1
|
Reis M, Zenker S, Viehöver P, Niehaus K, Bräutigam A, Eisenhut M. Study of excess manganese stress response highlights the central role of manganese exporter Mnx for holding manganese homeostasis in the cyanobacterium Synechocystis sp. PCC 6803. MICROBIOLOGY (READING, ENGLAND) 2024; 170. [PMID: 39508727 DOI: 10.1099/mic.0.001515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Cellular levels of the essential micronutrient manganese (Mn) need to be carefully balanced within narrow borders. In cyanobacteria, a sufficient Mn supply is critical for ensuring the function of the oxygen-evolving complex as the central part of the photosynthetic machinery. However, Mn accumulation is fatal for the cells. The reason for the observed cytotoxicity is unclear. To understand the causality behind Mn toxicity in cyanobacteria, we investigated the impact of excess Mn on physiology and global gene expression in the model organism Synechocystis sp. PCC 6803. We compared the response of the WT and the knock-out mutant in the Mn exporter (Mnx), ∆mnx, which is disabled in the export of surplus Mn and thus functions as a model for toxic Mn overaccumulation. While growth and pigment accumulation in ∆mnx were severely impaired 24 h after the addition of tenfold Mn, the WT was not affected and thus mounted an adequate transcriptional response. RNA-seq data analysis revealed that the Mn stress transcriptomes partly resembled an iron limitation transcriptome. However, the expression of iron limitation signature genes isiABDC was not affected by the Mn treatment, indicating that Mn excess is not accompanied by iron limitation in Synechocystis. We suggest that the ferric uptake regulator, Fur, gets partially mismetallated under Mn excess conditions and thus interferes with an iron-dependent transcriptional response. To encounter mismetallation and other Mn-dependent problems on a protein level, the cells invest in transcripts of ribosomes, proteases and chaperones. In the case of the ∆mnx mutant, the consequences of the disability to export excess Mn from the cytosol manifest in additionally impaired energy metabolism and oxidative stress transcriptomes with a fatal outcome. This study emphasizes the central importance of Mn homeostasis and the transporter Mnx's role in restoring and holding it.
Collapse
Affiliation(s)
- Mara Reis
- Computational Biology, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Sanja Zenker
- Computational Biology, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Proteome and Metabolome Research, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marion Eisenhut
- Computational Biology, Center for Biotechnology (CeBiTec) and Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Chen Q, Guo F, Huang L, Wang M, Shi C, Zhang S, Yao Y, Wang M, Zhu D, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, Zhang L, Yu Y, He Y, Wu Z, Götz F, Cheng A, Liu M. Functional characterization of a TerC family protein of Riemerella anatipestifer in manganese detoxification and virulence. Appl Environ Microbiol 2024; 90:e0135023. [PMID: 38084999 PMCID: PMC10807442 DOI: 10.1128/aem.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
Manganese (Mn) is an essential element for bacteria, but the overload of manganese is toxic. In a previous study, we showed that the cation diffusion facilitator protein MetA and the resistance-nodulation-division efflux pump MetB are responsible for Mn efflux in the bacterial pathogen Riemerella anatipestifer CH-1. However, whether this bacterium encodes additional manganese efflux proteins is unclear. In this study, we show that R. anatipestifer CH-1 encodes a tellurium resistance C (TerC) family protein with low similarity to other characterized TerC family proteins. Compared to the wild type (WT), the terC mutant of R. anatipestifer CH-1 (∆terC) is sensitive to Mn(II) intoxication. The ability of TerC to export manganese is higher than that of MetB but lower than that of MetA. Consistently, terC deletion (∆terC) led to intracellular accumulation of Mn2+ under excess manganese conditions. Further study showed that ∆terC was more sensitive than the WT to the oxidant hypoclorite but not to hydrogen peroxide. Mutagenesis studies showed that the mutant at amino acid sites of Glu116 (E116), Asp122 (D122), Glu245 (E245) Asp248 (D248), and Asp254 (D254) may be involved in the ability of TerC to export manganese. The transcription of terC was upregulated under excess manganese and downregulated under iron-limited conditions. However, this was not dependent on the manganese metabolism regulator MetR. In contrast to a strain lacking the manganese efflux pump MetA or MetB, the terC mutant is attenuated in virulence in a duckling model of infection due to increased sensitivity to duck serum. Finally, comparative analysis showed that homologs of TerC are distributed across the bacterial kingdom, suggesting that TerC exerts a conserved manganese efflux function.IMPORTANCERiemerella anatipestifer is a notorious bacterial pathogen of ducks and other birds. In R. anatipestifer, the genes involved in manganese efflux have not been completely identified, although MetA and MetB have been identified as two manganese exporters. Additionally, the function of TerC family proteins in manganese efflux is controversial. Here, we demonstrated that a TerC family protein helps prevent Mn(II) intoxication in R. anatipestifer and that the ability of TerC to export manganese is intermediate compared to that of MetA and MetB. Sequence analysis and mutagenesis studies showed that the conserved key amino sites of TerC are Glu116, Asp122, Glu245, Asp248, and Asp254. The transcription of terC was regulated by manganese excess and iron limitation. Finally, we show that TerC plays a role in the virulence of R. anatipestifer due to the increased sensitivity to duck serum, rather than the increased sensitivity to manganese. Taken together, these results expand our understanding of manganese efflux and the pathogenic mechanisms of R. anatipestifer.
