1
|
Cai L, Zhang L, Yang J, Zhu X, Wei W, Ji M, Jiang H, Chen J. Encapsulating Antibiotic and Protein-Stabilized Nanosilver into Sandwich-Structured Electrospun Nanofibrous Scaffolds for MRSA-Infected Wound Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48978-48995. [PMID: 37877381 DOI: 10.1021/acsami.3c10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
With the increasing prevalence of microbial infections, which results in prolonged inflammation and delayed wound healing, the development of effective and safe antimicrobial wound dressings of multiple properties remains challenging for public health. Despite their various formats, the available developed dressings with limited functions may not fulfill the diverse demands involved in the complex wound healing process. In this study, multifunctional sandwich-structured electrospinning nanofiber membranes (ENMs) were fabricated. According to the structural composition, the obtained ENMs included a hydrophilic inner layer loaded with curcumin and gentamicin sulfate, an antibacterial middle layer consisting of bovine serum albumin stabilized silver oxide nanoparticles, and a hydrophobic outer layer. The prepared sandwich-structured ENMs (SNM) exhibited good biocompatibility and killing efficacy on Escherichia coli, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA). In particular, transcriptomic analysis revealed that SNM inactivated MRSA by inhibiting its carbohydrate and energy metabolism and reduced the bacterial resistance by downregulating mecA. In the animal experiment, SNM showed improved wound healing efficiency by reducing the bacterial load and inflammation. Moreover, 16S rDNA sequencing results indicated that SNM treatment may accelerate wound healing without observed influence on the normal skin flora. Therefore, the constructed sandwich-structured ENMs exhibited promising potential as dressings to deal with the infected wound management.
Collapse
Affiliation(s)
- Ling Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Li Zhang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Yang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinyi Zhu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Oligopeptide Transporters of Nonencapsulated Streptococcus pneumoniae Regulate CbpAC and PspA Expression and Reduce Complement-Mediated Clearance. mBio 2023; 14:e0332522. [PMID: 36625598 PMCID: PMC9973307 DOI: 10.1128/mbio.03325-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Streptococcus pneumoniae colonizes the human nasopharynx and causes several diseases. Pneumococcal vaccines target the polysaccharide capsule and prevent most serious disease, but there has been an increase in the prevalence of nonencapsulated S. pneumoniae (NESp). Previously, it was thought that a capsule was necessary to cause invasive disease. NESp strains expressing the oligopeptide transporters AliC and AliD have been isolated from patients with invasive disease. The AliC and AliD oligopeptide transporters regulate the expression of several genes, including choline binding protein AC (CbpAC) (a homolog of PspA), which aids in reducing C3b deposition. It is hypothesized that by altering CbpAC expression, AliC and AliD provide protection from classical complement-mediated clearance by reducing C-reactive protein (CRP) binding. Our study demonstrates that AliC and AliD regulate CbpAC expression in NESp and that AliD found in certain serotypes of encapsulated strains regulates PspA expression. C3b deposition was increased in the NESp ΔaliD and encapsulated mutants in comparison to the wild type. NESp strains expressing AliC and AliD have a significant decrease in C1q and CRP deposition in comparison to the ΔaliC ΔaliD mutant. The complement protein C1q is required for NESp clearance in a murine model and increases opsonophagocytosis. By regulating CbpAC expression, NESp inhibits CRP binding to the bacterial surface and blocks classical complement activation, leading to greater systemic survival and virulence. Due to the increase in the prevalence of NESp, it is important to gain a better understanding of NESp virulence mechanisms that aid in establishing disease and persistence within a host by avoiding clearance by the immune system. IMPORTANCE Streptococcus pneumoniae (pneumococcus) can cause a range of diseases. Although there is a robust pneumococcal vaccination program that reduces invasive pneumococcal disease by targeting various polysaccharide capsules, there has been an increase in the isolation of nonvaccine serotypes and nonencapsulated S. pneumoniae (NESp) strains. While most studies of pneumococcal pathogenesis have focused on encapsulated strains, there is little understanding of how NESp causes disease. NESp lacks a protective capsule but contains novel genes, such as aliC and aliD, which have been shown to regulate the expression of numerous genes and to be required for NESp virulence and immune evasion. Furthermore, NESp strains have high transformation efficiencies and harbor resistance to multiple drugs. This could be deleterious to current treatment strategies employed for pneumococcal disease as NESp can be a reservoir of drug resistance genes. Therefore, deciphering how NESp survives within a host and facilitates disease is a necessity that will allow the fabrication of improved, broad-spectrum treatments and preventatives against pneumococcal disease. Our study provides a better understanding of NESp virulence mechanisms during host-pathogen interactions through the examination of genes directly regulated by the NESp proteins AliC and AliD.
Collapse
|
3
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
4
|
Yokoyama H, Kamei N, Konishi K, Hara K, Ishikawa Y, Matsui I, Forterre P, Hashimoto H. Preparation, Crystallization, and X-ray Data Collection of Archaeal Oligopeptide Permease A. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521070221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Kordafshari S, Marenda MS, Agnew R, Shil P, Shahid MA, Marth C, Konsak BM, Noormohammadi AH. Complementation of the Mycoplasma synoviae MS-H vaccine strain with wild-type oppF1 influences its growth characteristics. Avian Pathol 2020; 49:275-285. [PMID: 32054292 DOI: 10.1080/03079457.2020.1729957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Mycoplasma synoviae (MS) vaccine strain MS-H harbours a frameshift mutation in oppF1 (oligopeptide permease transporter) which results in expression of a truncated OppF1. The effect of this mutation on growth and attenuation of the MS-H is unknown. In this study, the impact of the mutation on the vaccine phenotype was investigated in vitro by introducing a wild-type copy of oppF1 gene in the MS-H genome. Wild-type oppF1 was cloned under the vlhA promoter into an oriC vector carrying a tetracycline resistance gene. MS-H was successfully transformed with the final construct pMS-oppF1-tetM or with a similar vector lacking oppF1 coding sequence (pMS-tetM). The MS-H transformed with pMS-oppF1-tetM exhibited smaller colony size than MS-H transformed with pMS-tetM. Monospecific rabbit sera against C-terminus of OppF1 detected bands of expected size for full-length OppF1 in the 86079/7NS parental strain of MS-H and the MS-H transformed with pMS-oppF1-tetM, but not in MS-H and MS-H transformed with pMS-tetM. Comparison of the growth curve of MS-H transformants harvested from media with/without tetracycline was conducted using vlhA Q-PCR which revealed that MS-H transformed with pMS-tetM had a higher growth rate than MS-H transformed with pMS-oppF1-tetM in the media with/without tetracycline. Lastly, the whole genome sequencing of MS-H transformed with pMS-oppF1-tetM (passage 27) showed that the chromosomal copy of the mutated oppF1 had been replaced with a wild-type version of the gene. This study reveals that the truncation of oppF1 impacts on growth characteristics of the MS-H and provides insight into the molecular pathogenesis of MS and perhaps broader mycoplasma species.RESEARCH HIGHLIGHTS The full-length OppF1 was expressed in Mycoplasma synoviae MS-H vaccine.Truncation of oppF1 impacts on growth characteristics of the MS-H.Chromosomal copy of the mutated oppF1 in MS-H was replaced with wild-type oppF1.
