1
|
Yu L, Min Z, Liu M, Xin Y, Liu A, Kuang J, Wu W, Wu J, He H, Xin J, Blankenship RE, Tian C, Xu X. A cytochrome c 551 mediates the cyclic electron transport chain of the anoxygenic phototrophic bacterium Roseiflexus castenholzii. PLANT COMMUNICATIONS 2024; 5:100715. [PMID: 37710959 PMCID: PMC10873879 DOI: 10.1016/j.xplc.2023.100715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Roseiflexus castenholzii is a gram-negative filamentous phototrophic bacterium that carries out anoxygenic photosynthesis through a cyclic electron transport chain (ETC). The ETC is composed of a reaction center (RC)-light-harvesting (LH) complex (rcRC-LH); an alternative complex III (rcACIII), which functionally replaces the cytochrome bc1/b6f complex; and the periplasmic electron acceptor auracyanin (rcAc). Although compositionally and structurally different from the bc1/b6f complex, rcACIII plays similar essential roles in oxidizing menaquinol and transferring electrons to the rcAc. However, rcACIII-mediated electron transfer (which includes both an intraprotein route and a downstream route) has not been clearly elucidated, nor have the details of cyclic ETC. Here, we identify a previously unknown monoheme cytochrome c (cyt c551) as a novel periplasmic electron acceptor of rcACIII. It reduces the light-excited rcRC-LH to complete a cyclic ETC. We also reveal the molecular mechanisms involved in the ETC using electron paramagnetic resonance (EPR), spectroelectrochemistry, and enzymatic and structural analyses. We find that electrons released from rcACIII-oxidized menaquinol are transferred to two alternative periplasmic electron acceptors (rcAc and cyt c551), which eventually reduce the rcRC to form the complete cyclic ETC. This work serves as a foundation for further studies of ACIII-mediated electron transfer in anoxygenic photosynthesis and broadens our understanding of the diversity and molecular evolution of prokaryotic ETCs.
Collapse
Affiliation(s)
- Lu Yu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenzhen Min
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Menghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Yueyong Xin
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Aokun Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Jian Kuang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Wenping Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Jingyi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huimin He
- Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiyu Xin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Robert E Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Changlin Tian
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Bioanalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiaoling Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences and Affiliated Hospital, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China; Photosynthesis Research Center, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
2
|
Layer G, Jahn M, Moser J, Jahn D. Radical SAM Enzymes Involved in Tetrapyrrole Biosynthesis and Insertion. ACS BIO & MED CHEM AU 2022; 2:196-204. [PMID: 37101575 PMCID: PMC10114771 DOI: 10.1021/acsbiomedchemau.1c00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The anaerobic biosyntheses of heme, heme d 1, and bacteriochlorophyll all require the action of radical SAM enzymes. During heme biosynthesis in some bacteria, coproporphyrinogen III dehydrogenase (CgdH) catalyzes the decarboxylation of two propionate side chains of coproporphyrinogen III to the corresponding vinyl groups of protoporphyrinogen IX. Its solved crystal structure was the first published structure for a radical SAM enzyme. In bacteria, heme is inserted into enzymes by the cytoplasmic heme chaperone HemW, a radical SAM enzyme structurally highly related to CgdH. In an alternative heme biosynthesis route found in archaea and sulfate-reducing bacteria, the two radical SAM enzymes AhbC and AhbD catalyze the removal of two acetate groups (AhbC) or the decarboxylation of two propionate side chains (AhbD). NirJ, a close homologue of AhbC, is required for propionate side chain removal during the formation of heme d 1 in some denitrifying bacteria. Biosynthesis of the fifth ring (ring E) of all chlorophylls is based on an unusual six-electron oxidative cyclization step. The sophisticated conversion of Mg-protoporphyrin IX monomethylester to protochlorophyllide is facilitated by an oxygen-independent cyclase termed BchE, which is a cobalamin-dependent radical SAM enzyme. Most of the radical SAM enzymes involved in tetrapyrrole biosynthesis were recognized as such by Sofia et al. in 2001 (Nucleic Acids Res.2001, 29, 1097-1106) and were biochemically characterized thereafter. Although much has been achieved, the challenging tetrapyrrole substrates represent a limiting factor for enzyme/substrate cocrystallization and the ultimate elucidation of the corresponding enzyme mechanisms.
