1
|
Ezaki A, Yano H, Pan C, Fujiwara Y, Anami T, Ibe Y, Motoshima T, Yatsuda J, Esumi S, Miura Y, Kamba T, Komohara Y. Potential protumor function of CD74 in clear cell renal cell carcinoma. Hum Cell 2024; 37:1535-1543. [PMID: 39080216 DOI: 10.1007/s13577-024-01110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024]
Abstract
CD74 is a transmembrane protein that functions as a specialized chaperone of HLA class II and CD74 in tumor cells was suggested to be involved in cell proliferation in several kinds of malignant tumors. CD74 is also known to be expressed in macrophages, therefore, we investigated the CD74 expression in clear cell renal cell carcinoma (ccRCC). Immunohistochemistry of CD74 indicated that CD74 was expressed not only in cancer cells but also macrophages. CD74 was detected in surface membrane and cytoplasm of cancer cells in 92 of 94 cases (98%) and of 87 of 94 cases (93%). CD74 was expressed both in cancer cells and TAMs in 86 of 94 cases (91%). In vitro studies using cancer cell lines and monocyte-derived macrophages stimulated by anti-CD74 antibodies showed that CD74 signal accelerated cancer cell proliferation and macrophage activation. However, macrophage activation via CD74 signal did not influence macrophage-mediated cancer cell growth. RNA-sequence of macrophages stimulated by anti-CD74 antibodies indicated that CD74 signal was associated to inflammatory responses in macrophages. In conclusion, we examined the expression and functional significance of CD74 in ccRCC using tissue specimens and cell culture studies. The function of CD74 was suggested to be different in cancer cells and in macrophages, and further studies are necessary to clarify the functional significance of CD74 in ccRCC.
Collapse
MESH Headings
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Humans
- Kidney Neoplasms/pathology
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Cell Proliferation/genetics
- Histocompatibility Antigens Class II/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Cell Line, Tumor
- Macrophage Activation/genetics
- Gene Expression/genetics
Collapse
Affiliation(s)
- Ayano Ezaki
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Hiromu Yano
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Toshiki Anami
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Ibe
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takanobu Motoshima
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Yatsuda
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shigeyuki Esumi
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuji Miura
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan
- Department of Medical Oncology, Toranomon Hospital, Tokyo, Japan
| | - Tomomi Kamba
- Department of Urology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-Ku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Wang J, Huang D, Nguyen TAT, Phan LM, Wei W, Rezaeian AH. CD74-AKT Axis Is a Potential Therapeutic Target in Triple-Negative Breast Cancer. BIOLOGY 2024; 13:481. [PMID: 39056676 PMCID: PMC11274071 DOI: 10.3390/biology13070481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Triple-negative breast cancer (TNBC) cells are often resistant to FAS (CD95)-mediated apoptosis, but the underlying molecular mechanism(s) is not fully understood yet. Notably, the expression of the type II transmembrane protein, CD74, is correlated with chemotherapy-resistant and more invasive forms of cancers via unknown mechanisms. Here, we analyzed gene expression pattern of cancer patients and/or patient-derived xenograft (PDX) models and found that mRNA and protein levels of CD74 are highly expressed in TNBC and correlated with cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT) properties. Mechanistically, we found that AKT activation is likely critical for maintaining CD74 expression and protein stability to favor its oncogenic functions. Physiologically, epidermal growth factor (EGF) along with CD74 could activate AKT signaling, likely through binding of phosphorylated AKT (S473) to CD74, whereas inhibition of AKT could impair stability of CD74. We also revealed that CD74 binds to FAS and interferes with the intrinsic signaling of FAS-mediated apoptosis. As such, selective targeting of the CD74/FAS complex using the AKT inhibitor along with the CD74-derived peptide could synergistically restore and activate FAS-mediated apoptosis. Therefore, our approach of mobilizing apoptosis pathways likely provides a rationale for TNBC treatment by targeting the CD74/FAS and CD74-AKT axes.
Collapse
Affiliation(s)
- Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Thu Anh Thai Nguyen
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Liem Minh Phan
- David Grant USAF Medical Center, Clinical Investigation Facility, 60th Medical Group, Travis Air Force Base, Fairfield, CA 94535, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
3
|
Valdez CN, Sánchez-Zuno GA, Bucala R, Tran TT. Macrophage Migration Inhibitory Factor (MIF) and D-Dopachrome Tautomerase (DDT): Pathways to Tumorigenesis and Therapeutic Opportunities. Int J Mol Sci 2024; 25:4849. [PMID: 38732068 PMCID: PMC11084905 DOI: 10.3390/ijms25094849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.
Collapse
Affiliation(s)
- Caroline Naomi Valdez
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
| | - Gabriela Athziri Sánchez-Zuno
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
| | - Richard Bucala
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA;
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| | - Thuy T. Tran
- School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA; (C.N.V.); (R.B.)
- Yale Cancer Center, Yale University, 333 Cedar St., New Haven, CT 06510, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale University, 333 Cedar St., New Haven, CT 06510, USA
| |
Collapse
|
4
|
Fan J, Zhu J, Xu H. Strategies of Helicobacter pylori in evading host innate and adaptive immunity: insights and prospects for therapeutic targeting. Front Cell Infect Microbiol 2024; 14:1342913. [PMID: 38469348 PMCID: PMC10925771 DOI: 10.3389/fcimb.2024.1342913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the predominant pathogen causing chronic gastric mucosal infections globally. During the period from 2011 to 2022, the global prevalence of H. pylori infection was estimated at 43.1%, while in China, it was slightly higher at approximately 44.2%. Persistent colonization by H. pylori can lead to gastritis, peptic ulcers, and malignancies such as mucosa-associated lymphoid tissue (MALT) lymphomas and gastric adenocarcinomas. Despite eliciting robust immune responses from the host, H. pylori thrives in the gastric mucosa by modulating host immunity, particularly by altering the functions of innate and adaptive immune cells, and dampening inflammatory responses adverse to its survival, posing challenges to clinical management. The interaction between H. pylori and host immune defenses is intricate, involving evasion of host recognition by modifying surface molecules, manipulating macrophage functionality, and modulating T cell responses to evade immune surveillance. This review analyzes the immunopathogenic and immune evasion mechanisms of H. pylori, underscoring the importance of identifying new therapeutic targets and developing effective treatment strategies, and discusses how the development of vaccines against H. pylori offers new hope for eradicating such infections.
Collapse
Affiliation(s)
- Jiawei Fan
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Jianshu Zhu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hong Xu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Abdullah S, Iqbal A, Ashok AK, Kaouche FC, Aslam M, Hussain S, Rahman J, Hayat MM, Ashraf M. Anti-enzymatic and DNA docking studies of montelukast: A multifaceted molecular scaffold with in vitro investigations, molecular expression analysis and molecular dynamics simulations. Heliyon 2024; 10:e24470. [PMID: 38298631 PMCID: PMC10828691 DOI: 10.1016/j.heliyon.2024.e24470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
Montelukast, an approved leukotriene receptor 1 (Cys-LT 1) antagonist with anti-inflammatory properties is used for the treatment of asthma and allergic rhinitis. In the present studies, montelukast was subjected to in vitro inhibitory assays followed by kinetic and in silico investigations. Montelukast demonstrated inhibitory activity against yeast α-glucosidase (IC50 44.31 ± 1.21 μM), jack bean urease (JB urease, IC50 8.72 ± 0.23 μM), human placental alkaline phosphatase (hPAP, IC50 17.53 ± 0.19 μM), bovine intestinal alkaline phosphatase (bIAP, IC50 15.18 ± 0.23 μM) and soybean 15-lipoxygenase (15-LOX, IC50 2.41 ± 0.13 μM). Kinetic studies against α-glucosidase and urease enzymes revealed its competitive mode of inhibition. Molecular expression analysis of montelukast in breast cancer cell line MCF-7 down-regulated AP by a factor of 0.27 (5 μM) compared with the 0.26 value for standard inhibitor levamisole (10 μM). Molecular docking estimated a binding affinity ranging -8.82 to -15.65 kcal/mol for the enzymes. Docking against the DNA dodecamer (ID: 1BNA) observed -9.13 kcal/mol via minor groove binding. MD simulations suggested stable binding between montelukast and the target proteins predicting strong inhibitory potential of the ligand. Montelukast features a chloroquinoline, phenyl ring, a cyclopropane group, a carboxylic group and a sulfur atom all of which collectively enhance its inhibitory potential against the said enzymes. These in vitro and computational investigations demonstrate that it is possible and suggested that the interactions of montelukast with more than one targets presented herein may be linked with the side effects presented by this drug and necessitate additional work. The results altogether suggest montelukast as an important structural scaffold possessing multitargeted features and warrant further investigations in repurposing beyond its traditional pharmacological use.
Collapse
Affiliation(s)
- Shawana Abdullah
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ambar Iqbal
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
- Department of Biochemistry and Molecular Biology, Institute of Biochemistry, Biotechnology & Bioinformatics, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, 572103, India
| | - Farah Chafika Kaouche
- Department of Chemistry, Faculty of Sciences of Mater, Ibn Khaldoun University, BP 78 Zaaoura, 14000, Tiaret, Algeria
| | - Misbah Aslam
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Safdar Hussain
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Jameel Rahman
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | | | - Muhammad Ashraf
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
6
|
Xiang Z, Tian Z, Wang G, Liu L, Li K, Wang W, Lei X, Ren L, Wang J. CD74 Interacts with Proteins of Enterovirus D68 To Inhibit Virus Replication. Microbiol Spectr 2023; 11:e0080123. [PMID: 37409968 PMCID: PMC10434063 DOI: 10.1128/spectrum.00801-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a member of the species Enterovirus D in the genus Enterovirus of the family Picornaviridae. As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Although the intrinsic restriction factors in the cell provide a frontline defense, the molecular nature of virus-host interactions remains elusive. Here, we provide evidence that the major histocompatibility complex class II chaperone, CD74, inhibits EV-D68 replication in infected cells by interacting with the second hydrophobic region of 2B protein, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. 3Cpro cleaves CD74 at Gln-125. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection. IMPORTANCE As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Here, we report that CD74 inhibits viral replication in infected cells by targeting 2B protein of EV-D68, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection.
