1
|
De La Fuente L, Navas-Cortés JA, Landa BB. Ten Challenges to Understanding and Managing the Insect-Transmitted, Xylem-Limited Bacterial Pathogen Xylella fastidiosa. PHYTOPATHOLOGY 2024; 114:869-884. [PMID: 38557216 DOI: 10.1094/phyto-12-23-0476-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."
Collapse
Affiliation(s)
- Leonardo De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, U.S.A
| | - Juan A Navas-Cortés
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | - Blanca B Landa
- Department of Crop Protection. Institute for Sustainable Agriculture (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| |
Collapse
|
2
|
Zhang M, Yang B, Shi J, Wang Z, Liu Y. Host defense peptides mitigate the spread of antibiotic resistance in physiologically relevant condition. Antimicrob Agents Chemother 2024; 68:e0126123. [PMID: 38415983 PMCID: PMC10994823 DOI: 10.1128/aac.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.
Collapse
Affiliation(s)
- Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Qu Y, Wang W, Lu Q, Qiu J, Wang D, Ma L. Occurrence and characterization of plasmids carrying tmexCD1- toprJ1, blaDHA-1, and blaCTX-M-127, in clinical Klebsiella pneumoniae strains. Front Cell Infect Microbiol 2023; 13:1260066. [PMID: 37900313 PMCID: PMC10611489 DOI: 10.3389/fcimb.2023.1260066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Today, the emergence of Klebsiella pneumoniae with the tmexCD1-toprJ1 gene cassette in patients has presented a significant clinical challenge. Methods To present the detailed genetic features of the tmexCD1-toprJ1 gene cassette of K. pneumoniae strain F4_plasmid pA, the whole bacterial genome was sequenced by Illumina and nanopore platforms, and mobile genetic elements related to antibiotic resistance genes were analyzed with a series of bioinformatics methods. Results K. pneumoniae strain F4 was determined to be a class A+C beta-lactamase, and was resistant to routinely used antibiotics, especially tigecycline, because of the oqxAB gene localized on the F4_chromosome and tmexCD1-toprJ1 on F4_plasmid A. After plasmid transfer assays, the F4_plasmid pA or F4_plasmid pB could be recovered with an average conjugation frequencies of 3.42×10-4 or 4.19×10-4. F4_plasmid pA carried tmexCD1-toprJ1 and bla DHA-1 accompanied by genetic intermixing of TnAs1, Tn5393, TnAs3, and In641, while F4_plasmid pB, bearing bla CTX-M-174, had structural overlap of TnAs3 and In641. Conclusions We suggested that plasmids carrying tmexCD1- toprJ1 might be strongly related to IS26-integrated loop intermediates. This study showed that due to the structural evolution of F4 and related strains, their resistances were so strong that effective antibiotics were virtually unavailable, therefore their spread and prevalence should be strictly controlled.
Collapse
Affiliation(s)
- Ying Qu
- Department of Clinical Medicine Laboratory, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang, China
| | - Wenji Wang
- School of Life Sciences, Taizhou University, Taizhou, Zhejiang, China
| | - Qinhong Lu
- Department of Clinical Medicine Laboratory, Ningbo Medical Center Li Huili Hospital, Ningbo, Zhejiang, China
| | - Jihai Qiu
- Department of Infectious Diseases, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang, China
| | - Liman Ma
- Department of Central Laboratory, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, Zhejiang, China
- School of Medicine, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Román-Écija M, Navas-Cortés JA, Velasco-Amo MP, Arias-Giraldo LF, Gómez LM, Fuente LDL, Landa BB. Two Xylella fastidiosa subsp. multiplex Strains Isolated from Almond in Spain Differ in Plasmid Content and Virulence Traits. PHYTOPATHOLOGY 2023; 113:960-974. [PMID: 36576402 DOI: 10.1094/phyto-06-22-0234-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The plant-pathogenic bacterium Xylella fastidiosa is a major threat to agriculture and the environment worldwide. Recent devastating outbreaks in Europe highlight the potential of this pathogen to cause emergent diseases. X. fastidiosa subsp. multiplex ESVL and IVIA5901 strains that belong to sequence type 6 were isolated from almond orchards within the outbreak area in Alicante province (Spain). Both strains share more than 99% of the chromosomal sequences (average nucleotide identity), but the ESVL strain harbors two plasmids (pXF64-Hb_ESVL and pUCLA-ESVL). Here, virulence phenotypes and genome content were compared between both strains, using three strains from the United States as a reference for the phenotypic analyses. Experiments in microfluidic chambers, used as a simulation of xylem vessels, showed that twitching motility was absent in the IVIA5901 