Collapse
Affiliation(s)
- Gunhild Layer
- Institut
für Pharmazeutische Wissenschaften, Pharmazeutische Biologie, Albert-Ludwigs-Universität Freiburg, Stefan-Meier-Str. 19, 79104 Freiburg im Breisgau, Germany
- . Phone: ++49
0761 203 8373
| | - Martina Jahn
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Jürgen Moser
- Institut
für Mikrobiologie, Technische Universität
Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig
Integrated Center of Systems Biology BRICS, Technische Universität Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Saghaï A, Zivanovic Y, Moreira D, Tavera R, López-García P. A Novel Microbialite-Associated Phototrophic Chloroflexi Lineage Exhibiting a Quasi-Clonal Pattern along Depth. Genome Biol Evol 2021; 12:1207-1216. [PMID: 32544224 PMCID: PMC7486959 DOI: 10.1093/gbe/evaa122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2020] [Indexed: 01/05/2023] Open
Abstract
Chloroflexales (Chloroflexi) are typical members of the anoxygenic photosynthesizing component of microbial mats and have mostly been characterized from communities associated to hot springs. Here, we report the assembly of five metagenome-assembled genomes (MAGs) of a novel lineage of Chloroflexales found in mesophilic lithifying microbial mats (microbialites) in Lake Alchichica (Mexico). Genomic and phylogenetic analyses revealed that the bins shared 92% of their genes, and these genes were nearly identical despite being assembled from samples collected along a depth gradient (1-15 m depth). We tentatively name this lineage Candidatus Lithoflexus mexicanus. Metabolic predictions based on the MAGs suggest that these chlorosome-lacking mixotrophs share features in central carbon metabolism, electron transport, and adaptations to life under oxic and anoxic conditions, with members of two related lineages, Chloroflexineae and Roseiflexineae. Contrasting with the other diverse microbialite community members, which display much lower genomic conservation along the depth gradient, Ca. L. mexicanus MAGs exhibit remarkable similarity. This might reflect a particular flexibility to acclimate to varying light conditions with depth or the capacity to occupy a very specific spatial ecological niche in microbialites from different depths. Alternatively, Ca. L. mexicanus may also have the ability to modulate its gene expression as a function of the local environmental conditions during diel cycles in microbialites along the depth gradient.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Yvan Zivanovic
- Institut de Biologie Intégrative de la Cellule, CNRS, Université Paris-Saclay, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
4
|
Kawai S, Martinez JN, Lichtenberg M, Trampe E, Kühl M, Tank M, Haruta S, Nishihara A, Hanada S, Thiel V. In-Situ Metatranscriptomic Analyses Reveal the Metabolic Flexibility of the Thermophilic Anoxygenic Photosynthetic Bacterium Chloroflexus aggregans in a Hot Spring Cyanobacteria-Dominated Microbial Mat. Microorganisms 2021; 9:microorganisms9030652. [PMID: 33801086 PMCID: PMC8004040 DOI: 10.3390/microorganisms9030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.
Collapse
Affiliation(s)
- Shigeru Kawai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan
- Correspondence: (S.K.); (V.T.)
| | - Joval N. Martinez
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Department of Natural Sciences, College of Arts and Sciences, University of St. La Salle, Bacolod City, Negros Occidental 6100, Philippines
| | - Mads Lichtenberg
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Erik Trampe
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Michael Kühl
- Department of Biology, Marine Biological Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark; (M.L.); (E.T.); (M.K.)
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Shin Haruta
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Arisa Nishihara
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
| | - Satoshi Hanada
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
| | - Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; (J.N.M.); (M.T.); (S.H.); (A.N.); (S.H.)
- DSMZ—German Culture Collection of Microorganisms and Cell Culture, GmbH Inhoffenstraße 7B, 38124 Braunschweig, Germany
- Correspondence: (S.K.); (V.T.)
| |
Collapse
|
5
|
Mg-protoporphyrin IX monomethyl ester cyclase from Rhodobacter capsulatus: radical SAM-dependent synthesis of the isocyclic ring of bacteriochlorophylls. Biochem J 2020; 477:4635-4654. [DOI: 10.1042/bcj20200761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022]
Abstract
During bacteriochlorophyll a biosynthesis, the oxygen-independent conversion of Mg-protoporphyrin IX monomethyl ester (Mg-PME) to protochlorophyllide (Pchlide) is catalyzed by the anaerobic Mg-PME cyclase termed BchE. Bioinformatics analyses in combination with pigment studies of cobalamin-requiring Rhodobacter capsulatus mutants indicated an unusual radical S-adenosylmethionine (SAM) and cobalamin-dependent BchE catalysis. However, in vitro biosynthesis of the isocyclic ring moiety of bacteriochlorophyll using purified recombinant BchE has never been demonstrated. We established a spectroscopic in vitro activity assay which was subsequently validated by HPLC analyses and H218O isotope label transfer onto the carbonyl-group (C-131-oxo) of the isocyclic ring of Pchlide. The reaction product was further converted to chlorophyllide in the presence of light-dependent Pchlide reductase. BchE activity was stimulated by increasing concentrations of NADPH or SAM, and inhibited by S-adenosylhomocysteine. Subcellular fractionation experiments revealed that membrane-localized BchE requires an additional, heat-sensitive cytosolic component for activity. BchE catalysis was not sustained in chimeric experiments when a cytosolic extract from E. coli was used as a substitute. Size-fractionation of the soluble R. capsulatus fraction indicated that enzymatic activity relies on a specific component with an estimated molecular mass between 3 and 10 kDa. A structure guided site-directed mutagenesis approach was performed on the basis of a three-dimensional homology model of BchE. A newly established in vivo complementation assay was used to investigate 24 BchE mutant proteins. Potential ligands of the [4Fe-4S] cluster (Cys204, Cys208, Cys211), of SAM (Phe210, Glu308 and Lys320) and of the proposed cobalamin cofactor (Asp248, Glu249, Leu29, Thr71, Val97) were identified.
Collapse
|
6
|
Three classes of oxygen-dependent cyclase involved in chlorophyll and bacteriochlorophyll biosynthesis. Proc Natl Acad Sci U S A 2017; 114:6280-6285. [PMID: 28559347 DOI: 10.1073/pnas.1701687114] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of (bacterio)chlorophyll pigments is among the most productive biological pathways on Earth. Photosynthesis relies on these modified tetrapyrroles for the capture of solar radiation and its conversion to chemical energy. (Bacterio)chlorophylls have an isocyclic fifth ring, the formation of which has remained enigmatic for more than 60 y. This reaction is catalyzed by two unrelated cyclase enzymes using different chemistries. The majority of anoxygenic phototrophic bacteria use BchE, an O2-sensitive [4Fe-4S] cluster protein, whereas plants, cyanobacteria, and some phototrophic bacteria possess an O2-dependent enzyme, the major catalytic component of which is a diiron protein, AcsF. Plant and cyanobacterial mutants in ycf54 display impaired function of the O2-dependent enzyme, accumulating the reaction substrate. Swapping cyclases between cyanobacteria and purple phototrophic bacteria reveals three classes of the O2-dependent enzyme. AcsF from the purple betaproteobacterium Rubrivivax (Rvi.) gelatinosus rescues the loss not only of its cyanobacterial ortholog, cycI, in Synechocystis sp. PCC 6803, but also of ycf54; conversely, coexpression of cyanobacterial cycI and ycf54 is required to complement the loss of acsF in Rvi. gelatinosus These results indicate that Ycf54 is a cyclase subunit in oxygenic phototrophs, and that different classes of the enzyme exist based on their requirement for an additional subunit. AcsF is the cyclase in Rvi. gelatinosus, whereas alphaproteobacterial cyclases require a newly discovered protein that we term BciE, encoded by a gene conserved in these organisms. These data delineate three classes of O2-dependent cyclase in chlorophototrophic organisms from higher plants to bacteria, and their evolution is discussed herein.
