1
|
Ehling-Schulz M, Lereclus D, Koehler TM. The Bacillus cereus Group: Bacillus Species with Pathogenic Potential. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0032-2018. [PMID: 31111815 PMCID: PMC6530592 DOI: 10.1128/microbiolspec.gpp3-0032-2018] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
The Bacillus cereus group includes several Bacillus species with closely related phylogeny. The most well-studied members of the group, B. anthracis, B. cereus, and B. thuringiensis, are known for their pathogenic potential. Here, we present the historical rationale for speciation and discuss shared and unique features of these bacteria. Aspects of cell morphology and physiology, and genome sequence similarity and gene synteny support close evolutionary relationships for these three species. For many strains, distinct differences in virulence factor synthesis provide facile means for species assignment. B. anthracis is the causative agent of anthrax. Some B. cereus strains are commonly recognized as food poisoning agents, but strains can also cause localized wound and eye infections as well as systemic disease. Certain B. thuringiensis strains are entomopathogens and have been commercialized for use as biopesticides, while some strains have been reported to cause infection in immunocompromised individuals. In this article we compare and contrast B. anthracis, B. cereus, and B. thuringiensis, including ecology, cell structure and development, virulence attributes, gene regulation and genetic exchange systems, and experimental models of disease.
Collapse
Affiliation(s)
- Monika Ehling-Schulz
- Institute of Microbiology, Department of Pathology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Theresa M Koehler
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX 77030
| |
Collapse
|
2
|
Petrobactin Protects against Oxidative Stress and Enhances Sporulation Efficiency in Bacillus anthracis Sterne. mBio 2018; 9:mBio.02079-18. [PMID: 30401780 PMCID: PMC6222121 DOI: 10.1128/mbio.02079-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacillus anthracis causes the disease anthrax, which is transmitted via its dormant, spore phase. However, conversion from bacillus to spore is a complex, energetically costly process that requires many nutrients, including iron. B. anthracis requires the siderophore petrobactin to scavenge iron from host environments. We show that, in the Sterne strain, petrobactin is required for efficient sporulation, even when ample iron is available. The petrobactin biosynthesis operon is expressed during sporulation, and petrobactin is biosynthesized during growth in high-iron sporulation medium, but instead of being exported, the petrobactin remains intracellular to protect against oxidative stress and improve sporulation. It is also required for full growth and sporulation in blood (bovine), an essential step for anthrax transmission between mammalian hosts. Bacillus anthracis is a Gram-positive bacillus that under conditions of environmental stress, such as low nutrients, can convert from a vegetative bacillus to a highly durable spore that enables long-term survival. The sporulation process is regulated by a sequential cascade of dedicated transcription factors but requires key nutrients to complete, one of which is iron. Iron acquisition by the iron-scavenging siderophore petrobactin is required for vegetative growth of B. anthracis under iron-depleted conditions and in the host. However, the extent to which petrobactin is involved in spore formation is unknown. This work shows that efficient in vitro sporulation of B. anthracis requires petrobactin, that the petrobactin biosynthesis operon (asbA to -F) is induced prior to sporulation, and that the siderophore itself associates with spores. Petrobactin is also required for oxidative stress protection during late-stage growth and for wild-type levels of sporulation in sporulation medium. Sporulation in bovine blood was found to be petrobactin dependent. Collectively, the in vitro contributions of petrobactin to sporulation as well as growth imply that petrobactin may be required for B. anthracis transmission via the spore during natural infections, in addition to its key known functions during active anthrax infections.
Collapse
|
3
|
Kiran MD, Bala S, Hirshberg M, Balaban N. YhgC protects Bacillus anthracis from oxidative stress. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bacillus anthracis can cause lethal inhalational anthrax and can be used as a bioweapon due to its ability to form spores and to survive under various environmental stress conditions. YhgC in bacilli are structural homologues of TRAP, a protein involved in stress response in staphylococci. To test the role of YhgC in B. anthracis, YhgC gene was deleted in B. anthracis strain Sterne and parent and mutant strains tested. Immunolocalization studies indicated that YhgC is clustered both on the cell surface and within the cytoplasm. Phenotypic analyses indicated that YhgC is an important factor for oxidative stress tolerance and for macrophage infection in vitro. Accordingly, transcriptomics studies indicated that yhgC has a profound effect on genes encoding for stress response regulatory proteins where it negatively regulates the expression of genes encoding for Class I and Class III stress response proteins belonging to the regulons hrcA (hrcA, grpE, dnaK, dnaJ, groEL and groES) and ctsR (ctsR, mcsA, mcsB, clpC/mecB, clpP1). Proteomics studies also indicated that YhgC positively regulates the expression of ClpP-2 and camelysin, which are proteins involved in adaptive responses and pathogenesis in various Gram-positive bacteria. Put together, these results suggest that YhgC is important for the survival of B. anthracis under oxidative stress conditions and thus inhibition of YhgC may compromise the ability of the bacteria to survive within the host.
