1
|
Pucelik S, Becker M, Heyber S, Wöhlbrand L, Rabus R, Jahn D, Härtig E. The blue light-dependent LOV-protein LdaP of Dinoroseobacter shibae acts as antirepressor of the PpsR repressor, regulating photosynthetic gene cluster expression. Front Microbiol 2024; 15:1351297. [PMID: 38404597 PMCID: PMC10890935 DOI: 10.3389/fmicb.2024.1351297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
In the marine α-proteobacterium Dinoroseobacter shibae more than 40 genes of the aerobic anoxygenic photosynthesis are regulated in a light-dependent manner. A genome-wide screen of 5,605 clones from a D. shibae transposon library for loss of pigmentation and changes in bacteriochlorophyll absorbance identified 179 mutant clones. The gene encoding the LOV-domain containing protein Dshi_1135 was identified by its colorless phenotype. The mutant phenotype was complemented by the expression of a Dshi_1135-strep fusion protein in trans. The recombinantly produced and chromatographically purified Dshi_1135 protein was able to undergo a blue light-induced photocycle mediated by bound FMN. Transcriptome analyses revealed an essential role for Dshi_1135 in the light-dependent expression of the photosynthetic gene cluster. Interactomic studies identified the repressor protein PpsR as an interaction partner of Dshi_1135. The physical contact between PpsR and the Dshi_1135 protein was verified in vivo using the bacterial adenylate cyclase-based two-hybrid system. In addition, the antirepressor function of the Dshi_1135 protein was demonstrated in vivo testing of a bchF-lacZ reporter gene fusion in a heterologous Escherichia coli-based host system. We therefore propose to rename the Dshi_1135 protein to LdaP (light-dependent antirepressor of PpsR). Using the bacterial two-hybrid system, it was also shown that cobalamin (B12) is essential for the interaction of the antirepressor PpaA with PpsR. A regulatory model for the photosynthetic gene cluster in D. shibae was derived, including the repressor PpsR, the light-dependent antirepressor LdaP and the B12-dependent antirepressor PpaA.
Collapse
Affiliation(s)
- Saskia Pucelik
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Miriam Becker
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Steffi Heyber
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Elisabeth Härtig
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
2
|
Godoy MS, de Miguel SR, Prieto MA. A singular PpaA/AerR-like protein in Rhodospirillum rubrum rules beyond the boundaries of photosynthesis in response to the intracellular redox state. mSystems 2023; 8:e0070223. [PMID: 38054698 PMCID: PMC10734443 DOI: 10.1128/msystems.00702-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Rhodospirillum rubrum vast metabolic versatility places it as a remarkable model bacterium and an excellent biotechnological chassis. The key component of photosynthesis (PS) studied in this work (HP1) stands out among the other members of PpaA/AerR anti-repressor family since it lacks the motif they all share: the cobalamin B-12 binding motif. Despite being reduced and poorly conserved, HP1 stills controls PS as the other members of the family, allowing a fast response to changes in the redox state of the cell. This work also shows that HP1 absence affects genes from relevant biological processes other than PS, including nitrogen fixation and stress response. From a biotechnological perspective, HP1 could be manipulated in approaches where PS is not necessary, such as hydrogen or polyhydroxyalkanoates production, to save energy.
Collapse
Affiliation(s)
- Manuel S. Godoy
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - Santiago R. de Miguel
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐CSIC (SusPlast‐CSIC), Madrid, Spain
| |
Collapse
|
3
|
Suyama T, Kanno N, Matsukura S, Chihara K, Noda N, Hanada S. Transcriptome and Deletion Mutant Analyses Revealed that an RpoH Family Sigma Factor Is Essential for Photosystem Production in Roseateles depolymerans under Carbon Starvation. Microbes Environ 2023; 38. [PMID: 36878600 PMCID: PMC10037100 DOI: 10.1264/jsme2.me22072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Roseateles depolymerans is an obligately aerobic bacterium that produces a photosynthetic apparatus only under the scarcity of carbon substrates. We herein examined changes in the transcriptomes of R. depolymerans cells to clarify the expression of photosynthesis genes and their upstream regulatory factors under carbon starvation. Transcriptomes 0, 1, and 6 h after the depletion of a carbon substrate indicated that transcripts showing the greatest variations (a 500-fold increase [6 h/0 h]) were light-harvesting proteins (PufA and PufB). Moreover, loci with more than 50-fold increases (6 h/0 h) were fully related to the photosynthetic gene cluster. Among 13 sigma factor genes, the transcripts of a sigma 70 family sigma factor related to RpoH (SP70) increased along photosynthesis genes under starvation; therefore, a knockout experiment of SP70 was performed. ΔSP70 mutants were found to lack photosynthetic pigments (carotenoids and bacteriochlo-rophyll a) regardless of carbon starvation. We also examined the effects of heat stress on ΔSP70 mutants, and found that SP70 was also related to heat stress tolerance, similar to other RpoH sigma factors (while heat stress did not trigger photosystem production). The deficient accumulation of photosynthetic pigments and the heat stress tolerance of ΔSP70 mutants were both complemented by the introduction of an intact SP70 gene. Furthermore, the transcription of photosynthetic gene operons (puf, puh, and bch) was markedly reduced in the ΔSP70 mutant. The RpoH homologue SP70 was concluded to be a sigma factor that is essential for the transcription of photosynthetic gene operons in R. depolymerans.