Collapse
|
7
|
Genome Sequence of Rhodoferax antarcticus ANT.BR T; A Psychrophilic Purple Nonsulfur Bacterium from an Antarctic Microbial Mat. Microorganisms 2017; 5:microorganisms5010008. [PMID: 28230808 PMCID: PMC5374385 DOI: 10.3390/microorganisms5010008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/23/2022] Open
Abstract
Rhodoferax antarcticus is an Antarctic purple nonsulfur bacterium and the only characterized anoxygenic phototroph that grows best below 20 °C. We present here a high-quality draft genome of Rfx. antarcticus strain ANT.BRT, isolated from an Antarctic microbial mat. The circular chromosome (3.8 Mbp) of Rfx. antarcticus has a 59.1% guanine + cytosine (GC) content and contains 4036 open reading frames. In addition, the bacterium contains a sizable plasmid (198.6 kbp, 48.4% GC with 226 open reading frames) that comprises about 5% of the total genetic content. Surprisingly, genes encoding light-harvesting complexes 1 and 3 (LH1 and LH3), but not light-harvesting complex 2 (LH2), were identified in the photosynthesis gene cluster of the Rfx. antarcticus genome, a feature that is unique among purple phototrophs. Consistent with physiological studies that showed a strong capacity for nitrogen fixation in Rfx. antarcticus, a nitrogen fixation gene cluster encoding a molybdenum-type nitrogenase was present, but no alternative nitrogenases were identified despite the cold-active phenotype of this phototroph. Genes encoding two forms of ribulose 1,5-bisphosphate carboxylase/oxygenase were present in the Rfx. antarcticus genome, a feature that likely provides autotrophic flexibility under varying environmental conditions. Lastly, genes for assembly of both type IV pili and flagella are present, with the latter showing an unusual degree of clustering. This report represents the first genomic analysis of a psychrophilic anoxygenic phototroph and provides a glimpse of the genetic basis for maintaining a phototrophic lifestyle in a permanently cold, yet highly variable, environment.
Collapse
|
8
|
Absence of the cbb3 Terminal Oxidase Reveals an Active Oxygen-Dependent Cyclase Involved in Bacteriochlorophyll Biosynthesis in Rhodobacter sphaeroides. J Bacteriol 2016; 198:2056-63. [PMID: 27215788 PMCID: PMC4944227 DOI: 10.1128/jb.00121-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/13/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The characteristic green color associated with chlorophyll pigments results from the formation of an isocyclic fifth ring on the tetrapyrrole macrocycle during the biosynthesis of these important molecules. This reaction is catalyzed by two unrelated cyclase enzymes employing different chemistries. Oxygenic phototrophs such as plants and cyanobacteria utilize an oxygen-dependent enzyme, the major component of which is a diiron protein named AcsF, while BchE, an oxygen-sensitive [4Fe-4S] cluster protein, dominates in phototrophs inhabiting anoxic environments, such as the purple phototrophic bacterium Rhodobacter sphaeroides We identify a potential acsF in this organism and assay for activity of the encoded protein in a strain lacking bchE under various aeration regimes. Initially, cells lacking bchE did not demonstrate AcsF activity under any condition tested. However, on removal of a gene encoding a subunit of the cbb3-type respiratory terminal oxidase, cells cultured under regimes ranging from oxic to micro-oxic exhibited cyclase activity, confirming the activity of the oxygen-dependent enzyme in this model organism. Potential reasons for the utilization of an oxygen-dependent enzyme in anoxygenic phototrophs are discussed. IMPORTANCE The formation of the E ring of bacteriochlorophyll pigments is the least well characterized step in their biosynthesis, remaining enigmatic for over 60 years. Two unrelated enzymes catalyze this cyclization step; O2-dependent and O2-independent forms dominate in oxygenic and anoxygenic phototrophs, respectively. We uncover the activity of an O2-dependent enzyme in the anoxygenic purple phototrophic bacterium Rhodobacter sphaeroides, initially by inactivation of the high-affinity terminal respiratory oxidase, cytochrome cbb3 We propose that the O2-dependent form allows for the biosynthesis of a low level of bacteriochlorophyll under oxic conditions, so that a rapid initiation of photosynthetic processes is possible for this bacterium upon a reduction of oxygen tension.
Collapse
|
9
|
Anderson LN, Koech PK, Plymale AE, Landorf EV, Konopka A, Collart FR, Lipton MS, Romine MF, Wright AT. Live Cell Discovery of Microbial Vitamin Transport and Enzyme-Cofactor Interactions. ACS Chem Biol 2016; 11:345-54. [PMID: 26669591 DOI: 10.1021/acschembio.5b00918] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid completion of microbial genomes is inducing a conundrum in functional gene discovery. Novel methods are needed to shorten the gap between characterizing a microbial genome and experimentally validating bioinformatically predicted functions. Of particular importance are transport mechanisms, which shuttle nutrients such as B vitamins and metabolites across cell membranes and are required for the survival of microbes ranging from members of environmental microbial communities to pathogens. Methods to accurately assign function and specificity for a wide range of experimentally unidentified and/or predicted membrane-embedded transport proteins, along with characterization of intracellular enzyme-cofactor associations, are needed to enable a significantly improved understanding of microbial biochemistry and physiology, microbial interactions, and microbial responses to perturbations. Chemical probes derived from B vitamins B1, B2, and B7 have allowed us to experimentally address the aforementioned needs by identifying B vitamin transporters and intracellular enzyme-cofactor associations through live cell labeling of the filamentous anoxygenic photoheterotroph, Chloroflexus aurantiacus J-10-fl, known to employ mechanisms for both B vitamin biosynthesis and environmental salvage. Our probes provide a unique opportunity to directly link cellular activity and protein function back to ecosystem and/or host dynamics by identifying B vitamin transport and cofactor-dependent interactions required for survival.