Collapse
Affiliation(s)
- Madanahally D. Kiran
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- IQUUM Inc, Marlborough MA - USA
| | - Shashi Bala
- University of Massachusetts Medical School, Worcester, MA - USA
| | - Miriam Hirshberg
- EMBL Outstation – Hinxton, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge - United Kingdom
| | - Naomi Balaban
- Tufts University, Cummings School of Veterinary Medicine, North Grafton, MA - USA
- Yale University, Department of Chemical Engineering, New Haven, CT - USA
| |
Collapse
|
4
|
Hagan AK, Carlson PE, Hanna PC. Flying under the radar: The non-canonical biochemistry and molecular biology of petrobactin from Bacillus anthracis. Mol Microbiol 2016; 102:196-206. [PMID: 27425635 DOI: 10.1111/mmi.13465] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/01/2023]
Abstract
The dramatic, rapid growth of Bacillus anthracis that occurs during systemic anthrax implies a crucial requirement for the efficient acquisition of iron. While recent advances in our understanding of B. anthracis iron acquisition systems indicate the use of strategies similar to other pathogens, this review focuses on unique features of the major siderophore system, petrobactin. Ways that petrobactin differs from other siderophores include: A. unique ferric iron binding moieties that allow petrobactin to evade host immune proteins; B. a biosynthetic operon that encodes enzymes from both major siderophore biosynthesis classes; C. redundancy in membrane transport systems for acquisition of Fe-petrobactin holo-complexes; and, D. regulation that appears to be controlled predominately by sensing the host-like environmental signals of temperature, CO2 levels and oxidative stress, as opposed to canonical sensing of intracellular iron levels. We argue that these differences contribute in meaningful ways to B. anthracis pathogenesis. This review will also outline current major gaps in our understanding of the petrobactin iron acquisition system, some projected means for exploiting current knowledge, and potential future research directions.
Collapse
Affiliation(s)
- A K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109
| | - P E Carlson
- Laboratory of Mucosal Pathogens and Cellular Immunity, Division of Bacterial, Parasitic, and Allergenic Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 10903 New Hampshire Avenue, Building 52/72; Rm 3306, Silver Spring, MD, 20993
| | - P C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W. Medical Center Drive, 6703 Medical Science Building II, Ann Arbor, MI, 48109.
| |
Collapse
|
5
|
Ha NR, Lee SC, Hyun JW, Yoon MY. Development of inhibitory ssDNA aptamers for the FtsZ cell division protein from citrus canker phytopathogen. Process Biochem 2016. [DOI: 10.1016/j.procbio.2015.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Carlson PE, Bourgis AET, Hagan AK, Hanna PC. Global gene expression by Bacillus anthracis during growth in mammalian blood. Pathog Dis 2015; 73:ftv061. [PMID: 26316554 DOI: 10.1093/femspd/ftv061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2015] [Indexed: 01/03/2023] Open
Abstract
During the late stages of systemic anthrax, Bacillus anthracis grows rapidly in the host bloodstream. To identify potential genes necessary for this observed rapid growth, we defined the transcriptional profile of B. anthracis during in vitro growth in bovine blood. Genome-wide transcriptome analysis indicated that B. anthracis undergoes significant changes in its transcriptome profile during growth in blood, including the differential regulation of genes associated both with metabolism and known virulence factors. Collectively, these data provide a framework for future studies identifying specific B. anthracis factors required for growth in the mammalian bloodstream.
Collapse
Affiliation(s)
- Paul E Carlson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Alexandra E T Bourgis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Ada K Hagan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Philip C Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48104, USA
| |
Collapse
|
7
|
Cox CR, Jensen KR, Mondesire RR, Voorhees KJ. Rapid detection of Bacillus anthracis by γ phage amplification and lateral flow immunochromatography. J Microbiol Methods 2015; 118:51-6. [PMID: 26310605 DOI: 10.1016/j.mimet.2015.08.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 11/18/2022]
Abstract
New, rapid point-of-need diagnostic methods for Bacillus anthracis detection can enhance civil and military responses to accidental or deliberate dispersal of anthrax as a biological weapon. Current laboratory-based methods for clinical identification of B. anthracis require 12 to 120h, and are confirmed by plaque assay using the well-characterized γ typing phage, which requires an additional minimum of 24h for bacterial culture. To reduce testing time, the natural specificity of γ phage amplification was investigated in combination with lateral flow immunochromatography (LFI) for rapid, point-of-need B. anthracis detection. Phage-based LFI detection of B. anthracis Sterne was validated over a range of bacterial and phage concentrations with optimal detection achieved in as little as 2h from the onset of amplification with a threshold sensitivity of 2.5×10(4)cfu/mL. The novel use of γ phage amplification detected with a simple, inexpensive LFI assay provides a rapid, sensitive, highly accurate, and field-deployable method for diagnostic ID of B. anthracis in a fraction of the time required by conventional techniques, and without the need for extensive laboratory culture.