strain, whereas the ESVL strain had reduced twitching motility. In general, both Spanish strains had less biofilm formation, less cell aggregation, and lower virulence in tobacco compared with U.S. reference strains. Genome analysis of the two plasmids from ESVL revealed 51 unique coding sequences that were absent in the chromosome of IVIA5901. Comparison of the chromosomes of both strains showed some unique coding sequences and single-nucleotide polymorphisms in each strain, with potential deleterious mutations. Genomic differences found in genes previously associated with adhesion and motility might explain the differences in the phenotypic traits studied. Although additional studies are necessary to infer the potential role of X. fastidiosa plasmids, our results indicate that the presence of plasmids should be considered in the study of the mechanisms of pathogenicity and adaptation in X. fastidiosa to new environments. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- M Román-Écija
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - J A Navas-Cortés
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - M P Velasco-Amo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L F Arias-Giraldo
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| | - L M Gómez
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - L De La Fuente
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - B B Landa
- Department of Crop Protection, Institute for Sustainable Agriculture, Consejo Superior de Investigaciones Científicas, Córdoba, Spain
| |
Collapse
|
5
|
Natural Recombination among Type I Restriction-Modification Systems Creates Diverse Genomic Methylation Patterns among Xylella fastidiosa Strains. Appl Environ Microbiol 2023; 89:e0187322. [PMID: 36598481 PMCID: PMC9888226 DOI: 10.1128/aem.01873-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Xylella fastidiosa is an important bacterial plant pathogen causing high-consequence diseases in agricultural crops around the world. Although as a species X. fastidiosa can infect many host plants, there is significant variability between strains regarding virulence on specific host plant species and other traits. Natural competence and horizontal gene transfer are believed to occur frequently in X. fastidiosa and likely influence the evolution of this pathogen. However, some X. fastidiosa strains are difficult to manipulate genetically using standard transformation techniques. Several type I restriction-modification (R-M) systems are encoded in the X. fastidiosa genome, which may influence horizontal gene transfer and recombination. Type I R-M systems themselves may undergo recombination, exchanging target recognition domains (TRDs) between specificity subunits (hsdS) to generate novel alleles with new target specificities. In this study, several conserved type I R-M systems were compared across 129 X. fastidiosa genome assemblies representing all known subspecies and 32 sequence types. Forty-four unique TRDs were identified among 50 hsdS alleles, which are arrayed in 31 allele profiles that are generally conserved within a monophyletic cluster of strains. Inactivating mutations were identified in type I R-M systems of specific strains, showing heterogeneity in the complements of functional type I R-M systems across X. fastidiosa. Genomic DNA methylation patterns were characterized in 20 X. fastidiosa strains and associated with type I R-M system allele profiles. Overall, these data suggest hsdS genes recombine among Xylella strains and/or unknown donors, and the resulting TRD reassortment establishes differential epigenetic modifications across Xylella lineages. IMPORTANCE Economic impacts on agricultural production due to X. fastidiosa have been severe in the Americas, Europe, and parts of Asia. Despite a long history of research on this pathogen, certain fundamental questions regarding the biology, pathogenicity, and evolution of X. fastidiosa have still not been answered. Wide-scale whole-genome sequencing has begun to provide more insight into X. fastidiosa genetic diversity and horizontal gene transfer, but the mechanics of genomic recombination in natural settings and the extent to which this directly influences bacterial phenotypes such as plant host range are not well understood. Genome methylation is an important factor in horizontal gene transfer and bacterial recombination that has not been comprehensively studied in X. fastidiosa. This study characterizes methylation associated with type I restriction-modification systems across a wide range of X. fastidiosa strains and lays the groundwork for a better understanding of X. fastidiosa biology and evolution through epigenetics.