Collapse
Affiliation(s)
- Tetsushi Suyama
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Nanako Kanno
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| | - Satoko Matsukura
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kotaro Chihara
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Naohiro Noda
- Bio-Analytical Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
- Department of Life Science and Medical Bioscience, Waseda University
| | - Satoshi Hanada
- Photosynthetic Microbial Consortia Laboratory, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University
| |
Collapse
|
4
|
Dragnea V, Gonzalez-Gutierrez G, Bauer CE. Structural Analyses of CrtJ and Its B 12-Binding Co-Regulators SAerR and LAerR from the Purple Photosynthetic Bacterium Rhodobacter capsulatus. Microorganisms 2022; 10:912. [PMID: 35630357 PMCID: PMC9144470 DOI: 10.3390/microorganisms10050912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Among purple photosynthetic bacteria, the transcription factor CrtJ is a major regulator of photosystem gene expression. Depending on growing conditions, CrtJ can function as an aerobic repressor or an anaerobic activator of photosystem genes. Recently, CrtJ's activity was shown to be modulated by two size variants of a B12 binding co-regulator called SAerR and LAerR in Rhodobacter capsulatus. The short form, SAerR, promotes CrtJ repression, while the longer variant, LAerR, converts CrtJ into an activator. In this study, we solved the crystal structure of R. capsulatus SAerR at a 2.25 Å resolution. Hydroxycobalamin bound to SAerR is sandwiched between a 4-helix bundle cap, and a Rossman fold. This structure is similar to a AerR-like domain present in CarH from Thermus termophilus, which is a combined photoreceptor/transcription regulator. We also utilized AlphaFold software to predict structures for the LAerR, CrtJ, SAerR-CrtJ and LAerR-CrtJ co-complexes. These structures provide insights into the role of B12 and an LAerR N-terminal extension in regulating the activity of CrtJ.
Collapse
Affiliation(s)
| | | | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA; (V.D.); (G.G.-G.)
| |
Collapse
|
5
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
6
|
Cooper CL, Panitz N, Edwards TA, Goyal P. Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry. Biophys J 2021; 120:3688-3696. [PMID: 34310939 DOI: 10.1016/j.bpj.2021.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/17/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.
Collapse
Affiliation(s)
- Courtney L Cooper
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Naftali Panitz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Travyse A Edwards
- Department of Physics, State University of New York at Binghamton, Binghamton, New York
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
7
|
Eisenhardt KMH, Remes B, Grützner J, Spanka DT, Jäger A, Klug G. A Complex Network of Sigma Factors and sRNA StsR Regulates Stress Responses in R. sphaeroides. Int J Mol Sci 2021; 22:ijms22147557. [PMID: 34299177 PMCID: PMC8307010 DOI: 10.3390/ijms22147557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Adaptation of bacteria to a changing environment is often accompanied by remodeling of the transcriptome. In the facultative phototroph Rhodobacter sphaeroides the alternative sigma factors RpoE, RpoHI and RpoHII play an important role in a variety of stress responses, including heat, oxidative stress and nutrient limitation. Photooxidative stress caused by the simultaneous presence of chlorophylls, light and oxygen is a special challenge for phototrophic organisms. Like alternative sigma factors, several non-coding sRNAs have important roles in the defense against photooxidative stress. RNAseq-based transcriptome data pointed to an influence of the stationary phase-induced StsR sRNA on levels of mRNAs and sRNAs with a role in the photooxidative stress response. Furthermore, StsR also affects expression of photosynthesis genes and of genes for regulators of photosynthesis genes. In vivo and in vitro interaction studies revealed that StsR, that is under control of the RpoHI and RpoHII sigma factors, targets rpoE mRNA and affects its abundance by altering its stability. RpoE regulates expression of the rpoHII gene and, consequently, expression of stsR. These data provide new insights into a complex regulatory network of protein regulators and sRNAs involved in defense against photooxidative stress and the regulation of photosynthesis genes.