Collapse
Affiliation(s)
- Christopher R Cox
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| | - Kirk R Jensen
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| | | | - Kent J Voorhees
- Colorado School of Mines, Department of Chemistry and Geochemistry, Golden, CO 80401, United States
| |
Collapse
|
8
|
Dong X, McCoy E, Zhang M, Yang L. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores. J Environ Sci (China) 2014; 26:2526-2534. [PMID: 25499501 DOI: 10.1016/j.jes.2014.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/01/2014] [Accepted: 04/04/2014] [Indexed: 06/04/2023]
Abstract
Multi-walled carbon nanotube (MWCNT) sheet was fabricated from a drawable MWCNT forest and then deposited on poly(methyl methacrylate) film. The film was further coated with a natural antimicrobial peptide nisin. We studied the effects of nisin coating on the attachment of Bacillus anthracis spores, the germination of attached spores, and the subsequent biofilm formation from attached spores. It was found that the strong adsorptivity and the super hydrophobicity of MWCNTs provided an ideal platform for nisin coating. Nisin coating on MWCNT sheets decreased surface hydrophobicity, reduced spore attachment, and reduced the germination of attached spores by 3.5 fold, and further inhibited the subsequent biofilm formation by 94.6% compared to that on uncoated MWCNT sheet. Nisin also changed the morphology of vegetative cells in the formed biofilm. The results of this study demonstrated that the anti-adhesion and antimicrobial effect of nisin in combination with the physical properties of carbon nanotubes had the potential in producing effective anti-biofilm formation surfaces.
Collapse
Affiliation(s)
- Xiuli Dong
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| | - Eric McCoy
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA
| | - Mei Zhang
- Department of Industrial & Manufacturing Engineering, Florida State University, Tallahassee, FL, USA
| | - Liju Yang
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise (BRITE), North Carolina Central University, Durham, NC, USA.
| |
Collapse
|
9
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Barendt S, Lee H, Birch C, Nakano MM, Jones M, Zuber P. Transcriptomic and phenotypic analysis of paralogous spx gene function in Bacillus anthracis Sterne. Microbiologyopen 2013; 2:695-714. [PMID: 23873705 PMCID: PMC3831629 DOI: 10.1002/mbo3.109] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/05/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022] Open
Abstract
Spx of Bacillus subtilis is a redox-sensitive protein, which, under disulfide stress, interacts with RNA polymerase to activate genes required for maintaining thiol homeostasis. Spx orthologs are highly conserved among low %GC Gram-positive bacteria, and often exist in multiple paralogous forms. In this study, we used B. anthracis Sterne, which harbors two paralogous spx genes, spxA1 and spxA2, to examine the phenotypes of spx null mutations and to identify the genes regulated by each Spx paralog. Cells devoid of spxA1 were sensitive to diamide and hydrogen peroxide, while the spxA1 spoxA2 double mutant was hypersensitive to the thiol-specific oxidant, diamide. Bacillus anthracis Sterne strains expressing spxA1DD or spxA2DD alleles encoding protease-resistant products were used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses in order to uncover genes under SpxA1, SpxA2, or SpxA1/SpxA2 control. Comparison of transcriptomes identified many genes that were upregulated when either SpxA1DD or SpxA2DD was produced, but several genes were uncovered whose transcript levels increased in only one of the two SpxADD-expression strains, suggesting that each Spx paralog governs a unique regulon. Among genes that were upregulated were those encoding orthologs of proteins that are specifically involved in maintaining intracellular thiol homeostasis or alleviating oxidative stress. Some of these genes have important roles in B. anthracis pathogenesis, and a large number of upregulated hypothetical genes have no homology outside of the B. cereus/thuringiensis group. Microarray and RT-qPCR analyses also unveiled a regulatory link that exists between the two spx paralogous genes. The data indicate that spxA1 and spxA2 are transcriptional regulators involved in relieving disulfide stress but also control a set of genes whose products function in other cellular processes. Bacillus anthracis harbors two paralogs of the global transcriptional regulator of stress response, SpxA. SpxA1 and SpxA2 contribute to disulfide stress tolerance, but only SpxA1 functions in resistance to peroxide. Transcriptome analysis uncovered potential SpxA1 and SpxA2 regulon members, which include genes activated by both paralogs. However, paralog-specific gene activation was also observed. Genes encoding glutamate racemase, CoA disulfide reductase, and products functioning in bacillithiol biosynthesis, are among the genes activated by the SpxA paralogs.
