also discusses major problems that the country encounters with disease control. In recent years, Persian scientists have focused on evaluating the efficacy of best Brucella immunogens in vivo to introduce a new subunit vaccine. The results of some studies could demonstrate the vaccine potential of some immunogens.
Collapse
Affiliation(s)
- Maryam Golshani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Saeid Buozari
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
36
|
Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Identification of potential antigens from non-classically secreted proteins and designing novel multitope peptide vaccine candidate against Brucella melitensis through reverse vaccinology and immunoinformatics approach. INFECTION GENETICS AND EVOLUTION 2017; 55:151-158. [PMID: 28919551 DOI: 10.1016/j.meegid.2017.09.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 12/31/2022]
Abstract
Brucella melitensis is an intracellular pathogen resides in the professional and non-professional phagocytes of the host, causing zoonotic disease brucellosis. The stealthy nature of the Brucella makes it's highly pathogenic, and it is hard to eliminate the bacteria completely from the infected host. Hitherto, no licensed vaccines are available for human brucellosis. In this study, we identified potential antigens for vaccine development from non-classically secreted proteins through reverse vaccinology approach. Based on the systemic screening of non-classically secreted proteins of B. melitensis 16M, we identified nine proteins as potential vaccine candidates. Among these, Omp31 and Omp22 are known immunogens, and its role in the virulence of Brucella is known. Roles of other proteins in the pathogenesis are yet to be studied. From the nine proteins, we identified six novel antigenic epitopes that can elicit both B-cell and T-cell immune responses. Among the nine proteins, the epitopes were predicted from Omp31 immunogenic protein precursor, Omp22 protein precursor, extracellular serine protease, hypothetical membrane-associated protein, iron-regulated outer membrane protein FrpB. Further, we designed a multitope vaccine using Omp31 immunogenic protein precursor, Omp22 protein precursor, extra cellular serine protease, iron-regulated outer membrane protein FrpB, hypothetical membrane-associated protein, and LPS-assembly protein LptD and polysaccharide export protein identified in the previous study. Epitopes were joined using amino acid linkers such as EAAAK and GPGPG. Cholera toxin subunit B, the nontoxic part of cholera toxin, was used as an adjuvant and it was linked to the N-terminal of the multitope vaccine candidate. The designed vaccine candidate was modeled, validated and the physicochemical properties were analyzed. Results revealed that the vaccine candidate is soluble, stable, non-allergenic, antigenic and 87% of residues of the designed vaccine candidate is located in the favored region. In conclusion, the computational analysis showed that the newly designed multitope protein could be used to develop a promising vaccine for human brucellosis.
Collapse
Affiliation(s)
- Udayakumar S Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Jagadesan Sankarasubramanian
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
37
|
Golshani M, Rafati S, Nejati-Moheimani M, Pourabdi S, Arsang A, Bouzari S. Protein/Protein, DNA/DNA and DNA/Protein based vaccination strategies using truncated Omp2b against Brucella infection in BALB/c Mice. Int J Med Microbiol 2017; 307:249-256. [DOI: 10.1016/j.ijmm.2017.03.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022] Open
|
38
|
Li J, Hu F, Chen S, Luo P, He Z, Wang W, Allain JP, Li C. Characterization of novel Omp31 antigenic epitopes of Brucella melitensis by monoclonal antibodies. BMC Microbiol 2017; 17:115. [PMID: 28506316 PMCID: PMC5433040 DOI: 10.1186/s12866-017-1025-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brucellosis is a severe zoonotic disease worldwide. Detection and identification of Brucella species are essential to prevent or treat brucellosis in humans and animals. The outer membrane protein-31 (Omp31) is a major protein of Brucellae except for B. abortus, while the Omp31 antigenic epitopes have not been extensively characterized yet. RESULTS A total of 22 monoclonal antibodies (mAbs) were produced against Omp31 of Brucella (B.) melitensis, of which 13 recognized five linear epitopes, 7 reacted with semi-conformational epitopes and 2 reacted with conformational epitopes, respectively. The mAb isotypes were 11 (50%) IgG2a, 5 (23%) IgG1 and 6 (27%) IgM. On the basis of epitope recognition and reactivity levels, 8 mAbs including 3 IgM and 5 IgG clones were considered as highly reactive and potentially diagnostic antibodies. Among these mAbs, 7A3 (IgG1), 5B1 (IgG2a), 2C1 (IgG2a) and 5B3 (IgG2a) reacted with differently conserved linear epitopes of B. melitensis, B. ovis, B. suis and B. canis strains, while 5H3 (IgG2a) highly reacted with a conformational epitope of Omp31 when tested with several immunoassays. CONCLUSIONS These potent monoclonal antibodies can be used for identifying Omp31 antigens or detecting B. melitensis and other Brucella species beyond B. abortus in vitro or in vivo.