Collapse
Affiliation(s)
- Zichun Xiang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhongqin Tian
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Guanying Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lulu Liu
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Kailin Li
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wenjing Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiaobo Lei
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lili Ren
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jianwei Wang
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Reyes VE. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023; 11:1312. [PMID: 37317287 PMCID: PMC10220541 DOI: 10.3390/microorganisms11051312] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Gastric cancer is a challenging public health concern worldwide and remains a leading cause of cancer-related mortality. The primary risk factor implicated in gastric cancer development is infection with Helicobacter pylori. H. pylori induces chronic inflammation affecting the gastric epithelium, which can lead to DNA damage and the promotion of precancerous lesions. Disease manifestations associated with H. pylori are attributed to virulence factors with multiple activities, and its capacity to subvert host immunity. One of the most significant H. pylori virulence determinants is the cagPAI gene cluster, which encodes a type IV secretion system and the CagA toxin. This secretion system allows H. pylori to inject the CagA oncoprotein into host cells, causing multiple cellular perturbations. Despite the high prevalence of H. pylori infection, only a small percentage of affected individuals develop significant clinical outcomes, while most remain asymptomatic. Therefore, understanding how H. pylori triggers carcinogenesis and its immune evasion mechanisms is critical in preventing gastric cancer and mitigating the burden of this life-threatening disease. This review aims to provide an overview of our current understanding of H. pylori infection, its association with gastric cancer and other gastric diseases, and how it subverts the host immune system to establish persistent infection.
Collapse
Affiliation(s)
- Victor E Reyes
- Department of Pediatrics and Microbiology & Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0372, USA
| |
Collapse
|
8
|
Liu S, Deng Z, Zhu J, Ma Z, Tuo B, Li T, Liu X. Gastric immune homeostasis imbalance: An important factor in the development of gastric mucosal diseases. Biomed Pharmacother 2023; 161:114338. [PMID: 36905807 DOI: 10.1016/j.biopha.2023.114338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 03/11/2023] Open
Abstract
The gastric mucosal immune system is a unique immune organ independent of systemic immunity that not only maintains nutrient absorption but also plays a role in resisting the external environment. Gastric mucosal immune disorder leads to a series of gastric mucosal diseases, including autoimmune gastritis (AIG)-related diseases, Helicobacter pylori (H. pylori)-induced diseases, and various types of gastric cancer (GC). Therefore, understanding the role of gastric mucosal immune homeostasis in gastric mucosal protection and the relationship between mucosal immunity and gastric mucosal diseases is very important. This review focuses on the protective effect of gastric mucosal immune homeostasis on the gastric mucosa, as well as multiple gastric mucosal diseases caused by gastric immune disorders. We hope to offer new prospects for the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Shuhui Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zilin Deng
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| |
Collapse
|
9
|
Wang Z, Shao SL, Xu XH, Zhao X, Wang MY, Chen A, Cong HY. Helicobacter pylori and gastric microbiota homeostasis: progress and prospects. Future Microbiol 2023; 18:137-157. [PMID: 36688318 DOI: 10.2217/fmb-2022-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Helicobacter pylori, a Gram-negative microaerobic bacteria belonging to the phylum Proteobacteria, can colonize in the stomach and duodenum, and cause a series of gastrointestinal diseases such as gastritis, gastric ulcer and even gastric cancer. At present, the high diversity of the microorganisms in the stomach has been confirmed with culture-independent methods; some researchers have also studied the stomach microbiota composition at different stages of H. pylori carcinogenesis. Here, we mainly review the possible role of H. pylori-mediated microbiota changes in the occurrence and development of gastric cancer to provide new ideas for preventing H. pylori infection and regulating microecological imbalance.
Collapse
Affiliation(s)
- Zan Wang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Shu-Li Shao
- Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Xiao-Han Xu
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Xue Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China
| | - Ming-Yi Wang
- Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Ai Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China.,Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| | - Hai-Yan Cong
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, 261053, People's Republic of China.,Department of Central Lab, Weihai Municipal Hospital. Weihai, Shandong, 264200, People's Republic of China
| |
Collapse
|
10
|
Reyes VE. Helicobacter pylori Immune Response in Children Versus Adults. MEDICAL RESEARCH ARCHIVES 2022; 10:3370. [PMID: 37936946 PMCID: PMC10629867 DOI: 10.18103/mra.v10i12.3370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
H. pylori is perhaps the most prevalent human pathogen worldwide and infects almost half of the world's population. Despite the decreasing prevalence of infection overall, it is significant in developing countries. Most infections are acquired in childhood and persist for a lifetime unless treated. Children are often asymptomatic and often develop a tolerogenic immune response that includes T regulatory cells and their products, immunosuppressive cytokines, such as interleukin (IL)-10, and transforming growth factor-β (TGF-β). This contrasts to the gastric immune response seen in H. pylori-infected adults, where the response is mainly inflammatory, with predominant Th1 and Th17 cells, as well as, inflammatory cytokines, such as TNF-α, IFN-γ, IL-1, IL-6, IL-8, and IL-17. Therefore, compared to adults, infected children generally have limited gastric inflammation and peptic ulcer disease. H. pylori surreptitiously subverts immune defenses to persist in the human gastric mucosa for decades. The chronic infection might result in clinically significant diseases in adults, such as peptic ulcer disease, gastric adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma. This review compares the infection in children and adults and highlights the H. pylori virulence mechanisms responsible for the pathogenesis and immune evasion.
Collapse
Affiliation(s)
- Victor E. Reyes
- Department of Pediatrics, Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd. Galveston, TX 77555-0372 USA
| |
Collapse
|
11
|
Taillieu E, Chiers K, Amorim I, Gärtner F, Maes D, Van Steenkiste C, Haesebrouck F. Gastric Helicobacter species associated with dogs, cats and pigs: significance for public and animal health. Vet Res 2022; 53:42. [PMID: 35692057 PMCID: PMC9190127 DOI: 10.1186/s13567-022-01059-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
This article focuses on the pathogenic significance of Helicobacter species naturally colonizing the stomach of dogs, cats and pigs. These gastric "non-Helicobacter (H.) pylori Helicobacter species" (NHPH) are less well-known than the human adapted H. pylori. Helicobacter suis has been associated with gastritis and decreased daily weight gain in pigs. Several studies also attribute a role to this pathogen in the development of hyperkeratosis and ulceration of the non-glandular stratified squamous epithelium of the pars oesophagea of the porcine stomach. The stomach of dogs and cats can be colonized by several Helicobacter species but their pathogenic significance for these animals is probably low. Helicobacter suis as well as several canine and feline gastric Helicobacter species may also infect humans, resulting in gastritis, peptic and duodenal ulcers, and low-grade mucosa-associated lymphoid tissue lymphoma. These agents may be transmitted to humans most likely through direct or indirect contact with dogs, cats and pigs. Additional possible transmission routes include consumption of water and, for H. suis, also consumption of contaminated pork. It has been described that standard H. pylori eradication therapy is usually also effective to eradicate the NHPH in human patients, although acquired antimicrobial resistance may occasionally occur and porcine H. suis strains are intrinsically less susceptible to aminopenicillins than non-human primate H. suis strains and other gastric Helicobacter species. Virulence factors of H. suis and the canine and feline gastric Helicobacter species include urease activity, motility, chemotaxis, adhesins and gamma-glutamyl transpeptidase. These NHPH, however, lack orthologs of cytotoxin-associated gene pathogenicity island and vacuolating cytotoxin A, which are major virulence factors in H. pylori. It can be concluded that besides H. pylori, gastric Helicobacter species associated with dogs, cats and pigs are also clinically relevant in humans. Although recent research has provided better insights regarding pathogenic mechanisms and treatment strategies, a lot remains to be investigated, including true prevalence rates, exact modes of transmission and molecular pathways underlying disease development and progression.
Collapse
Affiliation(s)
- Emily Taillieu
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Koen Chiers
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Irina Amorim
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal.,School of Medicine and Biomedical Sciences, Porto University, Porto, Portugal
| | - Fátima Gärtner
- Instituto de Investigação E Inovação Em Saúde (i3S), Universidade Do Porto, Porto, Portugal.,Institute of Pathology and Molecular Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, University Hospital Antwerp, Antwerp University, Edegem, Belgium.,Department of Gastroenterology and Hepatology, General Hospital Maria Middelares, Ghent, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
12
|
Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. CHEM REC 2022; 22:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 12/23/2022]
Abstract
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Collapse
Affiliation(s)
- Saurabh Loharch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
13
|
Gobert AP, Wilson KT. Induction and Regulation of the Innate Immune Response in Helicobacter pylori Infection. Cell Mol Gastroenterol Hepatol 2022; 13:1347-1363. [PMID: 35124288 PMCID: PMC8933844 DOI: 10.1016/j.jcmgh.2022.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/30/2022]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the fourth most common cause of cancer-related death worldwide. The intestinal type of GC progresses from acute to chronic gastritis, multifocal atrophic gastritis, intestinal metaplasia, dysplasia, and carcinoma. Infection of the stomach by Helicobacter pylori, a Gram-negative bacterium that infects approximately 50% of the world's population, is the causal determinant that initiates the gastric inflammation and then disease progression. In this context, the induction of the innate immune response of gastric epithelial cells and myeloid cells by H. pylori effectors plays a critical role in the outcome of the infection. However, only 1% to 3% of infected patients develop gastric adenocarcinoma, emphasizing that other mechanisms regulate the localized non-specific response, including the gastric microbiota and genetic factors. This review summarizes studies describing the factors that induce and regulate the mucosal innate immune response during H. pylori infection.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee.