Collapse
Affiliation(s)
- Skye Barendt
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health and Science University, Beaverton, Oregon
| | | | | | | | | | | |
Collapse
|
11
|
Cotruvo JA, Stubbe J. Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study. Metallomics 2012; 4:1020-36. [PMID: 22991063 PMCID: PMC3488304 DOI: 10.1039/c2mt20142a] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(ii) and manganese(ii) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe(II) as a Lewis acid under normal growth conditions but which switch to Mn(II) under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe(II) and Mn(II), the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, "discrimination" between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA.; Fax: +1 617 324-0505; Tel: +1 617 253-1814
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Passalacqua KD, Varadarajan A, Weist C, Ondov BD, Byrd B, Read TD, Bergman NH. Strand-specific RNA-seq reveals ordered patterns of sense and antisense transcription in Bacillus anthracis. PLoS One 2012; 7:e43350. [PMID: 22937038 PMCID: PMC3425587 DOI: 10.1371/journal.pone.0043350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 07/23/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although genome-wide transcriptional analysis has been used for many years to study bacterial gene expression, many aspects of the bacterial transcriptome remain undefined. One example is antisense transcription, which has been observed in a number of bacteria, though the function of antisense transcripts, and their distribution across the bacterial genome, is still unclear. METHODOLOGY/PRINCIPAL FINDINGS Single-stranded RNA-seq results revealed a widespread and non-random pattern of antisense transcription covering more than two thirds of the B. anthracis genome. Our analysis revealed a variety of antisense structural patterns, suggesting multiple mechanisms of antisense transcription. The data revealed several instances of sense and antisense expression changes in different growth conditions, suggesting that antisense transcription may play a role in the ways in which B. anthracis responds to its environment. Significantly, genome-wide antisense expression occurred at consistently higher levels on the lagging strand, while the leading strand showed very little antisense activity. Intrasample gene expression comparisons revealed a gene dosage effect in all growth conditions, where genes farthest from the origin showed the lowest overall range of expression for both sense and antisense directed transcription. Additionally, transcription from both strands was verified using a novel strand-specific assay. The variety of structural patterns we observed in antisense transcription suggests multiple mechanisms for this phenomenon, suggesting that some antisense transcription may play a role in regulating the expression of key genes, while some may be due to chromosome replication dynamics and transcriptional noise. CONCLUSIONS/SIGNIFICANCE Although the variety of structural patterns we observed in antisense transcription suggest multiple mechanisms for antisense expression, our data also clearly indicate that antisense transcription may play a genome-wide role in regulating the expression of key genes in Bacillus species. This study illustrates the surprising complexity of prokaryotic RNA abundance for both strands of a bacterial chromosome.
Collapse
Affiliation(s)
- Karla D. Passalacqua
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Division of Infectious Diseases & Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anjana Varadarajan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Charlotte Weist
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian D. Ondov
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
| | - Benjamin Byrd
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Timothy D. Read
- Division of Infectious Diseases & Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas H. Bergman
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- National Biodefense Analysis and Countermeasures Center, Frederick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
13
|
Tu WY, Pohl S, Summpunn P, Hering S, Kerstan S, Harwood CR. Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiology (Reading) 2012; 158:636-647. [DOI: 10.1099/mic.0.057000-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Wang Yung Tu
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Susanne Pohl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pijug Summpunn
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Silvio Hering
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Sandra Kerstan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Colin R. Harwood
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Abstract
Although successful iron acquisition by pathogens within a host is a prerequisite for the establishment of infection, surprisingly little is known about the intracellular distribution of iron within bacterial pathogens. We have used a combination of anaerobic native liquid chromatography, inductively coupled plasma mass spectrometry, principal-component analysis, and peptide mass fingerprinting to investigate the cytosolic iron distribution in the pathogen Bacillus anthracis. Our studies identified three of the major iron pools as being associated with the electron transfer protein ferredoxin, the miniferritin Dps2, and the superoxide dismutase (SOD) enzymes SodA1 and SodA2. Although both SOD isozymes were predicted to utilize manganese cofactors, quantification of the metal ions associated with SodA1 and SodA2 in cell extracts established that SodA1 is associated with both manganese and iron, whereas SodA2 is bound exclusively to iron in vivo. These data were confirmed by in vitro assays using recombinant protein preparations, showing that SodA2 is active with an iron cofactor, while SodA1 is cambialistic, i.e., active with manganese or iron. Furthermore, we observe that B. anthracis cells exposed to superoxide stress increase their total iron content more than 2-fold over 60 min, while the manganese and zinc contents are unaffected. Notably, the acquired iron is not localized to the three identified cytosolic iron pools.
Collapse
|
15
|
The iron-binding protein Dps2 confers peroxide stress resistance on Bacillus anthracis. J Bacteriol 2011; 194:925-31. [PMID: 22155779 DOI: 10.1128/jb.06005-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential nutrient that is implicated in most cellular oxidation reactions. However, iron is a highly reactive element that, if not appropriately chaperoned, can react with endogenously and exogenously generated oxidants such as hydrogen peroxide to generate highly toxic hydroxyl radicals. Dps proteins (DNA-binding proteins from starved cells) form a distinct class (the miniferritins) of iron-binding proteins within the ferritin superfamily. Bacillus anthracis encodes two Dps-like proteins, Dps1 and Dps2, the latter being one of the main iron-containing proteins in the cytoplasm. In this study, the function of Dps2 was characterized in vivo. A B. anthracis Δdps2 mutant was constructed by double-crossover mutagenesis. The growth of the Δdps2 mutant was unaffected by excess iron or iron-limiting conditions, indicating that the primary role of Dps2 is not that of iron sequestration and storage. However, the Δdps2 mutant was highly sensitive to H(2)O(2), and pretreatment of the cells with the iron chelator deferoxamine mesylate (DFM) significantly reduced its sensitivity to H(2)O(2) stress. In addition, the transcription of dps2 was upregulated by H(2)O(2) treatment and derepressed in a perR mutant, indicating that dps2 is a member of the regulon controlled by the PerR regulator. This indicates that the main role of Dps2 is to protect cells from peroxide stress by inhibiting the iron-catalyzed production of OH.