Collapse
|
6
|
Velasco-Amo MP, Arias-Giraldo LF, Olivares-García C, Denancé N, Jacques MA, Landa BB. Use of traC Gene to Type the Incidence and Distribution of pXFAS_5235 Plasmid-Bearing Strains of Xylella fastidiosa subsp. fastidiosa ST1 in Spain. PLANTS (BASEL, SWITZERLAND) 2022; 11:1562. [PMID: 35736713 PMCID: PMC9228473 DOI: 10.3390/plants11121562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Xylella fastidiosa (Xf) is a phytopathogenic bacterium with a repertoire of self-replicating genetic elements, including plasmids, pathogenicity islands, and prophages. These elements provide potential avenues for horizontal gene transfer both within and between species and have the ability to confer new virulence traits, including the ability to colonize new host plants. However, they can also serve as a 'footprint' to type plasmid-bearing strains. Genome sequencing of several strains of Xf subsp. fastidiosa sequence type (ST) 1 from Mallorca Island, Spain, revealed the presence of a 38 kb plasmid (pXFAS_5235). In this study, we developed a PCR-based typing approach using primers targeting the traC gene to determine the presence of pXFAS_5235 plasmid or other plasmids carrying this gene in a world-wide collection of 65 strains X. fastidiosa from different subspecies and STs or in 226 plant samples naturally infected by the bacterium obtained from the different outbreaks of Xf in Spain. The traC gene was amplified only in the plant samples obtained from Mallorca Island infected by Xf subsp. fastidiosa ST1 and from all Spanish strains belonging to this ST. Maximum-likelihood phylogenetic tree of traC revealed a close relatedness among Spanish and Californian strains carrying similar plasmids. Our results confirm previous studies, which suggested that a single introduction event of Xf subsp. fastidiosa ST1 occurred in the Balearic Islands. Further studies on the presence and role of plasmids in Xf strains belonging to the same or different subspecies and STs can provide important information in studies of epidemiology, ecology, and evolution of this plant pathogen.
Collapse
Affiliation(s)
- María Pilar Velasco-Amo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Luis F. Arias-Giraldo
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Concepción Olivares-García
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| | - Nicolás Denancé
- Groupe d’Étude et de controle des Variétes Et des Semences GEVES, CEDEX, F-49071 Beaucouzé, France;
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Marie-Agnès Jacques
- University of Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000 Angers, France;
| | - Blanca B. Landa
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), 14004 Córdoba, Spain; (L.F.A.-G.); (C.O.-G.)
| |
Collapse
|
7
|
Sun S, Wang Q, Jin L, Guo Y, Yin Y, Wang R, Bi L, Zhang R, Han Y, Wang H. Identification of multiple transfer units and novel subtypes of tmexCD-toprJ gene clusters in clinical carbapenem-resistant Enterobacter cloacae and Klebsiella oxytoca. J Antimicrob Chemother 2021; 77:625-632. [PMID: 34893837 DOI: 10.1093/jac/dkab434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Tigecycline is a last-resort antibiotic used to treat lethal infections caused by carbapenem-resistant Enterobacterales; however, plasmid-borne tigecycline resistance tmexCD-toprJ gene clusters can confer tigecycline resistance. The aim of the study was to identify novel subtypes and the spread of tmexCD-toprJ. METHODS Five non-duplicate isolates of different species, carrying tmexCD-toprJ gene clusters or novel subtypes, were isolated from patients across China between November 2018 and June 2019. WGS was performed using Illumina and Nanopore platforms. A phylogenetic tree was constructed using a dataset of 77 sequences carrying the tmexCD-toprJ gene clusters, 72 of which were downloaded from NCBI with a blastn identity cut-off of 95%. RESULTS We detected six different transfer units and two novel subtypes (tmexC1D1.2-toprJ1 and tmexC2D2.2-toprJ2) of the tmexCD-toprJ gene clusters. Among the six transfer units, three were mediated by IS26, while the rest were presumably mediated by Tn5393, hypothetical integrases (xerD-hp clusters-umuC-integrases-tnfxB2-tmexC2D2-toprJ2-umuC) and hypothetical units (hp-hp-hp-tnfxB2-tmexC2D2.2-toprJ2-ΔTn5393-Tn6292). Moreover, two tmexCD-toprJ-like gene clusters co-located on the same plasmid with blaNDM in five isolates. Phylogenetic analysis revealed that tmexCD-toprJ gene clusters may have originated in Pseudomonas spp., being mainly distributed in Pseudomonas spp. and Klebsiella spp. (64/77). Most tmexCD-toprJ gene clusters in Enterobacterales were located on plasmids, indicating that the gene clusters have a high inter-species transfer risk after transfer to Enterobacterales. CONCLUSIONS In summary, to the best of our knowledge, this is the first report of tmexCD-toprJ gene clusters being isolated from Enterobacter cloacae and Klebsiella oxytoca, revealing that these multiple transfer units should be further studied because of their clinical significance.
