1
|
Geng F, Liu J, Liu J, Lu Z, Pan Y. Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. Crit Rev Microbiol 2024:1-19. [PMID: 39648406 DOI: 10.1080/1040841x.2024.2438117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.
Collapse
Affiliation(s)
- Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Junchao Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Jinwen Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ze Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Pandey S, Kannaujiya VK. Bacterial extracellular biopolymers: Eco-diversification, biosynthesis, technological development and commercial applications. Int J Biol Macromol 2024; 279:135261. [PMID: 39244116 DOI: 10.1016/j.ijbiomac.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Synthetic polymers have been widely thriving as mega industries at a commercial scale in various commercial sectors over the last few decades. The extensive use of synthetic polymers has caused several negative repercussions on the health of humans and the environment. Recently, biopolymers have gained more attention among scientists of different disciplines by their potential therapeutic and commercial applications. Biopolymers are chain-like repeating units of molecules isolated from green sources. They are self-degradable, biocompatible, and non-toxic in nature. Recently, eco-friendly biopolymers such as extracellular polymeric substances (EPSs) have received much attention for their wide applications in the fields of emulsification, flocculation, preservatives, wastewater treatment, nanomaterial functionalization, drug delivery, cosmetics, glycomics, medicinal chemistry, and purification technology. The dynamicity of applications has raised the industrial and consumer demands to cater to the needs of mankind. This review deals with current insights and highlights on database surveys, potential sources, classification, extremophilic EPSs, bioprospecting, patents, microenvironment stability, biosynthesis, and genetic advances for production of high valued ecofriendly polymers. The importance of high valued EPSs in commercial and industrial applications in the global market economy is also summarized. This review concludes with future perspectives and commercial applications for the well-being of humanity.
Collapse
Affiliation(s)
- Saumi Pandey
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Kannaujiya
- Department of Botany, MMV, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
3
|
Du J, Huang S, Wu M, Chen S, Zhou W, Zhan L, Huang X. Dlt operon regulates physiological function and cariogenic virulence in Streptococcus mutans. Future Microbiol 2023; 18:225-233. [PMID: 37097048 DOI: 10.2217/fmb-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Streptococcus mutans is one of the major cariogenic pathogens in the oral cavity. The dlt operon is responsible for the process of D-alanylation of lipoteichoic acid and is related to the virulence of S. mutans. The dlt operon contributes to the adhesion, biofilm formation, stress response, interspecies competitiveness and autolysis of S. mutans. In addition, we have summarized the possible regulatory networks of the dlt operon. This review highlights the significant role of the dlt operon in S. mutans and provides new ideas for ecological caries prevention.
Collapse
Affiliation(s)
- Jingyun Du
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Minjing Wu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Ling Zhan
- Division of Pediatric Dentistry, Department of Orofacial Sciences, Department of Preventive & Restorative Dental Sciences, University of California, San Francisco, CA, USA
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College & University, School & Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Bijle MN, Abdalla MM, Hung IFN, Yiu CKY. The effect of synbiotic-fluoride therapy on multi-species biofilm. J Dent 2023; 133:104523. [PMID: 37080530 DOI: 10.1016/j.jdent.2023.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
OBJECTIVES The study objective was to examine the effect of synbiotic-fluoride (SF) therapy within a multi-species cariogenic biofilm model system comprising of S. mutans, S. sanguinis, and S. gordonii. METHODS The SF therapy was prepared using 2% L-arginine (Arg), 0.2% NaF and probiotic L. rhamnosus GG (LRG). The 8 treatment groups were: Group 1: No treatment, Group 2: 2% Arg, Group 3: 0.2% NaF, Group 4: LRG, Group 5: 2% Arg+0.2% NaF, Group 6: 2% Arg+LRG, Group 7: 0.2% NaF+LRG, and Group 8: SF therapy (2% Arg+0.2% NaF +LRG). Multi-species biofilm model over 96 h comprising Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii was utilized. The biofilms received cariogenic challenge and SF therapy 2 × /day. The extracellular matrix components were analyzed for carbohydrates, proteins, and extra-cellular DNA (eDNA). The live/dead cells were imaged and quantified using confocal microscopy. The viable/dead bacterial concentrations were estimated using propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR). The gene expressions for gtfB, sagP, arcA, argG, and argH were measured using real-time reverse transcriptase qPCR. RESULTS Carbohydrates and protein content with SF therapy were higher than non-LRG containing groups, while eDNA content was lower than other groups (p<0.05). Live bacterial proportions determined using confocal imaging with SF therapy were the lowest (p<0.05). The 2% Arg+LRG and SF therapy showed higher viable L. rhamnosus GG than 0.2% NaF+LRG (p<0.05). The dead S. mutans with SF therapy were higher than the other groups (p<0.05) with no difference from 2% Arg+0.2% NaF and 2% Arg+LRG (p>0.05). The SF therapy significantly downregulates gtfB and upregulates sagP, arcA, argG, argH gene expression (p<0.05). CONCLUSION Synbiotic-fluoride therapy effectuates multi-fold changes in the multi-species biofilm matrix and cellular components leading to superior ecological homeostasis than its individual contents, prebiotics (arginine), probiotic (L. rhamnosus GG), and fluorides (NaF). CLINICAL SIGNIFICANCE The ecological-based synbiotic-fluoride caries-preventive therapy aids in maintaining biofilm homeostasis to preempt/restore dysbiosis thereby sustaining dynamic-diverse health-associated microbial stability significant as a preventive regimen for high caries-risk patients.
Collapse
Affiliation(s)
- Mohammed Nadeem Bijle
- Assistant Professor in Paediatric Dentistry, Department of Clinical Sciences, College of Dentistry, Ajman University, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Mohamed Mahmoud Abdalla
- Postdoctoral Fellow, Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong; Associate Professor, Dental Biomaterials, Faculty of Dental Medicine Al-Azhar University, Cairo, Egypt.
| | - Ivan Fan Ngai Hung
- Ru Chien and Helen Lieh Professor in Health Sciences Pedagogy, Clinical Professor, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Cynthia Kar Yung Yiu
- Clinical Professor in Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Wang L, Wang H, Zhang H, Wu H. Formation of a biofilm matrix network shapes polymicrobial interactions. THE ISME JOURNAL 2023; 17:467-477. [PMID: 36639539 PMCID: PMC9938193 DOI: 10.1038/s41396-023-01362-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Staphylococcus aureus colonizes the same ecological niche as many commensals. However, little is known about how such commensals modulate staphylococcal fitness and persistence. Here we report a new mechanism that mediates dynamic interactions between a commensal streptococcus and S. aureus. Commensal Streptococcus parasanguinis significantly increased the staphylococcal biofilm formation in vitro and enhanced its colonization in vivo. A streptococcal biofilm-associated protein BapA1, not fimbriae-associated protein Fap1, is essential for dual-species biofilm formation. On the other side, three staphylococcal virulence determinants responsible for the BapA1-dependent dual-species biofilm formation were identified by screening a staphylococcal transposon mutant library. The corresponding staphylococcal mutants lacked binding to recombinant BapA1 (rBapA1) due to lower amounts of eDNA in their culture supernatants and were defective in biofilm formation with streptococcus. The rBapA1 selectively colocalized with eDNA within the dual-species biofilm and bound to eDNA in vitro, highlighting the contributions of the biofilm matrix formed between streptococcal BapA1 and staphylococcal eDNA to dual-species biofilm formation. These findings have revealed an additional new mechanism through which an interspecies biofilm matrix network mediates polymicrobial interactions.