Collapse
Affiliation(s)
- Qinyuan Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Guo
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li Huang
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Chunfeng Shi
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shutong Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yizhou Yao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Huang L, Guo F, Li X, Wang M, Zhu D, Wang M, Jia R, Chen S, Zhao X, Zhang S, Gao Q, Yang Q, Wu Y, Huang J, Tian B, Ou X, Sun D, Mao S, Zhang L, Yu Y, Götz F, Cheng A, Liu M. Functional characterization of two TolC in the resistance to drugs and metals and in the virulence of Riemerella anatipestifer. Appl Environ Microbiol 2023; 89:e0130823. [PMID: 38038982 PMCID: PMC10734528 DOI: 10.1128/aem.01308-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Riemerella anatipestifer (RA) is a notorious duck pathogen, characterized by a multitude of serotypes that exhibit no cross-reaction with one another. Moreover, RA is resistant to various antibacterial agents. Consequently, understanding the mechanisms behind resistance and identifying potential targets for drug development have become pressing needs. In this study, we show that the two TolC proteins play a role in the resistance to different drugs and metals and in the virulence. The results suggest that TolCA has a wider range of efflux substrates than TolCB. Except for gentamicin, neither TolCA nor TolCB was involved in the efflux of the other tested antibiotics. Strikingly, TolCA but not TolCB enhanced the frequency of resistance-conferring mutations. Moreover, TolCA was involved in RA virulence. Given its conservation in RA, TolCA has potential as a drug target for the development of therapeutics against RA infections.
Collapse
Affiliation(s)
- Li Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Fang Guo
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiao Li
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mengying Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Legrand D, Herbaut M, Durin Z, Brysbaert G, Bardor M, Lensink MF, Foulquier F. New insights into the pathogenicity of TMEM165 variants using structural modeling based on AlphaFold 2 predictions. Comput Struct Biotechnol J 2023; 21:3424-3436. [PMID: 37416081 PMCID: PMC10319644 DOI: 10.1016/j.csbj.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023] Open
Abstract
TMEM165 is a Golgi protein playing a crucial role in Mn2+ transport, and whose mutations in patients are known to cause Congenital Disorders of Glycosylation. Some of those mutations affect the highly-conserved consensus motifs E-φ-G-D-[KR]-[TS] characterizing the CaCA2/UPF0016 family, presumably important for the transport of Mn2+ which is essential for the function of many Golgi glycosylation enzymes. Others, like the G>R304 mutation, are far away from these motifs in the sequence. Until recently, the classical membrane protein topology prediction methods were unable to provide a clear picture of the organization of TMEM165 inside the cell membrane, or to explain in a convincing manner the impact of patient and experimentally-generated mutations on the transporter function of TMEM165. In this study, AlphaFold 2 was used to build a TMEM165 model that was then refined by molecular dynamics simulation with membrane lipids and water. This model provides a realistic picture of the 3D protein scaffold formed from a two-fold repeat of three transmembrane helices/domains where the consensus motifs face each other to form a putative acidic cation-binding site at the cytosolic side of the protein. It sheds new light on the impact of mutations on the transporter function of TMEM165, found in patients and studied experimentally in vitro, formerly and within this study. More particularly and very interestingly, this model explains the impact of the G>R304 mutation on TMEM165's function. These findings provide great confidence in the predicted TMEM165 model whose structural features are discussed in the study and compared to other structural and functional TMEM165 homologs from the CaCA2/UPF0016 family and the LysE superfamily.
