1
|
Hasan MK, Alaribe O, Govind R. Regulatory networks: Linking toxin production and sporulation in Clostridioides difficile. Anaerobe 2025; 91:102920. [PMID: 39521117 PMCID: PMC11811957 DOI: 10.1016/j.anaerobe.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Clostridioides difficile has been recognized as an important nosocomial pathogen that causes diarrheal disease as a consequence of antibiotic exposure and costs the healthcare system billions of dollars every year. C. difficile enters the host gut as dormant spores, germinates into vegetative cells, colonizes the gut, and produces toxins TcdA and/or TcdB, leading to diarrhea and inflammation. Spores are the primary transmission vehicle, while the toxins A and B directly contribute to the disease. Thus, toxin production and sporulation are the key traits that determine the success of C. difficile as a pathogen. Both toxins and spores are produced during the late stationary phase in response to various stimuli. This review provides a comprehensive analysis of the current knowledge on the molecular mechanisms, highlighting the regulatory pathways that interconnect toxin gene expression and sporulation in C. difficile. The roles of carbohydrates, amino acids and other nutrients and signals, in modulating these virulence traits through global regulatory networks are discussed. Understanding the links within the gene regulatory network is crucial for developing effective therapeutic strategies against C. difficile infections, potentially leading to targeted interventions that disrupt the co-regulation of toxin production and sporulation.
Collapse
Affiliation(s)
- Md Kamrul Hasan
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Oluchi Alaribe
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
2
|
BELITSKY BORISR. Histidine kinase-mediated cross-regulation of the vancomycin-resistance operon in Clostridioides difficile. Mol Microbiol 2024; 121:1182-1199. [PMID: 38690761 PMCID: PMC11176017 DOI: 10.1111/mmi.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The dipeptide D-Ala-D-Ala is an essential component of peptidoglycan and the target of vancomycin. Most Clostridioides difficile strains possess the vanG operon responsible for the synthesis of D-Ala-D-Ser, which can replace D-Ala-D-Ala in peptidoglycan. The C. difficile vanG operon is regulated by a two-component system, VanRS, but is not induced sufficiently by vancomycin to confer resistance to this antibiotic. Surprisingly, in the absence of the VanS histidine kinase (HK), the vanG operon is still induced by vancomycin and also by another antibiotic, ramoplanin, in a VanR-dependent manner. This suggested the cross-regulation of VanR by another HK or kinases that are activated in the presence of certain lipid II-targeting antibiotics. We identified these HKs as CD35990 and CD22880. However, mutations in either or both HKs did not affect the regulation of the vanG operon in wild-type cells suggesting that intact VanS prevents the cross-activation of VanR by non-cognate HKs. Overproduction of VanR in the absence of VanS, CD35990, and CD22880 led to high expression of the vanG operon indicating that VanR can potentially utilize at least one more phosphate donor for its activation. Candidate targets of CD35990- and CD22880-mediated regulation in the presence of vancomycin or ramoplanin were identified by RNA-Seq.
Collapse
Affiliation(s)
- BORIS R. BELITSKY
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
3
|
Lee CD, Rizvi A, McBride SM. KipOTIA detoxifies 5-oxoproline and promotes the growth of Clostridioides difficile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592088. [PMID: 38746432 PMCID: PMC11092664 DOI: 10.1101/2024.05.01.592088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Clostridioides difficile is an anaerobic enteric pathogen that disseminates in the environment as a dormant spore. For C. difficile and other sporulating bacteria, the initiation of sporulation is a regulated process that prevents spore formation under favorable growth conditions. In Bacillus subtilis , one such mechanism for preventing sporulation is the Kinase Inhibitory Protein, KipI, which impedes activation of the main sporulation kinase. In addition, KipI functions as part of a complex that detoxifies the intermediate metabolite, 5-oxoproline (OP), a harmful by-product of glutamic acid. In this study, we investigate the orthologous Kip proteins in C. difficile to determine their roles in the regulation of sporulation and metabolism. Using deletion mutants in kipIA and the full kipOTIA operon, we show that unlike in B. subtilis, the Kip proteins have no significant impact on sporulation. However, we found that the kip operon encodes a functional oxoprolinase that facilitates detoxification of OP. Further, our data demonstrate that KipOTIA not only detoxifies OP, but also allows OP to be used as a nutrient source that supports the robust growth of C. difficile , thereby facilitating the conversion of a toxic byproduct of metabolism into an effective energy source.