Collapse
Affiliation(s)
- Lijun Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Laboratory Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, 102218, Beijing, China
| | - Hongxia Wang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
| | - Hua Zhang
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA
| | - Hui Wu
- Departments of Pediatric Dentistry and Microbiology, University of Alabama at Birmingham Schools of Dentistry and Medicine, Birmingham, Alabama, 35294, USA.
- Department of Integrative Biomedical and Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, OR, 97239, USA.
| |
Collapse
|
6
|
Streptococcus mutans Proteases Degrade Dentinal Collagen. Dent J (Basel) 2022; 10:dj10120223. [PMID: 36547039 PMCID: PMC9776523 DOI: 10.3390/dj10120223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
Here, we explored the role of S. mutans’s whole cell and discrete fractions in the degradation of type I collagen and dentinal collagen. Type I collagen gels and human demineralized dentin slabs (DS) were incubated in media alone or with one of the following: overnight (O/N) or newly inoculated (NEW) cultures of S. mutans UA159; intracellular proteins, supernatant or bacterial membranes of O/N cultures. Media from all groups were analyzed for protease-mediated release of the collagen-specific imino acid hydroxyproline. Images of type I collagen and DS were analyzed, respectively. Type I collagen degradation was highest for the supernatant (p < 0.05) fractions, followed by intracellular components and O/N cultures. Collagen degradation for DS samples was highest for O/N samples, followed by supernatant, and intracellular components (p < 0.05). There was lower detectable degradation for both type I collagen and DS from NEW culture samples (p < 0.05), and there was no type I collagen or DS degradation detected for bacterial membrane samples. Structural changes to type I collagen gel and dentinal collagen were observed, respectively, following incubation with S. mutans cultures (O/N and NEW), intracellular components, and supernatant. This study demonstrates that intracellular and extracellular proteolytic activities from S. mutans enable this cariogenic bacterium to degrade type I and dentinal collagen in a growth-phase dependent manner, potentially contributing to the progression of dental caries.
Collapse
|
7
|
Hsu CC, Hsu RB, Oon XH, Chen YT, Chen JW, Hsu CH, Kuo YM, Shih YH, Chia JS, Jung CJ. Streptococcus mutans PrsA mediates AtlA secretion contributing to extracellular DNA release and biofilm formation in the pathogenesis of infective endocarditis. Virulence 2022; 13:1379-1392. [PMID: 35876630 PMCID: PMC9377233 DOI: 10.1080/21505594.2022.2105351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of secretion chaperone-regulated virulence proteins in the pathogenesis of infective endocarditis (IE) induced by viridans streptococci such as Streptococcus mutans is unclear. In this study, we investigated the contribution of the foldase protein PrsA, a putative parvulin-type peptidyl-prolyl isomerase, to the pathogenesis of S. mutans-induced IE. We found that a prsA-deficient strain had reduced virulence in terms of formation of vegetation on damaged heart valves, as well as reduced autolysis activity, eDNA release and biofilm formation capacity. The secretion and surface exposure of AtlA in vitro was reduced in the prsA-deficient mutant strain, and complementation of recombinant AtlA in the culture medium restored a wild type biofilm phenotype of the prsA-deficient mutant strain. This result suggests that secretion and surface localization of AtlA is regulated by PrsA during biofilm formation. Together, these results demonstrate that S. mutans PrsA could regulate AtlA-mediated eDNA release to contribute to biofilm formation in the pathogenesis of IE.
Collapse
Affiliation(s)
- Chih-Chieh Hsu
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Ron-Bin Hsu
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xoong-Harng Oon
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Tang Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Jeng-Wei Chen
- Department of Surgery, Division of Cardiovascular Surgery, National Taiwan University Hospital , College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Che-Hao Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan
| | - Yu-Min Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hsien Shih
- Department of Dermatology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.,Department of Dermatology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jean-San Chia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chiau-Jing Jung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Biofilm modulatory response of arginine-fluoride varnish on multi-species biofilm. J Dent 2022; 122:104096. [DOI: 10.1016/j.jdent.2022.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022] Open
|
9
|
Serrage HJ, Jepson MA, Rostami N, Jakubovics NS, Nobbs AH. Understanding the Matrix: The Role of Extracellular DNA in Oral Biofilms. FRONTIERS IN ORAL HEALTH 2022; 2:640129. [PMID: 35047995 PMCID: PMC8757797 DOI: 10.3389/froh.2021.640129] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Dental plaque is the key etiological agent in caries formation and the development of the prevalent chronic oral inflammatory disease, periodontitis. The dental plaque biofilm comprises a diverse range of microbial species encased within a rich extracellular matrix, of which extracellular DNA (eDNA) has been identified as an important component. The molecular mechanisms of eDNA release and the structure of eDNA have yet to be fully characterized. Nonetheless, key functions that have been proposed for eDNA include maintaining biofilm structural integrity, initiating adhesion to dental surfaces, acting as a nutrient source, and facilitating horizontal gene transfer. Thus, eDNA is a potential therapeutic target for the management of oral disease–associated biofilm. This review aims to summarize advances in the understanding of the mechanisms of eDNA release from oral microorganisms and in the methods of eDNA detection and quantification within oral biofilms.
