1
|
Bodle KB, Kirkland CM. Pharmaceutical impacts on aerobic granular sludge morphology and potential implications for abiotic removal. CHEMOSPHERE 2024; 350:141187. [PMID: 38211794 PMCID: PMC10843683 DOI: 10.1016/j.chemosphere.2024.141187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The goal of this study was to investigate abiotic pharmaceutical removal and abiotic pharmaceutical effects on aerobic granular sludge morphology. For 80 days, a pharmaceutical mixture containing approximately 150 μg/L each of diclofenac, erythromycin, and gemfibrozil was fed to an aerobic granular sludge sequencing batch reactor and granule characteristics were compared with those from a control reactor. Aqueous and solid phase pharmaceutical concentrations were monitored and staining was used to assess changes in biofilm structures. Solid phase pharmaceutical concentrations were elevated over the first 12 days of dosing; however, they then dropped, indicative of desorption. The lipid content in pharmaceutical-exposed granules declined by approximately half over the dosing period, though the relative concentrations of other key biofilm components (proteins, alpha-, and beta-polysaccharides) did not change. Batch experiments were conducted to try to find an explanation for the desorption observed, but reduced solid phase pharmaceutical concentrations could not be linked with the presence of common wastewater constituents such as ammonia or phosphate. Sorption of all three compounds was modeled best by the Henry isotherm, indicating that, even at 150 μg/L, granules' sorption site coverage was incomplete. Altogether, this study demonstrates that simplified batch systems may not accurately represent the complex abiotic processes occurring in flow-through, biotic systems.
Collapse
Affiliation(s)
- Kylie B Bodle
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA.
| | - Catherine M Kirkland
- Department of Civil Engineering, 205 Cobleigh Hall, Montana State University, Bozeman, MT, USA; Center for Biofilm Engineering, 366 Barnard Hall, Montana State University, Bozeman, MT, USA
| |
Collapse
|
2
|
The Peroxisome Proliferator-Activated Receptor α- Agonist Gemfibrozil Promotes Defense Against Mycobacterium abscessus Infections. Cells 2020; 9:cells9030648. [PMID: 32155958 PMCID: PMC7140404 DOI: 10.3390/cells9030648] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Peroxisome proliferator-activated receptor α (PPARα) shows promising potential to enhance host defenses against Mycobacterium tuberculosis infection. Herein we evaluated the protective effect of PPARα against nontuberculous mycobacterial (NTM) infections. Using a rapidly growing NTM species, Mycobacterium abscessus (Mabc), we found that the intracellular bacterial load and histopathological damage were increased in PPARα-null mice in vivo. In addition, PPARα deficiency led to excessive production of proinflammatory cytokines and chemokines after infection of the lung and macrophages. Notably, administration of gemfibrozil (GEM), a PPARα activator, significantly reduced the in vivo Mabc load and inflammatory response in mice. Transcription factor EB was required for the antimicrobial response against Mabc infection. Collectively, these results suggest that manipulation of PPARα activation has promising potential as a therapeutic strategy for NTM disease.
Collapse
|
3
|
Fenofibrate Facilitates Post-Active Tuberculosis Infection in Macrophages and is Associated with Higher Mortality in Patients under Long-Term Treatment. J Clin Med 2020; 9:jcm9020337. [PMID: 31991736 PMCID: PMC7073736 DOI: 10.3390/jcm9020337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 02/05/2023] Open
Abstract
Background: Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects and persists in macrophages. This study aimed to investigate the effects of long-term fenofibrate treatment in patients with tuberculosis (TB), and the intracellular viability of Mtb in human macrophages. Methods: Epidemiological data from the National Health Insurance Research Database of Taiwan were used to present outcomes of TB patients treated with fenofibrate. In the laboratory, we assessed Mtb infection in macrophages treated with or without fenofibrate. Mtb growth, lipid accumulation in macrophages, and expression of transcriptional genes were examined. Results: During 11 years of follow-up, TB patients treated with fenofibrate presented a higher risk of mortality. Longer duration of fenofibrate use was associated with a significantly higher risk of mortality. Treatment with fenofibrate significantly increased the number of bacilli in human macrophages in vitro. Fenofibrate did not reduce, but induced an increasing trend in the intracellular lipid content of macrophages. In addition, dormant genes of Mtb, icl1, tgs1, and devR, were markedly upregulated in response to fenofibrate treatment. Our results suggest that fenofibrate may facilitate intracellular Mtb persistence. Conclusions: Our data shows that long-term treatment with fenofibrate in TB patients is associated with a higher mortality. The underlying mechanisms may partly be explained by the upregulation of Mtb genes involved in lipid metabolism, enhanced intracellular growth of Mtb, and the ability of Mtb to sustain a nutrient-rich reservoir in human macrophages, observed during treatment with fenofibrate.