Collapse
|
16
|
Babu MMG, Sridhar J, Gunasekaran P. Global transcriptome analysis of Bacillus cereus ATCC 14579 in response to silver nitrate stress. J Nanobiotechnology 2011; 9:49. [PMID: 22071005 PMCID: PMC3247866 DOI: 10.1186/1477-3155-9-49] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022] Open
Abstract
Silver nanoparticles (AgNPs) were synthesized using Bacillus cereus strains. Earlier, we had synthesized monodispersive crystalline silver nanoparticles using B. cereus PGN1 and ATCC14579 strains. These strains have showed high level of resistance to silver nitrate (1 mM) but their global transcriptomic response has not been studied earlier. In this study, we investigated the cellular and metabolic response of B. cereus ATCC14579 treated with 1 mM silver nitrate for 30 & 60 min. Global expression profiling using genomic DNA microarray indicated that 10% (n = 524) of the total genes (n = 5234) represented on the microarray were up-regulated in the cells treated with silver nitrate. The majority of genes encoding for chaperones (GroEL), nutrient transporters, DNA replication, membrane proteins, etc. were up-regulated. A substantial number of the genes encoding chemotaxis and flagellar proteins were observed to be down-regulated. Motility assay of the silver nitrate treated cells revealed reduction in their chemotactic activity compared to the control cells. In addition, 14 distinct transcripts overexpressed from the 'empty' intergenic regions were also identified and proposed as stress-responsive non-coding small RNAs.
Collapse
Affiliation(s)
- Malli Mohan Ganesh Babu
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, India
| | | | | |
Collapse
|
17
|
Pohl S, Tu WY, Aldridge PD, Gillespie C, Hahne H, Mäder U, Read TD, Harwood CR. Combined proteomic and transcriptomic analysis of the response of Bacillus anthracis
to oxidative stress. Proteomics 2011; 11:3036-55. [DOI: 10.1002/pmic.201100085] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 03/28/2011] [Accepted: 04/05/2011] [Indexed: 11/12/2022]
|
18
|
The role of glyoxalases for sugar stress and aging, with relevance for dyskinesia, anxiety, dementia and Parkinson's disease. Aging (Albany NY) 2011; 3:5-9. [PMID: 21248374 PMCID: PMC3047129 DOI: 10.18632/aging.100258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
Lee JY, Passalacqua KD, Hanna PC, Sherman DH. Regulation of petrobactin and bacillibactin biosynthesis in Bacillus anthracis under iron and oxygen variation. PLoS One 2011; 6:e20777. [PMID: 21673962 PMCID: PMC3108971 DOI: 10.1371/journal.pone.0020777] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Bacillus anthracis produces two catecholate siderophores, petrobactin and bacillibactin, under iron-limited conditions. Here, we investigate how variable iron and oxygen concentrations influence the biosynthetic output of both siderophores in B. anthracis. In addition, we describe the differential levels of transcription of select genes within the B. anthracis siderophore biosynthetic operons that are responsible for synthesis of petrobactin and bacillibactin, during variable growth conditions. METHODOLOGY/PRINCIPAL FINDINGS Accumulation of bacillibactin in B. anthracis Sterne (34F(2)) and in a mutant lacking the major superoxide dismutase (ΔsodA1) was almost completely repressed by the addition of 20 µM of iron. In contrast, petrobactin synthesis in both strains continued up to 20 µM of iron. Accumulation of petrobactin and bacillibactin showed a slight increase with addition of low levels of paraquat-induced oxidative stress in wild type B. anthracis Sterne. Cultures grown with high aeration resulted in greater accumulation of petrobactin relative to low aeration cultures, and delayed the repressive effect of added iron. Conversely, iron-depleted cultures grown with low aeration resulted in increased levels of bacillibactin. No difference was found in overall superoxide dismutase (SOD) activity or transcriptional levels of the sodA1 and sodA2 genes between iron-depleted and iron-replete conditions at high or low aeration, suggesting that SOD regulation and iron metabolism are separate in B. anthracis. The highest transcription of the gene asbB, part of the petrobactin biosynthetic operon, occurred under iron-limitation with high aeration, but transcription was readily detectable even under iron-replete conditions and in low aeration. The gene dhbC, a member of the bacillibactin biosynthetic operon, was only transcribed under conditions of iron-depletion, regardless of growth aeration. CONCLUSION These data suggest that bacillibactin regulation is highly sensitive to iron-concentration. In contrast, although regulation of petrobactin is less dependent on iron, it is likely subject to additional levels of regulation that may contribute to virulence of B. anthracis.