Collapse
Affiliation(s)
- Lindsey N. Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Phillip K. Koech
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Andrew E. Plymale
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Elizabeth V. Landorf
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Allan Konopka
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Frank R. Collart
- Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439 United States
| | - Mary S. Lipton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Margaret F. Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Aaron T. Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| |
Collapse
|
10
|
Peroxidase activity and involvement in the oxidative stress response of roseobacter denitrificans truncated hemoglobin. PLoS One 2015; 10:e0117768. [PMID: 25658318 PMCID: PMC4319818 DOI: 10.1371/journal.pone.0117768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/01/2015] [Indexed: 11/19/2022] Open
Abstract
Roseobacter denitrificans is a member of the widespread marine Roseobacter genus. We report the first characterization of a truncated hemoglobin from R. denitrificans (Rd. trHb) that was purified in the heme-bound form from heterologous expression of the protein in Escherichia coli. Rd. trHb exhibits predominantly alpha-helical secondary structure and absorbs light at 412, 538 and 572 nm. The phylogenetic classification suggests that Rd. trHb falls into group II trHbs, whereas sequence alignments indicate that it shares certain important heme pocket residues with group I trHbs in addition to those of group II trHbs. The resonance Raman spectra indicate that the isolated Rd. trHb contains a ferric heme that is mostly 6-coordinate low-spin and that the heme of the ferrous form displays a mixture of 5- and 6-coordinate states. Two Fe-His stretching modes were detected, notably one at 248 cm-1, which has been reported in peroxidases and some flavohemoglobins that contain an Fe-His-Asp (or Glu) catalytic triad, but was never reported before in a trHb. We show that Rd. trHb exhibits a significant peroxidase activity with a (kcat/Km) value three orders of magnitude higher than that of bovine Hb and only one order lower than that of horseradish peroxidase. This enzymatic activity is pH-dependent with a pKa value ~6.8. Homology modeling suggests that residues known to be important for interactions with heme-bound ligands in group II trHbs from Mycobacterium tuberculosis and Bacillus subtilis are pointing toward to heme in Rd. trHb. Genomic organization and gene expression profiles imply possible functions for detoxification of reactive oxygen and nitrogen species in vivo. Altogether, Rd. trHb exhibits some distinctive features and appears equipped to help the bacterium to cope with reactive oxygen/nitrogen species and/or to operate redox biochemistry.
Collapse
|
11
|
Grouzdev DS, Kuznetsov BB, Keppen OI, Krasil’nikova EN, Lebedeva NV, Ivanovsky RN. Reconstruction of bacteriochlorophyll biosynthesis pathways in the filamentous anoxygenic phototrophic bacterium Oscillochloris trichoides DG-6 and evolution of anoxygenic phototrophs of the order Chloroflexales. Microbiology (Reading) 2015; 161:120-130. [DOI: 10.1099/mic.0.082313-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Denis S. Grouzdev
- Faculty of Biology, Moscow State University, Moscow, Russia
- Bioengineering Center, Russian Academy of Sciences, Moscow, Russia
| | | | - Olga I. Keppen
- Faculty of Biology, Moscow State University, Moscow, Russia
| | | | | | | |
Collapse
|
12
|
Wang Y, Freund DM, Magdaong NM, Urban VS, Frank HA, Hegeman AD, Tang JKH. Impact of esterified bacteriochlorophylls on the biogenesis of chlorosomes in Chloroflexus aurantiacus. PHOTOSYNTHESIS RESEARCH 2014; 122:69-86. [PMID: 24880610 DOI: 10.1007/s11120-014-0017-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
A chlorosome is an antenna complex located on the cytoplasmic side of the inner membrane in green photosynthetic bacteria that contains tens of thousands of self-assembled bacteriochlorophylls (BChls). Green bacteria are known to incorporate various esterifying alcohols at the C-17 propionate position of BChls in the chlorosome. The effect of these functional substitutions on the biogenesis of the chlorosome has not yet been fully explored. In this report, we address this question by investigating various esterified bacteriochlorophyll c (BChl c) homologs in the thermophilic green non-sulfur bacterium Chloroflexus aurantiacus. Cultures were supplemented with exogenous long-chain alcohols at 52 °C (an optimal growth temperature) and 44 °C (a suboptimal growth temperature), and the morphology, optical properties and exciton transfer characteristics of chlorosomes were investigated. Our studies indicate that at 44 °C Cfl. aurantiacus synthesizes more carotenoids, incorporates more BChl c homologs with unsaturated and rigid polyisoprenoid esterifying alcohols and produces more heterogeneous BChl c homologs in chlorosomes. Substitution of phytol for stearyl alcohol of BChl c maintains similar morphology of the intact chlorosome and enhances energy transfer from the chlorosome to the membrane-bound photosynthetic apparatus. Different morphologies of the intact chlorosome versus in vitro BChl aggregates are suggested by small-angle neutron scattering. Additionally, phytol cultures and 44 °C cultures exhibit slow assembly of the chlorosome. These results suggest that the esterifying alcohol of BChl c contributes to long-range organization of BChls, and that interactions between BChls with other components are important to the assembly of the chlorosome. Possible mechanisms for how esterifying alcohols affect the biogenesis of the chlorosome are discussed.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Chemistry and Biochemistry, Clark University, Worcester, MA, 01610, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Tang JKH, Saikin SK, Pingali SV, Enriquez MM, Huh J, Frank HA, Urban VS, Aspuru-Guzik A. Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys J 2014; 105:1346-56. [PMID: 24047985 DOI: 10.1016/j.bpj.2013.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 11/16/2022] Open
Abstract
Green photosynthetic bacteria adjust the structure and functionality of the chlorosome-the light-absorbing antenna complex-in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study, we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of C. tepidum grows slower and incorporates fewer BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays (a) smaller cross-sectional radius and overall size, (b) simplified BChl c homologs with smaller side chains, (c) blue-shifted Qy absorption maxima, and (d) a sigmoid-shaped circular dichroism spectra. Using a theoretical model, we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome. Our report suggests a mechanism of metabolic regulation for chlorosome biogenesis.
