1
|
Mou S, Savchenko V, Filz V, Böttcher T, DeShazer D. Burkholderia pseudomallei produces 2-alkylquinolone derivatives important for host virulence and competition with bacteria that employ naphthoquinones for aerobic respiration. Front Microbiol 2024; 15:1474033. [PMID: 39469462 PMCID: PMC11513363 DOI: 10.3389/fmicb.2024.1474033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Melioidosis is caused by Burkholderia pseudomallei, an opportunistic Gram-negative pathogen that inhabits soil and water in tropical and subtropical regions. B. pseudomallei infections often occur following contact with contaminated water or soil or by inhalation of contaminated dust and water droplets. There is limited knowledge about how B. pseudomallei is able to survive in harsh environmental conditions and compete with the microbes that inhabit these niches. Previous research demonstrated that 3-methyl-2-alkylquinolones (MAQs), and their corresponding N-oxides (MAQNOs), are produced by B. pseudomallei and provide a competitive advantage when grown in the presence of Gram-positive bacteria. In this study, 39 Gram-negative environmental bacteria in the Pseudomonadota and Bacteroidota phyla were isolated and characterized. Intriguingly, B. pseudomallei inhibited 71% of bacteria in the phylum Bacteroidota in zone of inhibition and coculture competition assays, but no Pseudomonadota isolates were similarly inhibited. Transposon mutagenesis was utilized to identify B. pseudomallei genes required for the inhibition of Sphingobacterium sp. ST4, a representative member of the Bacteroidota. Three mutations mapped to hmqA-G, the locus encoding 2-alkylquinolone derivatives, and two mutations were identified in scmR, a gene encoding a quorum-sensing controlled LysR-type transcriptional regulator. B. pseudomallei strains with deletion mutations in hmqD and scmR were unable to produce 2-alkylquinolone derivatives or inhibit Bacteroidota isolates in competition assays. RAW264.7 murine macrophage cells were infected with B. pseudomallei 1026b and 1026b ΔhmqD and there was a 94-fold reduction in the number of intracellular 1026b ΔhmqD bacteria relative to 1026b. The 50% lethal dose (LD50) of 1026b and 1026b ΔhmqD in BALB/c mice was determined to be 3 x 105 colony forming units (CFU) and > 1 x 106 CFU, respectively. Taken together, the results indicate that the products of the B. pseudomallei hmqA-G locus are important for intracellular replication in murine macrophages, virulence in a mouse model of melioidosis, and competition with bacteria that utilize naphthoquinones for aerobic respiration.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Viktoriia Savchenko
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Verena Filz
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
2
|
Savchenko V, Szamosvári D, Bao Y, Pignitter M, Böttcher T. Biosynthetic flexibility of Pseudomonas aeruginosa leads to hydroxylated 2-alkylquinolones with proinflammatory host response. Commun Chem 2023; 6:138. [PMID: 37400564 DOI: 10.1038/s42004-023-00937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
The human pathogen Pseudomonas aeruginosa produces various 4(1H)-quinolones with diverse functions. Among these, 2-nonyl-4(1H)-quinolone (NQ) and its N-oxide (NQNO) belong to the main metabolites. Their biosynthesis involves substrates from the fatty acid metabolism and we hypothesized that oxidized fatty acids could be responsible for a so far undetected class of metabolites. We developed a divergent synthesis strategy for 2'-hydroxy (2'-OH) and 2'-oxo- substituted quinolones and N-oxides and demonstrated for the first time that 2'-OH-NQ and 2'-OH-NQNO but not the corresponding 2'-oxo compounds are naturally produced by PAO1 and PA14 strains of P. aeruginosa. The main metabolite 2'-OH-NQ is produced even in concentrations comparable to NQ. Exogenous availability of β-hydroxydecanoic acid can further increase the production of 2'-OH-NQ. In contrast to NQ, 2'-OH-NQ potently induced the cytokine IL-8 in a human cell line at 100 nм, suggesting a potential role in host immune modulation.
Collapse
Affiliation(s)
- Viktoriia Savchenko
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
| | - Dávid Szamosvári
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Yifan Bao
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, 1090, Vienna, Austria
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Marc Pignitter
- Faculty of Chemistry, Institute for Physiological Chemistry, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria
| | - Thomas Böttcher
- Faculty of Chemistry, Institute for Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystems Science, University of Vienna, Josef-Holaubek-Platz 2 (UZA II), 1090, Vienna, Austria.
| |
Collapse
|
3
|
Gonzales M, Plener L, Armengaud J, Armstrong N, Chabrière É, Daudé D. Lactonase-mediated inhibition of quorum sensing largely alters phenotypes, proteome, and antimicrobial activities in Burkholderia thailandensis E264. Front Cell Infect Microbiol 2023; 13:1190859. [PMID: 37333853 PMCID: PMC10272358 DOI: 10.3389/fcimb.2023.1190859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction Burkholderia thailandensis is a study model for Burkholderia pseudomallei, a highly virulent pathogen, known to be the causative agent of melioidosis and a potential bioterrorism agent. These two bacteria use an (acyl-homoserine lactone) AHL-mediated quorum sensing (QS) system to regulate different behaviors including biofilm formation, secondary metabolite productions, and motility. Methods Using an enzyme-based quorum quenching (QQ) strategy, with the lactonase SsoPox having the best activity on B. thailandensis AHLs, we evaluated the importance of QS in B. thailandensis by combining proteomic and phenotypic analyses. Results We demonstrated that QS disruption largely affects overall bacterial behavior including motility, proteolytic activity, and antimicrobial molecule production. We further showed that QQ treatment drastically decreases B. thailandensis bactericidal activity against two bacteria (Chromobacterium violaceum and Staphylococcus aureus), while a spectacular increase in antifungal activity was observed against fungi and yeast (Aspergillus niger, Fusarium graminearum and Saccharomyces cerevisiae). Discussion This study provides evidence that QS is of prime interest when it comes to understanding the virulence of Burkholderia species and developing alternative treatments.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- Gene&GreenTK, Marseille, France
| | | | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | |
Collapse
|
4
|
Dai C, Qu Y, Wu W, Li S, Chen Z, Lian S, Jing J. QSP: An open sequence database for quorum sensing related gene analysis with an automatic annotation pipeline. WATER RESEARCH 2023; 235:119814. [PMID: 36934538 DOI: 10.1016/j.watres.2023.119814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Quorum sensing (QS) has attracted great attention due to its important role in the bacterial interactions and its relevance to water management. With the development of high-throughput sequencing technology, a specific database for QS-related sequence annotation is urgently needed. Here, Hidden Markov Model (HMM) profiles for 38 types of QS-related proteins were built using a total of 4024 collected seed sequences. Based on both homolog search and keywords confirmation against the non-redundant database, we established a QS-related protein (QSP) database, that includes 809,721 protein sequences and 186,133 nucleotide sequences, downloaded available at: https://github.com/chunxiao-dcx/QSP. The entries were classified into 38 types and 315 subtypes among 91 bacterial phyla. Furthermore, an automatic annotation pipeline, named QSAP, was developed for rapid annotation, classification and abundance quantification of QSP-like sequences from sequencing data. This pipeline provided the two homolog alignment strategies offered by Diamond (Blastp) or HMMER (Hmmscan), as well as a data cleansing function for a subset or union set of the hits. The pipeline was tested using 14 metagenomic samples from various water environments, including activated sludge, deep-sea sediments, estuary water, and reservoir water. The QSAP pipeline is freely available for academic use in the code repository at: https://github.com/chunxiao-dcx/QSAP. The establishment of this database and pipeline, provides a useful tool for QS-related sequence annotation in a wide range of projects, and will increase our understanding of QS communication in aquatic environments.