Collapse
Affiliation(s)
- Jung Yeop Lee
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Karla D. Passalacqua
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Philip C. Hanna
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David H. Sherman
- Life Sciences Institute and Departments of Medicinal Chemistry, Chemistry, Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
20
|
Investigating the genome diversity of B. cereus and evolutionary aspects of B. anthracis emergence. Genomics 2011; 98:26-39. [PMID: 21447378 DOI: 10.1016/j.ygeno.2011.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/08/2011] [Accepted: 03/21/2011] [Indexed: 12/25/2022]
Abstract
Here we report the use of a multi-genome DNA microarray to investigate the genome diversity of Bacillus cereus group members and elucidate the events associated with the emergence of Bacillus anthracis the causative agent of anthrax-a lethal zoonotic disease. We initially performed directed genome sequencing of seven diverse B. cereus strains to identify novel sequences encoded in those genomes. The novel genes identified, combined with those publicly available, allowed the design of a "species" DNA microarray. Comparative genomic hybridization analyses of 41 strains indicate that substantial heterogeneity exists with respect to the genes comprising functional role categories. While the acquisition of the plasmid-encoded pathogenicity island (pXO1) and capsule genes (pXO2) represents a crucial landmark dictating the emergence of B. anthracis, the evolution of this species and its close relatives was associated with an overall shift in the fraction of genes devoted to energy metabolism, cellular processes, transport, as well as virulence.
Collapse
|
21
|
Abstract
Coping with oxidative stress originating from oxidizing compounds or reactive oxygen species (ROS), associated with the exposure to agents that cause environmental stresses, is one of the prerequisites for an aerobic lifestyle of Bacillus spp. such as B. subtilis, B. cereus and B. anthracis. This minireview highlights novel insights in the primary oxidative stress response caused by oxidizing compounds including hydrogen peroxide and the secondary oxidative stress responses apparent upon exposure to a range of agents and conditions leading to environmental stresses such as antibiotics, heat and acid. Insights in the pathways and damaging radicals involved have been compiled based among others on transcriptome studies, network analyses and fluorescence techniques for detection of ROS at single cell level. Exploitation of the current knowledge for the control of spoilage and pathogenic bacteria is discussed.
Collapse
Affiliation(s)
- Maarten Mols
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands.
| | | |
Collapse
|
22
|
Parsonage D, Newton GL, Holder RC, Wallace BD, Paige C, Hamilton CJ, Dos Santos PC, Redinbo MR, Reid SD, Claiborne A. Characterization of the N-acetyl-α-D-glucosaminyl l-malate synthase and deacetylase functions for bacillithiol biosynthesis in Bacillus anthracis . Biochemistry 2010; 49:8398-414. [PMID: 20799687 DOI: 10.1021/bi100698n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Bacillithiol (Cys-GlcN-malate, BSH) has recently been identified as a novel low-molecular weight thiol in Bacillus anthracis, Staphylococcus aureus, and several other Gram-positive bacteria lacking glutathione and mycothiol. We have now characterized the first two enzymes for the BSH biosynthetic pathway in B. anthracis, which combine to produce α-d-glucosaminyl l-malate (GlcN-malate) from UDP-GlcNAc and l-malate. The structure of the GlcNAc-malate intermediate has been determined, as have the kinetic parameters for the BaBshA glycosyltransferase (→GlcNAc-malate) and the BaBshB deacetylase (→GlcN-malate). BSH is one of only two natural products reported to contain a malyl glycoside, and the crystal structure of the BaBshA-UDP-malate ternary complex, determined in this work at 3.3 Å resolution, identifies several active-site interactions important for the specific recognition of l-malate, but not other α-hydroxy acids, as the acceptor substrate. In sharp contrast to the structures reported for the GlcNAc-1-d-myo-inositol-3-phosphate synthase (MshA) apo and ternary complex forms, there is no major conformational change observed in the structures of the corresponding BaBshA forms. A mutant strain of B. anthracis deficient in the BshA glycosyltransferase fails to produce BSH, as predicted. This B. anthracis bshA locus (BA1558) has been identified in a transposon-site hybridization study as required for growth, sporulation, or germination [Day, W. A., Jr., Rasmussen, S. L., Carpenter, B. M., Peterson, S. N., and Friedlander, A. M. (2007) J. Bacteriol. 189, 3296-3301], suggesting that the biosynthesis of BSH could represent a target for the development of novel antimicrobials with broad-spectrum activity against Gram-positive pathogens like B. anthracis. The metabolites that function in thiol redox buffering and homeostasis in Bacillus are not well understood, and we present a composite picture based on this and other recent work.