Collapse
|
4
|
Mehdizadeh Gohari I, Edwards AN, McBride SM, McClane BA. The impact of orphan histidine kinases and phosphotransfer proteins on the regulation of clostridial sporulation initiation. mBio 2024; 15:e0224823. [PMID: 38477571 PMCID: PMC11210211 DOI: 10.1128/mbio.02248-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, USA
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Zeng J, Fang S, Guo J, Dong M, Tian G, Tao L. Fight or flee, a vital choice for Clostridioides difficile. MLIFE 2024; 3:14-20. [PMID: 38827507 PMCID: PMC11139204 DOI: 10.1002/mlf2.12102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 06/04/2024]
Abstract
Clostridioides difficile is a leading cause of healthcare-associated infections, causing billions of economic losses every year. Its symptoms range from mild diarrhea to life-threatening damage to the colon. Transmission and recurrence of C. difficile infection (CDI) are mediated by the metabolically dormant spores, while the virulence of C. difficile is mainly due to the two large clostridial toxins, TcdA and TcdB. Producing toxins or forming spores are two different strategies for C. difficile to cope with harsh environmental conditions. It is of great significance to understand the molecular mechanisms for C. difficile to skew to either of the cellular processes. Here, we summarize the current understanding of the regulation and connections between toxin production and sporulation in C. difficile and further discuss the potential solutions for yet-to-be-answered questions.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Shuying Fang
- School of Biomedical and Pharmaceutical SciencesGuangdong University of TechnologyGuangzhouChina
| | - Jinquan Guo
- Department of Brest SurgeryPanyu Central HospitalGuangzhouChina
| | - Min Dong
- Department of MicrobiologyHarvard Medical SchoolBostonMassachusettsUSA
- Department of Urology, Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Guo‐Bao Tian
- Department of MicrobiologyZhongshan School of Medicine, Sun Yat‐sen UniversityGuangzhouChina
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Tropical Diseases Control (Sun Yat‐sen University), Ministry of EducationGuangzhouChina
- School of MedicineXizang Minzu UniversityXianyangChina
| | - Liang Tao
- Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and BiomedicineWestlake UniversityHangzhouChina
- Research Center for Industries of the Future, School of Life SciencesWestlake UniversityHangzhouChina
| |
Collapse
|
6
|
Serrano M, Martins D, Henriques AO. Clostridioides difficile Sporulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:273-314. [PMID: 38175480 DOI: 10.1007/978-3-031-42108-2_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Some members of the Firmicutes phylum, including many members of the human gut microbiota, are able to differentiate a dormant and highly resistant cell type, the endospore (hereinafter spore for simplicity). Spore-formers can colonize virtually any habitat and, because of their resistance to a wide variety of physical and chemical insults, spores can remain viable in the environment for long periods of time. In the anaerobic enteric pathogen Clostridioides difficile the aetiologic agent is the oxygen-resistant spore, while the toxins produced by actively growing cells are the main cause of the disease symptoms. Here, we review the regulatory circuits that govern entry into sporulation. We also cover the role of spores in the infectious cycle of C. difficile in relation to spore structure and function and the main control points along spore morphogenesis.
Collapse
Affiliation(s)
- Mónica Serrano
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal.
| | - Diogo Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Química e Biológica António Xavier, Oeiras, Portugal
| |
Collapse
|
7
|
Buddle JE, Fagan RP. Pathogenicity and virulence of Clostridioides difficile. Virulence 2023; 14:2150452. [PMID: 36419222 DOI: 10.1080/21505594.2022.2150452] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is the most common cause of nosocomial antibiotic-associated diarrhea, and is responsible for a spectrum of diseases characterized by high levels of recurrence, morbidity, and mortality. Treatment is complex, since antibiotics constitute both the main treatment and the major risk factor for infection. Worryingly, resistance to multiple antibiotics is becoming increasingly widespread, leading to the classification of this pathogen as an urgent threat to global health. As a consummate opportunist, C. difficile is well equipped for promoting disease, owing to its arsenal of virulence factors: transmission of this anaerobe is highly efficient due to the formation of robust endospores, and an array of adhesins promote gut colonization. C. difficile produces multiple toxins acting upon gut epithelia, resulting in manifestations typical of diarrheal disease, and severe inflammation in a subset of patients. This review focuses on such virulence factors, as well as the importance of antimicrobial resistance and genome plasticity in enabling pathogenesis and persistence of this important pathogen.