Collapse
Affiliation(s)
- Jinfeng Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Feihuan Hu
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Shouyi Chen
- Guangzhou Center of Disease Control and Prevention (CDC), Guangzhou, China
| | - Peifang Luo
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.,Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Zuoping He
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China.,Department of Hematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, Southern Medical University, Guangzhou, China. .,School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Comparison of potential protection conferred by three immunization strategies (protein/protein, DNA/DNA, and DNA/protein) against Brucella infection using Omp2b in BALB/c Mice. Vet Microbiol 2016; 197:47-52. [DOI: 10.1016/j.vetmic.2016.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/19/2016] [Accepted: 10/30/2016] [Indexed: 11/19/2022]
|
40
|
Carvalho TF, Haddad JPA, Paixão TA, Santos RL. Meta-Analysis and Advancement of Brucellosis Vaccinology. PLoS One 2016; 11:e0166582. [PMID: 27846274 PMCID: PMC5112997 DOI: 10.1371/journal.pone.0166582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/31/2016] [Indexed: 01/18/2023] Open
Abstract
Background/Objectives In spite of all the research effort for developing new vaccines against brucellosis, it remains unclear whether these new vaccine technologies will in fact become widely used. The goal of this study was to perform a meta-analysis to identify parameters that influence vaccine efficacy as well as a descriptive analysis on how the field of Brucella vaccinology is advancing concerning type of vaccine, improvement of protection on animal models over time, and factors that may affect protection in the mouse model. Methods A total of 117 publications that met the criteria were selected for inclusion in this study, with a total of 782 individual experiments analyzed. Results Attenuated (n = 221), inactivated (n = 66) and mutant (n = 102) vaccines provided median protection index above 2, whereas subunit (n = 287), DNA (n = 68), and vectored (n = 38) vaccines provided protection indexes lower than 2. When all categories of experimental vaccines are analyzed together, the trend line clearly demonstrates that there was no improvement of the protection indexes over the past 30 years, with a low negative and non significant linear coefficient. A meta-regression model was developed including all vaccine categories (attenuated, DNA, inactivated, mutant, subunit, and vectored) considering the protection index as a dependent variable and the other parameters (mouse strain, route of vaccination, number of vaccinations, use of adjuvant, challenge Brucella species) as independent variables. Some of these variables influenced the expected protection index of experimental vaccines against Brucella spp. in the mouse model. Conclusion In spite of the large number of publication over the past 30 years, our results indicate that there is not clear trend to improve the protective potential of these experimental vaccines.