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Nashville, Tennessee; Program in Cancer Biology, Nashville, Tennessee; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee.
| |
Collapse
|
14
|
Evodiamine Inhibits Helicobacter pylori Growth and Helicobacter pylori-Induced Inflammation. Int J Mol Sci 2021; 22:ijms22073385. [PMID: 33806161 PMCID: PMC8036659 DOI: 10.3390/ijms22073385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori (H. pylori) classified as a class I carcinogen by the World Health Organization (WHO) plays an important role in the progression of chronic gastritis and the development of gastric cancer. A major bioactive component of Evodia rutaecarpa, evodiamine, has been known for its anti-bacterial effect and anti-cancer effects. However, the inhibitory effect of evodiamine against H. pylori is not yet known and the inhibitory mechanisms of evodiamine against gastric cancer cells are yet to be elucidated concretely. In this study, therefore, anti-bacterial effect of evodiamine on H. pylori growth and its inhibitory mechanisms as well as anti-inflammatory effects and its mechanisms of evodiamine on H. pylori-induced inflammation were investigated in vitr. Results of this study showed the growth of the H. pylori reference strains and clinical isolates were inhibited by evodiamine. It was considered one of the inhibitory mechanisms that evodiamine downregulated both gene expressions of replication and transcription machineries of H. pylori. Treatment of evodiamine also induced downregulation of urease and diminished translocation of cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) proteins into gastric adenocarcinoma (AGS) cells. This may be resulted from the reduction of CagA and VacA expressions as well as the type IV secretion system (T4SS) components and secretion system subunit protein A (SecA) protein which are involved in translocation of CagA and VacA into host cells, respectively. In particular, evodiamine inhibited the activation of signaling proteins such as the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway induced by H. pylori infection. It consequently might contribute to reduction of interleukin (IL)-8 production in AGS cells. Collectively, these results suggest anti-bacterial and anti-inflammatory effects of evodiamine against H. pylori.
Collapse
|
15
|
Chen HY, Hu Y, Lu NH, Zhu Y. Caudal type homeoboxes as a driving force in Helicobacter pylori infection-induced gastric intestinal metaplasia. Gut Microbes 2020; 12:1-12. [PMID: 33031021 PMCID: PMC7553748 DOI: 10.1080/19490976.2020.1809331] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
(H. pylori), a common pathogenic bacterium in the stomach, has been demonstrated to be a major cause of gastric cancer (GC). The typical pathological evolution of H. pylori infection-induced GC involves development from gastric atrophy, via intestinal metaplasia (IM) and dysplasia, to intestinal-type GC. During this process, IM is considered to be an "irreversible point" that significantly increases the risk for GC. Therefore, the elucidation of the mechanism underlying IM is of great significance for the prevention and treatment of gastric mucosal carcinogenesis associated with H. pylori infection. Caudal type homeoboxes (CDXs) are transcription factors involved in intestinal differentiation establishment and the maintenance of normal intestinal mucosa and IM. H. pylori infection increases the expression of CDXs through epigenetic regulation, the nuclear factor-kappaB signaling pathway and its downstream proinflammatory factors, and the transforming growth factor-beta signaling pathway, leading to the progression from normal gastric mucosa to IM. However, the precise mechanisms of gastric intestinal metaplasia have not yet been fully elucidated. In this review, we focus on research progress revealing the functions of CDXs in H. pylori infection-induced IM, as well as the regulators modulating this process.
Collapse
Affiliation(s)
- Hong-Yan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China,CONTACT Yin Zhu Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang330006, Jiangxi Province, China
| |
Collapse
|
16
|
Algood HMS. T Cell Cytokines Impact Epithelial Cell Responses during Helicobacter pylori Infection. THE JOURNAL OF IMMUNOLOGY 2020; 204:1421-1428. [PMID: 32152211 DOI: 10.4049/jimmunol.1901307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/08/2019] [Indexed: 12/24/2022]
Abstract
The goal of this Brief Review is to highlight literature that demonstrates how cytokines made by T lymphocytes impact the gastric epithelium, especially during Helicobacter pylori infection. These cytokines effect many of the diverse functions of the epithelium and the epithelium's interactions with H. pylori The focal point of this Brief Review will be on how T cell cytokines impact antimicrobial function and barrier function and how T cell cytokines influence the development and progression of cancer. Furthermore, the modulation of epithelial-derived chemokines by H. pylori infection will be discussed.
Collapse
Affiliation(s)
- Holly M Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, TN 37212; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37212
| |
Collapse
|
17
|
Schaalan M, Mohamed W, Fathy S. MiRNA-200c, MiRNA-139 and ln RNA H19; new predictors of treatment response in H-pylori- induced gastric ulcer or progression to gastric cancer. Microb Pathog 2020; 149:104442. [PMID: 32795593 DOI: 10.1016/j.micpath.2020.104442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Recent evidence indicates that the pathogenesis of gastric ulcer and progression to gastric cancer could be attributed to altered inflammatory/immunological response and associated differential non-coding RNAs expression signatures. However, co-expression profiling of lncRNA-miRNAs in GU/GC patients are scarcely focused on. Therefore, in the present study the expression of H19 and related miRNAs including miR-139, and miR-200 were assayed in the plasma samples of treatment responsive GU vs nonresponsive GC patients. This study is a case-control study carried out on 130 subjects recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, in Egypt. All recruited patients were diagnosed with H-pylori infection, 50 of them were gastric cancer patients (GC), with previous H-pylori induced gastric ulcer but were treatment non-respondent. Real-time PCR was performed to evaluate the expression level of serum non-coding RNA; miRNA-200c, miR-139, Ln RNA H19 in patients with peptic ulcer treatment non-respondent, who progressed to GC vs non-progressed gastric ulcer patients (GU) (n = 50), and compared to early diagnosed H-pylori-gastric ulcer patients (n = 30). The association between these miRNAs and the FGF-18/FGF-R signaling indicators of H-pylori-GC pathogenesis were then investigated. RESULTS: showed that the H19 level was significantly elevated while miR-139 and miR-200c expression were significantly down-regulated in GC patients, compared to GU participants (P < 0.01). The herein investigated ncRNAs are correlated to the disease duration with Ln H19 being significantly correlated with all inflammatory markers; TNF-α, INF-γ, TAC, MMP-9, and FGF18/FGFR2. A significant correlation was also observed between miRNA 200c and each of miRNA 139 and FGFR2. Moreover, ROC analysis revealed that miRNA 200c showed the highest AUC (0.906) and 81.2% sensitivity and 100% specificity. Moreover, the combined analysis of miRNA 200c/miRNA 139 revealed superior AUC (0.96) and 93% sensitivity and 100% specificity, than each separately. As for discriminative accuracy between stages III to IV of gastric cancer, LncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%). The current study demonstrated that the combination of serum miRNA 200c/miRNA 139 expression levels (down-regulation) could provide a new potential prognostic panel for GU predictive response and potential sequelae. In conclusion, LncRNA H19 and related miRNAs, miRNA 200c/miRNA 139, could serve as a potential diagnostic biomarker for early gastric cancer diagnosis.
Collapse
Affiliation(s)
- Mona Schaalan
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Waleed Mohamed
- Department of Internal Medicine, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt.
| | - Shimaa Fathy
- Department of Clinical Pharmacy, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| |
Collapse
|
18
|
Gonciarz W, Krupa A, Hinc K, Obuchowski M, Moran AP, Gajewski A, Chmiela M. The effect of Helicobacter pylori infection and different H. pylori components on the proliferation and apoptosis of gastric epithelial cells and fibroblasts. PLoS One 2019; 14:e0220636. [PMID: 31390383 PMCID: PMC6685636 DOI: 10.1371/journal.pone.0220636] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helicobacter pylori colonizes the human gastric mucosa, causing chronic inflammation, peptic ulcers and gastric cancer. A cascade of harmful processes results from the interaction of these bacteria with the gastric epithelium. Aim To investigate these processes in terms of upregulation of oxidative stress and cell apoptosis and downregulation of the pro-regenerative activity of cells. Methods We employed an in vivo guinea pig model at 7 or 28 days postinoculation with H. pylori, corresponding to an acute or chronic stage of infection, respectively, and an in vitro model of guinea pig primary gastric epithelial cells and fibroblasts treated with bacterial components: glycine acid extract (GE), urease subunit A (UreA), cytotoxin-associated gene A protein (CagA) and lipopolysaccharide (LPS). Cells were evaluated for metabolic activity (MTT reduction), myeloperoxidase (MPO) and metalloproteinase (MMP-9) secretion, lipid peroxidation (4-hydroxynonenal (4HNE)), migration (wound healing), proliferation (Ki-67 antigen) and cell apoptosis (TUNEL assay; Bcl-xL, Bax, Bcl-2 expression; caspase 3 cleavage). Results Significant infiltration of the gastric mucosa by inflammatory cells in vivo in response to H. pylori was accompanied by oxidative stress and cell apoptosis, which were more intense 7 than 28 days after inoculation. The increase in cell proliferation was more intense in chronic than acute infection. H. pylori components GE, CagA, UreA, and LPS upregulated oxidative stress and apoptosis. Only H. pylori LPS inhibited cell migration and proliferation, which was accompanied by the upregulation of MMP-9. Conclusions H. pylori infection induces cell apoptosis in conjunction with increased oxidative stress. Elevated apoptosis protects against deleterious inflammation and neoplasia; however, it reduces cell integrity. Upregulation of cell migration and proliferation in response to injury in the milieu of GE, CagA or UreA facilitates tissue regeneration but increases the risk of neoplasia. By comparison, downregulation of cell regeneration by H. pylori LPS may promote chronic inflammation.