Collapse
Affiliation(s)
- Chunxiao Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuzhen Li
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiawei Jing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL. Biofilm Signaling, Composition and Regulation in Burkholderia pseudomallei. J Microbiol Biotechnol 2023; 33:15-27. [PMID: 36451302 PMCID: PMC9899790 DOI: 10.4014/jmb.2207.07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/04/2022]
Abstract
The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
Collapse
Affiliation(s)
| | - Sheila Nathan
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia,Corresponding author Phone: +03 8921 4561 Fax: +603 8921 3398 E-mail:
| |
Collapse
|
6
|
Ernst S, Mährlein A, Ritzmann NH, Drees SL, Fetzner S. A comparative study of
N
‐hydroxylating flavoprotein monooxygenases reveals differences in kinetics and cofactor binding. FEBS J 2022; 289:5637-5655. [DOI: 10.1111/febs.16444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/21/2022] [Accepted: 03/18/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Simon Ernst
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Almuth Mährlein
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Niklas H. Ritzmann
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Steffen L. Drees
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| | - Susanne Fetzner
- Institute of Molecular Microbiology and Biotechnology University of Münster Germany
| |
Collapse
|
7
|
Aiosa N, Sinha A, Jaiyesimi OA, da Silva RR, Branda SS, Garg N. Metabolomics Analysis of Bacterial Pathogen Burkholderia thailandensis and Mammalian Host Cells in Co-culture. ACS Infect Dis 2022; 8:1646-1662. [PMID: 35767828 DOI: 10.1021/acsinfecdis.2c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Tier 1 HHS/USDA Select Agent Burkholderia pseudomallei is a bacterial pathogen that is highly virulent when introduced into the respiratory tract and intrinsically resistant to many antibiotics. Transcriptomic- and proteomic-based methodologies have been used to investigate mechanisms of virulence employed by B. pseudomallei and Burkholderia thailandensis, a convenient surrogate; however, analysis of the pathogen and host metabolomes during infection is lacking. Changes in the metabolites produced can be a result of altered gene expression and/or post-transcriptional processes. Thus, metabolomics complements transcriptomics and proteomics by providing a chemical readout of a biological phenotype, which serves as a snapshot of an organism's physiological state. However, the poor signal from bacterial metabolites in the context of infection poses a challenge in their detection and robust annotation. In this study, we coupled mammalian cell culture-based metabolomics with feature-based molecular networking of mono- and co-cultures to annotate the pathogen's secondary metabolome during infection of mammalian cells. These methods enabled us to identify several key secondary metabolites produced by B. thailandensis during infection of airway epithelial and macrophage cell lines. Additionally, the use of in silico approaches provided insights into shifts in host biochemical pathways relevant to defense against infection. Using chemical class enrichment analysis, for example, we identified changes in a number of host-derived compounds including immune lipids such as prostaglandins, which were detected exclusively upon pathogen challenge. Taken together, our findings indicate that co-culture of B. thailandensis with mammalian cells alters the metabolome of both pathogen and host and provides a new dimension of information for in-depth analysis of the host-pathogen interactions underlying Burkholderia infection.
Collapse
Affiliation(s)
- Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Anupama Sinha
- Biotechnology & Bioengineering, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States
| | - Ricardo R da Silva
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Av. do Café─Vila Monte Alegre, 14040-903 Ribeirão Preto-SP, Brazil
| | - Steven S Branda
- Systems Biology, Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332-2000, United States.,Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, ES&T, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
9
|
Horwitz SM, Blue TC, Ambarian JA, Hoshino S, Seyedsayamdost MR, Davis KM. Structural insights into inhibition of the drug target dihydroorotate dehydrogenase by bacterial hydroxyalkylquinolines. RSC Chem Biol 2022; 3:420-425. [PMID: 35441142 PMCID: PMC8984913 DOI: 10.1039/d1cb00255d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/07/2022] [Indexed: 12/04/2022] Open
Abstract
Hydroxyalkylquinolines (HAQs) are ubiquitious natural products but their interactions with associated protein targets remain elusive. We report X-ray crystal structures of two HAQs in complex with dihydroorotate dehydrogenase (DHODH). Our results reveal the structural basis of DHODH inhibition by HAQs and open the door to downstream structure-activity relationship studies.
Collapse
Affiliation(s)
| | - Tamra C Blue
- Department of Chemistry, Emory University Atlanta GA 30322 USA
| | | | - Shotaro Hoshino
- Department of Chemistry, Princeton University Princeton NJ 08544 USA
| | | | | |
Collapse
|
10
|
Mou S, Jenkins CC, Okaro U, Dhummakupt ES, Mach PM, DeShazer D. The Burkholderia pseudomallei hmqA-G Locus Mediates Competitive Fitness against Environmental Gram-Positive Bacteria. Microbiol Spectr 2021; 9:e0010221. [PMID: 34160272 PMCID: PMC8552763 DOI: 10.1128/spectrum.00102-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei is an opportunistic pathogen that is responsible for the disease melioidosis in humans and animals. The microbe is a tier 1 select agent because it is highly infectious by the aerosol route, it is inherently resistant to multiple antibiotics, and no licensed vaccine currently exists. Naturally acquired infections result from contact with contaminated soil or water sources in regions of endemicity. There have been few reports investigating the molecular mechanism(s) utilized by B. pseudomallei to survive and persist in ecological niches harboring microbial competitors. Here, we report the isolation of Gram-positive bacteria from multiple environmental sources and show that ∼45% of these isolates are inhibited by B. pseudomallei in head-to-head competition assays. Two competition-deficient B. pseudomallei transposon mutants were identified that contained insertion mutations in the hmqA-G operon. This large biosynthetic gene cluster encodes the enzymes that produce a family of secondary metabolites called 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs). Liquid chromatography and mass spectrometry conducted on filter-sterilized culture supernatants revealed five HMAQs and N-oxide derivatives that were produced by the parental strain but were absent in an isogenic hmqD deletion mutant. The results demonstrate that B. pseudomallei inhibits the growth of environmental Gram-positive bacteria in a contact-independent manner via the production of HMAQs by the hmqA-G operon. IMPORTANCE Burkholderia pseudomallei naturally resides in water, soil, and the rhizosphere and its success as an opportunistic pathogen is dependent on the ability to persist in these harsh habitats long enough to come into contact with a susceptible host. In addition to adapting to limiting nutrients and diverse chemical and physical challenges, B. pseudomallei also has to interact with a variety of microbial competitors. Our research shows that one of the ways in which B. pseudomallei competes with Gram-positive environmental bacteria is by exporting a diverse array of closely related antimicrobial secondary metabolites.
Collapse
Affiliation(s)
- Sherry Mou
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Conor C. Jenkins
- Excet Inc., Springfield, Virginia, USA
- DEVCOM Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | | | - Phillip M. Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | - David DeShazer
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
11
|
Wang Y, Hoffmann JP, Baker SM, Bentrup KHZ, Wimley WC, Fuselier JA, Bitoun JP, Morici LA. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles. BMC Microbiol 2021; 21:234. [PMID: 34429066 PMCID: PMC8386047 DOI: 10.1186/s12866-021-02296-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Biofilms are microbial communities surrounded by a self-produced extracellular matrix which protects them from environmental stress. Bacteria within biofilms are 10- to 1000-fold more resistant to antibiotics, making it challenging but imperative to develop new therapeutics that can disperse biofilms and eradicate infection. Gram-negative bacteria produce outer membrane vesicles (OMV) that play critical roles in communication, genetic exchange, cargo delivery, and pathogenesis. We have previously shown that OMVs derived from Burkholderia thailandensis inhibit the growth of drug-sensitive and drug-resistant bacteria and fungi. RESULTS Here, we examine the antibiofilm activity of Burkholderia thailandensis OMVs against the oral biofilm-forming pathogen Streptococcus mutans. We demonstrate that OMV treatment reduces biofilm biomass, biofilm integrity, and bacterial cell viability. Both heat-labile and heat-stable components, including 4-hydroxy-3-methyl-2-(2-non-enyl)-quinoline and long-chain rhamnolipid, contribute to the antibiofilm activity of OMVs. When OMVs are co-administered with gentamicin, the efficacy of the antibiotic against S. mutans biofilms is enhanced. CONCLUSION These studies indicate that bacterial-derived OMVs are highly effective biological nanoparticles that can inhibit and potentially eradicate biofilms.