Collapse
Affiliation(s)
- Tatiane F. Carvalho
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A. Haddad
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiane A. Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Renato L. Santos
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
41
|
Abdollahi A, Mansouri S, Amani J, Fasihi-Ramandi M, Moradi M. Immunoreactivity evaluation of a new recombinant chimeric protein against Brucella in the murine model. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:193-202. [PMID: 27928487 PMCID: PMC5139923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND OBJECTIVES Brucellosis is an important health problem in developing countries and no vaccine is available for the prevention of infection in humans. Because of clinically infectious diseases and their economic consequences in human and animals, designing a proper vaccine against Brucella is desirable. In this study, we evaluated the immune responses induced by a designed recombinant chimera protein in murine model. MATERIALS AND METHODS Three immunodominant antigens of Brucella have been characterized as potential immunogenic and protective antigens including: trigger factor (TF), Omp31 and Bp26 were fused together by EAAAK linkers to produce a chimera (structure were designed in silico), which was synthesized, cloned, and expressed in E. coli BL21 (DE3). The purification of recombinant protein was performed using Ni-NTA agarose. SDS-PAGE and anti-His antibody was used for confirmation purified protein (Western blot). BALB/c immunization was performed by purified protein and adjuvant, and sera antibody levels were measured by ELISA. otted. RESULTS SDS-PAGE and Western blotting results indicated the similarity of in silico designing and in vitro experiments. ELISA result proved that the immunized sera of mice contain high levels of antibodies (IgG) against recombinant chimeric protein. CONCLUSION The recombinant chimeric protein could be a potential antigen candidate for the development of a subunit vaccine against Brucella.
Collapse
Affiliation(s)
- Abbas Abdollahi
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahla Mansouri
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran, Corresponding author: Shahla Mansouri, Ph.D, Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran., Tel: +98 343 325 7665, +98 913 142 3384, E-mail:
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran, Corresponding author: Jafar Amani, Ph.D, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran., Tel: +98 912 406 6964, E-mail:
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Moradi
- Department of Microbiology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
42
|
Yousefi S, Tahmoorespur M, Sekhavati MH. Cloning, expression and molecular analysis of Iranian Brucella melitensis Omp25 gene for designing a subunit vaccine. Res Pharm Sci 2016; 11:412-418. [PMID: 27920824 PMCID: PMC5122831 DOI: 10.4103/1735-5362.192493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. The outer membrane protein 25 kDa (Omp25) gene plays an important role in simulating of TNF-α, IFN-α, macrophage, and cytokines cells. In the current study molecular cloning and expression analysis of Omp25 gene for designing a subunit vaccine against Brucella was investigated. Amplifying the full length of candidate gene was performed using specific primers. Sub-cloning of this gene conducted using pTZ57R/T vector in TOP10F strain of Escherichia coli(E.coli) as the host. Also, pET32(a)+ vector used for expression in BL21 (DE3) strain of E.coli. Omp25 gene with 642 bp size was amplified and cloned successfully. The expression results were confirmed by sequencing and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analyses which showed 42 kDa protein band correctly. Also, phylogenic analysis showed this gene has a near genetic relation with other Brucella strains. According to our results we can propose this gene as a candidate useful for stimulation of cell-mediated and humoral immunity system in future study.
Collapse
Affiliation(s)
- Soheil Yousefi
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, I.R. Iran
| | - Mojtaba Tahmoorespur
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, I.R. Iran
| | | |
Collapse
|
43
|
Kaur G, Singh S, Sunil Kumar BV, Mahajan K, Verma R. Characterization and Immunogenicity of Outer Membrane Vesicles fromBrucella abortus. J Immunoassay Immunochem 2015; 37:261-72. [DOI: 10.1080/15321819.2015.1132231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Vishnu US, Sankarasubramanian J, Gunasekaran P, Rajendhran J. Novel Vaccine Candidates against Brucella melitensis Identified through Reverse Vaccinology Approach. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:722-9. [PMID: 26479901 DOI: 10.1089/omi.2015.0105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Global health therapeutics is a rapidly emerging facet of postgenomics medicine. In this connection, Brucella melitensis is an intracellular bacterium that causes the zoonotic infectious disease, brucellosis. Presently, no licensed vaccines are available for human brucellosis. Here, we report the identification of potential vaccine candidates against B. melitensis using a reverse vaccinology approach. Based on a systematic screening of exoproteome and secretome of B. melitensis 16 M, we identified eight proteins as potential vaccine candidates, including LPS-assembly protein LptD, a polysaccharide export protein, a cell surface protein, heme transporter BhuA, flagellin FliC, 7-alpha-hydroxysteroid dehydrogenase, immunoglobulin-binding protein EIBE, and hemagglutinin. Among these, the roles of BhuA and hemagglutinin in the virulence of Brucella are essential to establish infection. Roles of other proteins in the virulence are yet to be studied. Prediction of protein-protein interactions revealed that these proteins can interact with other proteins involved in virulence, secretion system, metabolism, and transport. From these eight potential vaccine candidates, we predicted three surface exposed novel antigenic epitopes that can induce both B-cell and T-cell immune responses. These peptides can be used for the development of either exclusive peptide vaccines or multi-component vaccines against human brucellosis. Reverse vaccinology is an important strategy for discovery of novel global health therapeutics.