Collapse
Affiliation(s)
- Dominique Legrand
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Mélissandre Herbaut
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Zoé Durin
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Muriel Bardor
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
5
|
Guo F, Wang M, Huang M, Jiang Y, Gao Q, Zhu D, Wang M, Jia R, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Tian B, Ou X, Mao S, Sun D, Cheng A, Liu M. Manganese Efflux Achieved by MetA and MetB Affects Oxidative Stress Resistance and Iron Homeostasis in Riemerella anatipestifer. Appl Environ Microbiol 2023; 89:e0183522. [PMID: 36815770 PMCID: PMC10057955 DOI: 10.1128/aem.01835-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
In bacteria, manganese homeostasis is controlled by import, regulation, and efflux. Here, we identified 2 Mn exporters, MetA and MetB (manganese efflux transporters A and B), in Riemerella anatipestifer CH-1, encoding a putative cation diffusion facilitator (CDF) protein and putative resistance-nodulation-division (RND) efflux pump, respectively. Compared with the wild type (WT), ΔmetA, ΔmetB, and ΔmetAΔmetB exhibited sensitivity to manganese, since they accumulated more intracellular Mn2+ than the WT under excess manganese conditions, while the amount of iron in the mutants was decreased. Moreover, ΔmetA, ΔmetB, and ΔmetAΔmetB were more sensitive to the oxidant NaOCl than the WT. Further study showed that supplementation with iron sources could alleviate manganese toxicity and that excess manganese inhibited bacterial cell division. RNA-Seq showed that manganese stress resulted in the perturbation of iron metabolism genes, further demonstrating that manganese efflux is critical for iron homeostasis. metA transcription was upregulated under excess manganese but was not activated by MetR, a DtxR family protein, although MetR was also involved in manganese detoxification, while metB transcription was downregulated under iron depletion conditions and in fur mutants. Finally, homologues of MetA and MetB were found to be mainly distributed in members of Flavobacteriaceae. Specifically, MetB represents a novel manganese exporter in Gram-negative bacteria. IMPORTANCE Manganese is required for the function of many proteins in bacteria, but in excess, manganese can mediate toxicity. Therefore, the intracellular levels of manganese must be tightly controlled. Manganese efflux transporters have been characterized in some other bacteria; however, their homologues could not be found in the genome of Riemerella anatipestifer through sequence comparison. This indicated that other types of manganese efflux transporters likely exist. In this study, we characterized 2 transporters, MetA and MetB, that mediate manganese efflux in R. anatipestifer in response to manganese overload. MetA encodes a putative cation diffusion facilitator (CDF) protein, which has been characterized as a manganese transporter in other bacteria, while this is the first observation of a putative resistance-nodulation-division (RND) transporter contributing to manganese export in Gram-negative bacteria. In addition, the mechanism of manganese toxicity was studied by observing morphological changes and by transcriptome sequencing. Taken together, these results are important for expanding our understanding of manganese transporters and revealing the mechanism of manganese toxicity.
Collapse
Affiliation(s)
- Fang Guo
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mengying Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mi Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Yin Jiang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Čapek J, Večerek B. Why is manganese so valuable to bacterial pathogens? Front Cell Infect Microbiol 2023; 13:943390. [PMID: 36816586 PMCID: PMC9936198 DOI: 10.3389/fcimb.2023.943390] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.