Collapse
Affiliation(s)
- Yihui Wang
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Joseph P. Hoffmann
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Sarah M. Baker
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Kerstin Höner zu Bentrup
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - William C. Wimley
- grid.265219.b0000 0001 2217 8588Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA USA
| | - Joseph A. Fuselier
- grid.265219.b0000 0001 2217 8588Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Jacob P. Bitoun
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| | - Lisa A. Morici
- grid.265219.b0000 0001 2217 8588Department of Microbiology and Immunology, Tulane University School of Medicine, 1430 Tulane Ave., SL-38, LA 70112-2699 New Orleans, USA
| |
Collapse
|
12
|
Waluyo D, Prabandari EE, Pramisandi A, Hidayati DN, Chrisnayanti E, Puspitasari DJ, Dewi D, Oktaviani AN, Afrianti KR, Nonaka K, Matsumoto A, Tokiwa T, Adipratiwi N, Ariyani T, Hartuti ED, Putri TZ, Rahmawati Y, Inaoka DK, Miyazaki Y, Sakura T, Siska E, Kurnia K, Bernawati P, Mahsunah AH, Nugroho NB, Mori M, Dobashi K, Yamashita M, Nurkanto A, Watanabe A, Shiomi K, Wibowo AE, Nozaki T. Exploring natural microbial resources for the discovery of anti-malarial compounds. Parasitol Int 2021; 85:102432. [PMID: 34363974 DOI: 10.1016/j.parint.2021.102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/23/2021] [Accepted: 08/01/2021] [Indexed: 01/21/2023]
Abstract
Microorganisms in nature are highly diverse biological resources, which can be explored for drug discovery. Some countries including Brazil, Columbia, Indonesia, China, and Mexico, which are blessed with geographical uniqueness with diverse climates and display remarkable megabiodiversity, potentially provide microorganismal resources for such exploitation. In this review, as an example of drug discovery campaigns against tropical parasitic diseases utilizing microorganisms from such a megabiodiversity country, we summarize our past and on-going activities toward discovery of new antimalarials. The program was held in a bilateral collaboration between multiple Indonesian and Japanese research groups. In order to develop a new platform of drug discovery utilizing Indonesian bioresources under an international collaborative scheme, we aimed at: 1) establishment of an Indonesian microbial depository, 2) development of robust enzyme-based and cell-based screening systems, and 3) technology transfer necessary for screening, purification, and identification of antimalarial compounds from microbial culture broths. We collected, characterized, and deposited Indonesian microbes. We morphologically and genetically characterized fungi and actinomycetes strains isolated from 5 different locations representing 3 Indonesian geographical areas, and validated genetic diversity of microbes. Enzyme-based screening was developed against two validated mitochondrial enzymes from Plasmodium falciparum, dihydroorotate dehydrogenase and malate:quinone oxidoreductase, while cell-based proliferation assay was developed using the erythrocytic stage parasite of 3D7 strain. More than 17 thousands microbial culture extracts were subjected to the enzyme- and cell-based screening. Representative anti-malarial compounds discovered in this campaign are discussed, including a few isolated compounds that have been identified for the first time as anti-malarial compounds. Our antimalarial discovery campaign validated the Indonesian microbial library as a powerful resource for drug discovery. We also discuss critical needs for selection criteria for hits at each stage of screening and hit deconvolution such as preliminary extraction test for the initial profiling of the active compounds and dereplication techniques to minimize repetitive discovery of known compounds.
Collapse
Affiliation(s)
- Danang Waluyo
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Erwahyuni Endang Prabandari
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Amila Pramisandi
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Dyah Noor Hidayati
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Evita Chrisnayanti
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Dian Japany Puspitasari
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Diana Dewi
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Avi Nurul Oktaviani
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Kiki Rizkia Afrianti
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Kenichi Nonaka
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Atsuko Matsumoto
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Toshiyuki Tokiwa
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Nadia Adipratiwi
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Titin Ariyani
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Endah Dwi Hartuti
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia; School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Tiara Zovi Putri
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Yulia Rahmawati
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Daniel Ken Inaoka
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Yukiko Miyazaki
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Takaya Sakura
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Eka Siska
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Kesi Kurnia
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Putri Bernawati
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Anis Herliyati Mahsunah
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Nuki Bambang Nugroho
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia
| | - Mihoko Mori
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Kazuyuki Dobashi
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Michio Yamashita
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Arif Nurkanto
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; Research Center for Biology, Indonesia Institute of Science (LIPI), Cibinong, Indonesia
| | | | - Kazuro Shiomi
- Ōmura Satoshi Memorial Institute, Kitasato University, Tokyo, Japan
| | - Agung Eru Wibowo
- Laboratory for Biotechnology (Biotech Center), Agency for the Assessment and Application of Technology (BPPT), Building 630, Puspiptek Area, Setu, South Tangerang 15314, Banten, Indonesia; Center for Pharmaceutical and Medical Technology, Agency for the Assessment and Application of Technology (BPPT), Laptiab, Puspiptek, Setu, South Tangerang 15314, Banten, Indonesia
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Bach E, Passaglia LMP, Jiao J, Gross H. Burkholderia in the genomic era: from taxonomy to the discovery of new antimicrobial secondary metabolites. Crit Rev Microbiol 2021; 48:121-160. [PMID: 34346791 DOI: 10.1080/1040841x.2021.1946009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.
Collapse
Affiliation(s)
- Evelise Bach
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luciane Maria Pereira Passaglia
- Departamento de Genética and Programa de Pós-graduação em Genética e Biologia Molecular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Junjing Jiao
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| | - Harald Gross
- Department for Pharmaceutical Biology, Pharmaceutical Institute, University of Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Li A, Okada BK, Rosen PC, Seyedsayamdost MR. Piperacillin triggers virulence factor biosynthesis via the oxidative stress response in Burkholderia thailandensis. Proc Natl Acad Sci U S A 2021; 118:e2021483118. [PMID: 34172579 PMCID: PMC8256049 DOI: 10.1073/pnas.2021483118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural products have been an important source of therapeutic agents and chemical tools. The recent realization that many natural product biosynthetic genes are silent or sparingly expressed during standard laboratory growth has prompted efforts to investigate their regulation and develop methods to induce their expression. Because it is difficult to intuit signals that induce a given biosynthetic locus, we recently implemented a forward chemical-genetic approach to identify such inducers. In the current work, we applied this approach to nine silent biosynthetic loci in the model bacterium Burkholderia thailandensis to systematically screen for elicitors from a library of Food and Drug Administration-approved drugs. We find that β-lactams, fluoroquinolones, antifungals, and, surprisingly, calcimimetics, phenothiazine antipsychotics, and polyaromatic antidepressants are the most effective global inducers of biosynthetic genes. Investigations into the mechanism of stimulation of the silent virulence factor malleicyprol by the β-lactam piperacillin allowed us to elucidate the underlying regulatory circuits. Low-dose piperacillin causes oxidative stress, thereby inducing redox-sensing transcriptional regulators, which activate malR, a pathway-specific positive regulator of the malleicyprol gene cluster. Malleicyprol is thus part of the OxyR and SoxR regulons in B. thailandensis, allowing the bacterium to initiate virulence in response to oxidative stress. Our work catalogs a diverse array of elicitors and a previously unknown regulatory input for secondary metabolism in B. thailandensis.
Collapse
Affiliation(s)
- Anran Li
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Bethany K Okada
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Paul C Rosen
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| | - Mohammad R Seyedsayamdost
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544;
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Presence of the Hmq System and Production of 4-Hydroxy-3-Methyl-2-Alkylquinolines Are Heterogeneously Distributed between Burkholderia cepacia Complex Species and More Prevalent among Environmental than Clinical Isolates. Microbiol Spectr 2021; 9:e0012721. [PMID: 34132614 PMCID: PMC8552760 DOI: 10.1128/spectrum.00127-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) comprises several species of closely related, versatile bacteria. Some Bcc strains produce 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), analogous to the 4-hydroxy-2-alkylquinolines of Pseudomonas aeruginosa. Using in silico analyses, we previously estimated that the hmqABCDEFG operon, which encodes enzymes involved in the biosynthesis of HMAQs, is carried by about one-third of Bcc strains, with considerable inter- and intraspecies variability. In the present study, we investigated by PCR, using consensus primers, the distribution of hmqABCDEFG in a collection of 312 Bcc strains (222 of clinical and 90 of environmental origins) belonging to 18 Bcc species. We confirmed that this operon is not distributed evenly among Bcc species. Among the 30% of strains bearing the hmqABCDEFG operon, we found that 92% of environmental isolates and 82% of clinically isolated Bcc strains produce levels of HMAQs detectable by liquid chromatography-mass spectrometry in at least one of the tested culture conditions. Among the hmqABCDEFG-positive but HMAQ-negative strains, none expressed the hmqA gene under the specified culture conditions. Interestingly, the hmqABCDEFG operon is more prevalent among plant root environment species (e.g., Burkholderia ambifaria and Burkholderia cepacia) and absent in species commonly found in chronically colonized individuals with cystic fibrosis (e.g., Burkholderia cenocepacia and Burkholderia multivorans), suggesting a role for the Hmq system in niche adaptation. We investigated the impact of the Hmq system on plant growth promotion and found that Pisum sativum root development by B. ambifaria required a functional HMAQ system. IMPORTANCE Environmental bacteria belonging to the various closely related species forming the Burkholderia cepacia complex (Bcc) can infect plants and animals, including humans. Their pathogenicity is regulated by intercellular communication, or quorum sensing, allowing them to collaborate instead of acting individually. Bcc organisms generally exploit interacting quorum sensing systems based on N-acyl-homoserine lactones as signaling molecules. Several Bcc strains also carry an hmqABCDEFG operon responsible for the biosynthesis of 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), molecules analogous to the Pseudomonas quinolone signal (PQS) system of P. aeruginosa. Our finding that the prevalences of the Hmq system and HMAQ production are very different between various Bcc species suggests a key role in niche adaptation or pathogenicity. This is supported by a significant reduction in plant growth promotion in the absence of HMAQ production for a beneficial Bcc strain.