Collapse
Affiliation(s)
- Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yifan Guo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lei Bi
- Department of Clinical Laboratory, Zibo Central Hospital, Shandong, China
| | - Renfei Zhang
- Department of Clinical Laboratory, The Third Hospital of Mianyang, Sichuan Mental Health Center, Sichuan, China
| | - Yungang Han
- Department of Clinical Laboratory, Henan Provincial Chest Hospital, Henan, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
8
|
Sun Y, Chen W, Wang S, Cao X. Co-occurrence of fosA5, bla SHV-145 and bla OXA-48 among a Klebsiella pneumoniae high-risk ST16 from a tertiary hospital in China: focusing on the phylogeny of OXA-48 genes from global Klebsiella pneumoniae isolates. Braz J Microbiol 2021; 52:2559-2563. [PMID: 34403129 PMCID: PMC8578515 DOI: 10.1007/s42770-021-00572-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, People's Republic of China
| | - Wei Chen
- Clinical Research Center, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, People's Republic of China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, 710069, People's Republic of China.
| | - Xiaoli Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Zhongshan Road, 321#, Gulou District, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Aguilar-Granados A, Hernández-Macías B, Santiago-Martínez G, Ruiz-Medrano R, Kameyama-Kawabe L, Hinojosa-Moya J, Del Carmen Montes-Horcasitas M, Xoconostle-Cázares B. Genetic Diversity of Xylella fastidiosa in Mexican Vineyards. PLANT DISEASE 2021; 105:1490-1494. [PMID: 33780269 DOI: 10.1094/pdis-09-20-1900-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Xylella fastidiosa is a xylem-inhabiting phytopathogenic bacterium that affects diverse agriculturally relevant crops. In Mexico, X. fastidiosa has been reported in the states of Baja California, Coahuila, and Querétaro. In order to determine the genetic diversity of this bacterium in Mexico, 408 grapevine samples were collected from the main producing states in México. For X. fastidiosa identification, real-time PCR and three-loci end-point PCR were employed. The genotyping of the subspecies was carried out using multilocus sequence typing and analysis, based on seven housekeeping genes: leuA, petC, malF, cysG, holC, nuoL, and gltT. The resulting sequences were compared with those present in extant databases. The presence of X. fastidiosa subsp. fastidiosa in the states of Baja California (sequence type 1), Coahuila (sequence type 1), and Querétaro was confirmed. The isolates from northern Mexico bear high similarity to grapevine isolates from the United States. However, the isolates from Querétaro showed significant differences with currently known sequences, showing that there is genetic variability among the X. fastidiosa subsp. fastidiosa populations from grapevines in northern and central Mexico.
Collapse
Affiliation(s)
- Andrés Aguilar-Granados
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 CDMX, México
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Secretaría de Agricultura y Desarrollo Rural, 55740 Tecámac, Estado de México
| | - Bárbara Hernández-Macías
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Secretaría de Agricultura y Desarrollo Rural, 55740 Tecámac, Estado de México
| | - Guillermo Santiago-Martínez
- Centro Nacional de Referencia Fitosanitaria, Servicio Nacional de Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria, Secretaría de Agricultura y Desarrollo Rural, 55740 Tecámac, Estado de México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 CDMX, México
| | - Luis Kameyama-Kawabe
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 CDMX, México
| | - Jesús Hinojosa-Moya
- Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Carr. Cañada Morelos Km 7.5 El Salado, Tecamachalco Puebla, México
| | - María Del Carmen Montes-Horcasitas
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 CDMX, México
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508 San Pedro Zacatenco, 07360 CDMX, México
| |
Collapse
|
10
|
Burbank LP, Sisterson MS, O'Leary ML. Infection of Blueberry Cultivar 'Emerald' with a California Pierce's Disease Strain of Xylella fastidiosa and Acquisition by Glassy-Winged Sharpshooter. PLANT DISEASE 2020; 104:154-160. [PMID: 31697223 DOI: 10.1094/pdis-05-19-1126-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial leaf scorch disease caused by Xylella fastidiosa occurs in southern highbush blueberry varieties in the southeastern United States. Susceptibility to X. fastidiosa varies by blueberry cultivar, and these interactions are often strain-specific. Xylella fastidiosa subsp. fastidiosa is the causal agent of Pierce's disease in grapevines, and it has been problematic in the San Joaquin Valley of California since the introduction of the glassy-winged sharpshooter (Homalodisca vitripennis). The glassy-winged sharpshooter is known to feed on blueberry, a crop that is expanding in the San Joaquin Valley. Currently, little is known about the potential for the spread of X. fastidiosa between grape and blueberry in this region. The ability of a Pierce's disease strain of X. fastidiosa from the San Joaquin Valley to cause disease in southern highbush blueberry and the potential for the glassy-winged sharpshooter to transmit X. fastidiosa between blueberry and grapevine were investigated. Experimental inoculations showed that the X. fastidiosa subsp. fastidiosa strain Bakersfield-1 can cause disease in blueberry cv. Emerald, and that the glassy-winged sharpshooter can acquire X. fastidiosa from artificially inoculated blueberry plants under laboratory conditions. Understanding the possibility for X. fastidiosa strains from the San Joaquin Valley to infect multiple crops grown in proximity is important for area-wide pest and disease management.