Collapse
Affiliation(s)
- Jan Čapek
- *Correspondence: Jan Čapek, ; Branislav Večerek,
| | | |
Collapse
|
7
|
Wang H, Fang F, Deng C, Zhu C, Yu Z, Liu X. Development of bacterial resistance induced by low concentration of two-dimensional black phosphorus via mutagenesis. RSC Adv 2022; 12:16071-16078. [PMID: 35733674 PMCID: PMC9149864 DOI: 10.1039/d2ra01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
The wide use of nano-antibacterial materials has triggered concerns over the development of nanomaterials-associated bacterial resistance. Two-dimensional (2D) black phosphorus (BP) as a new class of emerging 2D nanomaterial has displayed excellent antibacterial performance. However, whether bacteria repeatedly exposed to 2D BP can develop resistance is not clear. We found that wild type E. coli K-12 MG 1655 strains can increase resistance to 2D-BP nanosheets after repeated exposure with subinhibitory concentration of 2D-BP nanosheets. Adaptive morphogenesis including the reinforced barrier function of cell membrane were observed in the resistant bacteria, which enhanced the resistance of bacteria to 2D-BP nanosheets. The whole-genome sequencing analysis showed that the three mutation genes including dmdA, mntP, and gyrA genes were observed in the 2D-BP resistant strains, which controlled catabolism, membrane structure, and DNA replication, respectively. Furthermore, transcriptional sequencing confirmed that these genes related to metabolization, membrane structure, and cell motility were upregulated in the 2D-BP resistant bacteria. The development of resistance to 2D-BP in bacteria mainly attributed to the changes in energy metabolism and membrane structure of bacteria caused by gene mutations. In addition, the up-regulated function of cell motility also helped the bacteria to develop resistance by escaping external stimuli. The results provided new evidence for understanding an important effect of nano-antibacterial materials on the development of bacterial resistance. The wide use of nano-antibacterial materials has triggered concerns over the development of nanomaterials-associated bacterial resistance.![]()
Collapse
Affiliation(s)
- Huixiang Wang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei 230009 China.,School of Biology, Food, and Environment, Hefei University Hefei 230601 China
| | - Fang Fang
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei 230009 China.,School of Biology, Food, and Environment, Hefei University Hefei 230601 China
| | - Chengxun Deng
- School of Biology, Food, and Environment, Hefei University Hefei 230601 China .,International (Sino-German) Joint Research Center for Biomass of Anhui Province Hefei 230601 China
| | - Chengzhu Zhu
- School of Resources and Environmental Engineering, Hefei University of Technology Hefei 230009 China.,Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology Hefei 230009 China
| | - Zhimin Yu
- School of Biology, Food, and Environment, Hefei University Hefei 230601 China .,International (Sino-German) Joint Research Center for Biomass of Anhui Province Hefei 230601 China
| | - Xiaowei Liu
- School of Biology, Food, and Environment, Hefei University Hefei 230601 China .,International (Sino-German) Joint Research Center for Biomass of Anhui Province Hefei 230601 China
| |
Collapse
|
8
|
Heo K, Lee JW, Jang Y, Kwon S, Lee J, Seok C, Ha NC, Seok YJ. A pGpG-specific phosphodiesterase regulates cyclic di-GMP signaling in Vibrio cholerae. J Biol Chem 2022; 298:101626. [PMID: 35074425 PMCID: PMC8861645 DOI: 10.1016/j.jbc.2022.101626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/10/2022] Open
Abstract
The bacterial second messenger bis-(3′-5′)-cyclic diguanylate monophosphate (c-di-GMP) controls various cellular processes, including motility, toxin production, and biofilm formation. c-di-GMP is enzymatically synthesized by GGDEF domain–containing diguanylate cyclases and degraded by HD-GYP domain–containing phosphodiesterases (PDEs) to 2 GMP or by EAL domain–containing PDE-As to 5ʹ-phosphoguanylyl-(3ʹ,5ʹ)-guanosine (pGpG). Since excess pGpG feedback inhibits PDE-A activity and thereby can lead to the uncontrolled accumulation of c-di-GMP, a PDE that degrades pGpG to 2 GMP (PDE-B) has been presumed to exist. To date, the only enzyme known to hydrolyze pGpG is oligoribonuclease Orn, which degrades all kinds of oligoribonucleotides. Here, we identified a pGpG-specific PDE, which we named PggH, using biochemical approaches in the gram-negative bacteria Vibrio cholerae. Biochemical experiments revealed that PggH exhibited specific PDE activity only toward pGpG, thus differing from the previously reported Orn. Furthermore, the high-resolution structure of PggH revealed the basis for its PDE activity and narrow substrate specificity. Finally, we propose that PggH could modulate the activities of PDE-As and the intracellular concentration of c-di-GMP, resulting in phenotypic changes including in biofilm formation.