Collapse
|
16
|
Prothiwa M, Filz V, Oehler S, Böttcher T. Inhibiting quinolone biosynthesis of Burkholderia. Chem Sci 2021; 12:6908-6912. [PMID: 34123319 PMCID: PMC8153077 DOI: 10.1039/d0sc06167k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2-Alkylquinolones are important signalling molecules of Burkholderia species. We developed a substrate-based chemical probe against the central quinolone biosynthesis enzyme HmqD and applied it in competitive profiling experiments to discover the first known HmqD inhibitors. The most potent inhibitors quantitatively blocked quinolone production in Burkholderia cultures with single-digit micromolar efficacy.
Collapse
Affiliation(s)
- Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany
| | - Verena Filz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany.,Faculty of Chemistry, Department of Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna 1090 Vienna Austria
| | - Sebastian Oehler
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz 78457 Konstanz Germany.,Faculty of Chemistry, Department of Biological Chemistry & Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna 1090 Vienna Austria
| |
Collapse
|
17
|
Signal Synthase-Type versus Catabolic Monooxygenases: Retracing 3-Hydroxylation of 2-Alkylquinolones and Their N-Oxides by Pseudomonas aeruginosa and Other Pulmonary Pathogens. Appl Environ Microbiol 2021; 87:AEM.02241-20. [PMID: 33452035 DOI: 10.1128/aem.02241-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/20/2020] [Indexed: 01/18/2023] Open
Abstract
The multiple biological activities of 2-alkylquinolones (AQs) are crucial for virulence of Pseudomonas aeruginosa, conferring advantages during infection and in polymicrobial communities. Whereas 2-heptyl-3-hydroxyquinolin-4(1H)-one (the "Pseudomonas quinolone signal" [PQS]) is an important quorum sensing signal molecule, 2-alkyl-1-hydroxyquinolin-4(1H)-ones (also known as 2-alkyl-4-hydroxyquinoline N-oxides [AQNOs]) are antibiotics inhibiting respiration. Hydroxylation of the PQS precursor 2-heptylquinolin-4(1H)-one (HHQ) by the signal synthase PqsH boosts AQ quorum sensing. Remarkably, the same reaction, catalyzed by the ortholog AqdB, is used by Mycobacteroides abscessus to initiate degradation of AQs. The antibiotic 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO) is hydroxylated by Staphylococcus aureus to the less toxic derivative PQS-N-oxide (PQS-NO), a reaction probably also catalyzed by a PqsH/AqdB ortholog. In this study, we provide a comparative analysis of four AQ 3-monooxygenases of different organisms. Due to the major impact of AQ/AQNO 3-hydroxylation on the biological activities of the compounds, we surmised adaptations on the enzymatic and/or physiological level to serve either the producer or target organisms. Our results indicate that all enzymes share similar features and are incapable of discriminating between AQs and AQNOs. PQS-NO, hence, occurs as a native metabolite of P. aeruginosa although the unfavorable AQNO 3-hydroxylation is minimized by export as shown for HQNO, involving at least one multidrug efflux pump. Moreover, M. abscessus is capable of degrading the AQNO heterocycle by concerted action of AqdB and dioxygenase AqdC. However, S. aureus and M. abscessus orthologs disfavor AQNOs despite their higher toxicity, suggesting that catalytic constraints restrict evolutionary adaptation and lead to the preference of non-N-oxide substrates by AQ 3-monooxygenases.IMPORTANCE Pseudomonas aeruginosa, Staphylococcus aureus, and Mycobacteroides abscessus are major players in bacterial chronic infections and particularly common colonizers of cystic fibrosis (CF) lung tissue. Whereas S. aureus is an early onset pathogen in CF, P. aeruginosa establishes at later stages. M. abscessus occurs at all stages but has a lower epidemiological incidence. The dynamics of how these pathogens interact can affect survival and therapeutic success. 2-Alkylquinolone (AQ) and 2-alkylhydroxyquinoline N-oxide (AQNO) production is a major factor of P. aeruginosa virulence. The 3-position of the AQ scaffold is critical, both for attenuation of AQ toxicity or degradation by competitors, as well as for full unfolding of quorum sensing. Despite lacking signaling functionality, AQNOs have the strongest impact on suppression of Gram-positives. Because evidence for 3-hydroxylation of AQNOs has been reported, it is desirable to understand the extent by which AQ 3-monooxygenases contribute to manipulation of AQ/AQNO equilibrium, resistance, and degradation.
Collapse
|
18
|
Szamosvári D, Prothiwa M, Dieterich CL, Böttcher T. Profiling structural diversity and activity of 2-alkyl-4(1H)-quinolone N-oxides of Pseudomonas and Burkholderia. Chem Commun (Camb) 2021; 56:6328-6331. [PMID: 32436549 DOI: 10.1039/d0cc02498h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We synthesized all major saturated and unsaturated 2-alkyl-4(1H)-quinolone N-oxides of Pseudomonas and Burkholderia, quantified their native production levels and characterized their antibiotic activities against competing Staphylococcus aureus. We demonstrate that quinolone core methylation and position of unsaturation in the alkyl-chain dictate antibiotic potency which supports the proposed mechanism of action.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Michaela Prothiwa
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Cora Lisbeth Dieterich
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany.
| | - Thomas Böttcher
- Department of Chemistry, Konstanz Research School Chemical Biology, Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany. and Faculty of Chemistry and Department of Microbiology and Ecosystem Science, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Watanabe T. Synthesis and Structure−Activity Relationship Study of Intervenolin, an Antitumor and Anti-Helicobacter pylori Quinolone Natural Product. HETEROCYCLES 2021. [DOI: 10.3987/rev-21-957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Bacterial Alkyl-4-quinolones: Discovery, Structural Diversity and Biological Properties. Molecules 2020; 25:molecules25235689. [PMID: 33276615 PMCID: PMC7731028 DOI: 10.3390/molecules25235689] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
The alkyl-4-quinolones (AQs) are a class of metabolites produced primarily by members of the Pseudomonas and Burkholderia genera, consisting of a 4-quinolone core substituted by a range of pendant groups, most commonly at the C-2 position. The history of this class of compounds dates back to the 1940s, when a range of alkylquinolones with notable antibiotic properties were first isolated from Pseudomonas aeruginosa. More recently, it was discovered that an alkylquinolone derivative, the Pseudomonas Quinolone Signal (PQS) plays a key role in bacterial communication and quorum sensing in Pseudomonas aeruginosa. Many of the best-studied examples contain simple hydrocarbon side-chains, but more recent studies have revealed a wide range of structurally diverse examples from multiple bacterial genera, including those with aromatic, isoprenoid, or sulfur-containing side-chains. In addition to their well-known antimicrobial properties, alkylquinolones have been reported with antimalarial, antifungal, antialgal, and antioxidant properties. Here we review the structural diversity and biological activity of these intriguing metabolites.
Collapse
|
21
|
Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures. Appl Environ Microbiol 2020; 86:AEM.01452-20. [PMID: 33008823 DOI: 10.1128/aem.01452-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
The bacterium Burkholderia thailandensis produces an arsenal of secondary metabolites that have diverse structures and roles in the ecology of this soil-dwelling bacterium. In coculture experiments, B. thailandensis strain E264 secretes an antimicrobial that nearly eliminates another soil bacterium, Bacillus subtilis strain 168. To identify the antimicrobial, we used a transposon mutagenesis approach. This screen identified antimicrobial-defective mutants with insertions in the hmqA, hmqC, and hmqF genes involved in biosynthesis of a family of 2-alkyl-4(1H)-quinolones called 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs), which are closely related to the Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs). Insertions also occurred in the previously uncharacterized gene BTH_II1576 ("hmqL"). The results confirm that BTH_II1576 is involved in generating N-oxide derivatives of HMAQs (HMAQ-NOs). Synthetic HMAQ-NO is active against B. subtilis 168, showing ∼50-fold more activity than HMAQ. Both the methyl group and the length of the carbon side chain account for the high activity of HMAQ-NO. The results provide new information on the biosynthesis and activities of HMAQs and reveal new insight into how these molecules might be important for the ecology of B. thailandensis IMPORTANCE The soil bacterium Burkholderia thailandensis produces 2-alkyl-4(1H)-quinolones that are mostly methylated 4-hydroxyalkenylquinolines, a family of relatively unstudied metabolites similar to molecules also synthesized by Pseudomonas aeruginosa Several of the methylated 4-hydroxyalkenylquinolines have antimicrobial activity against other species. We show that Bacillus subtilis strain 168 is particularly susceptible to N-oxidated methylalkenylquinolines (HMAQ-NOs). We confirmed that HMAQ-NO biosynthesis requires the previously unstudied protein HmqL. These results provide new information about the biology of 2-alkyl-4(1H)-quinolones, particularly the methylated 4-hydroxyalkenylquinolines, which are unique to B. thailandensis This study also has importance for understanding B. thailandensis secondary metabolites and has implications for potential therapeutic development.