Collapse
Affiliation(s)
- Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Krzysztof Hinc
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Michał Obuchowski
- Laboratory of Molecular Bacteriology, Intercollegiate Faculty of Biotechnology UG-MUG, Medical University of Gdańsk, Gdansk, Poland
| | - Anthony P Moran
- Department of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Adrian Gajewski
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
| | - Magdalena Chmiela
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Łodz, Poland
- * E-mail:
| |
Collapse
|
19
|
Valenzuela-Valderrama M, Cerda-Opazo P, Backert S, González MF, Carrasco-Véliz N, Jorquera-Cordero C, Wehinger S, Canales J, Bravo D, Quest AFG. The Helicobacter pylori Urease Virulence Factor Is Required for the Induction of Hypoxia-Induced Factor-1α in Gastric Cells. Cancers (Basel) 2019; 11:cancers11060799. [PMID: 31185594 PMCID: PMC6627347 DOI: 10.3390/cancers11060799] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic Helicobacter pylori infection increases the risk of gastric cancer and induction of hypoxia-induced factor (HIF), which is frequently associated with the development and progression of several types of cancer. We recently showed that H. pylori activation of the PI3K-AKT-mTOR pathway in gastric cells increased HIF-1α expression. Here, we identified the H. pylori virulence factor responsible for HIF-1α induction. A mutant of the H. pylori 84-183 strain was identified with reduced ability to induce HIF-1α. Coomassie blue staining of extracts from these bacteria separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) revealed poor expression of urease subunits that correlated with reduced urease activity. This finding was confirmed in the 26695 strain, where urease mutants were unable to induce HIF-1α expression. Of note, HIF-1α induction was also observed in the presence of the urease inhibitor acetohydroxamic acid at concentrations (of 20 mM) that abrogated urease activity in bacterial culture supernatants, suggesting that enzymatic activity of the urease is not required for HIF-1α induction. Finally, the pre-incubation of the human gastric adenocarcinoma cell line AGS with blocking antibodies against Toll-like receptor-2 (TLR2), but not TLR4, prevented HIF-1α induction. In summary, these results reveal a hitherto unexpected role for the urease protein in HIF-1α induction via TLR2 activation following H. pylori infection of gastric cells.
Collapse
Affiliation(s)
- Manuel Valenzuela-Valderrama
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
| | - Paulina Cerda-Opazo
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Steffen Backert
- Department of Biology, Division of Microbiology, University of Erlangen-Nuremberg, 91054 Erlangen, Germany.
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Nicolás Carrasco-Véliz
- Laboratorio de Microbiología Celular, Instituto de Innovación e Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8320000, Chile.
| | - Carla Jorquera-Cordero
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Sergio Wehinger
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca 3460000, Chile.
| | - Jimena Canales
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Denisse Bravo
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Microbiología Oral, Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| | - Andrew F G Quest
- Centro de Estudios Avanzados en Enfermedades Crónicas (ACCDiS), Independencia, Santiago 8380000, Chile.
- Laboratorio de Comunicaciones Celulares, Centro de estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia, Santiago 8380000, Chile.
| |
Collapse
|
20
|
Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem 2019; 120:13464-13477. [PMID: 30945348 DOI: 10.1002/jcb.28620] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/17/2019] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Deregulation of noncoding RNAs, microRNAs (miRNAs) and long noncoding RNA (lncRNA), are implicated in the initiation and progression of gastric cancer (GC). This study is a pilot case-control study carried out on 75 subjects, 40 of them were Helicobacter pylori-gastric ulcer patients and 35 were GC patients recruited from the Gastrointestinal Endoscopy Unit in Al-Kasr Al-Aini Hospital, Cairo University in Egypt. Real-time PCR was performed to evaluate the expression level of serum miR-204, miR-182, and lncRNA H19 in patients with peptic ulcer-progressed GC vs nonprogressed peptic ulcer patients. Fibroblast growth factor 18 (FGF-18)/FGF receptor 2 (FGFR2) expression and their downstream immunological and inflammatory signaling markers were assessed and their association with the addressed noncoding RNAs investigated. As regards miR-204 and miR-182, they were significantly increased (12.5 and 2.6 folds, respectively) in GU samples, compared with those of healthy control levels. The elevated levels of these miRNAs were significantly de-escalated in GC samples compared with GU and the fold decrease valued 2.2 fold for miR-204 and 1.8 folds for miR-182. On the other hand, the significant escalation in the level of lnRNA H19 in GU recorded a 16.6 fold increase and further elevation in its levels was evident in GC samples. The herein assessed miRNAs are correlated with disease duration and FGFR2 with miR-182 being significantly correlated with all inflammatory markers, TAC, INF-γ, matrix metallopeptidase 9, and FGF-18. In terms of diagnostic accuracy of assessed miRNAs (stages III to IV), the receiver operating characteristic analysis indicated that serum lncRNA H19 showed the highest diagnostic accuracy (95.5%), specificity (100%), and sensitivity (90.9%), compared with miR-204 and miR-182, which showed the same specificity (60%), sensitivity (72.7%), and diagnostic accuracy (68.8%). Our findings conclude that lnRNA H19, miR-204, and miR-182 may function as novel prospective plasma biomarkers to detect GC and its progression from H. pylori-peptic ulcer, which would be helpful to improve the theranostics of GC.
Collapse
Affiliation(s)
- Waleed A Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospital, Cairo University, Cairo, Egypt
| | - Mona F Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Clinical and Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Basma Ramadan
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
21
|
Li L, Wang L. Multiple Myeloma: What Do We Do About Immunodeficiency? J Cancer 2019; 10:1675-1684. [PMID: 31205523 PMCID: PMC6548011 DOI: 10.7150/jca.29993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematological malignancy. Immunodeficiency results in the incapability of immunity to eradicate both tumor cells and pathogens. Immunotherapies along with antibiotics and other anti-infectious agents are applied as substitutes for immunity in MM. Immunotherapies including monoclonal antibodies, immune checkpoints inhibitors, affinity- enhanced T cells, chimeric antigen receptor T cells and dendritic cell vaccines are revolutionizing MM treatment. By suppressing the pro-inflammatory milieu and pathogens, prophylactic and therapeutic antibiotics represent anti-tumor and anti-infection properties. It is expected that deeper understanding of infection, immunity and tumor physio-pathologies in MM will accelerate the optimization of combined therapies, thus improving prognosis in MM.
Collapse
Affiliation(s)
- Linrong Li
- Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Liang Wang
- Department of Hematology, ZhuJiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Kappaun K, Piovesan AR, Carlini CR, Ligabue-Braun R. Ureases: Historical aspects, catalytic, and non-catalytic properties - A review. J Adv Res 2018; 13:3-17. [PMID: 30094078 PMCID: PMC6077230 DOI: 10.1016/j.jare.2018.05.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/11/2022] Open
Abstract
Urease (urea amidohydrolase, EC 3.5.1.5) is a nickel-containing enzyme produced by plants, fungi, and bacteria that catalyzes the hydrolysis of urea into ammonia and carbamate. Urease is of historical importance in Biochemistry as it was the first enzyme ever to be crystallized (1926). Finding nickel in urease's active site (1975) was the first indication of a biological role for this metal. In this review, historical and structural features, kinetics aspects, activation of the metallocenter and inhibitors of the urea hydrolyzing activity of ureases are discussed. The review also deals with the non-enzymatic biological properties, whose discovery 40 years ago started a new chapter in the study of ureases. Well recognized as virulence factors due to the production of ammonia and alkalinization in diseases by urease-positive microorganisms, ureases have pro-inflammatory, endocytosis-inducing and neurotoxic activities that do not require ureolysis. Particularly relevant in plants, ureases exert insecticidal and fungitoxic effects. Data on the jack bean urease and on jaburetox, a recombinant urease-derived peptide, have indicated that interactions with cell membrane lipids may be the basis of the non-enzymatic biological properties of ureases. Altogether, with this review we wanted to invite the readers to take a second look at ureases, very versatile proteins that happen also to catalyze the breakdown of urea into ammonia and carbamate.
Collapse
Affiliation(s)
- Karine Kappaun
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Angela Regina Piovesan
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia Regina Carlini
- Brain Institute (InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6690, Prédio 63, Porto Alegre, RS CEP 90610-000, Brazil
- Graduate Program in Medicine and Health Sciences, School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Ligabue-Braun
- Graduate Program in Cellular and Molecular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
23
|
Scopel-Guerra A, Olivera-Severo D, Staniscuaski F, Uberti AF, Callai-Silva N, Jaeger N, Porto BN, Carlini CR. The Impact of Helicobacter pylori Urease upon Platelets and Consequent Contributions to Inflammation. Front Microbiol 2017; 8:2447. [PMID: 29312166 PMCID: PMC5733092 DOI: 10.3389/fmicb.2017.02447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/24/2017] [Indexed: 12/22/2022] Open
Abstract
Gastric infection by Helicobacter pylori is considered a risk factor for gastric and duodenal cancer, and extragastric diseases. Previous data have shown that, in a non-enzymatic way, H. pylori urease (HPU) activates neutrophils to produce ROS and also induces platelet aggregation, requiring ADP secretion modulated by the 12-lipoxygenase pathway, a signaling cascade also triggered by the physiological agonist collagen. Here we investigated further the effects on platelets of recombinant versions of the holoenzyme HPU, and of its two subunits (HpUreA and HpUreB). Although HpUreA had no aggregating activity on platelets, it partially inhibited collagen-induced aggregation. HpUreB induced platelet aggregation in the nanomolar range, and also interfered dose-dependently on both collagen- and ADP-induced platelet aggregation. HPU-induced platelet aggregation was inhibited by antibodies against glycoprotein VI (GPVI), the main collagen receptor in platelets. Flow cytometry analysis revealed exposure of P-selectin in HPU-activated platelets. Anti-glycoprotein IIbIIIa (GPIIbIIIa) antibodies increased the binding of FITC-labeled HPU to activated platelets, whereas anti-GPVI did not. Evaluation of post-transcriptional events in HPU-activated platelets revealed modifications in the pre-mRNA processing of pro-inflammatory proteins, with increased levels of mRNAs encoding IL-1β and CD14. We concluded that HPU activates platelets probably through its HpUreB subunit. Activation of platelets by HPU turns these cells into a pro-inflammatory phenotype. Altogether, our data suggest that H. pylori urease, besides allowing bacterial survival within the gastric mucosa, may have an important, and so far overlooked, role in gastric inflammation mediated by urease-activated neutrophils and platelets.
Collapse
Affiliation(s)
- Adriele Scopel-Guerra
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deiber Olivera-Severo
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biology, Universidade Regional Integrada do Alto Uruguai e das Missões, São Luiz Gonzaga, Brazil
| | - Fernanda Staniscuaski
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Department of Molecular Biology and Biotechnology, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Augusto F Uberti
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Biology, Universidade Federal de Pelotas, Pelotas, Brazil
| | - Natália Callai-Silva
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Jaeger
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bárbara N Porto
- Institute of Biomedical Research, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Celia R Carlini
- Brain Institute (BRAINS-InsCer), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
24
|
Abstract
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. Helicobacter pylori is a bacterial pathogen that chronically infects half the global population and is a major contributor to the development of peptic ulcers and stomach cancer. H. pylori has evolved to survive in the stomach and one important adaptation is the enzyme urease. The bacteria cannot establish an infection in the host without this enzyme, and although widely postulated, the requirement of urease for chronic infection of the host has not been tested experimentally as conventional urease mutants are incapable of colonization. To overcome this constraint, a genetic system was introduced that allowed for the making of H. pylori strains in which urease expression could be turned off after the bacteria have colonised the stomach. We show for the first time that this enzyme is not only important for initial colonization but that it is also very important for maintaining chronic infection. We also show that if urease is turned off, the bacterium can mutate several different genes in order to restore urease expression. The genetic approach described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into how the bacterium is able to avoid clearance by the immune system and how it is able to adapt to changing biological environments.