Collapse
|
14
|
Tikh IB, Quin MB, Schmidt-Dannert C. A tale of two reductases: extending the bacteriochlorophyll biosynthetic pathway in E. coli. PLoS One 2014; 9:e89734. [PMID: 24586995 PMCID: PMC3931815 DOI: 10.1371/journal.pone.0089734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/23/2014] [Indexed: 12/23/2022] Open
Abstract
The creation of a synthetic microbe that can harvest energy from sunlight to drive its metabolic processes is an attractive approach to the economically viable biosynthetic production of target compounds. Our aim is to design and engineer a genetically tractable non-photosynthetic microbe to produce light-harvesting molecules. Previously we created a modular, multienzyme system for the heterologous production of intermediates of the bacteriochlorophyll (BChl) pathway in E. coli. In this report we extend this pathway to include a substrate promiscuous 8-vinyl reductase that can accept multiple intermediates of BChl biosynthesis. We present an informative comparative analysis of homologues of 8-vinyl reductase from the model photosynthetic organisms Rhodobacter sphaeroides and Chlorobaculum tepidum. The first purification of the enzymes leads to their detailed biochemical and biophysical characterization. The data obtained reveal that the two 8-vinyl reductases are substrate promiscuous, capable of reducing the C8-vinyl group of Mg protoporphyrin IX, Mg protoporphyrin IX methylester, and divinyl protochlorophyllide. However, activity is dependent upon the presence of chelated Mg2+ in the porphyrin ring, with no activity against non-Mg2+ chelated intermediates observed. Additionally, CD analyses reveal that the two 8-vinyl reductases appear to bind the same substrate in a different fashion. Furthermore, we discover that the different rates of reaction of the two 8-vinyl reductases both in vitro, and in vivo as part of our engineered system, results in the suitability of only one of the homologues for our BChl pathway in E. coli. Our results offer the first insights into the different functionalities of homologous 8-vinyl reductases. This study also takes us one step closer to the creation of a nonphotosynthetic microbe that is capable of harvesting energy from sunlight for the biosynthesis of molecules of choice.
Collapse
Affiliation(s)
- Ilya B. Tikh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Maureen B. Quin
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
15
|
Klatt CG, Liu Z, Ludwig M, Kühl M, Jensen SI, Bryant DA, Ward DM. Temporal metatranscriptomic patterning in phototrophic Chloroflexi inhabiting a microbial mat in a geothermal spring. THE ISME JOURNAL 2013; 7:1775-89. [PMID: 23575369 PMCID: PMC3749495 DOI: 10.1038/ismej.2013.52] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/10/2013] [Accepted: 02/13/2013] [Indexed: 11/09/2022]
Abstract
Filamentous anoxygenic phototrophs (FAPs) are abundant members of microbial mat communities inhabiting neutral and alkaline geothermal springs. Natural populations of FAPs related to Chloroflexus spp. and Roseiflexus spp. have been well characterized in Mushroom Spring, where they occur with unicellular cyanobacteria related to Synechococcus spp. strains A and B'. Metatranscriptomic sequencing was applied to the microbial community to determine how FAPs regulate their gene expression in response to fluctuating environmental conditions and resource availability over a diel period. Transcripts for genes involved in the biosynthesis of bacteriochlorophylls (BChls) and photosynthetic reaction centers were much more abundant at night. Both Roseiflexus spp. and Chloroflexus spp. expressed key genes involved in the 3-hydroxypropionate (3-OHP) carbon dioxide fixation bi-cycle during the day, when these FAPs have been thought to perform primarily photoheterotrophic and/or aerobic chemoorganotrophic metabolism. The expression of genes for the synthesis and degradation of storage polymers, including glycogen, polyhydroxyalkanoates and wax esters, suggests that FAPs produce and utilize these compounds at different times during the diel cycle. We summarize these results in a proposed conceptual model for temporal changes in central carbon metabolism and energy production of FAPs living in a natural environment. The model proposes that, at night, Chloroflexus spp. and Roseiflexus spp. synthesize BChl, components of the photosynthetic apparatus, polyhydroxyalkanoates and wax esters in concert with fermentation of glycogen. It further proposes that, in daytime, polyhydroxyalkanoates and wax esters are degraded and used as carbon and electron reserves to support photomixotrophy via the 3-OHP bi-cycle.