Collapse
Affiliation(s)
- Kyoo Heo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Jae-Woo Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Yongdae Jang
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Sohee Kwon
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea
| | - Chaok Seok
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea.
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Zhang B, Zhang C, Liu C, Fu A, Luan S. A Golgi-localized manganese transporter functions in pollen tube tip growth to control male fertility in Arabidopsis. PLANT COMMUNICATIONS 2021; 2:100178. [PMID: 34027392 PMCID: PMC8132125 DOI: 10.1016/j.xplc.2021.100178] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/12/2021] [Indexed: 05/12/2023]
Abstract
Manganese (Mn) serves as an essential cofactor for many enzymes in various compartments of a plant cell. Allocation of Mn among various organelles thus plays a central role in Mn homeostasis to support metabolic processes. We report the identification of a Golgi-localized Mn transporter (named PML3) that is essential for rapid cell elongation in young tissues such as emerging leaves and the pollen tube. In particular, the pollen tube defect in the pml3 loss-of-function mutant caused severe reduction in seed yield, a critical agronomic trait. Further analysis suggested that a loss of pectin deposition in the pollen tube might cause the pollen tube to burst and slow its elongation, leading to decreased male fertility. As the Golgi apparatus serves as the major hub for biosynthesis and modification of cell-wall components, PML3 may function in Mn homeostasis of this organelle, thereby controlling metabolic and/or trafficking processes required for pectin deposition in rapidly elongating cells.
Collapse
Affiliation(s)
- Bin Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Chi Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Congge Liu
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
- Corresponding author
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Corresponding author
| |
Collapse
|
10
|
Shin J, Choe D, Ransegnola B, Hong H, Onyekwere I, Cross T, Shi Q, Cho B, Westblade LF, Brito IL, Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790. [PMID: 33463026 PMCID: PMC7857431 DOI: 10.15252/embr.202051790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level β-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.
Collapse
Affiliation(s)
- Jung‐Ho Shin
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Donghui Choe
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Brett Ransegnola
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Hye‐Rim Hong
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Ikenna Onyekwere
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Trevor Cross
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Qiaojuan Shi
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
- Intelligent Synthetic Biology CenterDaejeonKorea
| | - Lars F Westblade
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Ilana L Brito
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
- Cornell Institute of Host‐Microbe Interactions and DiseaseCornell UniversityIthacaNYUSA
| |
Collapse
|
11
|
Hoecker N, Hennecke Y, Schrott S, Marino G, Schmidt SB, Leister D, Schneider A. Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:697848. [PMID: 34194462 PMCID: PMC8236900 DOI: 10.3389/fpls.2021.697848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 05/08/2023]
Abstract
The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.
Collapse
Affiliation(s)
- Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yvonne Hennecke
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Simon Schrott
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Giada Marino
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Massenspektrometrie von Biomolekülen an der LMU (MSBioLMU), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- *Correspondence: Anja Schneider,
| |
Collapse
|
12
|
Thines L, Stribny J, Morsomme P. From the Uncharacterized Protein Family 0016 to the GDT1 family: Molecular insights into a newly-characterized family of cation secondary transporters. MICROBIAL CELL 2020; 7:202-214. [PMID: 32743000 PMCID: PMC7380456 DOI: 10.15698/mic2020.08.725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Uncharacterized Protein Family 0016 (UPF0016) gathers poorly studied membrane proteins well conserved through evolution that possess one or two copies of the consensus motif Glu-x-Gly-Asp-(Arg/Lys)-(Ser/Thr). Members are found in many eukaryotes, bacteria and archaea. The interest for this protein family arose in 2012 when its human member TMEM165 was linked to the occurrence of Congenital Disorders of Glycosylation (CDGs) when harbouring specific mutations. Study of the UPF0016 family is undergone through the characterization of the bacterium Vibrio cholerae (MneA), cyanobacterium Synechocystis (SynPAM71), yeast Saccharomyces cerevisiae (Gdt1p), plant Arabidopsis thaliana (PAM71 and CMT1), and human (TMEM165) members. These proteins have all been identified as transporters of cations, more precisely of Mn2+, with an extra reported function in Ca2+ and/or H+ transport for some of them. Apart from glycosylation in humans, the UPF0016 members are required for lactation in humans, photosynthesis in plants and cyanobacteria, Ca2+ signaling in yeast, and Mn2+ homeostasis in the five aforementioned species. The requirement of the UPF0016 members for key physiological processes most likely derives from their transport activity at the Golgi membrane in human and yeast, the chloroplasts membranes in plants, the thylakoid and plasma membranes in cyanobacteria, and the cell membrane in bacteria. In the light of these studies on various UPF0016 members, this family is not considered as uncharacterized anymore and has been renamed the Gdt1 family according to the name of its S. cerevisiae member. This review aims at assembling and confronting the current knowledge in order to identify shared and distinct features in terms of transported molecules, mode of action, structure, etc., as well as to better understand their corresponding physiological roles.