Collapse
Affiliation(s)
- Jessica E Buddle
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Robert P Fagan
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
8
|
Edwards AN, McBride SM. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. PLoS Genet 2023; 19:e1010841. [PMID: 37844084 PMCID: PMC10602386 DOI: 10.1371/journal.pgen.1010841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/26/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023] Open
Abstract
The ability to form a dormant spore is essential for the survival of the anaerobic pathogen, Clostridioides difficile, outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SpoZ, impacts later stages of sporulation through a small hypothetical protein and an additional, unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. J Bacteriol 2023; 205:e0013823. [PMID: 37655912 PMCID: PMC10521354 DOI: 10.1128/jb.00138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as maintenance of the intestinal barrier, cell signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including its importance in alleviating infections caused by pathogens such as Clostridioides difficile. Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with changes in metabolic and regulatory genes, such as a putative carbon starvation protein, CstA. Collectively, these data suggest that butyrate may induce alternative C. difficile survival pathways, modifying its growth ability and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may modulate gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile. While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
Affiliation(s)
| | - Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Julian D. Coles
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sydney Nelson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - C. Alexis McCollum
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
10
|
Edwards AN, McBride SM. The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546640. [PMID: 37425791 PMCID: PMC10327067 DOI: 10.1101/2023.06.26.546640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The ability to form a dormant spore is essential for the survival of the anaerobic, gastrointestinal pathogen Clostridioides difficile outside of the mammalian gastrointestinal tract. The initiation of sporulation is governed by the master regulator of sporulation, Spo0A, which is activated by phosphorylation. Multiple sporulation factors control Spo0A phosphorylation; however, this regulatory pathway is not well defined in C. difficile. We discovered that RgaS and RgaR, a conserved orphan histidine kinase and orphan response regulator, function together as a cognate two-component regulatory system to directly activate transcription of several genes. One of these targets, agrB1D1, encodes gene products that synthesize and export a small quorum-sensing peptide, AgrD1, which positively influences expression of early sporulation genes. Another target, a small regulatory RNA now known as SrsR, impacts later stages of sporulation through an unknown regulatory mechanism(s). Unlike Agr systems in many organisms, AgrD1 does not activate the RgaS-RgaR two-component system, and thus, is not responsible for autoregulating its own production. Altogether, we demonstrate that C. difficile utilizes a conserved two-component system that is uncoupled from quorum-sensing to promote sporulation through two distinct regulatory pathways.
Collapse
Affiliation(s)
- Adrianne N. Edwards
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
11
|
Mehdizadeh Gohari I, Li J, Navarro MA, Mendonça FS, Uzal FA, McClane BA. Identification of orphan histidine kinases that impact sporulation and enterotoxin production by Clostridium perfringens type F strain SM101 in a pathophysiologically-relevant ex vivo mouse intestinal contents model. PLoS Pathog 2023; 19:e1011429. [PMID: 37262083 PMCID: PMC10263361 DOI: 10.1371/journal.ppat.1011429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/13/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023] Open
Abstract
When causing food poisoning or antibiotic-associated diarrhea, Clostridium perfringens type F strains must sporulate to produce C. perfringens enterotoxin (CPE) in the intestines. C. perfringens is thought to use some of its seven annotated orphan histidine kinases to phosphorylate Spo0A and initiate sporulation and CPE production. We previously demonstrated the CPR0195 orphan kinase, but not the putative CPR1055 orphan kinase, is important when type F strain SM101 initiates sporulation and CPE production in modified Duncan-Strong (MDS) sporulation medium. Since there is no small animal model for C. perfringens sporulation, the current study used diluted mouse intestinal contents (MIC) to develop an ex vivo sporulation model and employed this model to test sporulation and CPE production by SM101 CPR0195 and CPR1055 null mutants in a pathophysiologically-relevant context. Surprisingly, both mutants still sporulated and produced CPE at wild-type levels in MIC. Therefore, five single null mutants were constructed that cannot produce one of the previously-unstudied putative orphan kinases of SM101. Those mutants implicated CPR1316, CPR1493, CPR1953 and CPR1954 in sporulation and CPE production by SM101 MDS cultures. Phosphorylation activity was necessary for CPR1316, CPR1493, CPR1953 and CPR1954 to affect sporulation in those MDS cultures, supporting their identity as kinases. Importantly, only the CPR1953 or CPR1954 null mutants exhibited significantly reduced levels of sporulation and CPE production in MIC cultures. These phenotypes were reversible by complementation. Characterization studies suggested that, in MDS or MIC, the CPR1953 and CPR1954 mutants produce less Spo0A than wild-type SM101. In addition, the CPR1954 mutant exhibited little or no Spo0A phosphorylation in MDS cultures. These studies, i) highlight the importance of using pathophysiologically-relevant models to investigate C. perfringens sporulation and CPE production in a disease context and ii) link the CPR1953 and CPR1954 kinases to C. perfringens sporulation and CPE production in disease-relevant conditions.