Collapse
|
4
|
Kim YS, Silwal P, Kim SY, Yoshimori T, Jo EK. Autophagy-activating strategies to promote innate defense against mycobacteria. Exp Mol Med 2019; 51:1-10. [PMID: 31827065 PMCID: PMC6906292 DOI: 10.1038/s12276-019-0290-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/03/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a major causal pathogen of human tuberculosis (TB), which is a serious health burden worldwide. The demand for the development of an innovative therapeutic strategy to treat TB is high due to drug-resistant forms of TB. Autophagy is a cell-autonomous host defense mechanism by which intracytoplasmic cargos can be delivered and then destroyed in lysosomes. Previous studies have reported that autophagy-activating agents and small molecules may be beneficial in restricting intracellular Mtb infection, even with multidrug-resistant Mtb strains. Recent studies have revealed the essential roles of host nuclear receptors (NRs) in the activation of the host defense through antibacterial autophagy against Mtb infection. In particular, we discuss the function of estrogen-related receptor (ERR) α and peroxisome proliferator-activated receptor (PPAR) α in autophagy regulation to improve host defenses against Mtb infection. Despite promising findings relating to the antitubercular effects of various agents, our understanding of the molecular mechanism by which autophagy-activating agents suppress intracellular Mtb in vitro and in vivo is lacking. An improved understanding of the antibacterial autophagic mechanisms in the innate host defense will eventually lead to the development of new therapeutic strategies for human TB. Therapies that promote intracellular digestion of microbes could prove a valuable addition to antibiotic weapons against tuberculosis. Mycobacterium tuberculosis (Mtb) establishes itself within immune cells, and employs a variety of tricks to protect itself as it sickens its host. Researchers led by Eun-Kyeong Jo at Chungnam National University, Daejeon, South Korea, have reviewed efforts to defeat this pathogen by jump-starting a cellular ‘recycling’ pathway called autophagy. Autophagy helps cells break down both biomolecules aggregates and potential invaders, but Mtb can elude such digestion. Jo and colleagues highlight antimycobacterial agents that can potentially render Mtb vulnerable to autophagy, as well as promising cellular targets that may allow researchers to access this process. For example, evidence suggests that agents that activate a regulatory protein such as ERRα or PPARα could stimulate cellular degradation of Mtb.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Soo Yeon Kim
- Drug & Disease Target Research Team, Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju, 28119, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University, Osaka, 565-0871, Japan.,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
5
|
Rossmassler K, Kim S, Broeckling CD, Galloway S, Prenni J, De Long SK. Impact of primary carbon sources on microbiome shaping and biotransformation of pharmaceuticals and personal care products. Biodegradation 2019; 30:127-145. [PMID: 30820709 DOI: 10.1007/s10532-019-09871-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Knowledge of the conditions that promote the growth and activity of pharmaceutical and personal care product (PPCP)-degrading microorganisms within mixed microbial systems are needed to shape microbiomes in biotreatment reactors and manage process performance. Available carbon sources influence microbial community structure, and specific carbon sources could potentially be added to end-of-treatment train biotreatment systems (e.g., soil aquifer treatment [SAT]) to select for the growth and activity of a range of microbial phylotypes that collectively degrade target PPCPs. Herein, the impacts of primary carbon sources on PPCP biodegradation and microbial community structure were explored to identify promising carbon sources for PPCP biotreatment application. Six types of primary carbon sources were investigated: casamino acids, two humic acid and peptone mixtures (high and low amounts of humic acid), molasses, an organic acids mixture, and phenol. Biodegradation was tracked for five PPCPs (diclofenac, 5-fluorouracil, gemfibrozil, ibuprofen, and triclosan). Primary carbon sources were found to differentially impact microbial community structures and rates and efficiencies of PPCP biotransformation. Of the primary carbon sources tested, casamino acids, organic acids, and phenol showed the fastest biotransformation; however, on a biomass-normalized basis, both humic acid-peptone mixtures showed comparable or superior biotransformation. By comparing microbial communities for the different primary carbon sources, abundances of unclassified Beijerinckiaceae, Beijerinckia, Sphingomonas, unclassified Sphingomonadaceae, Flavobacterium, unclassified Rhizobiales, and Nevskia were statistically linked with biotransformation of specific PPCPs.