Collapse
|
25
|
Bosschem I, Flahou B, Van Deun K, De Koker S, Volf J, Smet A, Ducatelle R, Devriendt B, Haesebrouck F. Species-specific immunity to Helicobacter suis. Helicobacter 2017; 22. [PMID: 28124467 DOI: 10.1111/hel.12375] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Helicobacter (H.) suis is mainly associated with pigs, but is also the most prevalent gastric non-H. pylori Helicobacter species found in humans. Both H. pylori and H. suis may cause persistent infection of the stomach. Several immune evasion mechanisms have been proposed for H. pylori, which focus to a great extent on its major virulence factors, which are absent in H. suis. The aim of this study was to gain more knowledge on immune evasion by H. suis. MATERIALS AND METHODS Cytokine expression kinetics were monitored in the stomach of BALB/c mice experimentally infected with H. suis. The cytokine expression profile in the stomach of naturally H. suis-infected pigs was also determined. Subsequently, the effect of H. suis on murine and porcine dendritic cell (DC) maturation and their ability to elicit T-cell effector responses was analyzed. RESULTS Despite a Th17/Th2 response in the murine stomach, the inflammatory cell influx was unable to clear H. suis infection. H. suis-stimulated murine bone marrow-derived dendritic cells induced IL-17 secretion by CD4+ cells in vitro. Natural H. suis infection in pigs evoked increased expression levels of IL-17 mRNA in the antrum and IL-10 mRNA in the fundus. In contrast to mice, H. suis-stimulated porcine monocyte-derived dendritic cells were unable to express MHCII molecules on their cell surface. These semimature DCs induced proliferation of T-cells, which showed an increased expression of TGF-β and FoxP3 mRNA levels. CONCLUSIONS Helicobacter suis might evade host immune responses by skewing toward a Treg-biased response.
Collapse
Affiliation(s)
- Iris Bosschem
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Stefaan De Koker
- Department of Biomedical molecular biology, Faculty of Sciences, Ghent University, Gent, Belgium
| | - Jiri Volf
- Veterinary Research Institute, Brno, Czech Republic
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Department of Virology, Parasitology, Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Tran CT, Garcia M, Garnier M, Burucoa C, Bodet C. Inflammatory signaling pathways induced by Helicobacter pylori in primary human gastric epithelial cells. Innate Immun 2016; 23:165-174. [DOI: 10.1177/1753425916681077] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inflammatory signaling pathways induced by Helicobacter pylori remain unclear, having been studied mostly on cell-line models derived from gastric adenocarcinoma with potentially altered signaling pathways and nonfunctional receptors. Here, H. pylori-induced signaling pathways were investigated in primary human gastric epithelial cells. Inflammatory response was analyzed on chemokine mRNA expression and production after infection of gastric epithelial cells by H. pylori strains, B128 and B128Δ cagM, a cag type IV secretion system defective strain. Signaling pathway involvement was investigated using inhibitors of epidermal growth factor receptor (EGFR), MAPK, JAK and blocking Abs against TLR2 and TLR4. Inhibitors of EGFR, MAPK and JAK significantly reduced the chemokine mRNA expression and production induced by both H. pylori strains at 3 h and 24 h post-infection. JNK inhibitor reduced chemokine production at 24 h post-infection. Blocking Abs against TLR2 but not TLR4 showed significant reduction of chemokine secretion. Using primary culture of human gastric epithelial cells, our data suggest that H. pylori can be recognized by TLR2, leading to chemokine induction, and that EGFR, MAPK and the JAK/STAT signaling pathways play a key role in the H. pylori-induced CXCL1, CXCL5 and CXCL8 response in a cag pathogenicity island-independent manner.
Collapse
Affiliation(s)
- Cong Tri Tran
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC - EA 4331), Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie Hygiène, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC - EA 4331), Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie Hygiène, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Martine Garnier
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC - EA 4331), Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie Hygiène, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Christophe Burucoa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC - EA 4331), Université de Poitiers, Poitiers, France
- Laboratoire de Bactériologie Hygiène, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC - EA 4331), Université de Poitiers, Poitiers, France
| |
Collapse
|
27
|
Hu Y, Liu JP, Zhu Y, Lu NH. The Importance of Toll-like Receptors in NF-κB Signaling Pathway Activation by Helicobacter pylori Infection and the Regulators of this Response. Helicobacter 2016; 21:428-40. [PMID: 26763943 DOI: 10.1111/hel.12292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) is a common pathogenic bacterium in the stomach that infects almost half of the population worldwide and is closely related to gastric diseases and some extragastric diseases, including iron-deficiency anemia and idiopathic thrombocytopenic purpura. Both the Maastricht IV/Florence consensus report and the Kyoto global consensus report have proposed the eradication of H. pylori to prevent gastric cancer as H.pylori has been shown to be a major cause of gastric carcinogenesis. The interactions between H. pylori and host receptors induce the release of the proinflammatory cytokines by activating proinflammatory signaling pathways such as nuclear factor kappa B (NF-κB), which plays a central role in inflammation, immune response, and carcinogenesis. Among these receptors, Toll-like receptors (TLRs) are classical pattern recognition receptors in the recognition of H. pylori and the mediation of the host inflammatory and immune responses to H. pylori. TLR polymorphisms also contribute to the clinical consequences of H. pylori infection. In this review, we focus on the functions of TLRs in the NF-κB signaling pathway activated by H. pylori, the regulators modulating this response, and the functions of TLR polymorphisms in H.pylori-related diseases.
Collapse
Affiliation(s)
- Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Ping Liu
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Nong-Hua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
28
|
Ghalehnoei H, Ahmadzadeh A, Farzi N, Alebouyeh M, Aghdaei HA, Azimzadeh P, Molaei M, Zali MR. Relationship between ureB Sequence Diversity, Urease Activity and Genotypic Variations of Different Helicobacter pylori Strains in Patients with Gastric Disorders. Pol J Microbiol 2016; 65:153-159. [PMID: 30015438 DOI: 10.5604/17331331.1204761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 12/13/2022] Open
Abstract
Association of the severity of Helicobacter pylori induced diseases with virulence entity of the colonized strains was proven in some studies. Urease has been demonstrated as a potent virulence factor for H. pylori. The main aim of this study was investigation of the relationships of ureB sequence diversity, urease activity and virulence genotypes of different H. pylori strains with histopathological changes of gastric tissue in infected patients suffering from different gastric disorders. Analysis of the virulence genotypes in the isolated strains indicated significant associations between the presence of severe active gastritis and cagA+ (P = 0.039) or cagA/iceA1 genotypes (P = 0.026), and intestinal metaplasia and vacA m1 (P = 0.008) or vacA s1/m2 (P = 0.001) genotypes. Our results showed a 2.4-fold increased risk of peptic ulcer (95% CI: 0.483-11.93), compared with gastritis, in the infected patients who had dupA positive strains; however this association was not statistically significant. The results of urease activity showed a significant mean difference between the isolated strains from patients with PUD and NUD (P = 0.034). This activity was relatively higher among patients with intestinal metaplasia. Also a significant associa-tion was found between the lack of cagA and increased urease activity among the isolated strains (P = 0.036). While the greatest sequencevariation of ureB was detected in a strain from a patient with intestinal metaplasia, the sole determined amino acid change in UreB sequence (Ala201Thr, 30%), showed no influence on urease activity. In conclusion, the supposed role of H. pylori urease to form peptic ulcer and advancing of intestinal metaplasia was postulated in this study. Higher urease activity in the colonizing H. pylori strains that present specific virulence factors was indicated as a risk factor for promotion of histopathological changes of gastric tissue that advance gastric malignancy.
Collapse
Affiliation(s)
- Hossein Ghalehnoei
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadzadeh
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Farzi
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pedram Azimzadeh
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Molaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Schröder B. The multifaceted roles of the invariant chain CD74--More than just a chaperone. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1269-81. [PMID: 27033518 DOI: 10.1016/j.bbamcr.2016.03.026] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/13/2023]
Abstract
The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.
Collapse
Affiliation(s)
- Bernd Schröder
- Biochemical Institute, Christian Albrechts University of Kiel, Otto-Hahn-Platz 9, D-24118 Kiel, Germany.
| |
Collapse
|
30
|
Zhang RG, Duan GC, Fan QT, Chen SY. Role of Helicobacter pylori infection in pathogenesis of gastric carcinoma. World J Gastrointest Pathophysiol 2016; 7:97-107. [PMID: 26909232 PMCID: PMC4753193 DOI: 10.4291/wjgp.v7.i1.97] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/18/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is one of the most common carcinoma and the second leading cause of cancer-related deaths worldwide. Helicobacter pylori (H. pylori) infection causes a series of precancerous lesions like gastritis, atrophy, intestinal metaplasia and dysplasia, and is the strongest known risk factor for GC, as supported by epidemiological, preclinical and clinical studies. However, the mechanism of H. pylori developing gastric carcinoma has not been well defined. Among infected individuals, approximately 10% develop severe gastric lesions such as peptic ulcer disease, 1%-3% progresses to GC. The outcomes of H. pylori infection are determined by bacterial virulence, genetic polymorphism of hosts as well as environmental factors. It is important to gain further understanding of the pathogenesis of H. pylori infection for developing more effective treatments for this common but deadly malignancy. The recent findings on the bacterial virulence factors, effects of H. pylori on epithelial cells, genetic polymorphism of both the bacterium and its host, and the environmental factors for GC are discussed with focus on the role of H. pylori in gastric carcinogenesis in this review.