Collapse
Affiliation(s)
- Lindsey P Burbank
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Mark S Sisterson
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| | - Michael L O'Leary
- United States Department of Agriculture, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648
| |
Collapse
|
11
|
Feitosa-Junior OR, Stefanello E, Zaini PA, Nascimento R, Pierry PM, Dandekar AM, Lindow SE, da Silva AM. Proteomic and Metabolomic Analyses of Xylella fastidiosa OMV-Enriched Fractions Reveal Association with Virulence Factors and Signaling Molecules of the DSF Family. PHYTOPATHOLOGY 2019; 109:1344-1353. [PMID: 30973310 DOI: 10.1094/phyto-03-19-0083-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xylella fastidiosa releases outer membrane vesicles (OMVs) known to play a role in the systemic dissemination of this pathogen. OMVs inhibit bacterial attachment to xylem wall and traffic lipases/esterases that act on the degradation of plant cell wall. Here, we extended the characterization of X. fastidiosa OMVs by identifying proteins and metabolites potentially associated with OMVs produced by Temecula1, a Pierce's disease strain, and by 9a5c and Fb7, two citrus variegated chlorosis strains. These results strengthen that one of the OMVs multiple functions is to carry determinants of virulence, such as lipases/esterases, adhesins, proteases, porins, and a pectin lyase-like protein. For the first time, we show that the two citrus variegated chlorosis strains produce X. fastidiosa diffusible signaling factor 2 (DSF2) and citrus variegated chlorosis-DSF (likewise, Temecula1) and most importantly, that these compounds of the DSF (X. fastidiosa DSF) family are associated with OMV-enriched fractions. Altogether, our findings widen the potential functions of X. fastidiosa OMVs in intercellular signaling and host-pathogen interactions.
Collapse
Affiliation(s)
- Oséias R Feitosa-Junior
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Eliezer Stefanello
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Paulo A Zaini
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- 2Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Rafael Nascimento
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
- 3Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | - Paulo M Pierry
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Abhaya M Dandekar
- 2Department of Plant Sciences, University of California, Davis, CA 95616, U.S.A
| | - Steven E Lindow
- 4Department Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Aline M da Silva
- 1Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
12
|
Sicard A, Zeilinger AR, Vanhove M, Schartel TE, Beal DJ, Daugherty MP, Almeida RPP. Xylella fastidiosa: Insights into an Emerging Plant Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:181-202. [PMID: 29889627 DOI: 10.1146/annurev-phyto-080417-045849] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.
Collapse
Affiliation(s)
- Anne Sicard
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
- Biologie et Génétique des Interactions Plant-Parasite, UMR 0385, Centre de Coopération Internationale en Recherche Agronomique pour le Développement-Institut National de la Recherche Agronomique-Montpellier SupAgro, Campus International de Baillarguet, 34398 Montpellier CEDEX 05, France
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Mathieu Vanhove
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Tyler E Schartel
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Dylan J Beal
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| | - Matthew P Daugherty
- Department of Entomology, University of California, Riverside, California 92521, USA
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, USA;
| |
Collapse
|