Collapse
Affiliation(s)
- Karen Rossmassler
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA
- Department of Civil and Environmental Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Sarah Galloway
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, 1301 Campus Delivery, Fort Collins, CO, 80523, USA.
| |
Collapse
|
6
|
Chen YT, Kuo SC, Chao PW, Chang YY. Use of lipid-lowering agents is not associated with improved outcomes for tuberculosis patients on standard-course therapy: A population-based cohort study. PLoS One 2019; 14:e0210479. [PMID: 30633771 PMCID: PMC6329498 DOI: 10.1371/journal.pone.0210479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 12/25/2018] [Indexed: 01/23/2023] Open
Abstract
Objectives Animal and ex vitro studies suggested lipid-lowering agents (LLAs) may be used as an adjunct to standard anti- tuberculosis (TB) treatment. No human study has been conducted to date. Using the Taiwan National Health Insurance Research Database (NHIRD), the current population-based cohort study sought to examine the association between use of LLAs and outcomes of patients with pulmonary TB receiving anti-TB treatment. Methods Using a NHIRD from 2003 to 2010, this population-based cohort study retrospectively examined the association between LLAs (statins or fibrates) and the outcomes of patients with pulmonary TB receiving anti-TB treatment. Results A total of 1452 adult patients newly diagnosed with pulmonary TB during the study period were identified and compared with 5808 matched patients. In the LAA cohort, 1258 received statin, and 295 received fibrate. Compared with patients who did not take LLA, patients who took oral LLAs had similar incidence of treatment completion at 9, 12, and 24 months. Conclusions Neither statins nor fibrates provide clinical benefit superior to that achieved with standard anti-tuberculosis treatment. Future clinical trials should investigate the effects of statins and fibrates on short-course standard anti-TB therapy.
Collapse
Affiliation(s)
- Yung-Tai Chen
- Department of Medicine, Taipei City Hospital Heping Fuyou Branch, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shu-Chen Kuo
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Wen Chao
- School of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yea-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, National Yang-Ming University Hospital, Yilan, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Chang Y, Bai Y, Huo Y, Qu J. Benzophenone-4 Promotes the Growth of a Pseudomonas sp. and Biogenic Oxidation of Mn(II). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1262-1269. [PMID: 29336564 DOI: 10.1021/acs.est.7b05014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Interactions between microbes and micropollutants (MPs) play a crucial role in water purification or treatment. Current studies have generally focused on the direct degradation or cometabolism of MPs. Considering the increasing interest in and importance of the roles of MPs in microbial metabolism, we adopted an Mn(II)-oxidizing Pseudomonas sp. QJX-1 using tyrosine (Tyr) as the sole carbon and nitrogen source to investigate the effects of seven MPs on its growth and function. Six MPs exhibited an inhibition effect on bacterial growth and Mn(II) oxidation. Only benzophenone-4 (BP-4) promoted the growth of QJX-1 and biogenic oxidation Mn(II), but its concentration was not directly coupled to growth, which was unexpected. RNA-seq data suggested that the addition of BP-4 did not significantly change the basic metabolic function of QJX-1, but stimulated the upregulation of the pyruvate and gluconeogenesis metabolic pathways of Tyr for QJX-1 growth. Furthermore, protein identification and extracellular superoxide detection indicated that Mn(II) oxidation was largely driven by the formation of superoxide in response to Tyr starvation; the acceleration of superoxide production, due to BP-4 accelerating Tyr consumption, was responsible for the promotion effect of BP-4 on QJX-1 Mn(II) oxidation. Our findings highlight the dual effects that MPs can have on the growth and function of a single strain in aquatic ecosystem, i.e., the coexistence of inhibition and promotion.