Collapse
Affiliation(s)
- Christian G Klatt
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgra¨nd, Umea°, Va¨sterbotten SE-90183, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Tang JKH, Xu Y, Muhlmann GM, Zare F, Khin Y, Tam SW. Temperature shift effect on the Chlorobaculum tepidum chlorosomes. PHOTOSYNTHESIS RESEARCH 2013; 115:23-41. [PMID: 23435510 DOI: 10.1007/s11120-013-9800-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
Chlorobaculum [Cba.] tepidum is known to grow optimally at 48-52 °C and can also be cultured at ambient temperatures. In this paper, we prepared constant temperature, temperature shift, and temperature shift followed by backshift cultures and investigated the intrinsic properties and spectral features of chlorosomes from those cultures using various approaches, including temperature-dependent measurements on circular dichroism (CD), UV-visible, and dynamic light scattering. Our studies indicate that (1) chlorosomes from constant temperature cultures at 50 and 30 °C exhibited more resistance to heat relative to temperature shift cultures; (2) as temperature increases bacteriochlorophyll c (BChl c) in chlorosomes is prone to demetalation, which forms bacteriopheophytin c, and degradation under aerobic conditions. Some BChl c aggregates inside reduced chlorosomes prepared in low-oxygen environments can reform after heat treatments; (3) temperature shift cultures synthesize and incorporate more BChl c homologs with a smaller substituent at C-8 on the chlorin ring and less BChl c homologs with a larger long-chain alcohol at C-17(3) versus constant-temperature cultures. We hypothesize that the long-chain alcohol at C-17(3) (and perhaps together with the substituent at C-8) may account for thermal stability of chlorosomes and the substituent at C-8 may assist self-assembling BChls; and (4) while almost identical absorption spectra are detected, chlorosomes from different growth conditions exhibited differences in the rotational length of the CD signal, and aerobic and reduced chlorosomes also display different Qy CD intensities. Further, chlorosomes exhibited changes of CD features in response to temperature increases. Additionally, we compare temperature-dependent studies for the Cba. tepidum chlorosomes and previous studies for the Chloroflexus aurantiacus chlorosomes. Together, our work provides useful and novel insights on the properties and organization of chlorosomes.
Collapse
|
17
|
Distribution and origin of oxygen-dependent and oxygen-independent forms of Mg-protoporphyrin monomethylester cyclase among phototrophic proteobacteria. Appl Environ Microbiol 2013; 79:2596-604. [PMID: 23396335 DOI: 10.1128/aem.00104-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Magnesium-protoporphyrin IX monomethylester cyclase is one of the key enzymes of the bacteriochlorophyll biosynthesis pathway. There exist two fundamentally different forms of this enzyme. The oxygen-dependent form, encoded by the gene acsF, catalyzes the formation of the bacteriochlorophyll fifth ring using oxygen, whereas the oxygen-independent form encoded by the gene bchE utilizes an oxygen atom extracted from water. The presence of acsF and bchE genes was surveyed in various phototrophic Proteobacteria using the available genomic data and newly designed degenerated primers. It was found that while the majority of purple nonsulfur bacteria contained both forms of the cyclase, the purple sulfur bacteria contained only the oxygen-independent form. All tested species of aerobic anoxygenic phototrophs contained acsF genes, but some of them also retained the bchE gene. In contrast to bchE phylogeny, the acsF phylogeny was in good agreement with 16S inferred phylogeny. Moreover, the survey of the genome data documented that the acsF gene occupies a conserved position inside the photosynthesis gene cluster, whereas the bchE location in the genome varied largely between the species. This suggests that the oxygen-dependent cyclase was recruited by purple phototrophic bacteria very early during their evolution. The primary sequence and immunochemical similarity with its cyanobacterial counterparts suggests that acsF may have been acquired by Proteobacteria via horizontal gene transfer from cyanobacteria. The acquisition of the gene allowed purple nonsulfur phototrophic bacteria to proliferate in the mildly oxygenated conditions of the Proterozoic era.
Collapse
|
18
|
O'Dell WB, Beatty KJ, Kuo-Hsiang Tang J, Blankenship RE, Urban VS, O'Neill H. Sol–gel entrapped light harvesting antennas: immobilization and stabilization of chlorosomes for energy harvesting. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm34357f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Comparative and Functional Genomics of Anoxygenic Green Bacteria from the Taxa Chlorobi, Chloroflexi, and Acidobacteria. FUNCTIONAL GENOMICS AND EVOLUTION OF PHOTOSYNTHETIC SYSTEMS 2012. [DOI: 10.1007/978-94-007-1533-2_3] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Tang KH, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 2011; 12:334. [PMID: 21714912 PMCID: PMC3150298 DOI: 10.1186/1471-2164-12-334] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/29/2011] [Indexed: 11/16/2022] Open
Abstract
Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. Conclusions The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology and Department of Chemistry, Campus Box 1137, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang KH, Zhu L, Urban VS, Collins AM, Biswas P, Blankenship RE. Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4816-4828. [PMID: 21405043 DOI: 10.1021/la104532b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chlorosomes, the peripheral light-harvesting antenna complex from green photosynthetic bacteria, are the largest and one of the most efficient light-harvesting antenna complexes found in nature. In contrast to other light-harvesting antennas, chlorosomes are constructed from more than 150,000 self-assembled bacteriochlorophylls (BChls) and contain relatively few proteins that play secondary roles. These unique properties have led to chlorosomes as an attractive candidate for developing biohybrid solar cell devices. In this article, we investigate the temperature and ionic strength effects on the viability of chlorosomes from the photosynthetic green bacterium Chloroflexus aurantiacus using small-angle neutron scattering and dynamic light scattering. Our studies indicate that chlorosomes remain intact up to 75 °C and that salt induces the formation of large aggregates of chlorosomes. No internal structural changes are observed for the aggregates. The salt-induced aggregation, which is a reversible process, is more efficient with divalent metal ions than with monovalent metal ions. Moreover, with treatment at 98 °C for 2 min, the bulk of the chlorosome pigments are undamaged, while the baseplate is destroyed. Chlorosomes without the baseplate remain rodlike in shape and are 30-40% smaller than with the baseplate attached. Further, chlorosomes are stable from pH 5.5 to 11.0. Together, this is the first time such a range of characterization tools have been used for chlorosomes, and this has enabled elucidation of properties that are not only important to understanding their functionality but also may be useful in biohybrid devices for effective light harvesting.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Campus Box 1137, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