Collapse
Affiliation(s)
- Hannah J Serrage
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Mark A Jepson
- Wolfson Bioimaging Facility, University of Bristol, Bristol, United Kingdom
| | - Nadia Rostami
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas S Jakubovics
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Opportunities for broadening the application of cell wall lytic enzymes. Appl Microbiol Biotechnol 2020; 104:9019-9040. [DOI: 10.1007/s00253-020-10862-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 01/21/2023]
|
11
|
Senpuku H, Tuna EB, Nagasawa R, Nakao R, Ohnishi M. The inhibitory effects of polypyrrole on the biofilm formation of Streptococcus mutans. PLoS One 2019; 14:e0225584. [PMID: 31774855 PMCID: PMC6881011 DOI: 10.1371/journal.pone.0225584] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/07/2019] [Indexed: 01/18/2023] Open
Abstract
Streptococcus mutans primary thrives on the biofilm formation on the tooth surface in sticky biofilms and under certain conditions can lead to carious lesions on the tooth surface. To search for a new preventive material for oral biofilm-associated diseases, including dental caries, we investigated the effects of polypyrrole, which contains an electrochemical polymer and causes protonation and incorporation of anion under low pH condition, on the biofilm formation of S. mutans and other streptococci. In this study, polypyrrole was applied in biofilm formation assays with the S. mutans strains UA159 and its gtfB and gtfC double mutant (gtfBC mutant), S. sanguinis, S. mitis and S. gordonii on human saliva and bovine serum albumin-coated 96-well microtiter plates in tryptic soy broth supplemented with 0.25% sucrose. The effects of polypyrrole on biofilm formation were quantitatively and qualitatively observed. High concentrations of polypyrrole significantly inhibited the biofilm formation of S. mutans UA159 and S. sanguinis. As an inhibition mechanism, polypyrrole attached to the surface of bacterial cells, increased chains and aggregates, and incorporated proteins involving GTF-I and GTF-SI produced by S. mutans. In contrast, the biofilm formation of gtfBC mutant, S. sanguinis, S. mitis and S. gordonii was temporarily induced by the addition of low polypyrrole concentrations on human saliva-coated plate but not on the uncoated and bovine serum albumin-coated plates. Moreover, biofilm formation depended on live cells and, likewise, specific interaction between cells and binding components in saliva. However, these biofilms were easily removed by increased frequency of water washing. In this regard, the physical and electrochemical properties in polypyrrole worked effectively in the removal of streptococci biofilms. Polypyrrole may have the potential to alter the development of biofilms associated with dental diseases.
Collapse
Affiliation(s)
- Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| | - Elif Bahar Tuna
- Department of Pediatric Dentistry, Faculty of Dentistry, Istanbul University, Istanbul, Turky
| | - Ryo Nagasawa
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Ryoma Nakao
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
12
|
Harnessing the Potential of Killers and Altruists within the Microbial Community: A Possible Alternative to Antibiotic Therapy? Antibiotics (Basel) 2019; 8:antibiotics8040230. [PMID: 31766366 PMCID: PMC6963621 DOI: 10.3390/antibiotics8040230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/17/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022] Open
Abstract
In the context of a post-antibiotic era, the phenomenon of microbial allolysis, which is defined as the partial killing of bacterial population induced by other cells of the same species, may take on greater significance. This phenomenon was revealed in some bacterial species such as Streptococcus pneumoniae and Bacillus subtilis, and has been suspected to occur in some other species or genera, such as enterococci. The mechanisms of this phenomenon, as well as its role in the life of microbial populations still form part of ongoing research. Herein, we describe recent developments in allolysis in the context of its practical benefits as a form of cell death that may give rise to developing new strategies for manipulating the life and death of bacterial communities. We highlight how such findings may be viewed with importance and potential within the fields of medicine, biotechnology, and pharmacology.
Collapse
|
13
|
Glycosyltransferase-Mediated Biofilm Matrix Dynamics and Virulence of Streptococcus mutans. Appl Environ Microbiol 2019; 85:AEM.02247-18. [PMID: 30578260 DOI: 10.1128/aem.02247-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus mutans is a key cariogenic bacterium responsible for the initiation of tooth decay. Biofilm formation is a crucial virulence property. We discovered a putative glycosyltransferase, SMU_833, in S. mutans capable of modulating dynamic interactions between two key biofilm matrix components, glucan and extracellular DNA (eDNA). The deletion of smu_833 decreases glucan and increases eDNA but maintains the overall biofilm biomass. The decrease in glucan is caused by a reduction in GtfB and GtfC, two key enzymes responsible for the synthesis of glucan. The increase in eDNA was accompanied by an elevated production of membrane vesicles, suggesting that SMU_833 modulates the release of eDNA via the membrane vesicles, thereby altering biofilm matrix constituents. Furthermore, glucan and eDNA were colocalized. The complete deletion of gtfBC from the smu_833 mutant significantly reduced the biofilm biomass despite the elevated eDNA, suggesting the requirement of minimal glucans as a binding substrate for eDNA within the biofilm. Despite no changes in overall biofilm biomass, the mutant biofilm was altered in biofilm architecture and was less acidic in vitro Concurrently, the mutant was less virulent in an in vivo rat model of dental caries, demonstrating that SMU_833 is a new virulence factor. Taken together, we conclude that SMU_833 is required for optimal biofilm development and virulence of S. mutans by modulating extracellular matrix components. Our study of SMU_833-modulated biofilm matrix dynamics uncovered a new target that can be used to develop potential therapeutics that prevent and treat dental caries.IMPORTANCE Tooth decay, a costly and painful disease affecting the vast majority of people worldwide, is caused by the bacterium Streptococcus mutans The bacteria utilize dietary sugars to build and strengthen biofilms, trapping acids onto the tooth's surface and causing demineralization and decay of teeth. As knowledge of our body's microbiomes increases, the need for developing therapeutics targeted to disease-causing bacteria has arisen. The significance of our research is in studying and identifying a novel therapeutic target, a dynamic biofilm matrix that is mediated by a new virulence factor and membrane vesicles. The study increases our understanding of S. mutans virulence and also offers a new opportunity to develop effective therapeutics targeting S. mutans In addition, the mechanisms of membrane vesicle-mediated biofilm matrix dynamics are also applicable to other biofilm-driven infectious diseases.
Collapse
|
14
|
Kim M, Jeon J, Kim J. Streptococcus mutans extracellular DNA levels depend on the number of bacteria in a biofilm. Sci Rep 2018; 8:13313. [PMID: 30190485 PMCID: PMC6127218 DOI: 10.1038/s41598-018-31275-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/14/2018] [Indexed: 01/01/2023] Open
Abstract
Streptococcus mutans is a component of oral plaque biofilm that accumulates on the surface of teeth. The biofilm consists of extracellular components including extracellular DNA (eDNA). This study was conducted to investigate the factors that may affect the eDNA levels of S. mutans in biofilms. For the study, S. mutans UA159 biofilms were formed for 52 h on hydroxyapatite (HA) discs in 0% (w/v) sucrose +0% glucose, 0.5% sucrose, 1% sucrose, 0.5% glucose, 1% glucose, or 0.5% sucrose +0.5% glucose. Acidogenicity of S. mutans in the biofilms was measured after biofilm formation (22 h) up to 52 h. eDNA was collected after 52 h biofilm formation and measured using DNA binding fluorescent dye, SYBR Green I. Biofilms cultured in 0.5% sucrose or glucose had more eDNA and colony forming units (CFUs) and less exopolysaccharides (EPSs) than the biofilms cultured in 1% sucrose or glucose at 52 h, respectively. The biofilms formed in 0% sucrose +0% glucose maintained pH around 7, while the biofilms grown in 0.5% sucrose had more acidogenicity than those grown in 1% sucrose, and the same pattern was shown in glucose. In conclusion, the results of this study show that the number of S. mutans in biofilms affects the concentrations of eDNA as well as the acidogenicity of S. mutans in the biofilms. In addition, the thickness of EPS is irrelevant to eDNA aggregation within biofilms.