Collapse
|
31
|
Carlini CR, Ligabue-Braun R. Ureases as multifunctional toxic proteins: A review. Toxicon 2015; 110:90-109. [PMID: 26690979 DOI: 10.1016/j.toxicon.2015.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/09/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Ureases are metalloenzymes that hydrolyze urea into ammonia and carbon dioxide. They were the first enzymes to be crystallized and, with them, the notion that enzymes are proteins became accepted. Novel toxic properties of ureases that are independent of their enzyme activity have been discovered in the last three decades. Since our first description of the neurotoxic properties of canatoxin, an isoform of the jack bean urease, which appeared in Toxicon in 1981, about one hundred articles have been published on "new" properties of plant and microbial ureases. Here we review the present knowledge on the non-enzymatic properties of ureases. Plant ureases and microbial ureases are fungitoxic to filamentous fungi and yeasts by a mechanism involving fungal membrane permeabilization. Plant and at least some bacterial ureases have potent insecticidal effects. This entomotoxicity relies partly on an internal peptide released upon proteolysis of ingested urease by insect digestive enzymes. The intact protein and its derived peptide(s) are neurotoxic to insects and affect a number of other physiological functions, such as diuresis, muscle contraction and immunity. In mammal models some ureases are acutely neurotoxic upon injection, at least partially by enzyme-independent effects. For a long time bacterial ureases have been recognized as important virulence factors of diseases by urease-producing microorganisms. Ureases activate exocytosis in different mammalian cells recruiting eicosanoids and Ca(2+)-dependent pathways, even when their ureolytic activity is blocked by an irreversible inhibitor. Ureases are chemotactic factors recognized by neutrophils (and some bacteria), activating them and also platelets into a pro-inflammatory "status". Secretion-induction by ureases may play a role in fungal and bacterial diseases in humans and other animals. The now recognized "moonlighting" properties of these proteins have renewed interest in ureases for their biotechnological potential to improve plant defense against pests and as potential targets to ameliorate diseases due to pathogenic urease-producing microorganisms.
Collapse
Affiliation(s)
- Celia R Carlini
- Brain Institute (Instituto do Cérebro-INSCER), Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Center of Biotechnology, Universidade Federal do Rio Grande do Sul Porto Alegre, RS, Brazil
| |
Collapse
|
32
|
Abkar M, Amani J, Sahebghadam Lotfi A, Nikbakht Brujeni G, Alamian S, Kamali M. Subcutaneous immunization with a novel immunogenic candidate (urease) confers protection againstBrucella abortusandBrucella melitensisinfections. APMIS 2015; 123:667-75. [DOI: 10.1111/apm.12400] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/09/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Morteza Abkar
- Department of Molecular Genetics; Faculty of Basic Sciences; Tarbiat Modares University; Tehran Iran
| | - Jafar Amani
- Applied Microbiology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry; Faculty of Medicine; Tarbiat Modares University; Tehran Iran
| | - Gholamreza Nikbakht Brujeni
- Department of Microbiology and Immunology; Faculty of Veterinary Medicine; University of Tehran; Tehran Iran
| | - Saeed Alamian
- Brucellosis Department; Razi Vaccine and Serum Research Institute; Karaj Iran
| | - Mehdi Kamali
- Nanobiotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|
33
|
Su YL, Yang JC, Lee H, Sheu F, Hsu CH, Lin SL, Chow LP. The C-terminal disulfide bonds of Helicobacter pylori GroES are critical for IL-8 secretion via the TLR4-dependent pathway in gastric epithelial cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:3997-4007. [PMID: 25769921 DOI: 10.4049/jimmunol.1401852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 02/09/2015] [Indexed: 12/30/2022]
Abstract
Helicobacter pylori GroES (HpGroES), a potent immunogen, is a secreted virulence factor that stimulates production of proinflammatory cytokines and may contribute to gastric carcinogenesis. HpGroES is larger than other bacterial orthologs because of an additional C-terminal region, known as domain B. We found that the HpGroES-induced IL-8 release by human gastric epithelial cells was dependent on activation of the MAPK and NF-κB pathways. HpGroES lacking domain B was unable to induce IL-8 release. Additionally, a TLR4 inhibitor significantly inhibited IL-8 secretion and reduced HpGroES-induced activation of MAPKs. Furthermore, HpGroES-induced IL-8 release by primary gastric epithelial cells from TLR4(-/-) mice was significantly lower than from wild-type mice. We also found that HpGroES bound to TLR4 in cell lysates and colocalized with TLR4 on the cell membrane only when domain B was present. We then constructed two deletion mutants lacking C-terminal regions and mutants with point mutations of two of the four cysteine residues, C111 and C112, in domain B and found that the deletion mutants and a double mutant lacking the C94-C111 and C95-C112 disulfide bonds were unable to interact with TLR4 or induce IL-8 release. We conclude that HpGroES, in which a unique conformational structure, domain B, is generated by these two disulfide bonds, induces IL-8 secretion via a TLR4-dependent mechanism.
Collapse
Affiliation(s)
- Yu-Lin Su
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Jyh-Chin Yang
- Department of Internal Medicine, Hospital and College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Haur Lee
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Fuu Sheu
- Department of Horticulture, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; and
| | - Shuei-Liong Lin
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| |
Collapse
|
34
|
Alzahrani S, Lina TT, Gonzalez J, Pinchuk IV, Beswick EJ, Reyes VE. Effect of Helicobacter pylori on gastric epithelial cells. World J Gastroenterol 2014; 20:12767-12780. [PMID: 25278677 PMCID: PMC4177462 DOI: 10.3748/wjg.v20.i36.12767] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/08/2014] [Accepted: 05/19/2014] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal epithelium has cells with features that make them a powerful line of defense in innate mucosal immunity. Features that allow gastrointestinal epithelial cells to contribute in innate defense include cell barrier integrity, cell turnover, autophagy, and innate immune responses. Helicobacter pylori (H. pylori) is a spiral shape gram negative bacterium that selectively colonizes the gastric epithelium of more than half of the world’s population. The infection invariably becomes persistent due to highly specialized mechanisms that facilitate H. pylori’s avoidance of this initial line of host defense as well as adaptive immune mechanisms. The host response is thus unsuccessful in clearing the infection and as a result becomes established as a persistent infection promoting chronic inflammation. In some individuals the associated inflammation contributes to ulcerogenesis or neoplasia. H. pylori has an array of different strategies to interact intimately with epithelial cells and manipulate their cellular processes and functions. Among the multiple aspects that H. pylori affects in gastric epithelial cells are their distribution of epithelial junctions, DNA damage, apoptosis, proliferation, stimulation of cytokine production, and cell transformation. Some of these processes are initiated as a result of the activation of signaling mechanisms activated on binding of H. pylori to cell surface receptors or via soluble virulence factors that gain access to the epithelium. The multiple responses by the epithelium to the infection contribute to pathogenesis associated with H. pylori.
Collapse
|
35
|
Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells. Infect Immun 2014; 82:2881-9. [PMID: 24778119 DOI: 10.1128/iai.01517-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection.
Collapse
|
36
|
Ayala G, Escobedo-Hinojosa WI, Cruz-Herrera CFDL, Romero I. Exploring alternative treatments for Helicobacter pylori infection. World J Gastroenterol 2014; 20:1450-1469. [PMID: 24587621 PMCID: PMC3925854 DOI: 10.3748/wjg.v20.i6.1450] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/21/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a successful pathogen that can persist in the stomach of an infected person for their entire life. It provokes chronic gastric inflammation that leads to the development of serious gastric diseases such as peptic ulcers, gastric cancer and Mucosa associated lymphoid tissue lymphoma. It is known that these ailments can be avoided if the infection by the bacteria can be prevented or eradicated. Currently, numerous antibiotic-based therapies are available. However, these therapies have several inherent problems, including the appearance of resistance to the antibiotics used and associated adverse effects, the risk of re-infection and the high cost of antibiotic therapy. The delay in developing a vaccine to prevent or eradicate the infection has furthered research into new therapeutic approaches. This review summarises the most relevant recent studies on vaccine development and new treatments using natural resources such as plants, probiotics and nutraceuticals. In addition, novel alternatives based on microorganisms, peptides, polysaccharides, and intragastric violet light irradiation are presented. Alternative therapies have not been effective in eradicating the bacteria but have been shown to maintain low bacterial levels. Nevertheless, some of them are useful in preventing the adverse effects of antibiotics, modulating the immune response, gastroprotection, and the general promotion of health. Therefore, those agents can be used as adjuvants of allopathic anti-H. pylori eradication therapy.
Collapse
|
37
|
Rowinska-Zyrek M, Zakrzewska-Czerwinska J, Zawilak-Pawlik A, Kozlowski H. Ni2+chemistry in pathogens – a possible target for eradication. Dalton Trans 2014; 43:8976-89. [DOI: 10.1039/c4dt00421c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nickel homeostasis inHelicobacter pyloriand potential histidine-rich binding sites from various bacterial and fungal pathogens are discussed.