Collapse
Affiliation(s)
- Yangyang Chang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology , Dalian 116024, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Yang Huo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
8
|
Slepikas L, Chiriano G, Perozzo R, Tardy S, Kranjc A, Patthey-Vuadens O, Ouertatani-Sakouhi H, Kicka S, Harrison CF, Scrignari T, Perron K, Hilbi H, Soldati T, Cosson P, Tarasevicius E, Scapozza L. In Silico Driven Design and Synthesis of Rhodanine Derivatives as Novel Antibacterials Targeting the Enoyl Reductase InhA. J Med Chem 2016; 59:10917-10928. [DOI: 10.1021/acs.jmedchem.5b01620] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Liudas Slepikas
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Gianpaolo Chiriano
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Remo Perozzo
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Sébastien Tardy
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Agata Kranjc
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Ophélie Patthey-Vuadens
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Hajer Ouertatani-Sakouhi
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Sébastien Kicka
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Christopher F. Harrison
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
| | - Tiziana Scrignari
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Karl Perron
- Microbiology
Unit, Department of Botany and Plant Biology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Hubert Hilbi
- Max
von Pettenkofer Institute, Department of Medicine, Ludwig-Maximilians University Munich, 80336 Munich, Germany
- Institute
of Medical Microbiology, Department of Medicine, University of Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland
| | - Thierry Soldati
- Department
of Biochemistry, University of Geneva, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| | - Pierre Cosson
- Department
of Cell Physiology and Metabolism, CMU, Rue Michel-Servet 1 CH-1211 Geneva, Switzerland
| | - Eduardas Tarasevicius
- Faculty
of Pharmacy, Lithuanian University of Health Sciences, LT 44307 Kaunas, Lithuania
| | - Leonardo Scapozza
- School
of Pharmaceutical Sciences, Department of Pharmaceutical Biochemistry, University of Geneva and University of Lausanne, 30 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
9
|
Effects of Lipid-Lowering Drugs on Vancomycin Susceptibility of Mycobacteria. Antimicrob Agents Chemother 2016; 60:6193-9. [PMID: 27503643 DOI: 10.1128/aac.00872-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/17/2016] [Indexed: 12/24/2022] Open
Abstract
Tuberculosis is still a cause of major concern, partly due to the emergence of multidrug-resistant strains. New drugs are therefore needed. Vancomycin can target mycobacteria with cell envelope deficiency. In this study, we used a vancomycin susceptibility assay to detect drugs hampering lipid synthesis in Mycobacterium bovis BCG and in Mycobacterium tuberculosis We tested three drugs already used to treat human obesity: tetrahydrolipstatin (THL), simvastatin, and fenofibrate. Only vancomycin and THL were able to synergize on M. bovis BCG and on M. tuberculosis, although mycobacteria could also be inhibited by simvastatin alone. Lipid analysis allowed us to identify several lipid modifications in M. tuberculosis H37Rv treated with those drugs. THL treatment mainly reduced the phthiocerol dimycocerosate (PDIM) content in the mycobacterial cell wall, providing an explanation for the synergy, since PDIM deficiency has been related to vancomycin susceptibility. Proteomic analysis suggested that bacteria treated with THL, in contrast to bacteria treated with simvastatin, tried to recover, inducing, among other reactions, lipid synthesis. The combination of THL and vancomycin should be considered a promising solution in developing new strategies to treat multidrug-resistant tuberculosis.
Collapse
|
10
|
Fozo EM, Rucks EA. The Making and Taking of Lipids: The Role of Bacterial Lipid Synthesis and the Harnessing of Host Lipids in Bacterial Pathogenesis. Adv Microb Physiol 2016; 69:51-155. [PMID: 27720012 DOI: 10.1016/bs.ampbs.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to survive environmental stressors, including those induced by growth in the human host, bacterial pathogens will adjust their membrane physiology accordingly. These physiological changes also include the use of host-derived lipids to alter their own membranes and feed central metabolic pathways. Within the host, the pathogen is exposed to many stressful stimuli. A resulting adaptation is for pathogens to scavenge the host environment for readily available lipid sources. The pathogen takes advantage of these host-derived lipids to increase or decrease the rigidity of their own membranes, to provide themselves with valuable precursors to feed central metabolic pathways, or to impact host signalling and processes. Within, we review the diverse mechanisms that both extracellular and intracellular pathogens employ to alter their own membranes as well as their use of host-derived lipids in membrane synthesis and modification, in order to increase survival and perpetuate disease within the human host. Furthermore, we discuss how pathogen employed mechanistic utilization of host-derived lipids allows for their persistence, survival and potentiation of disease. A more thorough understanding of all of these mechanisms will have direct consequences for the development of new therapeutics, and specifically, therapeutics that target pathogens, while preserving normal flora.