Collapse
|
22
|
Yoshimura A, Covington BC, Gallant É, Zhang C, Li A, Seyedsayamdost MR. Unlocking Cryptic Metabolites with Mass Spectrometry-Guided Transposon Mutant Selection. ACS Chem Biol 2020; 15:2766-2774. [PMID: 32808751 DOI: 10.1021/acschembio.0c00558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The products of most secondary metabolite biosynthetic gene clusters (BGCs) have yet to be discovered, in part due to low expression levels in laboratory cultures. Reporter-guided mutant selection (RGMS) has recently been developed for this purpose: a mutant library is generated and screened, using genetic reporters to a chosen BGC, to select transcriptionally active mutants that then enable the characterization of the "cryptic" metabolite. The requirement for genetic reporters limits the approach to a single pathway within genetically tractable microorganisms. Herein, we utilize untargeted metabolomics in conjunction with transposon mutagenesis to provide a global read-out of secondary metabolism across large numbers of mutants. We employ self-organizing map analytics and imaging mass spectrometry to identify and characterize seven cryptic metabolites from mutant libraries of two different Burkholderia species. Applications of the methodologies reported can expand our understanding of the products and regulation of cryptic BGCs across phylogenetically diverse bacteria.
Collapse
Affiliation(s)
- Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Brett C. Covington
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Étienne Gallant
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chen Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Anran Li
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
23
|
Shaker B, Ahmad S, Thai TD, Eyun SI, Na D. Rational Drug Design for Pseudomonas aeruginosa PqsA Enzyme: An in silico Guided Study to Block Biofilm Formation. Front Mol Biosci 2020; 7:577316. [PMID: 33195420 PMCID: PMC7593710 DOI: 10.3389/fmolb.2020.577316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/11/2020] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic gram-negative bacterium implicated in acute and chronic nosocomial infections and a leading cause of patient mortality. Such infections occur owing to biofilm formation that confers multidrug resistance and enhanced pathogenesis to the bacterium. In this study, we used a rational drug design strategy to inhibit the quorum signaling system of P. aeruginosa by designing potent inhibitory lead molecules against anthranilate-CoA ligase enzyme encoded by the pqsA gene. This enzyme produces autoinducers for cell-to-cell communication, which result in biofilm formation, and thus plays a pivotal role in the virulence of P. aeruginosa. A library of potential drug molecules was prepared by performing ligand-based screening using an available set of enzyme inhibitors. Subsequently, structure-based virtual screening was performed to identify compounds showing the best binding conformation with the target enzyme and forming a stable complex. The two hit compounds interact with the binding site of the enzyme through multiple short-range hydrophilic and hydrophobic interactions. Molecular dynamic simulation and MM-PBSA/GBSA results to calculate the affinity and stability of the hit compounds with the PqsA enzyme further confirmed their strong interactions. The hit compounds might be useful in tackling the resistant phenotypes of this pathogen.
Collapse
Affiliation(s)
- Bilal Shaker
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| | - Sajjad Ahmad
- National Centre for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Thi Duc Thai
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| | - Seong-il Eyun
- 84 Heukseok-ro, Dongjak-gu, Department of Life Science, Chung-Ang University, Seoul, South Korea
| | - Dokyun Na
- 84 Heukseok-ro, Dongjak-gu, Department of Biomedical Engineering, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
24
|
Secondary metabolites from the Burkholderia pseudomallei complex: structure, ecology, and evolution. J Ind Microbiol Biotechnol 2020; 47:877-887. [PMID: 33052546 DOI: 10.1007/s10295-020-02317-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
Bacterial secondary metabolites play important roles in promoting survival, though few have been carefully studied in their natural context. Numerous gene clusters code for secondary metabolites in the genomes of members of the Bptm group, made up of three closely related species with distinctly different lifestyles: the opportunistic pathogen Burkholderia pseudomallei, the non-pathogenic saprophyte Burkholderia thailandensis, and the host-adapted pathogen Burkholderia mallei. Several biosynthetic gene clusters are conserved across two or all three species, and this provides an opportunity to understand how the corresponding secondary metabolites contribute to survival in different contexts in nature. In this review, we discuss three secondary metabolites from the Bptm group: bactobolin, malleilactone (and malleicyprol), and the 4-hydroxy-3-methyl-2-alkylquinolines, providing an overview of each of their biosynthetic pathways and insight into their potential ecological roles. Results of studies on these secondary metabolites provide a window into how secondary metabolites contribute to bacterial survival in different environments, from host infections to polymicrobial soil communities.
Collapse
|
25
|
Piochon M, Coulon PML, Caulet A, Groleau MC, Déziel E, Gauthier C. Synthesis and Antimicrobial Activity of Burkholderia-Related 4-Hydroxy-3-methyl-2-alkenylquinolines (HMAQs) and Their N-Oxide Counterparts. JOURNAL OF NATURAL PRODUCTS 2020; 83:2145-2154. [PMID: 32631063 DOI: 10.1021/acs.jnatprod.0c00171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Burkholderia genus offers a promising potential in medicine because of the diversity of biologically active natural products encoded in its genome. Some pathogenic Burkholderia spp. biosynthesize a specific class of antimicrobial 2-alkyl-4(1H)-quinolones, i.e., 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs) and their N-oxide derivatives (HMAQNOs). Herein, we report the synthesis of a series of six HMAQs and HMAQNOs featuring a trans-Δ2 double bond at the C2-alkyl chain. The quinolone scaffold was obtained via the Conrad-Limpach approach, while the (E)-2-alkenyl chain was inserted through Suzuki-Miyaura cross-coupling under microwave radiation without noticeable isomerization according to the optimized conditions. Subsequent oxidation of enolate-protected HMAQs cleanly led to the formation of HMAQNOs following cleavage of the ethyl carbonate group. Synthetic HMAQs and HMAQNOs were evaluated in vitro for their antimicrobial activity against different Gram-negative and Gram-positive bacteria as well as against molds and yeasts. The biological results support and extend the potential of HMAQs and HMAQNOs as antimicrobials, especially against Gram-positive bacteria. We also confirm the involvement of HMAQs in the autoregulation of the Hmq system in Burkholderia ambifaria.
Collapse
Affiliation(s)
- Marianne Piochon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| | - Pauline M L Coulon
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| | - Armand Caulet
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| | - Marie-Christine Groleau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| | - Charles Gauthier
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7
| |
Collapse
|
26
|
Mao D, Yoshimura A, Wang R, Seyedsayamdost MR. Reporter-Guided Transposon Mutant Selection for Activation of Silent Gene Clusters in Burkholderia thailandensis. Chembiochem 2020; 21:1826-1831. [PMID: 31984619 DOI: 10.1002/cbic.201900748] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 01/01/2023]
Abstract
Most natural product biosynthetic gene clusters that can be observed bioinformatically are silent. This insight has prompted the development of several methodologies for inducing their expression. One of the more recent methods, termed reporter-guided mutant selection (RGMS), entails creation of a library of mutants that is then screened for the desired phenotype via reporter gene expression. Herein, we apply a similar approach to Burkholderia thailandensis and, using transposon mutagenesis, mutagenize three strains, each carrying a fluorescent reporter in the malleilactone (mal), capistruin (cap), or an unidentified ribosomal peptide (tomm) gene cluster. We show that even a small library of <500 mutants can be used to induce expression of each cluster. We also explore the mechanism of activation and find that inhibition of pyrimidine biosynthesis is linked to the induction of the mal cluster. Both a transposon insertion into pyrF as well as small-molecule-mediated inhibition of PyrF trigger malleilactone biosynthesis. Our results pave the way toward the broad application of RGMS and related approaches to Burkholderia spp.