22
|
Tang KH, Urban VS, Wen J, Xin Y, Blankenship RE. SANS investigation of the photosynthetic machinery of Chloroflexus aurantiacus. Biophys J 2011; 99:2398-407. [PMID: 20959079 DOI: 10.1016/j.bpj.2010.07.068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 07/18/2010] [Accepted: 07/27/2010] [Indexed: 11/30/2022] Open
Abstract
Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University in St. Louis, Missouri, USA
| | | | | | | | | |
Collapse
|
23
|
Tang KH, Feng X, Zhuang WQ, Alvarez-Cohen L, Blankenship RE, Tang YJ. Carbon flow of heliobacteria is related more to clostridia than to the green sulfur bacteria. J Biol Chem 2010; 285:35104-12. [PMID: 20807773 DOI: 10.1074/jbc.m110.163303] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recently discovered heliobacteria are the only Gram-positive photosynthetic bacteria that have been cultured. One of the unique features of heliobacteria is that they have properties of both the photosynthetic green sulfur bacteria (containing the type I reaction center) and Clostridia (forming heat-resistant endospores). Most of the previous studies of heliobacteria, which are strict anaerobes and have the simplest known photosynthetic apparatus, have focused on energy and electron transfer processes. It has been assumed that like green sulfur bacteria, the major carbon flow in heliobacteria is through the (incomplete) reductive (reverse) tricarboxylic acid cycle, whereas the lack of CO(2)-enhanced growth has not been understood. Here, we report studies to fill the knowledge gap of heliobacterial carbon metabolism. We confirm that the CO(2)-anaplerotic pathway is active during phototrophic growth and that isoleucine is mainly synthesized from the citramalate pathway. Furthermore, to our surprise, our results suggest that the oxidative (forward) TCA cycle is operative and more active than the previously reported reductive (reverse) tricarboxylic acid cycle. Both isotopomer analysis and activity assays suggest that citrate is produced by a putative (Re)-citrate synthase and then enters the oxidative (forward) TCA cycle. Moreover, in contrast to (Si)-citrate synthase, (Re)-citrate synthase produces a different isomer of 2-fluorocitrate that is not expected to inhibit the activity of aconitase.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
24
|
Tang KH, Blankenship RE. Both forward and reverse TCA cycles operate in green sulfur bacteria. J Biol Chem 2010; 285:35848-54. [PMID: 20650900 DOI: 10.1074/jbc.m110.157834] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anoxygenic green sulfur bacteria (GSBs) assimilate CO(2) autotrophically through the reductive (reverse) tricarboxylic acid (RTCA) cycle. Some organic carbon sources, such as acetate and pyruvate, can be assimilated during the phototrophic growth of the GSBs, in the presence of CO(2) or HCO(3)(-). It has not been established why the inorganic carbonis required for incorporating organic carbon for growth and how the organic carbons are assimilated. In this report, we probed carbon flux during autotrophic and mixotrophic growth of the GSB Chlorobaculum tepidum. Our data indicate the following: (a) the RTCA cycle is active during autotrophic and mixotrophic growth; (b) the flux from pyruvate to acetyl-CoA is very low and acetyl-CoA is synthesized through the RTCA cycle and acetate assimilation; (c) pyruvate is largely assimilated through the RTCA cycle; and (d) acetate can be assimilated via both of the RTCA as well as the oxidative (forward) TCA (OTCA) cycle. The OTCA cycle revealed herein may explain better cell growth during mixotrophic growth with acetate, as energy is generated through the OTCA cycle. Furthermore, the genes specific for the OTCA cycle are either absent or down-regulated during phototrophic growth, implying that the OTCA cycle is not complete, and CO(2) is required for the RTCA cycle to produce metabolites in the TCA cycle. Moreover, CO(2) is essential for assimilating acetate and pyruvate through the CO(2)-anaplerotic pathway and pyruvate synthesis from acetyl-CoA.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology and Chemistry, Washington University, St Louis, Missouri 63130, USA
| | | |
Collapse
|
25
|
Wen J, Harada J, Buyle K, Yuan K, Tamiaki H, Oh-Oka H, Loomis RA, Blankenship RE. Characterization of an FMO variant of Chlorobaculum tepidum carrying bacteriochlorophyll a esterified by geranylgeraniol. Biochemistry 2010; 49:5455-63. [PMID: 20521767 DOI: 10.1021/bi1006805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Fenna-Matthews-Olson light-harvesting antenna (FMO) protein has been a model system for understanding pigment-protein interactions in the energy transfer process in photosynthesis. All previous studies have utilized wild-type FMO proteins from several species. Here we report the purification and characterization of the first FMO protein variant generated via replacement of the esterifying alcohol at the C-17 propionate residue of bacteriochlorophyll (BChl) a, phytol, with geranylgeraniol, which possesses three more double bonds. The FMO protein still assembles with the modified pigment, but both the whole cell absorption and the biochemical purification indicate that the mutant cells contain a much less mature FMO protein. The gene expression was checked using qRT-PCR, and none of the genes encoding BChl a-binding proteins are strongly regulated at the transcriptional level. The smaller amount of the FMO protein in the mutant cell is probably due to the degradation of the apo-FMO protein at different stages after it does not bind the normal pigment. The absorption, fluorescence, and CD spectra of the purified FMO variant protein are similar to those of the wild-type FMO protein except the conformations of most pigments are more heterogeneous, which broadens the spectral bands. Interestingly, the lowest-energy pigment binding site seems to be unchanged and is the only peak that can be well resolved in 77 K absorption spectra. The excited-state lifetime of the variant FMO protein is unchanged from that of the wild type and shows a temperature-dependent modulation similar to that of the wild type. The variant FMO protein is less thermally stable than the wild type. The assembly of the FMO protein and also the implications of the decreased FMO/chlorosome stoichiometry are discussed in terms of the topology of these two antennas on the cytoplasmic membrane.