Collapse
Affiliation(s)
- E M Fozo
- University of Tennessee, Knoxville, TN, United States.
| | - E A Rucks
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States.
| |
Collapse
|
11
|
Gillmaier N, Schunder E, Kutzner E, Tlapák H, Rydzewski K, Herrmann V, Stämmler M, Lasch P, Eisenreich W, Heuner K. Growth-related Metabolism of the Carbon Storage Poly-3-hydroxybutyrate in Legionella pneumophila. J Biol Chem 2016; 291:6471-82. [PMID: 26792862 DOI: 10.1074/jbc.m115.693481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 11/06/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires disease, has a biphasic life cycle with a switch from a replicative to a transmissive phenotype. During the replicative phase, the bacteria grow within host cells in Legionella-containing vacuoles. During the transmissive phenotype and the postexponential (PE) growth phase, the pathogens express virulence factors, become flagellated, and leave the Legionella-containing vacuoles. Using (13)C labeling experiments, we now show that, under in vitro conditions, serine is mainly metabolized during the replicative phase for the biosynthesis of some amino acids and for energy generation. During the PE phase, these carbon fluxes are reduced, and glucose also serves as an additional carbon substrate to feed the biosynthesis of poly-3-hydroxybuyrate (PHB), an essential carbon source for transmissive L. pneumophila. Whole-cell FTIR analysis and comparative isotopologue profiling further reveal that a putative 3-ketothiolase (Lpp1788) and a PHB polymerase (Lpp0650), but not enzymes of the crotonyl-CoA pathway (Lpp0931-0933) are involved in PHB metabolism during the PE phase. However, the data also reflect that additional bypassing reactions for PHB synthesis exist in agreement with in vivo competition assays using Acanthamoeba castellannii or human macrophage-like U937 cells as host cells. The data suggest that substrate usage and PHB metabolism are coordinated during the life cycle of the pathogen.
Collapse
Affiliation(s)
- Nadine Gillmaier
- From the Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Eva Schunder
- Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and
| | - Erika Kutzner
- From the Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Hana Tlapák
- Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and
| | - Kerstin Rydzewski
- Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and
| | - Vroni Herrmann
- Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and
| | - Maren Stämmler
- ZBS 6 "Proteomics and Spectroscopy," Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Peter Lasch
- ZBS 6 "Proteomics and Spectroscopy," Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany
| | - Wolfgang Eisenreich
- From the Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany,
| | - Klaus Heuner
- Working group "Cellular Interactions of Bacterial Pathogens," ZBS 2, Robert Koch-Institute, Seestrasse 10, 13353 Berlin, Germany, and
| |
Collapse
|
12
|
Kjeldal H, Zhou NA, Wissenbach DK, von Bergen M, Gough HL, Nielsen JL. Genomic, Proteomic, and Metabolite Characterization of Gemfibrozil-Degrading Organism Bacillus sp. GeD10. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:744-755. [PMID: 26683816 DOI: 10.1021/acs.est.5b05003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Gemfibrozil is a widely used hypolipidemic and triglyceride lowering drug. Excess of the drug is excreted and discharged into the environment primarily via wastewater treatment plant effluents. Bacillus sp. GeD10, a gemfibrozil-degrader, was previously isolated from activated sludge. It is the first identified bacterium capable of degrading gemfibrozil. Gemfibrozil degradation by Bacillus sp. GeD10 was here studied through genome sequencing, quantitative proteomics and metabolite analysis. From the bacterial proteome of Bacillus sp. GeD10 1974 proteins were quantified, of which 284 proteins were found to be overabundant by more than 2-fold (FDR corrected p-value ≤0.032, fold change (log2) ≥ 1) in response to gemfibrozil exposure. Metabolomic analysis identified two hydroxylated intermediates as well as a glucuronidated hydroxyl-metabolite of gemfibrozil. Overall, gemfibrozil exposure in Bacillus sp. GeD10 increased the abundance of several enzymes potentially involved in gemfibrozil degradation as well as resulted in the production of several gemfibrozil metabolites. The potential catabolic pathway/modification included ring-hydroxylation preparing the substrate for subsequent ring cleavage by a meta-cleaving enzyme. The identified genes may allow for monitoring of potential gemfibrozil-degrading organisms in situ and increase the understanding of microbial processing of trace level contaminants. This study represents the first omics study on a gemfibrozil-degrading bacterium.