Collapse
|
8
|
Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World. GENOMICS PROTEOMICS & BIOINFORMATICS 2021; 19:958-972. [PMID: 33631428 PMCID: PMC9402790 DOI: 10.1016/j.gpb.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/23/2019] [Accepted: 06/06/2019] [Indexed: 12/01/2022]
Abstract
Trace elements are required by all organisms, which are key components of many enzymes catalyzing important biological reactions. Many trace element-dependent proteins have been characterized; however, little is known about their occurrence in microbial communities in diverse environments, especially the global marine ecosystem. Moreover, the relationships between trace element utilization and different types of environmental stressors are unclear. In this study, we used metagenomic data from the Global Ocean Sampling expedition project to identify the biogeographic distribution of genes encoding trace element-dependent proteins (for copper, molybdenum, cobalt, nickel, and selenium) in a variety of marine and non-marine aquatic samples. More than 56,000 metalloprotein and selenoprotein genes corresponding to nearly 100 families were predicted, becoming the largest dataset of marine metalloprotein and selenoprotein genes reported to date. In addition, samples with enriched or depleted metalloprotein/selenoprotein genes were identified, suggesting an active or inactive usage of these micronutrients in various sites. Further analysis of interactions among the elements showed significant correlations between some of them, especially those between nickel and selenium/copper. Finally, investigation of the relationships between environmental conditions and metalloprotein/selenoprotein families revealed that many environmental factors might contribute to the evolution of different metalloprotein and/or selenoprotein genes in the marine microbial world. Our data provide new insights into the utilization and biological roles of these trace elements in extant marine microbes, and might also be helpful for the understanding of how these organisms have adapted to their local environments.
Collapse
|
9
|
Luo Y, Ge M, Wang B, Sun C, Wang J, Dong Y, Xi JJ. CRISPR/Cas9-deaminase enables robust base editing in Rhodobacter sphaeroides 2.4.1. Microb Cell Fact 2020; 19:93. [PMID: 32334589 PMCID: PMC7183636 DOI: 10.1186/s12934-020-01345-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/02/2020] [Indexed: 12/17/2022] Open
Abstract
Background CRISPR/Cas9 systems have been repurposed as canonical genome editing tools in a variety of species, but no application for the model strain Rhodobacter sphaeroides 2.4.1 was unveiled. Results Here we showed two kinds of programmable base editing systems, cytosine base editors (CBEs) and adenine base editors (ABEs), generated by fusing endonuclease Cas9 variant to cytosine deaminase PmCDA1 or heterodimer adenine deaminase TadA–TadA*, respectively. Using CBEs, we were able to obtain C-to-T mutation of single and double targets following the first induction step, with the efficiency of up to 97% and 43%; while the second induction step was needed in the case of triple target, with the screening rate of 47%. Using ABEs, we were only able to gain A-to-G mutation of single target after the second induction step, with the screening rate of 30%. Additionally, we performed a knockout analysis to identify the genes responsible for coenzyme Q10 biosynthesis and found that ubiF, ubiA, ubiG, and ubiX to be the most crucial ones. Conclusions Together, CBEs and ABEs serve as alternative methods for genetic manipulation in Rhodobacter sphaeroides and will shed light on the fundamental research of other bacteria that are hard to be directly edited by Cas9-sgRNA.