Collapse
Affiliation(s)
- Jianzhong Wen
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tang KH, Yue H, Blankenship RE. Energy metabolism of Heliobacterium modesticaldum during phototrophic and chemotrophic growth. BMC Microbiol 2010; 10:150. [PMID: 20497547 PMCID: PMC2887804 DOI: 10.1186/1471-2180-10-150] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 05/24/2010] [Indexed: 11/10/2022] Open
Abstract
Background Heliobacterium modesticaldum is a gram-positive nitrogen-fixing phototrophic bacterium that can grow either photoheterotrophically or chemotrophically but not photoautotrophically. Surprisingly, this organism is lacking only one gene for the complete reverse tricarboxylic acid (rTCA) cycle required for autotrophic carbon fixation. Along with the genomic information reported recently, we use multiple experimental approaches in this report to address questions regarding energy metabolic pathways in darkness, CO2 fixation, sugar assimilation and acetate metabolism. Results We present the first experimental evidence that D-ribose, D-fructose and D-glucose can be photoassimilated by H. modesticaldum as sole carbon sources in newly developed defined growth medium. Also, we confirm two non-autotrophic CO2-fixation pathways utilized by H. modesticaldum: reactions catalyzed by pyruvate:ferredoxin oxidoreductase and phosphoenolpyruvate carboxykinase, and report acetate excretion during phototrophic and chemotrophic growth. Further, genes responsible for pyruvate fermentation, which provides reducing power for nitrogen assimilation, carbon metabolism and hydrogen production, are either active or up-regulated during chemotrophic growth. The discovery of ferredoxin-NADP+ oxidoreductase (FNR) activity in cell extracts provides the reducing power required for carbon and nitrogen metabolisms. Moreover, we show that photosynthetic pigments are produced by H. modesticaldum during the chemotrophic growth, and demonstrate that H. modesticaldum performs nitrogen fixation during both phototrophic and chemotrophic growth. Conclusion Collectively, this report represents the first comprehensive studies for energy metabolism in heliobacteria, which have the simplest known photosynthetic machinery among the entire photosynthetic organisms. Additionally, our studies provide new and essential insights, as well as broaden current knowledge, on the energy metabolism of the thermophilic phototrophic bacterium H. modesticaldum during phototrophic and chemotrophic growth.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Biology, Campus Box 1137, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
27
|
Tang KH, Feng X, Tang YJ, Blankenship RE. Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114. PLoS One 2009; 4:e7233. [PMID: 19794911 PMCID: PMC2749216 DOI: 10.1371/journal.pone.0007233] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 09/04/2009] [Indexed: 11/30/2022] Open
Abstract
The Roseobacter clade of aerobic marine proteobacteria, which compose 10–25% of the total marine bacterial community, has been reported to fix CO2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s), in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B12 (cyanocobalamin). Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of 13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1) R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10–15% of protein carbon from CO2; (2) R. denitrificans employs the Entner-Doudoroff (ED) pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3) the Embden-Meyerhof-Parnas (EMP, glycolysis) pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK) cannot be detected in R. denitrificans; and (4) isoleucine can be synthesized from both threonine-dependent (20% total flux) and citramalate-dependent (80% total flux) pathways using pyruvate as the sole carbon source.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Xueyang Feng
- Department of Energy, Environment and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yinjie J. Tang
- Department of Energy, Environment and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Robert E. Blankenship
- Departments of Biology and Chemistry, Washington University in St. Louis, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
28
|
Envelope proteins of the CsmB/CsmF and CsmC/CsmD motif families influence the size, shape, and composition of chlorosomes in Chlorobaculum tepidum. J Bacteriol 2009; 191:7109-20. [PMID: 19749040 DOI: 10.1128/jb.00707-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chlorosome envelope of Chlorobaculum tepidum contains 10 proteins that belong to four structural motif families. A previous mutational study (N.-U. Frigaard, H. Li, K. J. Milks, and D. A. Bryant, J. Bacteriol. 186:646-653, 2004) suggested that some of these proteins might have redundant functions. Six multilocus mutants were constructed to test the effects of eliminating the proteins of the CsmC/CsmD and CsmB/CsmF motif families, and the resulting strains were characterized physiologically and biochemically. Mutants lacking all proteins of either motif family still assembled functional chlorosomes, and as measured by growth rates of the mutant strains, light harvesting was affected only at the lowest light intensities tested (9 and 32 micromol photons m(-2) s(-1)). The size, composition, and biogenesis of the mutant chlorosomes differed from those of wild-type chlorosomes. Mutants lacking proteins of the CsmC/CsmD motif family produced smaller chlorosomes than did the wild type, and the Q(y) absorbance maximum for the bacteriochlorophyll c aggregates in these chlorosomes was strongly blueshifted. Conversely, the chlorosomes of mutants lacking proteins of the CsmB/CsmF motif family were larger than wild-type chlorosomes, and the Q(y) absorption for their bacteriochlorophyll c aggregates was redshifted. When CsmH was eliminated in addition to other proteins of either motif family, chlorosomes had smaller diameters. These data show that the chlorosome envelope proteins of the CsmB/CsmF and CsmC/CsmD families play important roles in determining chlorosome size as well as the assembly and supramolecular organization of the bacteriochlorophyll c aggregates within the chlorosome.
Collapse
|