Collapse
Affiliation(s)
- Somayeh Kordafshari
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Marc S Marenda
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Rebecca Agnew
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Pollob Shil
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Muhammad A Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Christina Marth
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Barbara M Konsak
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| | - Amir H Noormohammadi
- Asia Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Werribee, Australia
| |
Collapse
|
7
|
Molecular Basis of Unexpected Specificity of ABC Transporter-Associated Substrate-Binding Protein DppA from Helicobacter pylori. J Bacteriol 2019; 201:JB.00400-19. [PMID: 31358613 DOI: 10.1128/jb.00400-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
The gastric pathogen Helicobacter pylori has limited ability to use carbohydrates as a carbon source, relying instead on exogenous amino acids and peptides. Uptake of certain peptides by H. pylori requires an ATP binding cassette (ABC) transporter annotated dipeptide permease (Dpp). The transporter specificity is determined by its cognate substrate-binding protein DppA, which captures ligands in the periplasm and delivers them to the permease. Here, we show that, unlike previously characterized DppA proteins, H. pylori DppA binds, with micromolar affinity, peptides of diverse amino acid sequences ranging between two and eight residues in length. We present analysis of the 1.45-Å-resolution crystal structure of its complex with the tetrapeptide STSA, which provides a structural rationale for the observed broad specificity. Analysis of the molecular surface revealed a ligand-binding pocket that is large enough to accommodate peptides of up to nine residues in length. The structure suggests that H. pylori DppA is able to recognize a wide range of peptide sequences by forming interactions primarily with the peptide main chain atoms. The loop that terminates the peptide-binding pocket in DppAs from other bacteria is significantly shorter in the H. pylori protein, providing an explanation for its ability to bind longer peptides. The subsites accommodating the two N-terminal residues of the peptide ligand make the greatest contribution to the protein-ligand binding energy, in agreement with the observation that dipeptides bind with affinity close to that of longer peptides.IMPORTANCE The World Health Organization listed Helicobacter pylori as a high-priority pathogen for antibiotic development. The potential of using peptide transporters in drug design is well recognized. We discovered that the substrate-binding protein of the ABC transporter for peptides, termed dipeptide permease, is an unusual member of its family in that it directly binds peptides of diverse amino acid sequences, ranging between two and eight residues in length. We also provided a structural rationale for the observed broad specificity. Since the ability to import peptides as a source of carbon is critical for H. pylori, our findings will inform drug design strategies based on inhibition or fusion of membrane-impermeant antimicrobials with peptides.
Collapse
|
8
|
Tanaka KJ, Pinkett HW. Oligopeptide-binding protein from nontypeable Haemophilus influenzae has ligand-specific sites to accommodate peptides and heme in the binding pocket. J Biol Chem 2018; 294:1070-1082. [PMID: 30455346 DOI: 10.1074/jbc.ra118.004479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/14/2018] [Indexed: 11/06/2022] Open
Abstract
In nontypeable Haemophilus influenzae (NTHi), the oligopeptide-binding protein (OppA) serves as the substrate-binding protein (SBP) of the oligopeptide transport system responsible for the import of peptides. We solved the crystal structure of nthiOppA in complex with hydrophobic peptides of various sizes. Our novel hexapeptide complex demonstrates the flexibility of the nthiOppA-binding cavity to expand and accommodate the longer peptide while maintaining similar protein-peptide interactions of smaller peptide complexes. In addition to acquiring peptides from the host environment, as a heme auxotroph NTHi utilizes host hemoproteins as a source of essential iron. OppA is a member of the Cluster C SBP family, and unlike other SBP families, some members recognize two distinctly different substrates. DppA (dipeptide), MppA (murein tripeptide), and SapA (antimicrobial peptides) are Cluster C proteins known to also transport heme. We observed nthiOppA shares this heme-binding characteristic and established heme specificity and affinity by surface plasmon resonance (SPR) of the four Cluster C proteins in NTHi. Ligand-docking studies predicted a distinct heme-specific cleft in the binding pocket, and using SPR competition assays, we observed that heme does not directly compete with peptide in the substrate-binding pocket. Additionally, we identified that the individual nthiOppA domains differentially contribute to substrate binding, with one domain playing a dominant role in heme binding and the other in peptide binding. Our results demonstrate the multisubstrate specificity of nthiOppA and the role of NTHi Cluster C proteins in the heme-uptake pathway for this pathogen.
Collapse
Affiliation(s)
- Kari J Tanaka
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| | - Heather W Pinkett
- From the Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
9
|
Asai T, Okamoto-Shibayama K, Kikuchi Y, Ishihara K. Characterization of a novel potential peptide import system in Treponema denticola. Microb Pathog 2018; 123:467-472. [PMID: 30076984 DOI: 10.1016/j.micpath.2018.07.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/27/2023]
Abstract
Treponema denticola is a major etiologic agent of chronic periodontitis. On the outer sheath of T. denticola, several proteins, such as the major outer sheath protein and dentilisin were detected, and among them, a 95 kDa protein which has not yet been characterized. The aim of this study was to characterize the function of this 95 kDa protein containing gene cluster. A gene encoding this 95 kDa protein (TDE_1072) of T. denticola was inactivated by homologous recombination. We compared growth curves between the TDE_1072 mutant and wild-type strains as well as differences in gene expression by DNA microarray analysis. Differential expression of genes identified by microarray analysis was confirmed by quantitative reverse transcription-polymerase chain reaction. The proteins encoded by TDE_1072, TDE_1073, TDE_1074, TDE_1075, and TDE_1076 shared respective similarities to the substrate-binding domain (DppA) of an ABC-type dipeptide/oligopeptide/nickel transport system, and to the permease components (DppB and DppC) and ATPase components (DppD and DppF) of an ABC-type dipeptide/oligopeptide/nickel transport system. Inactivation of dppA attenuated the growth of T. denticola and dppA-dppF were co-transcribed. In contrast, expression of oppB-oppF was up-regulated in the mutant. Our findings indicate that TDE_1072 may be a potential periplasmic solute binding protein encoded by dppA that is involved in the organization of a peptide uptake system with dppB-dppF.
Collapse
Affiliation(s)
- Tomohiro Asai
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Department of Endodontics, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuko Okamoto-Shibayama
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Yuichiro Kikuchi
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Kazuyuki Ishihara
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan; Department of Microbiology, Tokyo Dental College, 2-1-14 Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan.
| |
Collapse
|
10
|
Zheng F, Shao ZQ, Hao X, Wu Q, Li C, Hou H, Hu D, Wang C, Pan X. Identification of oligopeptide-binding protein (OppA) and its role in the virulence of Streptococcus suis serotype 2. Microb Pathog 2018; 118:322-329. [DOI: 10.1016/j.micpath.2018.03.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 01/02/2023]
|
11
|
Tanaka KJ, Song S, Mason K, Pinkett HW. Selective substrate uptake: The role of ATP-binding cassette (ABC) importers in pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:868-877. [PMID: 28847505 PMCID: PMC5807212 DOI: 10.1016/j.bbamem.2017.08.011] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/11/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023]
Abstract
The uptake of nutrients, including metals, amino acids and peptides are required for many biological processes. Pathogenic bacteria scavenge these essential nutrients from microenvironments to survive within the host. Pathogens must utilize a myriad of mechanisms to acquire these essential nutrients from the host while mediating the effects of toxicity. Bacteria utilize several transport proteins, including ATP-binding cassette (ABC) transporters to import and expel substrates. ABC transporters, conserved across all organisms, are powered by the energy from ATP to move substrates across cellular membranes. In this review, we will focus on nutrient uptake, the role of ABC importers at the host-pathogen interface, and explore emerging therapies to combat pathogenesis. This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain.