Collapse
Affiliation(s)
- Yufeng Luo
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, 800 Dongchuan Road, Shanghai, 200240, China
| | - Bolun Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Changhong Sun
- Beijing Viewsolid Biotech Co. Ltd, Beijing, 100071, China
| | - Junyi Wang
- Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China
| | - Yuyang Dong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive NW, Atlanta, GA, 30332, USA
| | - Jianzhong Jeff Xi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,Department of Biomedical Engineering, State Key Laboratory of Natural and Biomimetic Drugs, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Zhang Y, Ying H, Xu Y. Comparative genomics and metagenomics of the metallomes. Metallomics 2019; 11:1026-1043. [DOI: 10.1039/c9mt00023b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent achievements and advances in comparative genomic and metagenomic analyses of trace metals were reviewed and discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| | - Huimin Ying
- Department of Endocrinology
- Hangzhou Xixi Hospital
- Hangzhou
- P. R. China
| | - Yinzhen Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology
- College of Life Sciences and Oceanography
- Shenzhen University
- Shenzhen
- P. R. China
| |
Collapse
|
11
|
Yamamoto H, Fang M, Dragnea V, Bauer CE. Differing isoforms of the cobalamin binding photoreceptor AerR oppositely regulate photosystem expression. eLife 2018; 7:39028. [PMID: 30281022 PMCID: PMC6199135 DOI: 10.7554/elife.39028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Phototrophic microorganisms adjust photosystem synthesis in response to changes in light intensity and wavelength. A variety of different photoreceptors regulate this process. Purple photosynthetic bacteria synthesize a novel photoreceptor AerR that uses cobalamin (B12) as a blue-light absorbing chromophore to control photosystem synthesis. AerR directly interacts with the redox responding transcription factor CrtJ, affecting CrtJ's interaction with photosystem promoters. In this study, we show that AerR is translated as two isoforms that differ by 41 amino acids at the amino terminus. The ratio of these isoforms was affected by light and cell growth phase with the long variant predominating during photosynthetic exponential growth and the short variant predominating in dark conditions and/or stationary phase. Pigmentation and transcriptomic analyses show that the short AerR variant represses, while long variant activates, photosynthesis genes. The long form of AerR also activates many genes involved in cellular metabolism and motility.
Collapse
Affiliation(s)
- Haruki Yamamoto
- Department of Molecular and Cellular Biochemistry, Indiana University, Indiana, United States
| | - Mingxu Fang
- Department of Molecular and Cellular Biochemistry, Indiana University, Indiana, United States
| | - Vladimira Dragnea
- Department of Molecular and Cellular Biochemistry, Indiana University, Indiana, United States
| | - Carl E Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Indiana, United States
| |
Collapse
|
12
|
A Cobalamin Activity-Based Probe Enables Microbial Cell Growth and Finds New Cobalamin-Protein Interactions across Domains. Appl Environ Microbiol 2018; 84:AEM.00955-18. [PMID: 30006406 DOI: 10.1128/aem.00955-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/25/2018] [Indexed: 01/07/2023] Open
Abstract
Understanding the factors that regulate microbe function and microbial community assembly, function, and fitness is a grand challenge. A critical factor and an important enzyme cofactor and regulator of gene expression is cobalamin (vitamin B12). Our knowledge of the roles of vitamin B12 is limited, because technologies that enable in situ characterization of microbial metabolism and gene regulation with minimal impact on cell physiology are needed. To meet this need, we show that a synthetic probe mimic of B12 supports the growth of B12-auxotrophic bacteria and archaea. We demonstrate that a B12 activity-based probe (B12-ABP) is actively transported into Escherichia coli cells and converted to adenosyl-B12-ABP akin to native B12 Identification of the proteins that bind the B12-ABP in vivo in E. coli, a Rhodobacteraceae sp. and Haloferax volcanii, demonstrate the specificity for known and novel B12 protein targets. The B12-ABP also regulates the B12 dependent RNA riboswitch btuB and the transcription factor EutR. Our results demonstrate a new approach to gain knowledge about the role of B12 in microbe functions. Our approach provides a powerful nondisruptive tool to analyze B12 interactions in living cells and can be used to discover the role of B12 in diverse microbial systems.IMPORTANCE We demonstrate that a cobalamin chemical probe can be used to investigate in vivo roles of vitamin B12 in microbial growth and regulation by supporting the growth of B12 auxotrophic bacteria and archaea, enabling biological activity with three different cell macromolecules (RNA, DNA, and proteins), and facilitating functional proteomics to characterize B12-protein interactions. The B12-ABP is both transcriptionally and translationally able to regulate gene expression analogous to natural vitamin B12 The application of the B12-ABP at biologically relevant concentrations facilitates a unique way to measure B12 microbial dynamics and identify new B12 protein targets in bacteria and archaea. We demonstrate that the B12-ABP can be used to identify in vivo protein interactions across diverse microbes, from E. coli to microbes isolated from naturally occurring phototrophic biofilms to the salt-tolerant archaea Haloferax volcanii.