Collapse
Affiliation(s)
- Miah Kim
- Department of Conservative Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea
| | - Jaegon Kim
- Department of Pediatric Dentistry, School of Dentistry, Chonbuk National University, 567 Baekjaedaero, Jeonju-city Jeonbuk, 54896, South Korea.
| |
Collapse
|
15
|
Hirt H, Hall JW, Larson E, Gorr SU. A D-enantiomer of the antimicrobial peptide GL13K evades antimicrobial resistance in the Gram positive bacteria Enterococcus faecalis and Streptococcus gordonii. PLoS One 2018; 13:e0194900. [PMID: 29566082 PMCID: PMC5864073 DOI: 10.1371/journal.pone.0194900] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/12/2018] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides represent an alternative to traditional antibiotics that may be less susceptible to bacterial resistance mechanisms by directly attacking the bacterial cell membrane. However, bacteria have a variety of defense mechanisms that can prevent cationic antimicrobial peptides from reaching the cell membrane. The L- and D-enantiomers of the antimicrobial peptide GL13K were tested against the Gram-positive bacteria Enterococcus faecalis and Streptococcus gordonii to understand the role of bacterial proteases and cell wall modifications in bacterial resistance. GL13K was derived from the human salivary protein BPIFA2. Minimal inhibitory concentrations were determined by broth dilution and a serial assay used to determine bacterial resistance. Peptide degradation was determined in a bioassay utilizing a luminescent strain of Pseudomonas aeruginosa to detect peptide activity. Autolysis and D-alanylation-deficient strains of E. faecalis and S. gordonii were tested in autolysis assays and peptide activity assays. E. faecalis protease inactivated L-GL13K but not D-GL13K, whereas autolysis did not affect peptide activity. Indeed, the D-enantiomer appeared to kill the bacteria prior to initiation of autolysis. D-alanylation mutants were killed by L-GL13K whereas this modification did not affect killing by D-GL13K. The mutants regained resistance to L-GL13K whereas bacteria did not gain resistance to D-GL13K after repeated treatment with the peptides. D-alanylation affected the hydrophobicity of bacterial cells but hydrophobicity alone did not affect GL13K activity. D-GL13K evades two resistance mechanisms in Gram-positive bacteria without giving rise to substantial new resistance. D-GL13K exhibits attractive properties for further antibiotic development.
Collapse
Affiliation(s)
- Helmut Hirt
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Jeffrey W. Hall
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Elliot Larson
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
| | - Sven-Ulrik Gorr
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9. Res Microbiol 2018; 169:166-176. [PMID: 29427638 DOI: 10.1016/j.resmic.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
Abstract
Bacillus velezensis strain SQR9 is a well-investigated rhizobacterium with an outstanding ability to colonize roots, enhance plant growth and suppress soil-borne diseases. The recognition that biofilm formation by plant-beneficial bacteria is crucial for their root colonization and function has resulted in increased interest in understanding molecular mechanisms related to biofilm formation. Here, we report that the gene ftsE, encoding the ATP-binding protein of an FtsEX ABC transporter, is required for efficient SQR9 biofilm formation. FtsEX has been reported to regulate the atolysin CwlO. We provided evidence that FtsEX-CwlO was involved in the regulation of SQR9 biofilm formation; however, this effect has little to do with CwlO autolysin activity. We propose that regulation of biofilm formation by CwlO was exerted through the spo0A pathway, since transcription of spo0A cascade genes was altered and their downstream extracellular matrix genes were downregulated in SQR9 ftsE/cwlO deletion mutants. CwlO was also shown to interact physically with KinB/KinD. CwlO may therefore interact with KinB/KinD to interfere with the spo0A pathway. This study revealed that FtsEX-CwlO plays a previously undiscovered regulatory role in biofilm formation by SQR9 that may enhance root colonization and plant-beneficial functions of SQR9 and other beneficial rhizobacteria as well.
Collapse
|
17
|
Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan. Appl Environ Microbiol 2017; 83:AEM.00869-17. [PMID: 28526794 DOI: 10.1128/aem.00869-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/13/2017] [Indexed: 02/06/2023] Open
Abstract
Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan.IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and other carbohydrates on biofilm formation. Since raffinose has been reported to have positive effects on enterobacterial flora, research on the effects of raffinose on the oral flora are required prior to its use as a beneficial sugar for human health. Here, we showed that raffinose induced biofilm formation by S. mutans in low concentrations of sucrose. The induction of biofilm formation generally generates negative effects on the oral flora. Therefore, we believe that this finding will aid in the development of more effective oral care techniques to maintain oral flora health.
Collapse
|
18
|
Guilhen C, Forestier C, Balestrino D. Biofilm dispersal: multiple elaborate strategies for dissemination of bacteria with unique properties. Mol Microbiol 2017; 105:188-210. [PMID: 28422332 DOI: 10.1111/mmi.13698] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2017] [Indexed: 01/22/2023]
Abstract
In most environments, microorganisms evolve in a sessile mode of growth, designated as biofilm, which is characterized by cells embedded in a self-produced extracellular matrix. Although a biofilm is commonly described as a "cozy house" where resident bacteria are protected from aggression, bacteria are able to break their biofilm bonds and escape to colonize new environments. This regulated process is observed in a wide variety of species; it is referred to as biofilm dispersal, and is triggered in response to various environmental and biological signals. The first part of this review reports the main regulatory mechanisms and effectors involved in biofilm dispersal. There is some evidence that dispersal is a necessary step between the persistence of bacteria inside biofilm and their dissemination. In the second part, an overview of the main methods used so far to study the dispersal process and to harvest dispersed bacteria was provided. Then focus was on the properties of the biofilm-dispersed bacteria and the fundamental role of the dispersal process in pathogen dissemination within a host organism. In light of the current body of knowledge, it was suggested that dispersal acts as a potent means of disseminating bacteria with enhanced colonization properties in the surrounding environment.