Collapse
Affiliation(s)
- Derek Parsonage
- Center for Structural Biology, Wake Forest University School of Medicine,Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Torrents E, Sjöberg BM. Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis. Biol Chem 2010; 391:229-234. [PMID: 20030587 DOI: 10.1515/bc.2010.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacillus anthracis is a severe mammalian pathogen. The deoxyribonucleotides necessary for DNA replication and repair are provided via the ribonucleotide reductase (RNR) enzyme. RNR is also important for spore germination and cell proliferation upon infection. We show that the expression of B. anthracis class Ib RNR responds to the environment that the pathogen encounters upon infection. We also show that several anti-proliferative agents (radical scavengers) specifically inhibit the B. anthracis RNR. Owing to the importance of RNR in the pathogenic infection process, our results highlight a promising potential to inhibit the growth of B. anthracis early during infection.
Collapse
Affiliation(s)
- Eduard Torrents
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691 Stockholm, Sweden
- Cellular Biotechnology, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, E-08028 Barcelona, Spain
| | - Britt-Marie Sjöberg
- Department of Molecular Biology and Functional Genomics, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
24
|
Soares NC, Cabral MP, Gayoso C, Mallo S, Rodriguez-Velo P, Fernández-Moreira E, Bou G. Associating Growth-Phase-Related Changes in the Proteome of Acinetobacter baumannii with Increased Resistance to Oxidative Stress. J Proteome Res 2010; 9:1951-64. [DOI: 10.1021/pr901116r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Nelson C. Soares
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Maria P. Cabral
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Carmen Gayoso
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Susana Mallo
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Patricia Rodriguez-Velo
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Esteban Fernández-Moreira
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| | - Germán Bou
- Servicio de Microbiologia-INIBIC, Complejo Hospitalario Universitario La Coruña, As Xubias s/n, 15006 La Coruña, Spain
| |
Collapse
|
25
|
Systems integration of biodefense omics data for analysis of pathogen-host interactions and identification of potential targets. PLoS One 2009; 4:e7162. [PMID: 19779614 PMCID: PMC2745575 DOI: 10.1371/journal.pone.0007162] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 08/14/2009] [Indexed: 11/19/2022] Open
Abstract
The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification.
Collapse
|
26
|
Carlson PE, Carr KA, Janes BK, Anderson EC, Hanna PC. Transcriptional profiling of Bacillus anthracis Sterne (34F2) during iron starvation. PLoS One 2009; 4:e6988. [PMID: 19768119 PMCID: PMC2742718 DOI: 10.1371/journal.pone.0006988] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 08/06/2009] [Indexed: 12/31/2022] Open
Abstract
Lack of available iron is one of many environmental challenges that a bacterium encounters during infection and adaptation to iron starvation is important for the pathogen to efficiently replicate within the host. Here we define the transcriptional response of B. anthracis Sterne (34F2) to iron depleted conditions. Genome-wide transcript analysis showed that B. anthracis undergoes considerable changes in gene expression during growth in iron-depleted media, including the regulation of known and candidate virulence factors. Two genes encoding putative internalin proteins were chosen for further study. Deletion of either gene (GBAA0552 or GBAA1340) resulted in attenuation in a murine model of infection. This attenuation was amplified in a double mutant strain. These data define the transcriptional changes induced during growth in low iron conditions and illustrate the potential of this dataset in the identification of putative virulence determinants for future study.
Collapse
Affiliation(s)
- Paul E. Carlson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katherine A. Carr
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brian K. Janes
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Erica C. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | | |
Collapse
|
27
|
Koehler TM. Bacillus anthracis physiology and genetics. Mol Aspects Med 2009; 30:386-96. [PMID: 19654018 DOI: 10.1016/j.mam.2009.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 07/28/2009] [Indexed: 01/11/2023]
Abstract
Bacillus anthracis is a member of the Bacillus cereus group species (also known as the "group 1 bacilli"), a collection of Gram-positive spore-forming soil bacteria that are non-fastidious facultative anaerobes with very similar growth characteristics and natural genetic exchange systems. Despite their close physiology and genetics, the B. cereus group species exhibit certain species-specific phenotypes, some of which are related to pathogenicity. B. anthracis is the etiologic agent of anthrax. Vegetative cells of B. anthracis produce anthrax toxin proteins and a poly-d-glutamic acid capsule during infection of mammalian hosts and when cultured in conditions considered to mimic the host environment. The genes associated with toxin and capsule synthesis are located on the B. anthracis plasmids, pXO1 and pXO2, respectively. Although plasmid content is considered a defining feature of the species, pXO1- and pXO2-like plasmids have been identified in strains that more closely resemble other members of the B. cereus group. The developmental nature of B. anthracis and its pathogenic (mammalian host) and environmental (soil) lifestyles of make it an interesting model for study of niche-specific bacterial gene expression and physiology.