Collapse
Affiliation(s)
- Iman Mehdizadeh Gohari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jihong Li
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Mauricio A. Navarro
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Fábio S. Mendonça
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Francisco A. Uzal
- California Animal Health and Food Safety Laboratory System, School of Veterinary Medicine, University of California Davis, San Bernardino, California, United States of America
| | - Bruce A. McClane
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
12
|
Fuchs M, Lamm-Schmidt V, Lenče T, Sulzer J, Bublitz A, Wackenreuter J, Gerovac M, Strowig T, Faber F. A network of small RNAs regulates sporulation initiation in Clostridioides difficile. EMBO J 2023:e112858. [PMID: 37140366 DOI: 10.15252/embj.2022112858] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
The obligate anaerobic, enteric pathogen Clostridioides difficile persists in the intestinal tract by forming antibiotic-resistant endospores that contribute to relapsing and recurrent infections. Despite the importance of sporulation for C. difficile pathogenesis, environmental cues and molecular mechanisms that regulate sporulation initiation remain ill-defined. Here, by using RIL-seq to globally capture the Hfq-dependent RNA-RNA interactome, we discovered a network of small RNAs that bind to mRNAs encoding sporulation-related genes. We show that two of these small RNAs, SpoX and SpoY, regulate translation of the master regulator of sporulation, Spo0A, in an opposing manner, which ultimately leads to altered sporulation rates. Infection of antibiotic-treated mice with SpoX and SpoY deletion mutants revealed a global effect on gut colonization and intestinal sporulation. Our work uncovers an elaborate RNA-RNA interactome controlling the physiology and virulence of C. difficile and identifies a complex post-transcriptional layer in the regulation of spore formation in this important human pathogen.
Collapse
Affiliation(s)
- Manuela Fuchs
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Vanessa Lamm-Schmidt
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Tina Lenče
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Johannes Sulzer
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Arne Bublitz
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Janet Wackenreuter
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Milan Gerovac
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| | - Till Strowig
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Franziska Faber
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), Julius-Maximilians-University of Würzburg (JMU), Würzburg, Germany
| |
Collapse
|
13
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538596. [PMID: 37163089 PMCID: PMC10168334 DOI: 10.1101/2023.04.27.538596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Short chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as the intestinal barrier, signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including importance in combatting infections caused by pathogens such as Clostridioides difficile . Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with alternative metabolic and related C. difficile regulatory pathways, such as the carbon catabolite repressor, CcpA. Collectively, these data suggest that butyrate may signal alternative C. difficile metabolic pathways, thus modifying its growth and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may be important in alleviating gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile . While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
|
14
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
15
|
Zeng J, Wang H, Dong M, Tian GB. Clostridioides difficile spore: coat assembly and formation. Emerg Microbes Infect 2022; 11:2340-2349. [PMID: 36032037 PMCID: PMC9542656 DOI: 10.1080/22221751.2022.2119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clostridioides difficile (C. difficile) is a Gram-positive, spore-forming, toxin-producing, obligate anaerobic bacterium. C. difficile infection (CDI) is the leading cause of healthcare-associated infective diarrhoea. The infection is mediated by the spore, a metabolically inactive form of C. difficile. The spore coat acts as a physical barrier to defend against chemical insults from hosts and natural environments. The composition of spore coat has already been revealed; therefore, the interactive networks of spore coat proteins and the dynamic process of coat assembly are the keys to design strategies to control and cure CDI. This review gives a brief discussion of the signal processing and transcriptional regulation of C. difficile sporulation initiation. Following the discussion, the spore formation is also introduced. Finally, this review mainly focuses on the spore coat assembly, a poorly understood process in C. difficile, and important proteins that have been studied.