Collapse
|
13
|
Dereven'kov IA, Hannibal L, Makarov SV, Makarova AS, Molodtsov PA, Koifman OI. Characterization of the complex between native and reduced bovine serum albumin with aquacobalamin and evidence of dual tetrapyrrole binding. J Biol Inorg Chem 2018; 23:725-738. [PMID: 29721769 DOI: 10.1007/s00775-018-1562-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/25/2018] [Indexed: 11/30/2022]
Abstract
Serum albumin binds to a variety of endogenous ligands and drugs. Human serum albumin (HSA) binds to heme via hydrophobic interactions and axial coordination of the iron center by protein residue Tyr161. Human serum albumin binds to another tetrapyrrole, cobalamin (Cbl), but the structural and functional properties of this complex are poorly understood. Herein, we investigate the reaction between aquacobalamin (H2OCbl) and bovine serum albumin (BSA, the bovine counterpart of HSA) using Ultraviolet-Visible and fluorescent spectroscopy, and electron paramagnetic resonance. The reaction between H2OCbl and BSA led to the formation of a BSA-Cbl(III) complex consistent with N-axial ligation (amino). Prior to the formation of this complex, the reactants participate in an additional binding event that has been examined by fluorescence spectroscopy. Binding of BSA to Cbl(III) reduced complex formation between the bound cobalamin and free cyanide to form cyanocobalamin (CNCbl), suggesting that the β-axial position of the cobalamin may be occupied by an amino acid residue from the protein. Reaction of BSA containing reduced disulfide bonds with H2OCbl produces cob(II)alamin and disulfide with intermediate formation of thiolate Cbl(III)-BSA complex and its decomposition. Finally, in vitro studies showed that cobalamin binds to BSA only in the presence of an excess of protein, which is in contrast to heme binding to BSA that involves a 1:1 stoichiometry. In vitro formation of BSA-Cbl(III) complex does not preclude subsequent heme binding, which occurs without displacement of H2OCbl bound to BSA. These data suggest that the two tetrapyrroles interact with BSA in different binding pockets.
Collapse
Affiliation(s)
- Ilia A Dereven'kov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, Ivanovo, 153000, Russian Federation.
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department for Pediatrics, Medical Center, University of Freiburg, Mathildenstr. 1, 79106, Freiburg, Germany
| | - Sergei V Makarov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, Ivanovo, 153000, Russian Federation
| | - Anna S Makarova
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya Str 1, Ivanovo, 153045, Russian Federation
| | - Pavel A Molodtsov
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, Ivanovo, 153000, Russian Federation
| | - Oskar I Koifman
- Institute of Macroheterocyclic Compounds, Ivanovo State University of Chemistry and Technology, Sheremetevskiy Str. 7, Ivanovo, 153000, Russian Federation
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya Str 1, Ivanovo, 153045, Russian Federation
| |
Collapse
|
14
|
Padmanabhan S, Jost M, Drennan CL, Elías-Arnanz M. A New Facet of Vitamin B 12: Gene Regulation by Cobalamin-Based Photoreceptors. Annu Rev Biochem 2017; 86:485-514. [PMID: 28654327 PMCID: PMC7153952 DOI: 10.1146/annurev-biochem-061516-044500] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Living organisms sense and respond to light, a crucial environmental factor, using photoreceptors, which rely on bound chromophores such as retinal, flavins, or linear tetrapyrroles for light sensing. The discovery of photoreceptors that sense light using 5'-deoxyadenosylcobalamin, a form of vitamin B12 that is best known as an enzyme cofactor, has expanded the number of known photoreceptor families and unveiled a new biological role of this vitamin. The prototype of these B12-dependent photoreceptors, the transcriptional repressor CarH, is widespread in bacteria and mediates light-dependent gene regulation in a photoprotective cellular response. CarH activity as a transcription factor relies on the modulation of its oligomeric state by 5'-deoxyadenosylcobalamin and light. This review surveys current knowledge about these B12-dependent photoreceptors, their distribution and mode of action, and the structural and photochemical basis of how they orchestrate signal transduction and control gene expression.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain;
| | - Marco Jost
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2140;
| | - Catherine L Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Department of Biology and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética, Unidad Asociada al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain;
| |
Collapse
|
15
|
The Vitamin B 12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters. mBio 2017; 8:mBio.00261-17. [PMID: 28325764 PMCID: PMC5362033 DOI: 10.1128/mbio.00261-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq) and ChIP-seq and exonuclease digestion (ChIP-exo) studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2) and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function. Photoreceptors control a wide range of physiology often by regulating downstream gene expression in response to light absorption via a bound chromophore. Different photoreceptors are known to utilize a number of different compounds for light absorption, including the use of such compounds as flavins, linearized tetrapyrroles (bilins), and carotenoids. Recently, a novel class of photoreceptors that use vitamin B12 (cobalamin) as a blue-light-absorbing chromophore have been described. In this study, we analyzed the mechanism by which the vitamin B12 binding photoreceptor AerR controls the DNA binding activity of the photosystem regulator CrtJ. This study shows that a direct interaction between the vitamin B12 binding photoreceptor AerR with CrtJ modulates CrtJ binding to DNA and importantly, the regulatory outcome of gene expression, as shown here with photosystem promoters.