Collapse
Affiliation(s)
- Louise Thines
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Jiri Stribny
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
13
|
Waters LS. Bacterial manganese sensing and homeostasis. Curr Opin Chem Biol 2020; 55:96-102. [PMID: 32086169 PMCID: PMC9997548 DOI: 10.1016/j.cbpa.2020.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/11/2019] [Accepted: 01/14/2020] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) plays a complex role in the survival of pathogenic and symbiotic bacteria in eukaryotic hosts and is also important for free-living bacteria to thrive in stressful environments. This review summarizes new aspects of regulatory strategies to control intracellular Mn levels and gives an overview of several newly identified families of bacterial Mn transporters. Recent illustrative examples of advances in quantification of intracellular Mn pools and characterization of the effects of Mn perturbations are highlighted. These discoveries help define mechanisms of Mn selectivity and toxicity and could enable new strategies to combat pathogenic bacteria and promote growth of desirable bacteria.
Collapse
Affiliation(s)
- Lauren S Waters
- Department of Chemistry, University of Wisconsin, Oshkosh, WI, 54901, USA.
| |
Collapse
|
14
|
Vibrio cholerae Virulence Activator ToxR Regulates Manganese Transport and Resistance to Reactive Oxygen Species. Infect Immun 2020; 88:IAI.00944-19. [PMID: 31871097 DOI: 10.1128/iai.00944-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022] Open
Abstract
Like many other pathogens, Vibrio cholerae, the causative agent of cholera, can modulate its gene expression to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). We previously reported that the virulence activator AphB in V. cholerae is involved in ROS resistance. In this study, we found that another key virulence regulator, ToxR, was important for V. cholerae resistance to hydrogen peroxide. Through a genome-wide transposon screen, we discovered that a deletion in mneA, which encodes a manganese exporter, restored ROS resistance of the toxR mutant. We then showed that ToxR did not affect mneA transcription but that the ToxR-regulated major porin OmpU was critical for ROS resistance. The addition of manganese in culture medium restored ROS resistance in both the toxR and ompU mutants. Furthermore, elemental analysis indicated that the intracellular concentration of manganese in both the toxR and ompU mutants was reduced. This may result in intracellular ROS accumulation in these mutants. Our data suggest that ToxR plays an important role in the resistance to reactive oxygen species through the regulation of manganese transport.