Collapse
Affiliation(s)
| | - Jolanta Zakrzewska-Czerwinska
- Faculty of Biotechnology
- University of Wroclaw
- 50-383 Wroclaw, Poland
- Institute of Immunology and Experimental Therapy
- Polish Academy of Sciences
| | - Anna Zawilak-Pawlik
- Institute of Immunology and Experimental Therapy
- Polish Academy of Sciences
- Department of Microbiology
- 53-114 Wrocław, Poland
| | | |
Collapse
|
38
|
He C, Chen M, Liu J, Yuan Y. Host genetic factors respond to pathogenic step-specific virulence factors of Helicobacter pylori in gastric carcinogenesis. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2014; 759:14-26. [PMID: 24076409 DOI: 10.1016/j.mrrev.2013.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/18/2022]
Abstract
The interindividual differences in risk of Helicobacter pylori (H. pylori)-associated gastric cancer involve significant heterogeneities of both host genetics and H. pylori strains. Several recent studies proposed a distinct sequence for H. pylori exerting its virulence in the host stomach: (i) adhering to and colonizing the surface of gastric epithelial cells, (ii) evading and attenuating the host defense, and (iii) invading and damaging the gastric mucosa. This review focuses on several key issues that still need to be clarified, such as which virulence factors of H. pylori are involved in the three pathogenic steps, which host genes respond to the step-specific virulence factors, and whether and/or how the corresponding host genetic variations influence the risk of gastric carcinogenesis. Urease, BabA and SabA in the adhesion-step, PGN and LPS in the immune evasion-step, and CagA, VacA and Tipα in the mucosal damage-step were documented to play an important role in step-specific pathogenicity of H. pylori infection. There is evidence further supporting a role of potentially functional polymorphisms of host genes directly responding to these pathogenic step-specific virulence factors in the susceptibility of gastric carcinogenesis, especially for urease-interacting HLA class II genes, BabA-interacting MUC1, PGN-interacting NOD1, LPS-interacting TLR4, and CagA-interacting PTPN11 and CDH1. With the continuous improvement of understanding the genetic profile of H. pylori-associated gastric carcinogenesis, a person at increased risk for gastric cancer may benefit from several aspects of efforts: (i) prevent H. pylori infection with a vaccine targeting certain step-specific virulence factor; (ii) eradicate H. pylori infection by blocking step-specific psychopathological characteristics of virulence factors; and (iii) adjust host physiological function to resist the carcinogenic role of step-specific virulence factors or interrupt the cellular signal transduction of the interplay between H. pylori and host in each pathogenic step, especially for the subjects with precancerous lesions in the stomach.
Collapse
Affiliation(s)
- Caiyun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Moye Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University; Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang 110001, China.
| |
Collapse
|
39
|
Pachathundikandi SK, Tegtmeyer N, Backert S. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells. Gut Microbes 2013; 4:454-74. [PMID: 24280762 PMCID: PMC3928158 DOI: 10.4161/gmic.27001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α 5β 1 receptor. Other targeted membrane-based receptors include the integrins αvβ 3, αvβ 5, and β 2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed.
Collapse
|
40
|
Wang F, Sun GP, Zou YF, Zhong F, Ma T, Li XQ, Wu D. Helicobacter pylori infection predicts favorable outcome in patients with gastric cancer. ACTA ACUST UNITED AC 2013; 20:e388-95. [PMID: 24155636 DOI: 10.3747/co.20.1417] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Recent studies have suggested a controversial role of Helicobacter pylori infection in gastric cancer prognosis. The aim of the present study was to investigate the potential impact of H. pylori status on the prognosis of patients with gastric cancer in a Chinese prospective cohort. METHODS Between 2007 and 2009, 261 patients with curatively resected gastric cancer were enrolled in the study. H. pylori status was defined by means of immunohistochemical staining in tumour and non-neoplastic tissues. Treatment prognosis was measured in terms of cancer-specific survival and disease-free survival (dfs). Univariate and multivariate Cox regression models were used to assess the association between H. pylori status and patient prognosis. RESULTS Positivity for H. pylori infection was observed in 188 of the 261 patients (72.0%). In patients positive for H. pylori, mean cancer-specific survival was 55.2 months [95% confidence interval (ci): 53.4 to 56.9 months] and mean dfs was 53.9 months (95% ci: 51.8 to 56.0 months); the same survivals were, respectively, 45.1 months (95% ci: 42.2 to 47.9 months) and 43.7 months (95% ci: 40.4 to 47.0 months) in patients negative for H. pylori. In univariate analysis, positive H. pylori status was associated with better cancer-specific survival [hazard ratio (hr): 0.486; 95% ci: 0.271 to 0.870; p = 0.015] and dfs (hr: 0.540; 95% ci: 0.307 to 0.950; p = 0.033). In multivariate analysis, H. pylori was an independent prognostic factor for cancer-specific survival (hr: 0.485; 95% ci: 0.265 to 0.889; p = 0.019). CONCLUSIONS Our study demonstrates that positive H. pylori status is a beneficial prognostic indicator in patients with gastric cancer and might suggest possible therapeutic approaches for gastric cancer. Further research is required to better understand inflammation mechanisms and cancer progression.
Collapse
Affiliation(s)
- F Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Guo Y, Hou J, Luo Y, Wang D. Functional disruption of macrophage migration inhibitory factor (MIF) suppresses proliferation of human H460 lung cancer cells by caspase-dependent apoptosis. Cancer Cell Int 2013; 13:28. [PMID: 23522304 PMCID: PMC3695853 DOI: 10.1186/1475-2867-13-28] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 02/28/2013] [Indexed: 12/16/2022] Open
Abstract
Background Macrophage migration inhibitory factor (MIF) is important in regulating cell proliferation and apoptosis in both normal and cancerous cells, and may be important in cancer progression and metastasis. In human non-small cell lung cancer (NSCLC), the underlying mechanisms responsible for MIF-dependent regulation of cellular proliferation, and cell death remain poorly appreciated. Methods The human H460 lung cancer cell-line was treated with an optimally determined dose of 50 pmol/ml MIF siRNA, following which cell proliferation, cell cycle and apoptosis were analyzed. Additionally, known pathways of apoptosis including expression of Annexin-V, enhanced production of caspases-3 and −4 and expression of the Akt signaling protein were assessed in an attempt to provide insights into the signaling pathways involved in apoptosis following disruption of MIF expression. Results Specific siRNA sequences markedly decreased MIF expression in H460 cells by 2 to 5-fold as compared with the negative control. Moreover, MIF miRNA dampened not only cellular proliferation, but increased the frequency of apoptotic cells as assessed by cell-surface Annexin-V expression. Entry of cells into apoptosis was partly dependent on enhanced production of caspases −3 and −4 while not affecting the expression of either caspase-8 or the Akt signaling pathway. Conclusions In a model of NSCLC, knockdown of MIF mRNA expression dampened H460 proliferation by mechanisms partly dependent on entry of cells into apoptosis and enhanced production of caspase-3 and −4. MIF expression may thus be important in NSCLC progression. Targeting MIF may have clinical utility in the management of human lung cancer.
Collapse
Affiliation(s)
- Yubiao Guo
- Department of Pulmonary Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China.
| | | | | | | |
Collapse
|
42
|
Genève L, Ménard C, Labrecque N, Thibodeau J. The p35 human invariant chain in transgenic mice restores mature B cells in the absence of endogenous CD74. Int Immunol 2012; 24:645-60. [PMID: 22966065 DOI: 10.1093/intimm/dxs066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The invariant chain (Ii; CD74) has pleiotropic functions and Ii-deficient mice show defects in MHC class II (MHC II) transport and B cell maturation. In humans, but not in mice, a minor Iip35 isoform of unknown function includes an endoplasmic reticulum-retention motif that is masked upon binding of MHC II molecules. To gain further insight into the roles of Ii in B cell homeostasis, we generated Iip35 transgenic mice (Tgp35) and bred these with mice deficient for Ii (Tgp35/mIiKO). Iip35 was shown to compete with mIi for the binding to I-A(b) . In addition, classical endosomal degradation products (p20/p10) and the class II-associated invariant chain peptide (CLIP) fragment were detected. Moreover, Iip35 favored the formation of compact peptide-MHC II complexes in the Tgp35/mIiKO mice. I-A(b) levels were restored at the plasma membrane of mature B cells but Iip35 affected the fine conformation of MHC II molecules as judged by the increased reactivity of the AF6-120.1 antibody in permeabilized cells. However, the human Iip35 cannot fully replace the endogenous Ii. Indeed, most immature B cells in the bone marrow and spleen of transgenic mice had reduced surface expression of MHC II molecules, demonstrating a dominant-negative effect of Iip35 in Tgp35 mice. Interestingly, while maturation to follicular B cells was normal, Iip35 expression appeared to reduce the proportions of marginal zone B cells. These results emphasize the importance of Ii in B cell homeostasis and suggest that Iip35 could have regulatory functions.
Collapse
Affiliation(s)
- Laetitia Genève
- Laboratoire d'Immunologie Moléculaire, Département de Microbiologie et Immunologie, Université de Montréal, Montréal, Québec H3T1J4, Canada
| | | | | | | |
Collapse
|
43
|
Sanchez-Niño MD, Sanz AB, Ruiz-Andres O, Poveda J, Izquierdo MC, Selgas R, Egido J, Ortiz A. MIF, CD74 and other partners in kidney disease: tales of a promiscuous couple. Cytokine Growth Factor Rev 2012; 24:23-40. [PMID: 22959722 DOI: 10.1016/j.cytogfr.2012.08.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/20/2012] [Indexed: 12/27/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is increased in kidney and urine during kidney disease. MIF binds to and activates CD74 and chemokine receptors CXCR2 and CXCR4. CD74 is a protein trafficking regulator and a cell membrane receptor for MIF, D-dopachrome tautomerase (D-DT/MIF-2) and bacterial proteins. MIF signaling through CD74 requires CD44. CD74, CD44 and CXCR4 are upregulated in renal cells in diseased kidneys and MIF activation of CD74 in kidney cells promotes an inflammatory response. MIF or CXCR2 targeting protects from experimental kidney injury, CD44 deficiency modulates kidney injury and CXCR4 activation promotes glomerular injury. However, the contribution of MIF or MIF-2 to these actions of MIF receptors has not been explored. The safety and efficacy of strategies targeting MIF, CD74, CD44 and CXCR4 are under study in humans.
Collapse
|
44
|
Choi JW, Kim Y, Lee JH, Kim YS. CD74 expression is increased in high-grade, invasive urothelial carcinoma of the bladder. Int J Urol 2012; 20:251-5. [PMID: 22905972 DOI: 10.1111/j.1442-2042.2012.03128.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study aimed to identify the clinicopathological features of bladder cancer patients with high CD74 expression, as milatuzumab humanized anti-CD74 antibody is being evaluated in clinical trials for hematological malignancies. Expression of CD74 was examined in 342 urothelial carcinomas of the bladder, and two urothelial carcinoma cell lines by immunohistochemistry and western blotting, respectively. CD74 was overexpressed in 192 (56.1%) of the 342 cancer tissues, although it was not expressed in the cancer cell lines. CD74 staining was intense in tumor cells and inflammatory cells in the tumor stroma, but not in normal urothelium. CD74 expression was significantly associated with older age at diagnosis (≥ 68 years, P=0.048), high World Health Organization grade (P=0.019), advanced stages (P=0.001) and non-papillary growth pattern (P=0.040). CD74 expression was also correlated with the absence of tumor-infiltrating inflammatory cells (P<0.001) and the presence of tumor-associated inflammatory cells (P=0.017). However, CD74 expression was not related to recurrence-free and overall survivals in primary and subgroup analyses. In conclusion, urothelial bladder carcinomas with high CD74 expression are characterized by older age, high World Health Organization grade, non-papillary growth and advanced stages.