Collapse
Affiliation(s)
- Udayakumar S Vishnu
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| | | | - Paramasamy Gunasekaran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University , Madurai, India
| |
Collapse
|
45
|
Simultaneous immunization of mice with Omp31 and TF provides protection against Brucella melitensis infection. Vaccine 2015; 33:5532-5538. [DOI: 10.1016/j.vaccine.2015.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 01/18/2023]
|
46
|
Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun 2015; 39:217-28. [DOI: 10.1007/s11259-015-9645-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/08/2015] [Indexed: 11/26/2022]
|
47
|
Improved immunogenicity and protective efficacy of a divalent DNA vaccine encoding Brucella L7/L12-truncated Omp31 fusion protein by a DNA priming and protein boosting regimen. Mol Immunol 2015; 66:384-91. [DOI: 10.1016/j.molimm.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
48
|
Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015; 65:287-92. [DOI: 10.1016/j.molimm.2015.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
|
49
|
Amani J, Ghasemi A, Ranjbar R, Shabani M, Zandemami M, Golmohammadi R. Immune reactivity of sera obtained from brucellosis patients and vaccinated-rabbits to a fusion protein from Brucella melitensis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:350-5. [PMID: 26019797 PMCID: PMC4439449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 10/29/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVES Brucella spp. are facultative intracellular pathogens which can stay alive and multiply in professional and nonprofessional phagocytes. Immunity against Brucella melitensis involves antigen-specific CD4(+) and CD8(+) T-cells activation and humoral immune responses. Due to negative aspects of live attenuated vaccines, much attention has been focused on finding Brucella-protective antigens to introduce them as potential subunit vaccine candidates. MATERIALS AND METHODS A chimeric gene encoding trigger factor (TF), Omp31(48-74) and BP26(87-111) fragments (TOB) from B. melitensis was successfully cloned, expressed in Escherichia coli BL21-DE3 and purified by Ni-NTA agarose column. Antibodies to recombinant TOB (rTOB) have been investigated in Brucella-infected human sera and a pool serum prepared from B. melitensis-vaccinated rabbits. RESULTS Our results showed that the immunized rabbit pool serum strongly reacted with rTOB. In addition, antibodies against rTOB were detectable in 76.5% of sera obtained from infected patients. CONCLUSION These findings suggest that rTOB may provide a potential immunogenic candidate which could be considered in future vaccine studies.
Collapse
Affiliation(s)
- Jafar Amani
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,*Corresponding author: Amir Ghasemi. Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Vanak Sq. Molasadra St. Tehran- Iran. Tel: +98-21-82482568; Fax: +98-21-88068924;
| | - Reza Ranjbar
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Zandemami
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Reza Golmohammadi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Hop HT, Simborio HL, Reyes AWB, Arayan LT, Min W, Lee HJ, Kim DH, Chang HH, Kim S. Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice. FEMS Microbiol Lett 2015; 362:fnv003. [DOI: 10.1093/femsle/fnv003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|