Collapse
Affiliation(s)
- Henrik Kjeldal
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| | - Nicolette A Zhou
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | | | - Martin von Bergen
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig , Leipzig, Germany
| | - Heidi L Gough
- University of Washington , Department of Civil and Environmental Engineering; More Hall 201 Box 352700, Seattle, Washington 98195-2700, United States
| | - Jeppe L Nielsen
- Aalborg University , Department of Chemistry and Bioscience; Fredrik Bajers Vej 7H, DK-9220 Aalborg, Denmark
| |
Collapse
|
13
|
Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections. PLoS One 2016; 11:e0146585. [PMID: 26751573 PMCID: PMC4713433 DOI: 10.1371/journal.pone.0146585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects.
Collapse
|
14
|
|
15
|
Kim SJ, Hong M, Song KD, Lee HK, Ryoo S, Heo TH. Normalization of the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells by fibrate pretreatment. Biol Res 2014; 47:42. [PMID: 25299393 PMCID: PMC4177238 DOI: 10.1186/0717-6287-47-42] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 09/05/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is a respiratory tract disease caused by Mycobacterium tuberculosis infection. M. tuberculosis exploits immune privilege to grow and divide in pleural macrophages. Fibrates are associated with the immune response and control lipid metabolism through glycolysis with β-oxidation of fatty acids. RESULTS In this study, we investigated the effect of fibrate pretreatment on the immune response during M. smegmatis infection in U937 cells, a human leukemic monocyte lymphoma cell line. The protein expression of tumor necrosis factor α (TNF-α), an inflammatory marker, and myeloid differentiation primary response gene 88 (MyD88), a toll like receptor adaptor molecule, in the infected group increased at 1 and 6 h after M. smegmatis infection of U937 cells. Acetyl coenzyme A acetyl transferase-1 (ACAT-1), peroxisome proliferator-activated receptor-α (PPAR-α), TNF-α, and MyD88 decreased in U937 cells treated with fibrates at 12 and 24 h after treatment. More than a 24 h pretreatment with fibrate resulted in similar expression levels of ACAT-1 and PPAR-α between infected vehicle control and infected groups which were pretreated with fibrate for 24 h. However, upon exposure to M. smegmatis, the cellular expression of the TNF-α and MyD88 in the infected groups pretreated with fibrate for 24 h decreased significantly compared to that in the infected vehicle group. CONCLUSION These results suggest that fibrate pretreatment normalized the levels of inflammatory molecules in Mycobacterium smegmatis-infected U937 cells. Further studies are needed to confirm the findings on pathophysiology and immune defense mechanism of U937 by fibrates during M. tuberculosis infection.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 336-795, Republic of Korea.
| | - Minho Hong
- Department of Biotechnology, Hoseo University, 165, Baebang, Asan, Chungnam, 336-795, Republic of Korea.
| | - Ki Duk Song
- The Animal Genomics and Breeding Center, Han-Kyong National University, Anseong, 336-795, Republic of Korea.
| | - Hak-Kyo Lee
- The Animal Genomics and Breeding Center, Han-Kyong National University, Anseong, 336-795, Republic of Korea.
| | - Sungweon Ryoo
- Korean Institute of Tuberculosis, Mansu-ri 482, Gangoe-myeon, Chungcheongbuk-do, 363-954, Cheongwon-gun,Republic of Korea.
| | - Tae-Hwe Heo
- Laboratory of Immunology, Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy, The Catholic University of Korea, Bucheon, 420-743, Republic of Korea. .,NP512, Hall of Cardinal Jin-Suk Cheong, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 420-743, Republic of Korea.