Collapse
Affiliation(s)
- Cyril Guilhen
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Christiane Forestier
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| | - Damien Balestrino
- Laboratoire Microorganismes : Génome et Environnement, UMR CNRS 6023, Université Clermont Auvergne, Clermont Ferrand, F-63001, France
| |
Collapse
|
19
|
Davey L, Halperin SA, Lee SF. Mutation of the Streptococcus gordonii Thiol-Disulfide Oxidoreductase SdbA Leads to Enhanced Biofilm Formation Mediated by the CiaRH Two-Component Signaling System. PLoS One 2016; 11:e0166656. [PMID: 27846284 PMCID: PMC5112981 DOI: 10.1371/journal.pone.0166656] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/01/2016] [Indexed: 01/11/2023] Open
Abstract
Streptococcus gordonii is a commensal inhabitant of human oral biofilms. Previously, we identified an enzyme called SdbA that played an important role in biofilm formation by S. gordonii. SdbA is thiol-disulfide oxidoreductase that catalyzes disulfide bonds in secreted proteins. Surprisingly, inactivation of SdbA results in enhanced biofilm formation. In this study we investigated the basis for biofilm formation by the ΔsdbA mutant. The results revealed that biofilm formation was mediated by the interaction between the CiaRH and ComDE two-component signalling systems. Although it did not affect biofilm formation by the S. gordonii parent strain, CiaRH was upregulated in the ΔsdbA mutant and it was essential for the enhanced biofilm phenotype. The biofilm phenotype was reversed by inactivation of CiaRH or by the addition of competence stimulating peptide, the production of which is blocked by CiaRH activity. Competition assays showed that the enhanced biofilm phenotype also corresponded to increased oral colonization in mice. Thus, the interaction between SdbA, CiaRH and ComDE affects biofilm formation both in vitro and in vivo.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Scott A. Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
| | - Song F. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, B3H 1X5, Canada
- Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, B3K 6R8, Canada
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- * E-mail:
| |
Collapse
|
20
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
21
|
Jakubovics NS, Burgess JG. Extracellular DNA in oral microbial biofilms. Microbes Infect 2015; 17:531-7. [PMID: 25862975 DOI: 10.1016/j.micinf.2015.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
The extracellular matrix of microbial biofilms is critical for surface adhesion and nutrient homeostasis. Evidence is accumulating that extracellular DNA plays a number of important roles in biofilm integrity and formation on hard and soft tissues in the oral cavity. Here, we summarise recent developments in the field and consider the potential of targeting DNA for oral biofilm control.
Collapse
Affiliation(s)
| | - J Grant Burgess
- School of Marine Science and Technology, Newcastle University, UK
| |
Collapse
|
22
|
Min L, Jiawei Y, Yaling L, Yuqing H. [Effects of growth stages and pH value on the expression of autolytic enzyme atIS gene of Streptococcus gordonii]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2015; 33:80-83. [PMID: 25872305 PMCID: PMC7030257 DOI: 10.7518/hxkq.2015.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 09/21/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVE This study aimed to detect the difference in the expression levels of autolysin atIS gene of Streptococcus gordonii (S. gordonii) at different growth stages and pH values, as well as to analyze the factors regulating atlS gene expression in S. gordonii. METHODS S. gordonii wild strains (ATCC 35105) were collected at different growth stages (early exponential phase, mid-exponential phase, late exponential stage, and platform stage) and pH values (pH 7 and pH 5.5), and total RNA was extracted by using a conventional method. Fluorescence quantitative polymerase chain reaction (FQ-PCR) was used to measure the relative mRNA expression of atlS gene, with bacterial 16S rRNA as internal reference, for a comparison of the mRNA levels of atlS gene expression in S.gordonii at different growth stages and pH values. RESULTS FQ-PCR results showed that atlS gene expression increased with gradually increasing growth stage under neutral conditions and was higher than that under acidic conditions (P < 0.05). CONCLUSION The atlS gene expression in S. gordonii is influenced by growth stage and pH value factors.
Collapse
|
23
|
Huang X, Schulte RM, Burne RA, Nascimento MM. Characterization of the arginolytic microflora provides insights into pH homeostasis in human oral biofilms. Caries Res 2015; 49:165-76. [PMID: 25634570 PMCID: PMC4313619 DOI: 10.1159/000365296] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 01/23/2023] Open
Abstract
A selected group of oral bacteria commonly associated with dental health is capable of producing alkali via the arginine deiminase system (ADS), which has a profound impact on the pH of human oral biofilms. An increased risk for dental caries has been associated with reduced ADS activity of the bacteria in oral biofilms. Arginolytic bacterial strains from dental plaque samples of caries-free and caries-active adults were isolated and characterized to investigate the basis for differences in plaque ADS activity between individuals. Fifty-six ADS-positive bacterial strains were identified by 16S rRNA gene sequencing, and their ADS activity levels were compared under standard growth conditions. The spectrum of bacterial ADS activity ranged from 45.2 to 688.0 units (mg protein)(-1). Although Streptococcus sanguinis was the most prevalent species, other Streptococcus sp. were also represented. Biochemical assays carried out using 27 ADS-positive strains under conditions known to induce or repress ADS gene expression showed substantial variation in arginolytic activity in response to pH, oxygen and the availability of carbohydrate or arginine. This study reveals that the basis for the wide spectrum of arginolytic expression observed among clinical strains is, at least in part, attributable to differences in the regulation of the ADS within and between species. The results provide insights into the microbiological basis for intersubject differences in ADS activity in oral biofilms and enhance our understanding of dental caries as an ecologically driven disease in which arginine metabolism moderates plaque pH and promotes dental health.
Collapse
Affiliation(s)
- Xuelian Huang
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Renee M. Schulte
- College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcelle M. Nascimento
- Department of Restorative Dental Science, Division of Operative Dentistry, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 2015; 4:194. [PMID: 25629011 PMCID: PMC4292784 DOI: 10.3389/fcimb.2014.00194] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/24/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) is a common colonizer of the human nasopharynx. Despite a low rate of invasive disease, the high prevalence of colonization results in millions of infections and over one million deaths per year, mostly in individuals under the age of 5 and the elderly. Colonizing pneumococci form well-organized biofilm communities in the nasopharyngeal environment, but the specific role of biofilms and their interaction with the host during colonization and disease is not yet clear. Pneumococci in biofilms are highly resistant to antimicrobial agents and this phenotype can be recapitulated when pneumococci are grown on respiratory epithelial cells under conditions found in the nasopharyngeal environment. Pneumococcal biofilms display lower levels of virulence in vivo and provide an optimal environment for increased genetic exchange both in vitro and in vivo, with increased natural transformation seen during co-colonization with multiple strains. Biofilms have also been detected on mucosal surfaces during pneumonia and middle ear infection, although the role of these biofilms in the disease process is debated. Recent studies have shown that changes in the nasopharyngeal environment caused by concomitant virus infection, changes in the microflora, inflammation, or other host assaults trigger active release of pneumococci from biofilms. These dispersed bacteria have distinct phenotypic properties and transcriptional profiles different from both biofilm and broth-grown, planktonic bacteria, resulting in a significantly increased virulence in vivo. In this review we discuss the properties of pneumococcal biofilms, the role of biofilm formation during pneumococcal colonization, including their propensity for increased ability to exchange genetic material, as well as mechanisms involved in transition from asymptomatic biofilm colonization to dissemination and disease of otherwise sterile sites. Greater understanding of pneumococcal biofilm formation and dispersion will elucidate novel avenues to interfere with the spread of antibiotic resistance and vaccine escape, as well as novel strategies to target the mechanisms involved in induction of pneumococcal disease.