Collapse
|
16
|
Busche T, Winkler A, Wedderhoff I, Rückert C, Kalinowski J, Ortiz de Orué Lucana D. Deciphering the Transcriptional Response Mediated by the Redox-Sensing System HbpS-SenS-SenR from Streptomycetes. PLoS One 2016; 11:e0159873. [PMID: 27541358 PMCID: PMC4991794 DOI: 10.1371/journal.pone.0159873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
The secreted protein HbpS, the membrane-embedded sensor kinase SenS and the cytoplasmic response regulator SenR from streptomycetes have been shown to form a novel type of signaling pathway. Based on structural biology as well as different biochemical and biophysical approaches, redox stress-based post-translational modifications in the three proteins were shown to modulate the activity of this signaling pathway. In this study, we show that the homologous system, named here HbpSc-SenSc-SenRc, from the model species Streptomyces coelicolor A3(2) provides this bacterium with an efficient defense mechanism under conditions of oxidative stress. Comparative analyses of the transcriptomes of the Streptomyces coelicolor A3(2) wild-type and the generated hbpSc-senSc-senRc mutant under native and oxidative-stressing conditions allowed to identify differentially expressed genes, whose products may enhance the anti-oxidative defense of the bacterium. Amongst others, the results show an up-regulated transcription of genes for biosynthesis of cysteine and vitamin B12, transport of methionine and vitamin B12, and DNA synthesis and repair. Simultaneously, transcription of genes for degradation of an anti-oxidant compound is down-regulated in a HbpSc-SenSc-SenRc-dependent manner. It appears that HbpSc-SenSc-SenRc controls the non-enzymatic response of Streptomyces coelicolor A3(2) to counteract the hazardous effects of oxidative stress. Binding of the response regulator SenRc to regulatory regions of some of the studied genes indicates that the regulation is direct. The results additionally suggest that HbpSc-SenSc-SenRc may act in concert with other regulatory modules such as a transcriptional regulator, a two-component system and the Streptomyces B12 riboswitch. The transcriptomics data, together with our previous in vitro results, enable a profound characterization of the HbpS-SenS-SenR system from streptomycetes. Since homologues to HbpS-SenS-SenR are widespread in different actinobacteria with ecological and medical relevance, the data presented here will serve as a basis to elucidate the biological role of these homologues.
Collapse
Affiliation(s)
- Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Ina Wedderhoff
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Darío Ortiz de Orué Lucana
- Applied Genetics of Microorganisms, Department of Biology and Chemistry, University of Osnabrueck, Osnabrueck, Barbarastraße 13, 49076, Osnabrueck, Germany
- * E-mail:
| |
Collapse
|
17
|
Cheng Z, Yamamoto H, Bauer CE. Cobalamin's (Vitamin B12) Surprising Function as a Photoreceptor. Trends Biochem Sci 2016; 41:647-650. [PMID: 27217104 DOI: 10.1016/j.tibs.2016.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/26/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Cobalamin (Vitamin B12) is an adenosyl- or methyl-donating cofactor for many enzymes, yet many proteins with unknown or nonenzymatic function also contain B12-binding domains. Recent studies show that light excitation energy can promote covalent linkage of B12 to transcription factors with this linkage, affecting gene expression. Thus, B12 now has a newly described regulatory function. Here, our bioinformatics analysis reveals other transcription factors, photoreceptors, kinases, and oxygen sensors that harbor a B12-binding domain that could also regulate activity in response to light absorption.
Collapse
Affiliation(s)
- Zhuo Cheng
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Haruki Yamamoto
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA
| | - Carl E Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|