Collapse
Affiliation(s)
- Kari J Tanaka
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Saemee Song
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Kevin Mason
- The Research Institute at Nationwide Children's Hospital and The Ohio State University, College of Medicine, Department of Pediatrics, Center for Microbial Pathogenesis, Columbus, OH, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Wilk L, Happonen L, Malmström J, Herwald H. Comprehensive Mass Spectrometric Survey of Streptococcus pyogenes Subcellular Proteomes. J Proteome Res 2017; 17:600-617. [PMID: 29160079 DOI: 10.1021/acs.jproteome.7b00701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Streptococcus pyogenes is a major global health burden causing a wide variety of diseases. Because a vaccine against this bacterium is still lacking, vaccine candidates or antimicrobial therapies are urgently needed. Here we use an invasive and clinically relevant streptococcal M1 serotype to characterize the bacterial proteome in-depth. An elaborate fractionation technique is employed to separate the different cell fractions, followed by shotgun mass-spectrometry analysis, allowing us to confirm the expression of nearly two-thirds (1022) of the 1690 open reading frames predicted for the streptococcal M1 reference proteome. In contrast with other studies, we present the entire isolated membrane proteome, which opens up a whole new source for drug targets. We show both the unique and most prevalent proteins for each cellular fraction and analyze the presence of predicted cell-wall-anchored proteins and lipoproteins. With our approach, we also identify a variety of novel proteins whose presence has not been reported in previous proteome studies. Proteins of interest, potential virulence factors, and drug or vaccine targets are discussed for each cellular fraction. Overall, the results of this work represent the so-far widest proteomic approach to characterize the protein composition and localization in S. pyogenes.
Collapse
Affiliation(s)
- Laura Wilk
- Division of Infection Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
| | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
| |
Collapse
|
13
|
Liu W, Huang L, Su Y, Qin Y, Zhao L, Yan Q. Contributions of the oligopeptide permeases in multistep of Vibrio alginolyticus pathogenesis. Microbiologyopen 2017; 6. [PMID: 28714216 PMCID: PMC5635161 DOI: 10.1002/mbo3.511] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 01/14/2023] Open
Abstract
Vibrio alginolyticus has been associated with several diseases of cultivated marine animals, and has led to considerable economic losses. The oligopeptide permease (Opp) has been proven to play a variety of important roles in nutrition and virulence in several bacteria. In our previous research, the opp gene cluster was identified in Vibrio alginolyticus with transcriptome sequence, which also indicated that the Opp system might play roles in the regulation of adhesion. In this study, the relationship between V. alginolyticus virulence and the opp gene cluster was determined using gene silencing followed by RT‐qPCR, in vitro adhesion assay, growth curves detection in the presence of glutathione (GSH) as a toxic substrate, hemolysis assay, biofilm assay, and artificial infection. Silencing these genes led to deficiencies in adhesion, peptide internalization, biofilm production, hemolytic activity, and virulence. The expression levels of hapr, hapa, tlh, and hlya, which are important genes closely related to the hemolytic activity of Vibrio, were significantly downregulated in all of the RNAi groups. Furthermore, the expression of oppA, oppB, oppC, oppD, and oppF was significantly influenced by temperature, starvation, and pH. These results indicate that (1) oppABCDF contributed in multistep of V. alginolyticus pathogenesis, including adhesion, biofilm production, and hemolytic activity; (2) oppABCDF was sensitive to different temperatures, changes in pH, and increased starvation time.
Collapse
Affiliation(s)
- Wenjia Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Lingmin Zhao
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, China
| |
Collapse
|
14
|
Baraúna RA, Ramos RTJ, Veras AAO, Pinheiro KC, Benevides LJ, Viana MVC, Guimarães LC, Edman JM, Spier SJ, Azevedo V, Silva A. Assessing the Genotypic Differences between Strains of Corynebacterium pseudotuberculosis biovar equi through Comparative Genomics. PLoS One 2017; 12:e0170676. [PMID: 28125655 PMCID: PMC5268413 DOI: 10.1371/journal.pone.0170676] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Seven genomes of Corynebacterium pseudotuberculosis biovar equi were sequenced on the Ion Torrent PGM platform, generating high-quality scaffolds over 2.35 Mbp. This bacterium is the causative agent of disease known as "pigeon fever" which commonly affects horses worldwide. The pangenome of biovar equi was calculated and two phylogenomic approaches were used to identify clustering patterns within Corynebacterium genus. Furthermore, other comparative analyses were performed including the prediction of genomic islands and prophages, and SNP-based phylogeny. In the phylogenomic tree, C. pseudotuberculosis was divided into two distinct clades, one formed by nitrate non-reducing species (biovar ovis) and another formed by nitrate-reducing species (biovar equi). In the latter group, the strains isolated from California were more related to each other, while the strains CIP 52.97 and 1/06-A formed the outermost clade of the biovar equi. A total of 1,355 core genes were identified, corresponding to 42.5% of the pangenome. This pangenome has one of the smallest core genomes described in the literature, suggesting a high genetic variability of biovar equi of C. pseudotuberculosis. The analysis of the similarity between the resistance islands identified a higher proximity between the strains that caused more severe infectious conditions (infection in the internal organs). Pathogenicity islands were largely conserved between strains. Several genes that modulate the pathogenicity of C. pseudotuberculosis were described including peptidases, recombination enzymes, micoside synthesis enzymes, bacteriocins with antimicrobial activity and several others. Finally, no genotypic differences were observed between the strains that caused the three different types of infection (external abscess formation, infection with abscess formation in the internal organs, and ulcerative lymphangitis). Instead, it was noted that there is a higher phenetic correlation between strains isolated at California compared to the other strains. Additionally, high variability of resistance islands suggests gene acquisition through several events of horizontal gene transfer.
Collapse
Affiliation(s)
- Rafael A. Baraúna
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rommel T. J. Ramos
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Adonney A. O. Veras
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Kenny C. Pinheiro
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Leandro J. Benevides
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus V. C. Viana
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís C. Guimarães
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Judy M. Edman
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Sharon J. Spier
- School of Veterinary Medicine, Department of Medicine and Epidemiology, University of California Davis, Davis, California, United States of America
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Artur Silva
- Laboratory of Genomics and Bioinformatics, Center of Genomics and Systems Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
15
|
Hegde S, Zimmermann M, Flöck M, Brunthaler R, Spergser J, Rosengarten R, Chopra-Dewasthaly R. Genetic loci of Mycoplasma agalactiae involved in systemic spreading during experimental intramammary infection of sheep. Vet Res 2016; 47:106. [PMID: 27765069 PMCID: PMC5073455 DOI: 10.1186/s13567-016-0387-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022] Open
Abstract
Mycoplasmas are amongst the most successful pathogens of both humans and animals yet the molecular basis of mycoplasma pathogenesis is poorly understood. This is partly due to the lack of classical virulence factors and little similarity to common bacterial pathogenic determinants. Using Mycoplasma agalactiae as a model we initiated research in this direction by screening a transposon mutant library in the natural sheep host using a negative selection method. Having successfully identified putative factors involved in the colonization of local infection and lymphogenic sites, the current study assessed mutants unable to spread systemically in sheep after experimental intramammary infection. Analysis of distant body sites for complete absence of mutants via SSM PCR revealed that additional set of genes, such as pdhB, oppC, oppB, gtsB, MAG1890, MAG5520 and MAG3650 are required for systemic spreading apart from those that were necessary for initial colonization. Additional in vitro studies with the mutants absent at these systemic sites confirmed the potential role of some of the respective gene products concerning their interaction with host cells. Mutants of pdhB, oppC and MAG4460 exhibited significantly slower growth in the presence of HeLa cells in MEM medium. This first attempt to identify genes exclusively required for systemic spreading provides a basis for further in-depth research to understand the exact mechanism of chronicity and persistence of M. agalactiae.