Collapse
Affiliation(s)
- Yashuan Chao
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
| | - Laura R. Marks
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| | - Melinda M. Pettigrew
- Department of Epidemiology and Microbial Diseases, Yale School of Public HealthNew Haven, CT, USA
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Laboratory Medicine, Lund UniversityMalmö, Sweden
- Department of Microbiology and Immunology, University at Buffalo, The State University of New YorkBuffalo, NY, USA
| |
Collapse
|
25
|
|
26
|
Jack AA, Daniels DE, Jepson MA, Vickerman MM, Lamont RJ, Jenkinson HF, Nobbs AH. Streptococcus gordonii comCDE (competence) operon modulates biofilm formation with Candida albicans. MICROBIOLOGY-SGM 2014; 161:411-421. [PMID: 25505189 DOI: 10.1099/mic.0.000010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Candida albicans is a pleiomorphic fungus that forms mixed species biofilms with Streptococcus gordonii, an early colonizer of oral cavity surfaces. Activation of quorum sensing (QS; intercellular signalling) promotes monospecies biofilm development by these micro-organisms, but the role of QS in mixed species communities is not understood. The comCDE genes in S. gordonii encode a sensor-regulator system (ComDE), which is activated by the comC gene product (CSP, competence stimulating peptide) and modulates expression of QS-regulated genes. Dual species biofilms of S. gordonii ΔcomCDE or ΔcomC mutants with C. albicans showed increased biomass compared to biofilms of S. gordonii DL1 wild-type with C. albicans. The ΔcomCDE mutant dual species biofilms in particular contained more extracellular DNA (eDNA), and could be dispersed with DNase I or protease treatment. Exogenous CSP complemented the S. gordonii ΔcomC transformation deficiency, as well as the ΔcomC-C. albicans biofilm phenotype. Purified CSP did not affect C. albicans hyphal filament formation but inhibited monospecies biofilm formation by C. albicans. The results suggest that the S. gordonii comCDE QS-system modulates the production of eDNA and the incorporation of C. albicans into dual species biofilms.
Collapse
Affiliation(s)
- Alison A Jack
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Debbie E Daniels
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK.,School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Mark A Jepson
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - M Margaret Vickerman
- Department of Oral Biology, University at Buffalo, 223 Foster Hall, Buffalo, NY 14214, USA
| | - Richard J Lamont
- Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 South Preston Street, Louisville, KY 40202, USA
| | - Howard F Jenkinson
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Angela H Nobbs
- School of Oral and Dental Sciences, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| |
Collapse
|
27
|
Cortes PR, Piñas GE, Cian MB, Yandar N, Echenique J. Stress-triggered signaling affecting survival or suicide of Streptococcus pneumoniae. Int J Med Microbiol 2014; 305:157-69. [PMID: 25543170 DOI: 10.1016/j.ijmm.2014.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 01/27/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen that can survive to stress conditions, such as the acidic environment of inflammatory foci, and tolerates lethal pH through a mechanism known as the acid tolerance response. We previously described that S. pneumoniae activates acidic-stress induced lysis in response to acidified environments, favoring the release of cell wall compounds, DNA and virulence factors. Here, we demonstrate that F(0)F(1)-ATPase is involved in the response to acidic stress. Chemical inhibitors (DCCD, optochin) of this proton pump repressed the ATR induction, but caused an increased ASIL. Confirming these findings, mutants of the subunit c of this enzyme showed the same phenotypes as inhibitors. Importantly, we demonstrated that F(0)F(1)-ATPase and ATR are necessary for the intracellular survival of the pneumococcus in macrophages. Alternatively, a screening of two-component system (TCS) mutants showed that ATR and survival in pneumocytes were controlled in contrasting ways by ComDE and CiaRH, which had been involved in the ASIL mechanism. Briefly, CiaRH was essential for ATR (ComE represses activation) whereas ComE was necessary for ASIL (CiaRH protects against induction). They did not regulate F0F1-ATPase expression, but control LytA expression on the pneumococcal surface. These results suggest that both TCSs and F(0)F(1)-ATPase control a stress response and decide between a survival or a suicide mechanism by independent pathways, either in vitro or in pneumocyte cultures. This biological model contributes to the current knowledge about bacterial response under stress conditions in host tissues, where pathogens need to survive in order to establish infections.
Collapse
Affiliation(s)
- Paulo R Cortes
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Germán E Piñas
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Melina B Cian
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Nubia Yandar
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina
| | - Jose Echenique
- Departamento de Bioquímica Clínica-CIBICI (CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Cordoba, Medina Allende esq. Haya de la Torre, Ciudad Universitaria, CP, X5000HUA Cordoba, Argentina.
| |
Collapse
|
28
|
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infect Immun 2014; 82:4941-51. [PMID: 25183732 DOI: 10.1128/iai.01850-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Collapse
|
29
|
Moscoso M, Esteban-Torres M, Menéndez M, García E. In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS One 2014; 9:e101037. [PMID: 25006964 PMCID: PMC4090064 DOI: 10.1371/journal.pone.0101037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/02/2014] [Indexed: 12/15/2022] Open
Abstract
Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models.
Collapse
Affiliation(s)
- Miriam Moscoso
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - María Esteban-Torres
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
| | - Ernesto García
- Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Mallorca, Illes Balears, Spain
- * E-mail:
| |
Collapse
|
30
|
Streptococcus mutans extracellular DNA is upregulated during growth in biofilms, actively released via membrane vesicles, and influenced by components of the protein secretion machinery. J Bacteriol 2014; 196:2355-66. [PMID: 24748612 DOI: 10.1128/jb.01493-14] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA.
Collapse
|
31
|
Global transcriptome analysis of Lactococcus garvieae strains in response to temperature. PLoS One 2013; 8:e79692. [PMID: 24223997 PMCID: PMC3817100 DOI: 10.1371/journal.pone.0079692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Collapse
|
32
|
Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. Life after death: the critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol 2013; 57:467-75. [PMID: 23848166 DOI: 10.1111/lam.12134] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/25/2013] [Accepted: 07/10/2013] [Indexed: 01/24/2023]
Abstract
The death and lysis of microbial cells leads to the release of cytoplasmic contents, many of which are rapidly degraded by enzymes. However, some macromolecules survive intact and find new functions in the extracellular environment. There is now strong evidence that DNA released from cells during lysis, or sometimes by active secretion, becomes a key component of the macromolecular scaffold in many different biofilms. Enzymatic degradation of extracellular DNA can weaken the biofilm structure and release microbial cells from the surface. Many bacteria produce extracellular deoxyribonuclease (DNase) enzymes that are apparently tightly regulated to avoid excessive degradation of the biofilm matrix. Interfering with these control mechanisms, or adding exogenous DNases, could prove a potent strategy for controlling biofilm growth.