Collapse
Affiliation(s)
- Ji Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hao Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Min Dong
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangdong 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, China
| |
Collapse
|
16
|
Response Regulator CD1688 Is a Negative Modulator of Sporulation in Clostridioides difficile. J Bacteriol 2022; 204:e0013022. [PMID: 35852332 PMCID: PMC9380558 DOI: 10.1128/jb.00130-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component signal transduction systems (TCSs), consisting of a sensor histidine kinase (HK) and a response regulator (RR), sense environmental stimuli and then modulate cellular responses, typically through changes in gene expression. Our previous work identified the DNA binding motif of CD1586, an RR implicated in Clostridioides difficile strain R20291 sporulation. To determine the role of this RR in the sporulation pathway in C. difficile, we generated a deletion strain of cd1688 in the historical 630 strain, the homolog of cd1586. The C. difficile Δcd1688 strain exhibited a hypersporulation phenotype, suggesting that CD1688 negatively regulates sporulation. Complementation of the C. difficile Δcd1688 strain restored sporulation. In contrast, a nonphosphorylatable copy of cd1688 did not restore sporulation to wild-type (WT) levels, indicating that CD1688 must be phosphorylated to properly modulate sporulation. Expression of the master regulator spo0A, the sporulation-specific sigma factors sigF, sigE, sigG, and sigK, and a signaling protein encoded by spoIIR was increased in the C. difficile Δcd1688 strain compared to WT. In line with the increased spoIIR expression, we detected an increase in mature SigE at an earlier time point, which arises from SpoIIR-mediated processing of pro-SigE. Taken together, our data suggest that CD1688 is a novel negative modulator of sporulation in C. difficile and contributes to mediating progression through the spore developmental pathway. These results add to our growing understanding of the complex regulatory events involved in C. difficile sporulation, insight that could be exploited for novel therapeutic development. IMPORTANCEClostridioides difficile causes severe gastrointestinal illness and is a leading cause of nosocomial infections in the United States. This pathogen produces metabolically dormant spores that are the major vehicle of transmission between hosts. The sporulation pathway involves an intricate regulatory network that controls a succession of morphological changes necessary to produce spores. The environmental signals inducing the sporulation pathway are not well understood in C. difficile. This work identified a response regulator, CD1688, that, when deleted, led to a hypersporulation phenotype, indicating that it typically acts to repress sporulation. Improving our understanding of the regulatory mechanisms modulating sporulation in C. difficile could provide novel strategies to eliminate or reduce spore production, thus decreasing transmission and disease relapse.
Collapse
|
17
|
Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression. mSphere 2022; 7:e0013222. [PMID: 35638354 PMCID: PMC9241537 DOI: 10.1128/msphere.00132-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bacterial pathogen Clostridioides difficile causes gastroenteritis by producing toxins and transmits disease by making resistant spores. Toxin and spore production are energy-expensive processes that are regulated by multiple transcription factors in response to many environmental inputs. While toxin and sporulation genes are both induced in only a subset of C. difficile cells, the relationship between these two subpopulations remains unclear. To address whether C. difficile coordinates the generation of these subpopulations, we developed a dual-transcriptional-reporter system that allows toxin and sporulation gene expression to be simultaneously visualized at the single-cell level using chromosomally encoded mScarlet and mNeonGreen fluorescent transcriptional reporters. We then adapted an automated image analysis pipeline to quantify toxin and sporulation gene expression in thousands of individual cells under different medium conditions and in different genetic backgrounds. These analyses revealed that toxin and sporulation gene expression rarely overlap during growth on agar plates, whereas broth culture increases this overlap. Our results suggest that certain growth conditions promote a “division of labor” between transmission and virulence gene expression, highlighting how environmental inputs influence these subpopulations. Our data further suggest that the RstA transcriptional regulator skews the population to activate sporulation genes rather than toxin genes. Given that recent work has revealed population-wide heterogeneity for numerous cellular processes in C. difficile, we anticipate that our dual-reporter system will be broadly useful for determining the overlap between these subpopulations. IMPORTANCEClostridioides difficile is an important nosocomial pathogen that causes severe diarrhea by producing toxins and transmits disease by producing spores. While both processes are crucial for C. difficile disease, only a subset of cells express toxins and/or undergo sporulation. Whether C. difficile coordinates the subset of cells inducing these energy-expensive processes remains unknown. To address this question, we developed a dual-fluorescent-reporter system coupled with an automated image analysis pipeline to rapidly compare the expression of two genes of interest across thousands of cells. Using this system, we discovered that certain growth conditions, particularly growth on agar plates, induce a “division of labor” between toxin and sporulation gene expression. Since C. difficile exhibits phenotypic heterogeneity for numerous vital cellular processes, this novel dual-reporter system will enable future studies aimed at understanding how C. difficile coordinates various subpopulations throughout its infectious disease cycle.
Collapse
|