| |
Collapse
|
16
|
Franco IS, Shohdy N, Shuman HA. The Legionella pneumophila effector VipA is an actin nucleator that alters host cell organelle trafficking. PLoS Pathog 2012; 8:e1002546. [PMID: 22383880 PMCID: PMC3285593 DOI: 10.1371/journal.ppat.1002546] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/09/2012] [Indexed: 12/30/2022] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, invades and replicates within macrophages and protozoan cells inside a vacuole. The type IVB Icm/Dot secretion system is necessary for the translocation of effector proteins that modulate vesicle trafficking pathways in the host cell, thus avoiding phagosome-lysosome fusion. The Legionella VipA effector was previously identified by its ability to interfere with organelle trafficking in the Multivesicular Body (MVB) pathway when ectopically expressed in yeast. In this study, we show that VipA binds actin in vitro and directly polymerizes microfilaments without the requirement of additional proteins, displaying properties distinct from other bacterial actin nucleators. Microscopy studies revealed that fluorescently tagged VipA variants localize to puncta in eukaryotic cells. In yeast these puncta are associated with actin-rich regions and components of the Multivesicular Body pathway such as endosomes and the MVB-associated protein Bro1. During macrophage infection, native translocated VipA associated with actin patches and early endosomes. When ectopically expressed in mammalian cells, VipA-GFP displayed a similar distribution ruling out the requirement of additional effectors for binding to its eukaryotic targets. Interestingly, a mutant form of VipA, VipA-1, that does not interfere with organelle trafficking is also defective in actin binding as well as association with early endosomes and shows a homogeneous cytosolic localization. These results show that the ability of VipA to bind actin is related to its association with a specific subcellular location as well as its role in modulating organelle trafficking pathways. VipA constitutes a novel type of actin nucleator that may contribute to the intracellular lifestyle of Legionella by altering cytoskeleton dynamics to target host cell pathways.
Collapse
Affiliation(s)
- Irina Saraiva Franco
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.
| | | | | |
Collapse
|
17
|
Baures PW. Is RORγ a therapeutic target for treating Mycobacterium tuberculosis infections? Tuberculosis (Edinb) 2012; 92:95-9. [PMID: 22186085 DOI: 10.1016/j.tube.2011.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 01/05/2023]
Abstract
A link is hypothesized between inhibition of the retinoic acid receptor-related orphan receptor γ (RORγ) and treatment of Mycobacterium tuberculosis (Mtb) infection. An unexpected overlap was found between inhibitors of both Mtb H37Rv with RORγ in PubChem. Since RORγ is not present in Mtb, a commonality was reasoned to be cholesterol. Gemfibrozil is a RORγ inhibitor that was inactive against Mtb cells. Yet, gemfibrozil has been shown to inhibit Mtb growth in macrophages, supporting the hypothesis that RORγ inhibitors could show therapeutic benefit in Mtb infection.(7).
Collapse
Affiliation(s)
- Paul W Baures
- Department of Chemistry, 229 Main Street, Keene State College, Keene, NH 03435-2001, USA.
| |
Collapse
|
18
|
Metatranscriptomic analysis of the response of river biofilms to pharmaceutical products, using anonymous DNA microarrays. Appl Environ Microbiol 2010; 76:5432-9. [PMID: 20562274 DOI: 10.1128/aem.00873-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pharmaceutical products are released at low concentrations into aquatic environments following domestic wastewater treatment. Such low concentrations have been shown to induce transcriptional responses in microorganisms, which could have consequences on aquatic ecosystem dynamics. In order to test if these transcriptional responses could also be observed in complex river microbial communities, biofilm reactors were inoculated with water from two rivers of differing trophic statuses and subsequently treated with environmentally relevant doses (ng/liter to microg/liter range) of four pharmaceuticals (erythromycin [ER], gemfibrozil [GM], sulfamethazine [SN], and sulfamethoxazole [SL]). To monitor functional gene expression, we constructed a 9,600-feature anonymous DNA microarray platform onto which cDNA from the biofilms was hybridized. Pharmaceutical treatments induced both positive and negative transcriptional responses from biofilm microorganisms. For instance, ER induced the transcription of several stress, transcription, and replication genes, while GM, a lipid regulator, induced transcriptional responses from several genes involved in lipid metabolism. SN caused shifts in genes involved in energy production and conversion, and SL induced responses from a range of cell membrane and outer envelope genes, which in turn could affect biofilm formation. The results presented here demonstrate for the first time that low concentrations of small molecules can induce transcriptional changes in a complex microbial community. The relevance of these results also demonstrates the usefulness of anonymous DNA microarrays for large-scale metatranscriptomic studies of communities from differing aquatic ecosystems.
Collapse
|