Collapse
Affiliation(s)
- Dainan Mao
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Aya Yoshimura
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Rurun Wang
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
27
|
Khan MS, Gao J, Zhang M, Chen X, Moe TS, Du Y, Yang F, Xue J, Zhang X. Isolation and characterization of plant growth-promoting endophytic bacteria Bacillus stratosphericus LW-03 from Lilium wardii. 3 Biotech 2020; 10:305. [PMID: 32612899 PMCID: PMC7313711 DOI: 10.1007/s13205-020-02294-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/07/2020] [Indexed: 02/01/2023] Open
Abstract
In the present study, a new strain of Bacillus stratosphericus LW-03 was isolated from the bulbs of Lilium wardii. The isolated endophytic strain LW-03 exhibited excellent antifungal activity against common plant pathogens, such as Fusarium oxysporum, Botryosphaeria dothidea, Botrytis cinerea, and Fusarium fujikuroi. The growth inhibition percentage of Botryosphaeria dothidea was 74.56 ± 2.35%, which was the highest, followed by Botrytis cinerea, Fusarium fujikuroi, and Fusarium oxysporum were 71.91 ± 2.87%, 69.54 ± 2.73%, and 65.13 ± 1.91%, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several of which were putatively identified as antimicrobial agents, such as 4-hydroxy-2-nonenylquinoline N-oxide, sphingosine ceramides like cer(d18:0/16:0(2OH)), cer(d18:0/16:0), and cer(d18:1/0:0), di-peptides, tri-peptide, cyclopeptides [cyclo(D-Trp-L-Pro)], [cyclo (Pro-Phe)], dehydroabietylamine, oxazepam, 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine like compound (PC(0:0/20:4), phosphatidylethanolamine (PE(18:1/0:0)), 3-Hydroxyoctadecanoic acid, 7.alpha.,27-Dihydroxycholesterol, N-Acetyl-d-mannosamine, p-Hydroxyphenyllactic acid, Phytomonic acid, and 2-undecenyl-quinoloin-4 (1H). The LW-03 strain exhibits multiple plant growth-promoting traits, including the production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation activity. The beneficial effects of the endophytic strain LW-03 on the growth of two lily varieties were further evaluated under greenhouse conditions. Our results revealed plant growth-promoting activity in inoculated plants relative to non-inoculated control plants. The broad-spectrum antifungal activity and multiple plant growth-promoting properties of Bacillus stratosphericus LW-03 make it an important player in the development of biological fertilizers and sustainable agricultural biological control strategies.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Genomics and Bioinformatics Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Khyber Pakhtunkhwa, Peshawar, 25000 Pakistan
| | - Junlian Gao
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Mingfang Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xuqing Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - The Su Moe
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
- Pharmaceutical Research Laboratory, Biotechnology Research Department, Ministry of Education, Mandalay Division, Kyaukse, 05151 Myanmar
| | - Yunpeng Du
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Fengping Yang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Jing Xue
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Xiuhai Zhang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| |
Collapse
|
28
|
Li D, Oku N, Shinozaki Y, Kurokawa Y, Igarashi Y. 4-Hydroxy-3-methyl-2(1 H)-quinolone, originally discovered from a Brassicaceae plant, produced by a soil bacterium of the genus Burkholderia sp.: determination of a preferred tautomer and antioxidant activity. Beilstein J Org Chem 2020; 16:1489-1494. [PMID: 32647550 PMCID: PMC7323622 DOI: 10.3762/bjoc.16.124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
4-Hydroxy-3-methyl-2(1H)-quinolone (1), a molecule known for a long time and recently discovered from a Brassicaceae plant Isatis tinctoria without providing sufficient evidence to support the structure, was isolated from a fermentation extract of Burkholderia sp. 3Y-MMP isolated from a soil by a Zn2+ enrichment culture. Detailed spectroscopic analyses by MS and NMR, combined with 13C chemical shift comparison with literature values of the related compounds and a synthetic preparation of 1, allowed its first full NMR characterization and identification of 2-quinolone but not 2-quinolinol (2) as the preferred tautomer for this heterocyclic system. While the metal-chelating activity was negligible, compound 1 at 10 μM, a concentration lower than that in liquid production cultures, quenched hydroxy radical-induced chemiluminescence emitted by luminol by 86%. Because some Burkholderia species are pathogenic to plants and animals, the above result suggests that 1 is a potential antioxidant to counteract reactive oxygen species-based immune response in the host organisms.
Collapse
Affiliation(s)
- Dandan Li
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukiko Shinozaki
- National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama City, Toyama 939-8630, Japan
| | - Yoichi Kurokawa
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
29
|
ScmR, a Global Regulator of Gene Expression, Quorum Sensing, pH Homeostasis, and Virulence in Burkholderia thailandensis. J Bacteriol 2020; 202:JB.00776-19. [PMID: 32312745 DOI: 10.1128/jb.00776-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
The nonpathogenic soil saprophyte Burkholderia thailandensis is a member of the Burkholderia pseudomallei /B. thailandensis/B. mallei group, which also comprises the closely related human pathogens B. pseudomallei and Burkholderia mallei responsible for the melioidosis and glanders diseases, respectively. ScmR, a recently identified LysR-type transcriptional regulator in B. thailandensis, acts as a global transcriptional regulator throughout the stationary phase and modulates the production of a wide range of secondary metabolites, including N-acyl-l-homoserine lactones and 4-hydroxy-3-methyl-2-alkylquinolines and virulence in the Caenorhabditis elegans nematode worm host model, as well as several quorum sensing (QS)-dependent phenotypes. We have investigated the role of ScmR in B. thailandensis strain E264 during the exponential phase. We used RNA sequencing transcriptomic analyses to identify the ScmR regulon, which was compared to the QS-controlled regulon, showing a considerable overlap between the ScmR-regulated genes and those controlled by QS. We characterized several genes modulated by ScmR using quantitative reverse transcription-PCR or mini-CTX-lux transcriptional reporters, including the oxalate biosynthetic gene obc1 required for pH homeostasis, the orphan LuxR-type transcriptional regulator BtaR5-encoding gene, and the bsa (Burkholderia secretion apparatus) type III secretion system genes essential for both B. pseudomallei and B. mallei pathogenicity, as well as the scmR gene itself. We confirmed that the transcription of scmR is under QS control, presumably ensuring fine-tuned modulation of gene expression. Finally, we demonstrated that ScmR influences virulence using the fruit fly model host Drosophila melanogaster We conclude that ScmR represents a central component of the B. thailandensis QS regulatory network.IMPORTANCE Coordination of the expression of genes associated with bacterial virulence and environmental adaptation is often dependent on quorum sensing (QS). The QS circuitry of the nonpathogenic bacterium Burkholderia thailandensis, widely used as a model system for the study of the human pathogen Burkholderia pseudomallei, is complex. We found that the LysR-type transcriptional regulator, ScmR, which is highly conserved and involved in the control of virulence/survival factors in the Burkholderia genus, is a global regulator mediating gene expression through the multiple QS systems coexisting in B. thailandensis, as well as QS independently. We conclude that ScmR represents a key QS modulatory network element, ensuring tight regulation of the transcription of QS-controlled genes, particularly those required for acclimatization to the environment.
Collapse
|
30
|
Park JD, Moon K, Miller C, Rose J, Xu F, Ebmeier CC, Jacobsen JR, Mao D, Old WM, DeShazer D, Seyedsayamdost MR. Thailandenes, Cryptic Polyene Natural Products Isolated from Burkholderia thailandensis Using Phenotype-Guided Transposon Mutagenesis. ACS Chem Biol 2020; 15:1195-1203. [PMID: 31816232 DOI: 10.1021/acschembio.9b00883] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Burkholderia thailandensis has emerged as a model organism for investigating the production and regulation of diverse secondary metabolites. Most of the biosynthetic gene clusters encoded in B. thailandensis are silent, motivating the development of new methods for accessing their products. In the current work, we add to the canon of available approaches using phenotype-guided transposon mutagenesis to characterize a silent biosynthetic gene cluster. Because secondary metabolite biosynthesis is often associated with phenotypic changes, we carried out random transposon mutagenesis followed by phenotypic inspection of the resulting colonies. Several mutants exhibited intense pigmentation and enhanced expression of an iterative type I polyketide synthase cluster that we term org. Disruptions of orgA, orgB, and orgC abolished the biosynthesis of the diffusible pigment, thus linking it to the org operon. Isolation and structural elucidation by HR-MS and 1D/2D NMR spectroscopy revealed three novel, cryptic metabolites, thailandene A-C. Thailandenes are linear formylated or acidic polyenes containing a combination of cis and trans double bonds. Variants A and B exhibited potent antibiotic activity against Staphylococcus aureus and Saccharomyces cerevisiae but not against Escherichia coli. One of the transposon mutants that exhibited an enhanced expression of org contained an insertion upstream of a σ54-dependent transcription factor. Closer inspection of the org operon uncovered a σ54 promoter consensus sequence upstream of orgA, providing clues regarding its regulation. Our results showcase the utility of phenotype-guided transposon mutagenesis in uncovering cryptic metabolites encoded in bacterial genomes.