Collapse
Affiliation(s)
- N S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
33
|
Davey L, Ng CKW, Halperin SA, Lee SF. Functional analysis of paralogous thiol-disulfide oxidoreductases in Streptococcus gordonii. J Biol Chem 2013; 288:16416-16429. [PMID: 23615907 DOI: 10.1074/jbc.m113.464578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Disulfide bonds are important for the stability of many extracellular proteins, including bacterial virulence factors. Formation of these bonds is catalyzed by thiol-disulfide oxidoreductases (TDORs). Little is known about their formation in Gram-positive bacteria, particularly among facultative anaerobic Firmicutes, such as streptococci. To investigate disulfide bond formation in Streptococcus gordonii, we identified five putative TDORs from the sequenced genome. Each of the putative TDOR genes was insertionally inactivated with an erythromycin resistance cassette, and the mutants were analyzed for autolysis, extracellular DNA release, biofilm formation, bacteriocin production, and genetic competence. This analysis revealed a single TDOR, SdbA, which exhibited a pleiotropic mutant phenotype. Using an in silico analysis approach, we identified the major autolysin AtlS as a natural substrate of SdbA and showed that SdbA is critical to the formation of a disulfide bond that is required for autolytic activity. Analysis by BLAST search revealed homologs to SdbA in other Gram-positive species. This study provides the first in vivo evidence of an oxidoreductase, SdbA, that affects multiple phenotypes in a Gram-positive bacterium. SdbA shows low sequence homology to previously identified oxidoreductases, suggesting that it may belong to a different class of enzymes. Our results demonstrate that SdbA is required for disulfide bond formation in S. gordonii and indicate that this enzyme may represent a novel type of oxidoreductase in Gram-positive bacteria.
Collapse
Affiliation(s)
- Lauren Davey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Crystal K W Ng
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Scott A Halperin
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Song F Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada; Canadian Center for Vaccinology, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Pediatrics, Faculty of Medicine, Dalhousie University and the Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada; Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
34
|
Xu Y, Kreth J. Role of LytF and AtlS in eDNA release by Streptococcus gordonii. PLoS One 2013; 8:e62339. [PMID: 23638042 PMCID: PMC3634736 DOI: 10.1371/journal.pone.0062339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/20/2013] [Indexed: 02/07/2023] Open
Abstract
Extracellular DNA (eDNA) is an important component of the biofilm matrix produced by many bacteria. In general, the release of eDNA is associated with the activity of muralytic enzymes leading to obvious cell lysis. In the Gram-positive oral commensal Streptococcus gordonii, eDNA release is dependent on pyruvate oxidase generated hydrogen peroxide (H2O2). Addition of H2O2 to cells grown under conditions non-permissive for H2O2 production causes eDNA release. Furthermore, eDNA release is maximal under aerobic growth conditions known to induce pyruvate oxidase gene expression and H2O2 production. Obvious cell lysis, however, does not occur. Two enzymes have been recently associated with eDNA release in S. gordonii. The autolysin AtlS and the competence regulated murein hydrolase LytF. In the present report, we investigated the role of both proteins in the H2O2 dependent eDNA release process. Single and double mutants in the respective genes for LytF and AtlS released less eDNA under normal growth conditions, but the AtlS mutant was still inducible for eDNA release by external H2O2. Moreover, we showed that the AtlS mutation interfered with the ability of S. gordonii to produce eDNA release inducing amounts of H2O2. Our data support a role of LytF in the H2O2 eDNA dependent release of S. gordonii as part of the competence stress pathway responding to oxidative stress.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, PR China
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
35
|
Enterococcus faecium biofilm formation: identification of major autolysin AtlAEfm, associated Acm surface localization, and AtlAEfm-independent extracellular DNA Release. mBio 2013; 4:e00154. [PMID: 23592262 PMCID: PMC3634606 DOI: 10.1128/mbio.00154-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Collapse
|
36
|
Hymes SR, Randis TM, Sun TY, Ratner AJ. DNase inhibits Gardnerella vaginalis biofilms in vitro and in vivo. J Infect Dis 2013; 207:1491-7. [PMID: 23431033 DOI: 10.1093/infdis/jit047] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial vaginosis is a highly prevalent and poorly understood polymicrobial disorder of the vaginal microbiota, with significant adverse sequelae. Gardnerella vaginalis predominates in bacterial vaginosis. Biofilms of G. vaginalis are present in human infections and are implicated in persistent disease, treatment failure, and transmission. Here we demonstrate that G. vaginalis biofilms contain extracellular DNA, which is essential to their structural integrity. Enzymatic disruption of this DNA specifically inhibits biofilms, acting on both newly forming and established biofilms. DNase liberates bacteria from the biofilm to supernatant fractions and potentiates the activity of metronidazole, an antimicrobial agent used in the treatment of bacterial vaginosis. Using a new murine vaginal colonization model for G. vaginalis, we demonstrate >10-fold inhibition of G. vaginalis colonization by DNase. We conclude that DNase merits investigation as a potential nonantibiotic adjunct to existing bacterial vaginosis therapies in order to decrease the risk of chronic infection, recurrence, and associated morbidities.
Collapse
Affiliation(s)
- Saul R Hymes
- Department of Pediatrics, Columbia University, New York 10032, USA
| | | | | | | |
Collapse
|
37
|
Identification and characterization of an autolysin gene, atlA, from Streptococcus criceti. J Microbiol 2012; 50:777-84. [PMID: 23124745 DOI: 10.1007/s12275-012-2187-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/29/2012] [Indexed: 10/27/2022]
Abstract
AtlA of Streptococcus mutans is a major autolysin and belongs to glycoside hydrolase family 25 with cellosyl of Streptomyces coelicolor. The autolysin gene (atlA) encoding AtlA was identified from S. criceti. AtlA of S. criceti comprises the signal sequence in the N-terminus, the putative cell-wall-binding domain in the middle, and the catalytic domain in the C-terminus. Homology modeling analysis of the catalytic domain of AtlA showed the resemblance of the spatial arrangement of five amino acids around the predicted catalytic cavity to that of cellosyl. Recombinant AtlA and its four point mutants, D655A, D747A, W831A, and D849A, were evaluated on zymogram of S. criceti cells. Lytic activity was destroyed in the mutants D655A and D747A and diminished in the mutants W831A and D849A. These results suggest that Asp655 and Asp747 residues are critical for lytic activity and Trp831 and Asp849 residues are also associated with enzymatic activity.