Collapse
Affiliation(s)
- Jung-Woo Choi
- Department of Pathology, Korea University Ansan Hospital, Ansan, Korea
| | | | | | | |
Collapse
|
45
|
Alam A, Haldar S, Thulasiram HV, Kumar R, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, Sarkar S, Pal U, Maiti NC, Bandyopadhyay U. Novel anti-inflammatory activity of epoxyazadiradione against macrophage migration inhibitory factor: inhibition of tautomerase and proinflammatory activities of macrophage migration inhibitory factor. J Biol Chem 2012; 287:24844-61. [PMID: 22645149 DOI: 10.1074/jbc.m112.341321] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF. Epoxyazadiradione inhibited the tautomerase activity of MIF of both human (huMIF) and malaria parasites (Plasmodium falciparum (PfMIF) and Plasmodium yoelii (PyMIF)) non-competitively in a reversible fashion (K(i), 2.11-5.23 μm). Epoxyazadiradione also significantly inhibited MIF (huMIF, PyMIF, and PfMIF)-mediated proinflammatory activities in RAW 264.7 cells. It prevented MIF-induced macrophage chemotactic migration, NF-κB translocation to the nucleus, up-regulation of inducible nitric-oxide synthase, and nitric oxide production in RAW 264.7 cells. Epoxyazadiradione not only exhibited anti-inflammatory activity in vitro but also in vivo. We tested the anti-inflammatory activity of epoxyazadiradione in vivo after co-administering LPS and MIF in mice to mimic the disease state of sepsis or bacterial infection. Epoxyazadiradione prevented the release of proinflammatory cytokines such as IL-1α, IL-1β, IL-6, and TNF-α when LPS and PyMIF were co-administered to BALB/c mice. The molecular basis of interaction of epoxyazadiradione with MIFs was explored with the help of computational chemistry tools and a biological knowledgebase. Docking simulation indicated that the binding was highly specific and allosteric in nature. The well known MIF inhibitor (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) inhibited huMIF but not MIF of parasitic origin. In contrast, epoxyazadiradione inhibited both huMIF and plasmodial MIF, thus bearing an immense therapeutic potential against proinflammatory reactions induced by MIF of both malaria parasites and human.
Collapse
Affiliation(s)
- Athar Alam
- Division of Infectious Diseases and Immunology, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sekiguchi H, Takabayashi F, Irie K, Murakami A. Auraptene attenuates gastritis via reduction of Helicobacter pylori colonization and pro-inflammatory mediator production in C57BL/6 mice. J Med Food 2012; 15:658-63. [PMID: 22471969 DOI: 10.1089/jmf.2011.1844] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is a major human pathogen that plays central roles in chronic gastritis and gastric cancer. Recently, we reported that auraptene suppressed H. pylori adhesion via expression of CD74, which has been identified as a new receptor for H. pylori urease. In this study, we attempted to clarify the effects of oral feeding of auraptene on H. pylori infection and resultant inflammatory responses in C57BL/6 mice and found that it remarkably attenuated H. pylori colonization and gastritis. Biochemical analyses revealed that auraptene inhibited H. pylori-induced expression and/or production of CD74, macrophage migration inhibitory factor, interleukin-1β, and tumor necrosis factor-α in gastric mucosa, together with serum macrophage inhibitory protein-2. It is notable that treatment with this coumarin during the pretreatment period was more effective than that during posttreatment. Our results suggest that auraptene is a promising phytochemical for reducing the risk of H. pylori-induced gastritis and carcinogenesis.
Collapse
Affiliation(s)
- Hirotaka Sekiguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | |
Collapse
|
47
|
Yang ZM, Chen WW, Wang YF. Gene expression profiling in gastric mucosa from Helicobacter pylori-infected and uninfected patients undergoing chronic superficial gastritis. PLoS One 2012; 7:e33030. [PMID: 22438889 PMCID: PMC3306372 DOI: 10.1371/journal.pone.0033030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 02/09/2012] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray using in vitro culture cells and in vivo gastric biopsies from patients of the Chronic Abdominal Complaint. To further explore the effects of H. pylori infection on host gene expression, we have collected the gastric antral mucosa samples from 6 untreated patients with gastroscopic and pathologic confirmation of chronic superficial gastritis. Among them three patients were infected by H. pylori and the other three patients were not. These samples were analyzed by a microarray chip which contains 14,112 cloned cDNAs, and microarray data were analyzed via BRB ArrayTools software and Ingenuity Pathways Analysis (IPA) website. The results showed 34 genes of 38 differentially expressed genes regulated by H. pylori infection had been annotated. The annotated genes were involved in protein metabolism, inflammatory and immunological reaction, signal transduction, gene transcription, trace element metabolism, and so on. The 82% of these genes (28/34) were categorized in three molecular interaction networks involved in gene expression, cancer progress, antigen presentation and inflammatory response. The expression data of the array hybridization was confirmed by quantitative real-time PCR assays. Taken together, these data indicated that H. pylori infection could alter cellular gene expression processes, escape host defense mechanism, increase inflammatory and immune responses, activate NF-κB and Wnt/β-catenin signaling pathway, disturb metal ion homeostasis, and induce carcinogenesis. All of these might help to explain H. pylori pathogenic mechanism and the gastroduodenal pathogenesis induced by H. pylori infection.
Collapse
Affiliation(s)
- Ze-Min Yang
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- School of Basic Courses, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wei-Wen Chen
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- E-Institute of Traditional Chinese Medicine Internal Medicine, Shanghai Municipal Education Committee, Shanghai, China
- * E-mail:
| | - Ying-Fang Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
48
|
Sekiguchi H, Washida K, Murakami A. Suppressive Effects of Selected Food Phytochemicals on CD74 Expression in NCI-N87 Gastric Carcinoma Cells. J Clin Biochem Nutr 2011; 43:109-17. [PMID: 18818744 PMCID: PMC2533715 DOI: 10.3164/jcbn.2008054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/31/2008] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the most widespread human pathogens, and plays major roles in chronic gastritis and gastric cancer. CD74 of gastric epithelial cells has recently been identified as an adhesion molecule to urease in H. pylori. In this study, we found that CD74 is highly expressed in a constitutive manner in NCI-N87 human gastric carcinoma cells at both the protein and mRNA levels as compared with Hs738St./Int fetal gastric cells. Subsequently, a novel cell-based ELISA able to rapidly screen the suppressive agents of CD74 expression was established. NCI-N87 cells were treated separately with 25 different food phytochemicals (4–100 µM) for 48 h and subjected to our novel assay. From those results, a citrus coumarin, bergamottin, was indicated to be the most promising compound with an LC50/IC50 value greater than 7.1, followed by luteolin (>5.4), nobiletin (>5.3), and quercetin (>5.1). Our findings suggest that these CD74 suppressants are unique candidates for preventing H. pylori adhesion and subsequent infection with reasonable action mechanisms.
Collapse
Affiliation(s)
- Hirotaka Sekiguchi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
49
|
Borghese F, Clanchy FIL. CD74: an emerging opportunity as a therapeutic target in cancer and autoimmune disease. Expert Opin Ther Targets 2011; 15:237-51. [PMID: 21208136 DOI: 10.1517/14728222.2011.550879] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION CD74, also known as the invariant chain, participates in several key processes of the immune system, including antigen presentation, B-cell differentiation and inflammatory signaling. Despite being described more than 3 decades ago, new functions and novel interactions for this evolutionarily conserved molecule are still being unraveled. As a participant in several immunological processes and an indicator of disease in some conditions, it has potential as a therapeutic target. AREAS COVERED The relationship between the structure of CD74 variants and their physiological functions is detailed in this review. The function of CD74 in several cell lineages is examined with a focus on the interactions with cathepsins and, in an inflammatory milieu, the pro-inflammatory cytokine macrophage migratory inhibitory factor. The role of CD74 signaling in inflammatory and carcinogenic processes is outlined as is the use of CD74 as a therapeutic target (in cancer) and tool (as a vaccine). EXPERT OPINION CD74 has several roles within the cell and throughout the immune system. Most prominent amongst these are the complex relationships with MIF and cathepsins. Modulation of CD74 function shows promise for the effective amelioration of disease.
Collapse
Affiliation(s)
- Federica Borghese
- Sapienza University of Rome, Department of Clinical Medicine, Clinical Immunology Unit, Umberto I Policlinico di Roma, 155 Viale del Policlinico, Rome, IT 00161
| | | |
Collapse
|
50
|
Surface properties of Helicobacter pylori urease complex are essential for persistence. PLoS One 2010; 5:e15042. [PMID: 21124783 PMCID: PMC2993952 DOI: 10.1371/journal.pone.0015042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/14/2010] [Indexed: 12/18/2022] Open
Abstract
The enzymatic activity of Helicobacter pylori's urease neutralises stomach acidity, thereby promoting infection by this pathogen. Urease protein has also been found to interact with host cells in vitro, although this property's possible functional importance has not been studied in vivo. To test for a role of the urease surface in the host/pathogen interaction, surface exposed loops that display high thermal mobility were targeted for inframe insertion mutagenesis. H. pylori expressing urease with insertions at four of eight sites tested retained urease activity, which in three cases was at least as stable as was wild-type urease at pH 3. Bacteria expressing one of these four mutant ureases, however, failed to colonise mice for even two weeks, and a second had reduced bacterial titres after longer term (3 to 6 months) colonisation. These results indicate that a discrete surface of the urease complex is important for H. pylori persistence during gastric colonisation. We propose that this surface interacts directly with host components important for the host-pathogen interaction, immune modulation or other actions that underlie H. pylori persistence in its special gastric mucosal niche.
Collapse
|