Collapse
Affiliation(s)
- Shivanand Hegde
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.,Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Martina Zimmermann
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Martina Flöck
- Clinic for Ruminants, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Rene Brunthaler
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Renate Rosengarten
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Rohini Chopra-Dewasthaly
- Institute of Microbiology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
16
|
Expression of the Oligopeptide Permease Operon of Moraxella catarrhalis Is Regulated by Temperature and Nutrient Availability. Infect Immun 2015; 83:3497-505. [PMID: 26099587 DOI: 10.1128/iai.00597-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Moraxella catarrhalis causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults. Together, these two conditions contribute to enormous morbidity and mortality worldwide. The oligopeptide permease (opp) ABC transport system is a nutritional virulence factor important for the utilization of peptides. The substrate binding protein OppA, which binds peptides for uptake, is a potential vaccine antigen, but little was known about the regulation of gene expression. The five opp genes oppB, oppC, oppD, oppF, and oppA are in the same open reading frame. Sequence analysis predicted two promoters, one located upstream of oppB and one within the intergenic region between oppF and oppA. We have characterized the gene cluster as an operon with two functional promoters and show that cold shock at 26°C for ≤ 0.5 h and the presence of a peptide substrate increase gene transcript levels. Additionally, the putative promoter upstream of oppA contributes to the transcription of oppA but is not influenced by the same environmental cues as the promoter upstream of oppB. We conclude that temperature and nutrient availability contribute to the regulation of the Opp system, which is an important nutritional virulence factor in M. catarrhalis.
Collapse
|
17
|
Jimenez JC, Federle MJ. Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 2014; 4:127. [PMID: 25309879 PMCID: PMC4162386 DOI: 10.3389/fcimb.2014.00127] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.
Collapse
Affiliation(s)
- Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
18
|
Yu D, Pi B, Yu M, Wang Y, Ruan Z, Feng Y, Yu Y. Diversity and evolution of oligopeptide permease systems in staphylococcal species. Genomics 2014; 104:8-13. [DOI: 10.1016/j.ygeno.2014.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 11/17/2022]
|
19
|
Figueiredo AMS, Ferreira FA. The multifaceted resources and microevolution of the successful human and animal pathogen methicillin-resistant Staphylococcus aureus. Mem Inst Oswaldo Cruz 2014; 109:265-78. [PMID: 24789555 PMCID: PMC4131778 DOI: 10.1590/0074-0276140016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2'. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.
Collapse
Affiliation(s)
- Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica , Instituto de Microbiologia Paulo de
Góes , Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ ,
Brasil
| | | |
Collapse
|
20
|
Characterization of the Opp peptide transporter of Corynebacterium pseudotuberculosis and its role in virulence and pathogenicity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:489782. [PMID: 24895581 PMCID: PMC4034477 DOI: 10.1155/2014/489782] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/16/2014] [Indexed: 11/17/2022]
Abstract
Despite the economic importance of caseous lymphadenitis (CLA), a chronic disease caused by Corynebacterium pseudotuberculosis, few genes related to the virulence of its etiologic agent have been characterized. The oligopeptide permease (Opp) transporters are located in the plasma membrane and have functions generally related to the uptake of peptides from the extracellular environment. These peptide transporters, in addition to having an important role in cell nutrition, also participate in the regulation of various processes involving intercellular signaling, including the control of the expression of virulence genes in pathogenic bacteria. To study the role of Opp in C. pseudotuberculosis, an OppD deficient strain was constructed via simple crossover with a nonreplicative plasmid carrying part of the oppD gene sequence. As occurred to the wild-type, the ΔoppD strain showed impaired growth when exposed to the toxic glutathione peptide (GSH), indicating two possible scenarios: (i) that this component can be internalized by the bacterium through an Opp-independent pathway or (ii) that there is toxicity while the peptide is extracellular. Additionally, the ΔoppD mutant presented a reduced ability to adhere to and infect macrophages compared to the wild-type, although both strains exhibit the same potential to colonize spleens and cause injury and death to infected mice.
Collapse
|
21
|
Duran-Pinedo AE, Chen T, Teles R, Starr JR, Wang X, Krishnan K, Frias-Lopez J. Community-wide transcriptome of the oral microbiome in subjects with and without periodontitis. ISME JOURNAL 2014; 8:1659-72. [PMID: 24599074 DOI: 10.1038/ismej.2014.23] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 01/05/2023]
Abstract
Despite increasing knowledge on phylogenetic composition of the human microbiome, our understanding of the in situ activities of the organisms in the community and their interactions with each other and with the environment remains limited. Characterizing gene expression profiles of the human microbiome is essential for linking the role of different members of the bacterial communities in health and disease. The oral microbiome is one of the most complex microbial communities in the human body and under certain circumstances, not completely understood, the healthy microbial community undergoes a transformation toward a pathogenic state that gives rise to periodontitis, a polymicrobial inflammatory disease. We report here the in situ genome-wide transcriptome of the subgingival microbiome in six periodontally healthy individuals and seven individuals with periodontitis. The overall picture of metabolic activities showed that iron acquisition, lipopolysaccharide synthesis and flagellar synthesis were major activities defining disease. Unexpectedly, the vast majority of virulence factors upregulated in subjects with periodontitis came from organisms that are not considered major periodontal pathogens. One of the organisms whose gene expression profile was characterized was the uncultured candidate division TM7, showing an upregulation of putative virulence factors in the diseased community. These data enhance understanding of the core activities that are characteristic of periodontal disease as well as the role that individual organisms in the subgingival community play in periodontitis.