Collapse
|
38
|
Wayne KJ, Li S, Kazmierczak KM, Tsui HCT, Winkler ME. Involvement of WalK (VicK) phosphatase activity in setting WalR (VicR) response regulator phosphorylation level and limiting cross-talk in Streptococcus pneumoniae D39 cells. Mol Microbiol 2012; 86:645-60. [PMID: 23013245 DOI: 10.1111/mmi.12006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 11/30/2022]
Abstract
WalRK (YycFG) two-component systems (TCSs) of low-GC Gram-positive bacteria play critical roles in regulating peptidogylcan hydrolase genes involved in cell division and wall stress responses. The WalRK (VicRK) TCSs of Streptococcus pneumoniae (pneumococcus) and other Streptococcus species show numerous differences with those of other low-GC species. Notably, the pneumococcal WalK sensor kinase is not essential for normal growth in culture, unlike its homologues in Bacillus and Staphylococcus species. The WalK sensor kinase possesses histidine autokinase activity and mediates dephosphorylation of phosphorylated WalR∼P response regulator. To understand the contributions of these two WalK activities to pneumococcal growth, we constructed and characterized a set of walK kinase and phosphatase mutants in biochemical reactions and in cells. We identified an amino acid substitution in WalK that significantly reduces phosphatase activity, but not other activities. Comparisons were made between WalRK regulon expression levels and WalR∼P amounts in cells determined by Phos-tag SDS-PAGE. Reduction of WalK phosphatase activity resulted in nearly 90% phosphorylation to WalR∼P, consistent with the conclusion that WalK phosphatase is strongly active in exponentially growing cells. WalK phosphatase activity was also shown to depend on the WalK PAS domain and to limit cross-talk and the recovery of WalR∼P from walK(+) cells.
Collapse
Affiliation(s)
- Kyle J Wayne
- Department of Biology, Indiana University Bloomington, 1001 East Third Street, Bloomington, IN, 47405, USA
| | | | | | | | | |
Collapse
|
39
|
High levels of genetic recombination during nasopharyngeal carriage and biofilm formation in Streptococcus pneumoniae. mBio 2012; 3:mBio.00200-12. [PMID: 23015736 PMCID: PMC3448161 DOI: 10.1128/mbio.00200-12] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transformation of genetic material between bacteria was first observed in the 1920s using Streptococcus pneumoniae as a model organism. Since then, the mechanism of competence induction and transformation has been well characterized, mainly using planktonic bacteria or septic infection models. However, epidemiological evidence suggests that genetic exchange occurs primarily during pneumococcal nasopharyngeal carriage, which we have recently shown is associated with biofilm growth, and is associated with cocolonization with multiple strains. However, no studies to date have comprehensively investigated genetic exchange during cocolonization in vitro and in vivo or the role of the nasopharyngeal environment in these processes. In this study, we show that genetic exchange during dual-strain carriage in vivo is extremely efficient (10−2) and approximately 10,000,000-fold higher than that measured during septic infection (10−9). This high transformation efficiency was associated with environmental conditions exclusive to the nasopharynx, including the lower temperature of the nasopharynx (32 to 34°C), limited nutrient availability, and interactions with epithelial cells, which were modeled in a novel biofilm model in vitro that showed similarly high transformation efficiencies. The nasopharyngeal environmental factors, combined, were critical for biofilm formation and induced constitutive upregulation of competence genes and downregulation of capsule that promoted transformation. In addition, we show that dual-strain carriage in vivo and biofilms formed in vitro can be transformed during colonization to increase their pneumococcal fitness and also, importantly, that bacteria with lower colonization ability can be protected by strains with higher colonization efficiency, a process unrelated to genetic exchange. Although genetic exchange between pneumococcal strains is known to occur primarily during colonization of the nasopharynx and colonization is associated with biofilm growth, this is the first study to comprehensively investigate transformation in this environment and to analyze the role of environmental and bacterial factors in this process. We show that transformation efficiency during cocolonization by multiple strains is very high (around 10−2). Furthermore, we provide novel evidence that specific aspects of the nasopharyngeal environment, including lower temperature, limited nutrient availability, and epithelial cell interaction, are critical for optimal biofilm formation and transformation efficiency and result in bacterial protein expression changes that promote transformation and fitness of colonization-deficient strains. The results suggest that cocolonization in biofilm communities may have important clinical consequences by facilitating the spread of antibiotic resistance and enabling serotype switching and vaccine escape as well as protecting and retaining poorly colonizing strains in the pneumococcal strain pool.
Collapse
|
40
|
Liu YL, Nascimento M, Burne RA. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. Int J Oral Sci 2012; 4:135-40. [PMID: 22996271 PMCID: PMC3465751 DOI: 10.1038/ijos.2012.54] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease.
Collapse
Affiliation(s)
- Ya-Ling Liu
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
41
|
The role of hydrogen peroxide in environmental adaptation of oral microbial communities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:717843. [PMID: 22848782 PMCID: PMC3405655 DOI: 10.1155/2012/717843] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/11/2012] [Indexed: 11/17/2022]
Abstract
Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H(2)O(2)) as byproduct of aerobic metabolism. Several recent studies showed that the produced H(2)O(2) is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H(2)O(2) in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H(2)O(2), H(2)O(2) compatible species associate with the producers. H(2)O(2) production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H(2)O(2) scavenging. Therefore, the effects of biofilm intrinsic H(2)O(2) production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H(2)O(2) on biofilm development and environmental adaptation might be under appreciated in current research.
Collapse
|
42
|
Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J Bacteriol 2011; 193:6912-22. [PMID: 21984796 DOI: 10.1128/jb.05791-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Certain oral streptococci produce H(2)O(2) under aerobic growth conditions to inhibit competing species like Streptococcus mutans. Additionally, H(2)O(2) production causes the release of extracellular DNA (eDNA). eDNA can participate in several important functions: biofilm formation and cell-cell aggregation are supported by eDNA, while eDNA can serve as a nutrient and as an antimicrobial agent by chelating essential cations. eDNA contains DNA fragments of a size that has the potential to transfer genomic information. By using Streptococcus gordonii as a model organism for streptococcal H(2)O(2) production, H(2)O(2)-dependent eDNA release was further investigated. Under defined growth conditions, the eDNA release process was shown to be entirely dependent on H(2)O(2). Chromosomal DNA damage seems to be the intrinsic signal for the release, although only actively growing cells were proficient eDNA donors. Interestingly, the process of eDNA production was found to be coupled with the induction of the S. gordonii natural competence system. Consequently, the production of H(2)O(2) triggered the transfer of antibiotic resistance genes. These results suggest that H(2)O(2) is potentially much more than a simple toxic metabolic by-product; rather, its production could serve as an important environmental signal that facilitates species evolution by transfer of genetic information and an increase in the mutation rate.
Collapse
|