Collapse
Affiliation(s)
- Jong-Duk Park
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kyuho Moon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Cheryl Miller
- Molecular and Translational Science Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | - Jessica Rose
- Biotechnology Program, Hagerstown Community College, Hagerstown, Maryland 21742, United States
| | - Fei Xu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher C. Ebmeier
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Jeremy R. Jacobsen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - Dainan Mao
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - William M. Old
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, United States
| | - David DeShazer
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702, United States
| | | |
Collapse
|
31
|
An α/β-Hydrolase Fold Subfamily Comprising Pseudomonas Quinolone Signal-Cleaving Dioxygenases. Appl Environ Microbiol 2020; 86:AEM.00279-20. [PMID: 32086305 DOI: 10.1128/aem.00279-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 01/25/2023] Open
Abstract
The quinolone ring is a common core structure of natural products exhibiting antimicrobial, cytotoxic, and signaling activities. A prominent example is the Pseudomonas quinolone signal (PQS), a quorum-sensing signal molecule involved in the regulation of virulence of Pseudomonas aeruginosa The key reaction to quinolone inactivation and biodegradation is the cleavage of the 3-hydroxy-4(1H)-quinolone ring, catalyzed by dioxygenases (HQDs), which are members of the α/β-hydrolase fold superfamily. The α/β-hydrolase fold core domain consists of a β-sheet surrounded by α-helices, with an active site usually containing a catalytic triad comprising a nucleophilic residue, an acidic residue, and a histidine. The nucleophile is located at the tip of a sharp turn, called the "nucleophilic elbow." In this work, we developed a search workflow for the identification of HQD proteins from databases. Search and validation criteria include an [H-x(2)-W] motif at the nucleophilic elbow, an [HFP-x(4)-P] motif comprising the catalytic histidine, the presence of a helical cap domain, the positioning of the triad's acidic residue at the end of β-strand 6, and a set of conserved hydrophobic residues contributing to the substrate cavity. The 161 candidate proteins identified from the UniProtKB database originate from environmental and plant-associated microorganisms from all domains of life. Verification and characterization of HQD activity of 9 new candidate proteins confirmed the reliability of the search strategy and suggested residues correlating with distinct substrate preferences. Among the new HQDs, PQS dioxygenases from Nocardia farcinica, N. cyriacigeorgica, and Streptomyces bingchenggensis likely are part of a catabolic pathway for alkylquinolone utilization.IMPORTANCE Functional annotation of protein sequences is a major requirement for the investigation of metabolic pathways and the identification of sought-after biocatalysts. To identify heterocyclic ring-cleaving dioxygenases within the huge superfamily of α/β-hydrolase fold proteins, we defined search and validation criteria for the primarily motif-based identification of 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQD). HQDs are key enzymes for the inactivation of metabolites, which can have signaling, antimicrobial, or cytotoxic functions. The HQD candidates detected in this study occur particularly in environmental and plant-associated microorganisms. Because HQDs active toward the Pseudomonas quinolone signal (PQS) likely contribute to interactions within microbial communities and modulate the virulence of Pseudomonas aeruginosa, we analyzed the catalytic properties of a PQS-cleaving subset of HQDs and specified characteristics to identify PQS-cleaving dioxygenases within the HQD family.
Collapse
|
32
|
Burkholderia thailandensis outer membrane vesicles exert antimicrobial activity against drug-resistant and competitor microbial species. J Microbiol 2020; 58:550-562. [DOI: 10.1007/s12275-020-0028-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
|
33
|
Multi-Omic Analyses Provide Links between Low-Dose Antibiotic Treatment and Induction of Secondary Metabolism in Burkholderia thailandensis. mBio 2020; 11:mBio.03210-19. [PMID: 32098820 PMCID: PMC7042699 DOI: 10.1128/mbio.03210-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Low doses of antibiotics can trigger secondary metabolite biosynthesis in bacteria, but the underlying mechanisms are generally unknown. We sought to better understand this phenomenon by studying how the antibiotic trimethoprim activates the synthesis of the virulence factor malleilactone in Burkholderia thailandensis Using transcriptomics, quantitative multiplexed proteomics, and primary metabolomics, we systematically mapped the changes induced by trimethoprim. Surprisingly, even subinhibitory doses of the antibiotic resulted in broad transcriptional and translational alterations, with ∼8.5% of the transcriptome and ∼5% of the proteome up- or downregulated >4-fold. Follow-up studies with genetic-biochemical experiments showed that the induction of malleilactone synthesis can be sufficiently explained by the accumulation of methionine biosynthetic precursors, notably homoserine, as a result of inhibition of the folate pathway. Homoserine activated the malleilactone gene cluster via the transcriptional regulator MalR and gave rise to a secondary metabolome which was very similar to that generated by trimethoprim. Our work highlights the expansive changes that low-dose trimethoprim induces on bacterial physiology and provides insights into its stimulatory effect on secondary metabolism.IMPORTANCE The discovery of antibiotics ranks among the most significant accomplishments of the last century. Although the targets of nearly all clinical antibiotics are known, our understanding regarding their natural functions and the effects of subinhibitory concentrations is in its infancy. Stimulatory rather than inhibitory functions have been attributed to low-dose antibiotics. Among these, we previously found that antibiotics activate silent biosynthetic genes and thereby enhance the metabolic output of bacteria. The regulatory circuits underlying this phenomenon are unknown. We take a first step toward elucidating these circuits and show that low doses of trimethoprim (Tmp) have cell-wide effects on the saprophyte Burkholderia thailandensis Most importantly, inhibition of one-carbon metabolic processes by Tmp leads to an accumulation of homoserine, which induces the production of an otherwise silent cytotoxin via a LuxR-type transcriptional regulator. These results provide a starting point for uncovering the molecular basis of the hormetic effects of antibiotics.
Collapse
|
34
|
García-Reyes S, Soberón-Chávez G, Cocotl-Yanez M. The third quorum-sensing system of Pseudomonas aeruginosa: Pseudomonas quinolone signal and the enigmatic PqsE protein. J Med Microbiol 2020; 69:25-34. [PMID: 31794380 DOI: 10.1099/jmm.0.001116] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces several virulence factors such as lectin A, pyocyanin, elastase and rhamnolipids. These compounds are controlled transcriptionally by three quorum-sensing circuits, two based on the synthesis and detection of N-acyl-homoserine-lactone termed the Las and Rhl system and a third system named the Pseudomonas quinolone signal (PQS) system, which is responsible for generating 2-alkyl-4(1 h)-quinolones (AQs). The transcriptional regulator called PqsR binds to the promoter of pqsABCDE in the presence of PQS or HHQ creating a positive feedback-loop. PqsE, encoded in the operon for AQ synthesis, is a crucial protein for pyocyanin production, activating the Rhl system by a still not fully understood mechanism. In turn, the regulation of the PQS system is modulated by Las and Rhl systems, which act positively and negatively, respectively. This review focuses on the PQS system, from its discovery to its role in Pseudomonas pathogenesis, such as iron depletion and pyocyanin synthesis that involves the PqsE protein - an intriguing player of this system.
Collapse
Affiliation(s)
- Selene García-Reyes
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Gloria Soberón-Chávez
- Departamento de Biología molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo Postal 70228, C.P. 04510, Ciudad de México, Mexico
| | - Miguel Cocotl-Yanez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México. Av. Universidad 3000, Cd. Universitaria, C.P. 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
35
|
Gut bacteria of Cuora amboinensis (turtle) produce broad-spectrum antibacterial molecules. Sci Rep 2019; 9:17012. [PMID: 31740685 PMCID: PMC6861250 DOI: 10.1038/s41598-019-52738-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance is a major threat to human health, hence there is an urgent need to discover antibacterial molecule(s). Previously, we hypothesized that microbial gut flora of animals are a potential source of antibacterial molecules. Among various animals, Cuora amboinensis (turtle) represents an important reptile species living in diverse ecological environments and feed on organic waste and terrestrial organisms and have been used in folk medicine. The purpose of this study was to mine turtle’s gut bacteria for potential antibacterial molecule(s). Several bacteria were isolated from the turtle gut and their conditioned media were prepared. Conditioned media showed potent antibacterial activity against several Gram-positive (Bacillus cereus, Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus) and Gram-negative (neuropathogenic Escherichia coli K1, Serratia marcescens, Pseudomonas aeruginosa, Salmonella enterica and Klebsiella pneumoniae) pathogenic bacteria. Conditioned media-mediated bactericidal activity was heat-resistant when treated at 95°C for 10 min. By measuring Lactate dehydrogenase release, the results showed that conditioned media had no effect on human cell viability. Tandem Mass Spectrometric analysis revealed the presence of various secondary metabolites, i.e., a series of known as well as novel N-acyl-homoserine lactones, several homologues of 4-hydroxy-2-alkylquinolines, and rhamnolipids, which are the signature metabolites of Pseudomonas species. These findings are significant and provide the basis for rational development of therapeutic interventions against bacterial infections.
Collapse
|
36
|
Ritzmann NH, Mährlein A, Ernst S, Hennecke U, Drees SL, Fetzner S. Bromination of alkyl quinolones by Microbulbifer sp. HZ11, a marine Gammaproteobacterium, modulates their antibacterial activity. Environ Microbiol 2019; 21:2595-2609. [PMID: 31087606 DOI: 10.1111/1462-2920.14654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/24/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023]
Abstract
Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.