Collapse
Affiliation(s)
| | - Tsute Chen
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Ricardo Teles
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Jacqueline R Starr
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | - Xiaoshan Wang
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| | | | - Jorge Frias-Lopez
- 1] Department of Microbiology, Forsyth Institute, Cambridge, MA, USA [2] Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
22
|
Emergence of the epidemic methicillin-resistant Staphylococcus aureus strain USA300 coincides with horizontal transfer of the arginine catabolic mobile element and speG-mediated adaptations for survival on skin. mBio 2013; 4:e00889-13. [PMID: 24345744 PMCID: PMC3870260 DOI: 10.1128/mbio.00889-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The arginine catabolic mobile element (ACME) is the largest genomic region distinguishing epidemic USA300 strains of methicillin-resistant Staphylococcus aureus (MRSA) from other S. aureus strains. However, the functional relevance of ACME to infection and disease has remained unclear. Using phylogenetic analysis, we have shown that the modular segments of ACME were assembled into a single genetic locus in Staphylococcus epidermidis and then horizontally transferred to the common ancestor of USA300 strains in an extremely recent event. Acquisition of one ACME gene, speG, allowed USA300 strains to withstand levels of polyamines (e.g., spermidine) produced in skin that are toxic to other closely related S. aureus strains. speG-mediated polyamine tolerance also enhanced biofilm formation, adherence to fibrinogen/fibronectin, and resistance to antibiotic and keratinocyte-mediated killing. We suggest that these properties gave USA300 a major selective advantage during skin infection and colonization, contributing to the extraordinary evolutionary success of this clone. IMPORTANCE Over the past 15 years, methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem. It is likely that adaptations in specific MRSA lineages (e.g., USA300) drove the spread of MRSA across the United States and allowed it to replace other, less-virulent S. aureus strains. We suggest that one major factor in the evolutionary success of MRSA may have been the acquisition of a gene (speG) that allows S. aureus to evade the toxicity of polyamines (e.g., spermidine and spermine) that are produced in human skin. Polyamine tolerance likely gave MRSA multiple fitness advantages, including the formation of more-robust biofilms, increased adherence to host tissues, and resistance to antibiotics and killing by human skin cells.
Collapse
|
23
|
Hao H, Dai M, Wang Y, Huang L, Yuan Z. Key genetic elements and regulation systems in methicillin-resistant Staphylococcus aureus. Future Microbiol 2012; 7:1315-29. [DOI: 10.2217/fmb.12.107] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), popularly known as a type of superbug, has been a serious challenge for animal and human health. S. aureus has developed methicillin resistance mainly by expression of β-lactamase and PBP2a, which is regulated by the blaZ–blaI–blaR1 and mecA–mecI–mecRI systems. Other genetic elements, including murE and femA, also participate in expression of methicillin resistance, but the mechanism remains unclear. The evolution of the staphylococcal cassette chromosome mec determines the epidemiological risk of MRSA. The plasmid-located gene cfr might contribute to multiresistance and transmission of MRSA. Some virulence factors, including Panton–Valentine leukocidin, phenol-soluble modulin, arginine catabolic mobile element and other toxin elements enhance the pathogenesis and fitness of MRSA. Two-component regulation systems (agr, saeRS and vraRS) are closely associated with pathogenesis and drug resistance of MRSA. The systematic exploration of key genetic elements and regulation systems involved in multidrug resistance/pathogenesis/transmission of MRSA is conclusively integrated into this review, providing fundamental information for the development of new antimicrobial agents and the establishment of reasonable antibiotic stewardship to reduce the risk of this superbug.
Collapse
Affiliation(s)
- Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Menghong Dai
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yulian Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) & MOA Key Laboratory for the Detection of Veterinary Drug Residues in Foods, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
24
|
Okamoto A, Yamada K. Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. BMC Microbiol 2011; 11:249. [PMID: 22070424 PMCID: PMC3224786 DOI: 10.1186/1471-2180-11-249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 11/10/2011] [Indexed: 12/02/2022] Open
Abstract
Background The genome data of Streptococcus pyogenes SF370 has been widely used by many researchers and provides a vast array of interesting findings. Nevertheless, approximately 40% of genes remain classified as hypothetical proteins, and several coding sequences (CDSs) have been unrecognized. In this study, we attempted a shotgun proteomic analysis with a six-frame database that was independent of genome annotation. Results Nine proteins encoded by novel ORFs were found by shotgun proteomic analysis, and their specific mRNAs were verified by reverse transcriptional PCR (RT-PCR). We also provided functional annotations for hypothetical genes using proteomic analysis from three different culture conditions that were separated into three fractions: supernatant, soluble, and insoluble. Consequently, we identified 567 proteins on re-evaluation of the proteomic data using an in-house database comprising 1,697 annotated and nine non-annotated CDSs. We provided functional annotations for 126 hypothetical proteins (18.9% out of the 668 hypothetical proteins) based on their cellular fractions and expression profiles under different culture conditions. Conclusions The list of amino acid sequences that were annotated by genome analysis contains outdated information and unrecognized protein-coding sequences. We suggest that the six-frame database derived from actual DNA sequences be used for reliable proteomic analysis. In addition, the experimental evidence from functional proteomic analysis is useful for the re-evaluation of previously sequenced genomes.
Collapse
Affiliation(s)
- Akira Okamoto
- Department of Molecular Bacteriology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan.
| | | |
Collapse
|
25
|
Livezey J, Perez L, Suciu D, Yu X, Robinson B, Bush D, Merrill G. Analysis of group A Streptococcus gene expression in humans with pharyngitis using a microarray. J Med Microbiol 2011; 60:1725-1733. [PMID: 21799202 DOI: 10.1099/jmm.0.022939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharyngitis caused by group A streptococci (GAS) is one of the most common infections around the world. However, relatively little is known about which genes are expressed and which genes regulate expression during acute infection. Due to their ability to provide genome-wide views of gene expression at one time, microarrays are increasingly being incorporated in GAS research. In this study, a novel electrochemical detection-based microarray was used to identify gene expression patterns among humans with culture-confirmed GAS pharyngitis. Using 14 samples (11 GAS-positive and three GAS-negative) obtained from subjects seen at the Brooke Army Medical Center paediatric clinic, this study demonstrated two different clusters of gene expression patterns. One cluster expressed a larger number of genes related to phages, immune-system evasion and survival among competing oral flora, signifying a potentially more virulent pattern of gene expression. The other cluster showed a greater number of genes related to nutrient acquisition and protein expression. This in vivo genome-wide analysis of GAS gene expression in humans with pharyngitis evaluated global gene expression in terms of virulence factors.
Collapse
Affiliation(s)
- Jeffrey Livezey
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Luis Perez
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Dominic Suciu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Xin Yu
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Brian Robinson
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - David Bush
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| | - Gerald Merrill
- Department of Clinical Investigations, Brooke Army Medical Center, 3400 Rawley E. Chambers Ave, Suite A, San Antonio, TX 78234, USA
| |
Collapse
|
26
|
Carroll RK, Shelburne SA, Olsen RJ, Suber B, Sahasrabhojane P, Kumaraswami M, Beres SB, Shea PR, Flores AR, Musser JM. Naturally occurring single amino acid replacements in a regulatory protein alter streptococcal gene expression and virulence in mice. J Clin Invest 2011; 121:1956-68. [PMID: 21490401 DOI: 10.1172/jci45169] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/02/2011] [Indexed: 11/17/2022] Open
Abstract
Infection with different strains of the same species of bacteria often results in vastly different clinical outcomes. Despite extensive investigation, the genetic basis of microbial strain-specific virulence remains poorly understood. Recent whole-genome sequencing has revealed that SNPs are the most prevalent form of genetic diversity among different strains of the same species of bacteria. For invasive serotype M3 group A streptococci (GAS) strains, the gene encoding regulator of proteinase B (RopB) has the highest frequency of SNPs. Here, we have determined that ropB polymorphisms alter RopB function and modulate GAS host-pathogen interactions. Sequencing of ropB in 171 invasive serotype M3 GAS strains identified 19 distinct ropB alleles. Inactivation of the ropB gene in strains producing distinct RopB variants had dramatically divergent effects on GAS global gene expression. Additionally, generation of isoallelic GAS strains differing only by a single amino acid in RopB confirmed that variant proteins affected transcript levels of the gene encoding streptococcal proteinase B, a major RopB-regulated virulence factor. Comparison of parental, RopB-inactivated, and RopB isoallelic strains in mouse infection models demonstrated that ropB polymorphisms influence GAS virulence and disease manifestations. These data detail a paradigm in which unbiased, whole-genome sequence analysis of populations of clinical bacterial isolates creates new avenues of productive investigation into the pathogenesis of common human infections.