Collapse
Affiliation(s)
- Theresa M Koehler
- Department of Microbiology and Molecular Genetics, The University of Texas, Houston Health Science Center, Houston, TX, United States.
| |
Collapse
|
28
|
Passalacqua KD, Varadarajan A, Byrd B, Bergman NH. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. PLoS One 2009; 4:e4904. [PMID: 19295911 PMCID: PMC2654142 DOI: 10.1371/journal.pone.0004904] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Background Bacillus species are spore-forming bacteria that are ubiquitous in the environment and display a range of virulent and avirulent phenotypes. This range is particularly evident in the Bacillus cereus sensu lato group; where closely related strains cause anthrax, food-borne illnesses, and pneumonia, but can also be non-pathogenic. Although much of this phenotypic range can be attributed to the presence or absence of a few key virulence factors, there are other virulence-associated loci that are conserved throughout the B. cereus group, and we hypothesized that these genes may be regulated differently in pathogenic and non-pathogenic strains. Methodology/Principal Findings Here we report transcriptional profiles of three closely related but phenotypically unique members of the Bacillus cereus group—a pneumonia-causing B. cereus strain (G9241), an attenuated strain of B. anthracis (Sterne 34F2), and an avirulent B. cereus strain (10987)—during exponential growth in two distinct atmospheric environments: 14% CO2/bicarbonate and ambient air. We show that the disease-causing Bacillus strains undergo more distinctive transcriptional changes between the two environments, and that the expression of plasmid-encoded virulence genes was increased exclusively in the CO2 environment. We observed a core of conserved metabolic genes that were differentially expressed in all three strains in both conditions. Additionally, the expression profiles of putative virulence genes in G9241 suggest that this strain, unlike Bacillus anthracis, may regulate gene expression with both PlcR and AtxA transcriptional regulators, each acting in a different environment. Conclusions/Significance We have shown that homologous and even identical genes within the genomes of three closely related members of the B. cereus sensu lato group are in some instances regulated very differently, and that these differences can have important implications for virulence. This study provides insights into the evolution of the B. cereus group, and highlights the importance of looking beyond differences in gene content in comparative genomics studies.
Collapse
Affiliation(s)
- Karla D. Passalacqua
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Anjana Varadarajan
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Benjamin Byrd
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Nicholas H. Bergman
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Electro-Optical Systems Laboratory, Georgia Tech Research Institute, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Merrell DS. Environmental stress regulates Shigella virulence: interplay between anerobiosis and iron acquisition. Future Microbiol 2007; 2:601-4. [DOI: 10.2217/17460913.2.6.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Boulette ML, Payne SM: Anaerobic regulation of Shigella flexneri virulence: ArcA regulates Fur and iron acquisition genes.J. Bacteriol. 6957–6967 (2007).The ability to regulate gene expression in response to environmental changes is required for bacterial survival. This is particularly true for pathogenic microbes that colonize in dynamic host sites. As such, many host environmental cues actually serve as intricate signals that control virulence gene expression. In the paper evaluated here, Boulette and Payne present evidence that anerobiosis regulates Shigella virulence-gene expression via a complex interplay between the regulatory proteins ArcA and ferric-uptake regulator.
Collapse
Affiliation(s)
- D Scott Merrell
- Uniformed Services, University of the Health Sciences, Department of Microbiology & Immunology, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
30
|
Töwe S, Leelakriangsak M, Kobayashi K, Van Duy N, Hecker M, Zuber P, Antelmann H. The MarR-type repressor MhqR (YkvE) regulates multiple dioxygenases/glyoxalases and an azoreductase which confer resistance to 2-methylhydroquinone and catechol in Bacillus subtilis. Mol Microbiol 2007; 66:40-54. [PMID: 17725564 DOI: 10.1111/j.1365-2958.2007.05891.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Catechol and 2-methylhydroquinone (2-MHQ) cause the induction of the thiol-specific stress response and four dioxygenases/glyoxalases in Bacillus subtilis. Using transcription factor arrays, the MarR-type regulator YkvE was identified as a repressor of the dioxygenase/glyoxalase-encoding mhqE gene. Transcriptional and proteome analyses of the DeltaykvE mutant revealed the upregulation of ykcA (mhqA), ydfNOP (mhqNOP), yodED (mhqED) and yvaB (azoR2) encoding multiple dioxygenases/glyoxalases, oxidoreductases and an azoreductase. Primer extension experiments identified sigma(A)-type promoter sequences upstream of mhqA, mhqNOP, mhqED and azoR2 from which transcription is elevated after thiol stress. DNase I footprinting analysis showed that YkvE protects a primary imperfect inverted repeat with the consensus sequence of tATCTcgaAtTCgAGATaaaa in the azoR2, mhqE and mhqN promoter regions. Analysis of mhqE-promoter-bgaB fusions confirmed the significance of YkvE binding to this operator in vivo. Adjacent secondary repeats were protected by YkvE in the azoR2 and mhqN promoter regions consistent with multiple DNA-protein binding complexes. DNA-binding activity of YkvE was not directly affected by thiol-reactive compounds in vitro. Mutational analyses showed that MhqA, MhqO and AzoR2 confer resistance to 2-MHQ. Moreover, the DeltaykvE mutant displayed a 2-MHQ and catechol resistant phenotype. YkvE was renamed as MhqR controlling a 2-MHQ and catechol-resistance regulon of B. subtilis.
Collapse
Affiliation(s)
- Stefanie Töwe
- Institute for Microbiology, Ernst-Moritz-Arndt-University of Greifswald, F.-L.-Jahn-Str. 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|