Collapse
|
15
|
Thines L, Deschamps A, Sengottaiyan P, Savel O, Stribny J, Morsomme P. The yeast protein Gdt1p transports Mn 2+ ions and thereby regulates manganese homeostasis in the Golgi. J Biol Chem 2018; 293:8048-8055. [PMID: 29632074 DOI: 10.1074/jbc.ra118.002324] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/05/2018] [Indexed: 11/06/2022] Open
Abstract
The uncharacterized protein family 0016 (UPF0016) is a family of secondary ion transporters implicated in calcium homeostasis and some diseases. More precisely, genetic variants of the human UPF0016 ortholog transmembrane protein 165 (TMEM165) have been linked to congenital disorders of glycosylation (CDG). The Saccharomyces cerevisiae ortholog Gdt1p has been shown to be involved in calcium homeostasis and protein glycosylation. Moreover, plant and bacterial UPF0016 members appear to have putative roles in Mn2+ homeostasis. Here, we produced the yeast UPF0016 member Gdt1p in the bacterial host Lactococcus lactis Using Mn2+-induced quenching of Fura-2-emitted fluorescence, we observed that Gdt1p mediates Mn2+ influx, in addition to its previously reported regulation of Ca2+ influx. The estimated Km values of Gdt1p of 15.6 ± 2.6 μm for Ca2+ and 83.2 ± 9.8 μm for Mn2+ indicated that Gdt1p has a higher affinity for Ca2+ than for Mn2+ In yeast cells, we found that Gdt1p is involved in the resistance to high Mn2+ concentration and controls total Mn2+ stores. Lastly, we demonstrated that GDT1 deletion affects the activity of the yeast Mn2+-dependent Sod2p superoxide dismutase, most likely by modulating cytosolic Mn2+ concentrations. Taken together, we obtained first evidence that Gdt1p from yeast directly transports manganese, which strongly reinforces the suggested link between the UPF0016 family and Mn2+ homeostasis and provides new insights into the molecular causes of human TMEM165-associated CDGs. Our results also shed light on how yeast cells may regulate Golgi intraluminal concentrations of manganese, a key cofactor of many enzymes involved in protein glycosylation.
Collapse
Affiliation(s)
- Louise Thines
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Antoine Deschamps
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Palanivelu Sengottaiyan
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Oksana Savel
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jiri Stribny
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
16
|
Zeinert R, Martinez E, Schmitz J, Senn K, Usman B, Anantharaman V, Aravind L, Waters LS. Structure-function analysis of manganese exporter proteins across bacteria. J Biol Chem 2018; 293:5715-5730. [PMID: 29440394 DOI: 10.1074/jbc.m117.790717] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/26/2018] [Indexed: 01/01/2023] Open
Abstract
Manganese (Mn) is an essential trace nutrient for organisms because of its role in cofactoring enzymes and providing protection against reactive oxygen species (ROS). Many bacteria require manganese to form pathogenic or symbiotic interactions with eukaryotic host cells. However, excess manganese is toxic, requiring cells to have manganese export mechanisms. Bacteria are currently known to possess two widely distributed classes of manganese export proteins, MntP and MntE, but other types of transporters likely exist. Moreover, the structure and function of MntP is not well understood. Here, we characterized the role of three structurally related proteins known or predicted to be involved in manganese transport in bacteria from the MntP, UPF0016, and TerC families. These studies used computational analysis to analyze phylogeny and structure, physiological assays to test sensitivity to high levels of manganese and ROS, and inductively coupled plasma-mass spectrometry (ICP-MS) to measure metal levels. We found that MntP alters cellular resistance to ROS. Moreover, we used extensive computational analyses and phenotypic assays to identify amino acids required for MntP activity. These negatively charged residues likely serve to directly bind manganese and transport it from the cytoplasm through the membrane. We further characterized two other potential manganese transporters associated with a Mn-sensing riboswitch and found that the UPF0016 family of proteins has manganese export activity. We provide here the first phenotypic and biochemical evidence for the role of Alx, a member of the TerC family, in manganese homeostasis. It does not appear to export manganese, but rather it intriguingly facilitates an increase in intracellular manganese concentration. These findings expand the available knowledge about the identity and mechanisms of manganese homeostasis proteins across bacteria and show that proximity to a Mn-responsive riboswitch can be used to identify new components of the manganese homeostasis machinery.
Collapse
Affiliation(s)
- Rilee Zeinert
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Eli Martinez
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Jennifer Schmitz
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Katherine Senn
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Bakhtawar Usman
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| | - Vivek Anantharaman
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - L Aravind
- the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894
| | - Lauren S Waters
- From the Department of Chemistry, University of Wisconsin, Oshkosh, Wisconsin 54901 and
| |
Collapse
|
17
|
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog 2017. [DOI: 10.1016/j.micpath.2017.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Colinet AS, Thines L, Deschamps A, Flémal G, Demaegd D, Morsomme P. Acidic and uncharged polar residues in the consensus motifs of the yeast Ca2+
transporter Gdt1p are required for calcium transport. Cell Microbiol 2017; 19. [DOI: 10.1111/cmi.12729] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/12/2016] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Anne-Sophie Colinet
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Louise Thines
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Antoine Deschamps
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Gaëlle Flémal
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Didier Demaegd
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|