Collapse
Affiliation(s)
- Ronan K Carroll
- Center for Molecular and Translational Human Infectious Diseases Research, The Methodist Hospital Research Institute, and Department of Pathology and Laboratory Medicine, The Methodist Hospital, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Le Maréchal C, Jardin J, Jan G, Even S, Pulido C, Guibert JM, Hernandez D, François P, Schrenzel J, Demon D, Meyer E, Berkova N, Thiéry R, Vautor E, Le Loir Y. Staphylococcus aureus seroproteomes discriminate ruminant isolates causing mild or severe mastitis. Vet Res 2011; 42:35. [PMID: 21324116 PMCID: PMC3052181 DOI: 10.1186/1297-9716-42-35] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/15/2011] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a major cause of mastitis in ruminants. In ewe mastitis, symptoms range from subclinical to gangrenous mastitis. S. aureus factors or host-factors contributing to the different outcomes are not completely elucidated. In this study, experimental mastitis was induced on primiparous ewes using two S. aureus strains, isolated from gangrenous (strain O11) or subclinical (strain O46) mastitis. Strains induced drastically distinct clinical symptoms when tested in ewe and mice experimental mastitis. Notably, they reproduced mild (O46) or severe (O11) mastitis in ewes. Ewe sera were used to identify staphylococcal immunoreactive proteins commonly or differentially produced during infections of variable severity and to define core and accessory seroproteomes. Such SERological Proteome Analysis (SERPA) allowed the identification of 89 immunoreactive proteins, of which only 52 (58.4%) were previously identified as immunogenic proteins in other staphylococcal infections. Among the 89 proteins identified, 74 appear to constitute the core seroproteome. Among the 15 remaining proteins defining the accessory seroproteome, 12 were specific for strain O11, 3 were specific for O46. Distribution of one protein specific for each mastitis severity was investigated in ten other strains isolated from subclinical or clinical mastitis. We report here for the first time the identification of staphylococcal immunogenic proteins common or specific to S. aureus strains responsible for mild or severe mastitis. These findings open avenues in S. aureus mastitis studies as some of these proteins, expressed in vivo, are likely to account for the success of S. aureus as a pathogen of the ruminant mammary gland.
Collapse
Affiliation(s)
- Caroline Le Maréchal
- INRA, UMR1253 Science et Technologie du Lait et de l'Œuf, F-35042 Rennes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Characterization and evaluation of the Moraxella catarrhalis oligopeptide permease A as a mucosal vaccine antigen. Infect Immun 2010; 79:846-57. [PMID: 21134967 DOI: 10.1128/iai.00314-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a common cause of otitis media in children and of lower respiratory tract infections in adults with chronic obstructive pulmonary disease; therefore, these two groups would benefit from a vaccine to prevent M. catarrhalis infections. A genome mining approach for vaccine antigens identified oligopeptide permease protein A (OppA), an oligopeptide binding protein of an apparent oligopeptide transport system. Analysis of the oppA gene by PCR and sequence analysis revealed that OppA is highly conserved among clinical isolates of M. catarrhalis. Recombinant OppA was expressed as a lipoprotein and purified, and an oppA knockout mutant was constructed. Antiserum raised to recombinant purified OppA recognized epitopes on the bacterial surface of the wild type but not the OppA knockout mutant. Antibodies raised to purified recombinant OppA recognized native OppA in multiple strains. Intranasal immunization of mice induced systemic and mucosal antibodies to OppA and resulted in enhanced clearance of M. catarrhalis in a mouse pulmonary clearance model. OppA is a highly conserved, immunogenic protein that expresses epitopes on the bacterial surface and that induces potentially protective immune responses in a mouse model. OppA should be evaluated further as a vaccine antigen for M. catarrhalis.
Collapse
|
29
|
Molecular characteristics of community-associated methicillin-resistant Staphylococcus aureus strains for clinical medicine. Arch Microbiol 2010; 192:603-17. [PMID: 20544179 DOI: 10.1007/s00203-010-0594-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 03/29/2010] [Accepted: 05/28/2010] [Indexed: 10/19/2022]
Abstract
Infections caused by methicillin-resistant S. aureus strains are mainly associated with a hospital setting. However, nowadays, the MRSA infections of non-hospitalized patients are observed more frequently. In order to distinguish them from hospital-associated methicillin-resistant S. aureus (HA-MRSA) strains, given them the name of community-associated methicillin-resistant S. aureus (CA-MRSA). CA-MRSA strains most commonly cause skin infections, but may lead to more severe diseases, and consequently the patient's death. The molecular markers of CA-MRSA strains are the presence of accessory gene regulator (agr) of group I or III, staphylococcal cassette chromosome mec (SCCmec) type IV, V or VII and genes encoding for Panton-Valentine leukocidin (PVL). In addition, CA-MRSA strains show resistance to beta-lactam antibiotics. Studies on the genetic elements of CA-MRSA strains have a key role in the unambiguous identification of strains, monitoring of infections, improving the treatment, work on new antimicrobial agents and understanding the evolution of these pathogens.
Collapse
|
30
|
Tsou CC, Chiang-Ni C, Lin YS, Chuang WJ, Lin MT, Liu CC, Wu JJ. Oxidative stress and metal ions regulate a ferritin-like gene, dpr, in Streptococcus pyogenes. Int J Med Microbiol 2009; 300:259-64. [PMID: 19879189 DOI: 10.1016/j.ijmm.2009.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/28/2022] Open
Abstract
Bacteria encounter oxidative stress by exposure to reactive oxygen species (ROS) present in the aerobic environment and during immune responses. In Streptococcus pyogenes, Dpr has been identified as a stress protein conferring resistance to hydrogen peroxide and multiple other stresses. The expression of Dpr is under perR (peroxide stress response regulator) control. However, the exact molecular mechanism of PerR regulation of Dpr is not clear. In this study, a perR deletion mutant was constructed by double cross-over mutagenesis. The profile of Dpr expression, performed by Western blot assay, revealed growth-phase dependency under normal culture conditions. Dpr expression decreased under iron-restricted conditions, whereas iron, zinc, nickel, and hydrogen peroxide induced its expression. The perR mutant does not induce Dpr as well when exposed to environmental signals. PerR binds the promoter region of dpr. Increased iron and hydrogen peroxide concentrations decreased PerR binding to the promoter region of dpr, suggesting that regulation of Dpr by environmental signals is mediated by PerR directly.
Collapse
Affiliation(s)
- Chih-Cheng Tsou
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
31
|
Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 2009; 73:407-50, Table of Contents. [PMID: 19721085 PMCID: PMC2738137 DOI: 10.1128/mmbr.00014-09] [Citation(s) in RCA: 431] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Streptococci readily colonize mucosal tissues in the nasopharynx; the respiratory, gastrointestinal, and genitourinary tracts; and the skin. Each ecological niche presents a series of challenges to successful colonization with which streptococci have to contend. Some species exist in equilibrium with their host, neither stimulating nor submitting to immune defenses mounted against them. Most are either opportunistic or true pathogens responsible for diseases such as pharyngitis, tooth decay, necrotizing fasciitis, infective endocarditis, and meningitis. Part of the success of streptococci as colonizers is attributable to the spectrum of proteins expressed on their surfaces. Adhesins enable interactions with salivary, serum, and extracellular matrix components; host cells; and other microbes. This is the essential first step to colonization, the development of complex communities, and possible invasion of host tissues. The majority of streptococcal adhesins are anchored to the cell wall via a C-terminal LPxTz motif. Other proteins may be surface anchored through N-terminal lipid modifications, while the mechanism of cell wall associations for others remains unclear. Collectively, these surface-bound proteins provide Streptococcus species with a "coat of many colors," enabling multiple intimate contacts and interplays between the bacterial cell and the host. In vitro and in vivo studies have demonstrated direct roles for many streptococcal adhesins as colonization or virulence factors, making them attractive targets for therapeutic and preventive strategies against streptococcal infections. There is, therefore, much focus on applying increasingly advanced molecular techniques to determine the precise structures and functions of these proteins, and their regulatory pathways, so that more targeted approaches can be developed.
Collapse
Affiliation(s)
- Angela H Nobbs
- Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom
| | | | | |
Collapse
|
32
|
Flores-Valdez MA, Morris RP, Laval F, Daffé M, Schoolnik GK. Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. FASEB J 2009; 23:4091-104. [PMID: 19671666 DOI: 10.1096/fj.09-132407] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacterial species utilize a vast repertoire of surface structures to interact with their surroundings and employ a number of strategies to reconfigure the cellular envelope according to specific stimuli. Gram-positive bacteria, exemplified by Streptomyces and Bacillus species, control production of some exposed molecules by importing oligopeptide signals via permeases (Opp). Such oligopeptides modulate intracellular signaling pathways. In this work, we functionally characterized an Opp of the human pathogen Mycobacterium tuberculosis (Mtb) and propose its reannotation. Using genome-wide transcriptional profiling, we found that Opp was required to modulate (fold-change ranging from -3.5 to 2.0) the expression of several genes, most of them encoding surface-exposed molecules. These included the virulence-associated lipids mycolic acids and phthiocerol dimycocerosates (PDIMs) as well as PE-family proteins. By thin-layer chromatography and MALDI-TOF-MS we confirmed changes in the lipid profile, including an altered accumulation of triacylglycerides and an affected ratio of mycolic acids to PDIMs. An Opp loss of function mutant showed no in vitro growth defect, but had diminished burden during chronic infection and produced a slightly delayed time to death of animals when compared to WT Mtb infection.
Collapse
Affiliation(s)
- Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco A.C., Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, México.
| | | | | | | | | |
Collapse
|
33
|
The arginine catabolic mobile element is not associated with enhanced virulence in experimental invasive disease caused by the community-associated methicillin-resistant Staphylococcus aureus USA300 genetic background. Infect Immun 2009; 77:2650-6. [PMID: 19380473 DOI: 10.1128/iai.00256-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
USA300 has become the predominant community-associated methicillin (meticillin)-resistant Staphylococcus aureus (CA-MRSA) genetic background in most U.S. communities. The reasons for the dominance of this genetic background are unclear, but the presence of the recently identified arginine catabolic mobile element (ACME) in the USA300 genome has been advocated as one possibility. CA-MRSA clinical isolates (USA300) differing in the presence or absence of ACME and a USA300 wild-type/ACME deletion mutant pair were analyzed for in vitro expression of global regulatory genes and production of virulence factors. The virulence of these isolates was compared in rodent models of necrotizing pneumonia and skin infection. There was no significant difference in the expression of selected genes mediating virulence (hla, lukSF-PV, agr, saeRS) among the isolates tested, regardless of the presence of ACME. There was a higher abundance of alpha-hemolysin in culture supernatants among ACME-positive isolates than among ACME-negative isolates, but there was no significant difference in the levels of protein A. The presence of ACME was not associated with increased virulence in a rat model of necrotizing pneumonia, as assessed by mortality, in vivo bacterial survival, and severity of lung pathology. Nor was the presence of ACME associated with increased dermonecrosis in a model of skin infection. We conclude that ACME is not necessary for virulence in rodent models of CA-MRSA USA300 pneumonia or skin infection.
Collapse
|
34
|
Chiang-Ni C, Tsou CC, Lin YS, Chuang WJ, Lin MT, Liu CC, Wu JJ. The transcriptional terminator sequences downstream of the covR gene terminate covR/S operon transcription to generate covR monocistronic transcripts in Streptococcus pyogenes. Gene 2008; 427:99-103. [PMID: 18824088 DOI: 10.1016/j.gene.2008.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 08/16/2008] [Accepted: 08/29/2008] [Indexed: 10/21/2022]
Abstract
CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
An iron-binding protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against multiple stresses. Infect Immun 2008; 76:4038-45. [PMID: 18541662 DOI: 10.1128/iai.00477-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Streptococcus pyogenes does not produce catalase, but it can grow in aerobic environments and survive in the presence of peroxide. One of the stress proteins of this organism, peroxide resistance protein (Dpr), has been studied to examine its role in resistance to hydrogen peroxide, but the protective mechanism of Dpr is not clear. The aim of this study was to characterize the dpr gene and its role in dealing with different stresses. A dpr deletion mutant was constructed by double-crossover mutagenesis. The dpr mutant was more sensitive to H(2)O(2), and complementation could partially restore the defect in the mutant. Pretreatment with the iron chelator deferoxamine mesylate rescued the survival activity of the mutant under oxidative stress conditions. The dpr mutant also showed a low survival rate in the long-term stationary phase, when it was treated with extreme acids, and under alkaline pH conditions compared to the wild-type strain. The growth of the dpr mutant was slower than that of the wild-type strain in iron-limiting conditions. The dpr mutant showed high sensitivity to iron and zinc but not to manganese, copper, nickel, and calcium. Recombinant Dpr protein was purified and showed iron-binding activity, whereas no DNA-binding activity was found. These data indicate that an iron-binding protein, Dpr, provides protection from hydrogen peroxide stress by preventing the Fenton reaction, and Dpr was identified as a novel stress protein that protects against several stresses in group A streptococci.
Collapse
|
36
|
Wu TK, Wang YK, Chen YC, Feng JM, Liu YH, Wang TY. Identification of a Vibrio furnissii oligopeptide permease and characterization of its in vitro hemolytic activity. J Bacteriol 2007; 189:8215-23. [PMID: 17873048 PMCID: PMC2168660 DOI: 10.1128/jb.01039-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We describe purification and characterization of an oligopeptide permease protein (Hly-OppA) from Vibrio furnissii that has multifaceted functions in solute binding, in in vitro hemolysis, in antibiotic resistance, and as a virulence factor in bacterial pathogenesis. The solute-binding function was revealed by N-terminal and internal peptide sequences of the purified protein and was confirmed by discernible effects on oligopeptide binding, by accumulation of fluorescent substrates, and by fluorescent substrate-antibiotic competition assay experiments. The purified protein exhibited host-specific in vitro hemolytic activity against various mammalian erythrocytes and apparent cytotoxicity in CHO-K1 cells. Recombinant Hly-OppA protein and an anti-Hly-OppA monoclonal antibody exhibited and neutralized the in vitro hemolytic activity, respectively, which further confirmed the hemolytic activity of the gene product. In addition, a V. furnissii hly-oppA knockout mutant caused less mortality than the wild-type strain when it was inoculated into BALB/c mice, indicating the virulence function of this protein. Finally, the in vitro hemolytic activity was also confirmed with homologous ATP-binding cassette-type transporter proteins from other Vibrio species.
Collapse
Affiliation(s)
- Tung-Kung Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan, 300, Republic of China.
| | | | | | | | | | | |
Collapse
|
37
|
Nepomuceno RSL, Tavares MB, Lemos JA, Griswold AR, Ribeiro JL, Balan A, Guimarães KS, Cai S, Burne RA, Ferreira LCS, Ferreira RCC. The oligopeptide (opp) gene cluster of Streptococcus mutans: identification, prevalence, and characterization. ACTA ACUST UNITED AC 2007; 22:277-84. [PMID: 17600541 DOI: 10.1111/j.1399-302x.2007.00368.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
INTRODUCTION The Opp system is an ATP-binding cassette-type transporter formed by membrane-associated proteins required for the uptake of oligopeptides in bacteria. In gram-positive bacteria, the Opp system, and particularly the oligopeptide-binding protein (OppA), has been shown to be involved in different aspects of cell physiology, including intercellular communication and binding to host proteins. METHODS In the present study we began to investigate the Opp system of Streptococcus mutans, the main etiological agent of dental caries. RESULTS Five opp genes (oppABCDF) organized in a single operon were identified in the genome of the S. mutans UA159 strain. Amino acid sequence analyses showed that the S. mutans OppA is closely related to an ortholog found in Streptococcus agalactiae. Incubation of S. mutans UA159 cells with an anti-OppA-specific serum did not inhibit biofilm formation on polystyrene plates. Moreover, S. mutans UA159 derivatives carrying deletions on the oppA or oppB genes did not show significant growth impairment, increased sensitivity to aminopterin, or defective capacity to form biofilms on polystyrene wells in the presence or not of saliva. Remarkably, only two out of three laboratory strains and one out of seven clinical strains recovered from tooth decay processes harbored a copy of the oppA gene and expressed the OppA protein. CONCLUSION Collectively, these results indicate that, in contrast to other Streptococcus species, the S. mutans Opp system, and particularly the OppA protein, does not represent an important trait required for growth and colonization.
Collapse
Affiliation(s)
- R S L Nepomuceno
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, Cidade Universitária, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Brotcke A, Weiss DS, Kim CC, Chain P, Malfatti S, Garcia E, Monack DM. Identification of MglA-regulated genes reveals novel virulence factors in Francisella tularensis. Infect Immun 2006; 74:6642-55. [PMID: 17000729 PMCID: PMC1698089 DOI: 10.1128/iai.01250-06] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The facultative intracellular bacterium Francisella tularensis causes the zoonotic disease tularemia. F. tularensis resides within host macrophages in vivo, and this ability is essential for pathogenesis. The transcription factor MglA is required for the expression of several Francisella genes that are necessary for replication in macrophages and for virulence in mice. We hypothesized that the identification of MglA-regulated genes in the Francisella genome by transcriptional profiling of wild-type and mglA mutant bacteria would lead to the discovery of new virulence factors utilized by F. tularensis. A total of 102 MglA-regulated genes were identified, the majority of which were positively regulated, including all of the Francisella pathogenicity island (FPI) genes. We mutated novel MglA-regulated genes and tested the mutants for their ability to replicate and induce cytotoxicity in macrophages and to grow in mice. Mutations in MglA-regulated genes within the FPI (pdpB and cds2) as well as outside the FPI (FTT0989, oppB, and FTT1209c) were either attenuated or hypervirulent in macrophages compared to the wild-type strain. All of these mutants exhibited decreased fitness in vivo in competition experiments with wild-type bacteria. We have identified five new Francisella virulence genes, and our results suggest that characterizations of additional MglA-regulated genes will yield further insights into the pathogenesis of this bacterium.
Collapse
Affiliation(s)
- Anna Brotcke
- Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Fairchild Bldg. D041, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Tanabe M, Atkins HS, Harland DN, Elvin SJ, Stagg AJ, Mirza O, Titball RW, Byrne B, Brown KA. The ABC transporter protein OppA provides protection against experimental Yersinia pestis infection. Infect Immun 2006; 74:3687-91. [PMID: 16714605 PMCID: PMC1479284 DOI: 10.1128/iai.01837-05] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The identification of Yersinia pestis as a potential bioterrorism agent and the emergence of antibiotic-resistant strains have highlighted the need for improved vaccines and treatments for plague. The aim of this study was to evaluate the potential for ATP-binding cassette (ABC) transporter proteins to be exploited as novel vaccines against plague. Western blotting of ABC transporter proteins using sera from rabbits immunized with killed whole Y. pestis cells or human convalescent-phase sera identified four immunologically reactive proteins: OppA, PstS, YrbD, and PiuA. Mice immunized with these proteins developed antibody to the immunogen. When the immunized mice were challenged with Y. pestis, the OppA-immunized mice showed an increased time to death compared to other groups, and protection appeared to correlate with the level of immunoglobulin G antibody to OppA.
Collapse
Affiliation(s)
- Mikio Tanabe
- Division of Cell and Molecular Biology, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Malke H, Steiner K, McShan WM, Ferretti JJ. Linking the nutritional status of Streptococcus pyogenes to alteration of transcriptional gene expression: the action of CodY and RelA. Int J Med Microbiol 2006; 296:259-75. [PMID: 16531115 DOI: 10.1016/j.ijmm.2005.11.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 11/18/2005] [Accepted: 11/25/2005] [Indexed: 11/28/2022] Open
Abstract
In this investigation, we identify the CodY protein from Streptococcus pyogenes as a pleiotropic transcription regulator with global features. The notion that acquisition of nutrients by this polyauxotrophic organism is the primary event occurring during the establishment of infection and that virulence expression is a result of this quest, led us to study the action of codY and relA genes on transcriptional gene expression under different nutritional conditions using complex and chemically defined media. Real-time reverse transcription PCR was used to determine the extent to which inactivation of codY and relA affects the mRNA levels of selected transcription factors, virulence genes, transporters, and genes encoding metabolic enzymes. The results show that CodY and RelA did not affect the expression of each other but that both exhibited strong negative autoregulatory properties. Genes negatively controlled by the relA-directed stringent response to amino acid starvation included, besides relA itself, transporters, metabolic enzymes, and at least two virulence genes (graB and speH). The expression of many genes of all four groups studied proved to be subject to direct or indirect control by CodY, often in a nutritional status-dependent fashion. One of the most important results implicates CodY in growth phase-dependent positive transcriptional regulation of pel/sagA and mga, loci that themselves positively affect the expression of numerous virulence factors. Increasing the cellular activity of nicotinamidase in both a codY mutant and wild-type background induced extensive transcriptional reprogramming, altering, among others, the growth phase-dependent transcription pattern of the genes for cysteine protease (speB) and several transporters. Inasmuch as CodY influenced the expression of other regulators (pel/sagA, mga, covRS, ropB, pyrR), its action is amplified and expands the complex regulatory network that governs gene expression in S. pyogenes.
Collapse
Affiliation(s)
- Horst Malke
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | |
Collapse
|