Collapse
Affiliation(s)
- Niklas H Ritzmann
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Almuth Mährlein
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Simon Ernst
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Ulrich Hennecke
- Organic Chemistry Institute, University of Münster, Münster, Germany.,Organic Chemistry Research Group, Department of Chemistry and Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Steffen L Drees
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
37
|
Quorum Sensing as Antivirulence Target in Cystic Fibrosis Pathogens. Int J Mol Sci 2019; 20:ijms20081838. [PMID: 31013936 PMCID: PMC6515091 DOI: 10.3390/ijms20081838] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder which leads to the secretion of a viscous mucus layer on the respiratory epithelium that facilitates colonization by various bacterial pathogens. The problem of drug resistance has been reported for all the species able to colonize the lung of CF patients, so alternative treatments are urgently needed. In this context, a valid approach is to investigate new natural and synthetic molecules for their ability to counteract alternative pathways, such as virulence regulating quorum sensing (QS). In this review we describe the pathogens most commonly associated with CF lung infections: Staphylococcus aureus, Pseudomonas aeruginosa, species of the Burkholderia cepacia complex and the emerging pathogens Stenotrophomonas maltophilia, Haemophilus influenzae and non-tuberculous Mycobacteria. For each bacterium, the QS system(s) and the molecules targeting the different components of this pathway are described. The amount of investigations published in the last five years clearly indicate the interest and the expectations on antivirulence therapy as an alternative to classical antibiotics.
Collapse
|
38
|
Coulon PML, Groleau MC, Déziel E. Potential of the Burkholderia cepacia Complex to Produce 4-Hydroxy-3-Methyl-2-Alkyquinolines. Front Cell Infect Microbiol 2019; 9:33. [PMID: 30873388 PMCID: PMC6403149 DOI: 10.3389/fcimb.2019.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
A few Burkholderia species, especially Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia ambifaria, and Burkholderia cepacia, are known to produce and release various 4-hydroxy-3-methyl-2-alkylquinolines (HMAQs), a family of molecules analogous to the 4-hydroxy-2-alkylquinolines [aka 2-n-alkyl-4(1H)-quinolones] of Pseudomonas aeruginosa, which include the Pseudomonas quinolone signal (PQS). However, while these exoproducts play several roles in P. aeruginosa virulence and survival, the available literature is very limited on their distribution and function in Burkholderia. In this perspective article, we studied the distribution of the hmqABCDEFG operon, which encodes the enzymes involved in the biosynthesis of HMAQs, in the Burkholderia cepacia complex (Bcc) group. Based on the available sequence data, about one third of Bcc species carry a homolog of the hmqABCDEFG, and not all sequenced strains in a given species possess this operon. Looking at the synteny of genes surrounding the hmqABCDEFG operon, we found that for some species, the operon seems to have been deleted or replaced by other genes. Finally, we review the literature on the possible function of HMAQs. Understanding the Hmq system may provide clues concerning their functions in Bcc.
Collapse
Affiliation(s)
- Pauline M L Coulon
- Institut Armand Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| | | | - Eric Déziel
- Institut Armand Frappier, Institut National de la Recherche Scientifique, Laval, QC, Canada
| |
Collapse
|
39
|
Seyedsayamdost MR. Toward a global picture of bacterial secondary metabolism. J Ind Microbiol Biotechnol 2019; 46:301-311. [PMID: 30684124 DOI: 10.1007/s10295-019-02136-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Bacterial metabolism is comprised of primary metabolites, the intracellular molecules of life that enable growth and proliferation, and secondary metabolites, predominantly extracellular molecules that facilitate a microbe's interaction with its environment. While our knowledge of primary metabolism and its web of interconnected intermediates is quantitative and holistic, significant knowledge gaps remain in our understanding of the secondary metabolomes of bacteria. In this Perspective, I discuss the main challenges involved in obtaining a global, comprehensive picture of bacterial secondary metabolomes, specifically in biosynthetically "gifted" microbes. Recent methodological advances that can meet these challenges will be reviewed. Applications of these methods combined with ongoing innovations will enable a detailed picture of global secondary metabolomes, which will in turn shed light onto the biology, chemistry, and enzymology underlying natural products and simultaneously aid drug discovery.
Collapse
Affiliation(s)
- Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
40
|
Thierbach S, Wienhold M, Fetzner S, Hennecke U. Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS. Beilstein J Org Chem 2019; 15:187-193. [PMID: 30745993 PMCID: PMC6350858 DOI: 10.3762/bjoc.15.18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023] Open
Abstract
Selectively methylated analogues of naturally occurring 2-heptyl-4(1H)-quinolones, which are alkaloids common within the Rutaceae family and moreover are associated with quorum sensing and virulence of the human pathogen Pseudomonas aeruginosa, have been prepared. While the synthesis by direct methylation was successful for 3-unsubstituted 2-heptyl-4(1H)-quinolones, methylated derivatives of the Pseudomonas quinolone signal (PQS) were synthesized from 3-iodinated quinolones by methylation and iodine–metal exchange/oxidation. The two N- and O-methylated derivatives of the PQS showed strong quorum sensing activity comparable to that of PQS itself. Staphylococcus aureus, another pathogenic bacterium often co-occurring with P. aeruginosa especially in the lung of cystic fibrosis patients, was inhibited in planktonic growth and cellular respiration by the 4-O-methylated derivatives of HQNO and HHQ, respectively.
Collapse
Affiliation(s)
- Sven Thierbach
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany
| | - Max Wienhold
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, 48149 Münster, Germany
| | - Susanne Fetzner
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany
| | - Ulrich Hennecke
- Organic Chemistry Institute, University of Münster, Corrensstr. 40, 48149 Münster, Germany.,Organic Chemistry Research Group, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
| |
Collapse
|
41
|
Senerovic L, Opsenica D, Moric I, Aleksic I, Spasić M, Vasiljevic B. Quinolines and Quinolones as Antibacterial, Antifungal, Anti-virulence, Antiviral and Anti-parasitic Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1282:37-69. [PMID: 31515709 DOI: 10.1007/5584_2019_428] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Infective diseases have become health threat of a global proportion due to appearance and spread of microorganisms resistant to majority of therapeutics currently used for their treatment. Therefore, there is a constant need for development of new antimicrobial agents, as well as novel therapeutic strategies. Quinolines and quinolones, isolated from plants, animals, and microorganisms, have demonstrated numerous biological activities such as antimicrobial, insecticidal, anti-inflammatory, antiplatelet, and antitumor. For more than two centuries quinoline/quinolone moiety has been used as a scaffold for drug development and even today it represents an inexhaustible inspiration for design and development of novel semi-synthetic or synthetic agents exhibiting broad spectrum of bioactivities. The structural diversity of synthetized compounds provides high and selective activity attained through different mechanisms of action, as well as low toxicity on human cells. This review describes quinoline and quinolone derivatives with antibacterial, antifungal, anti-virulent, antiviral, and anti-parasitic activities with the focus on the last 10 years literature.
Collapse
Affiliation(s)
- Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.
| | - Dejan Opsenica
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
- Center of excellence in Environmental Chemistry and Engineering, ICTM - University of Belgrade, Belgrade, Serbia
| | - Ivana Moric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marta Spasić
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Branka Vasiljevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
42
|
Wu Y, Seyedsayamdost MR. The Polyene Natural Product Thailandamide A Inhibits Fatty Acid Biosynthesis in Gram-Positive and Gram-Negative Bacteria. Biochemistry 2018; 57:4247-4251. [DOI: 10.1021/acs.biochem.8b00678] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R. Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
43
|
Li D, Oku N, Hasada A, Shimizu M, Igarashi Y. Two new 2-alkylquinolones, inhibitory to the fish skin ulcer pathogen Tenacibaculum maritimum, produced by a rhizobacterium of the genus Burkholderia sp. Beilstein J Org Chem 2018; 14:1446-1451. [PMID: 29977408 PMCID: PMC6009182 DOI: 10.3762/bjoc.14.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/22/2018] [Indexed: 11/23/2022] Open
Abstract
Exploration of rhizobacteria of the genus Burkholderia as an under-tapped resource of bioactive molecules resulted in the isolation of two new antimicrobial 2-alkyl-4-quinolones. (E)-2-(Hept-2-en-1-yl)quinolin-4(1H)-one (1) and (E)-2-(non-2-en-1-yl)quinolin-4(1H)-one (3) were isolated from the culture broth of strain MBAF1239 together with four known alkylquinolones (2 and 4-6), pyrrolnitrin (7), and BN-227 (8). The structures of 1 and 3 were unambiguously characterized using NMR spectroscopy and mass spectrometry. Compounds 1-8 inhibited the growth of the marine bacterium Tenacibaculum maritimum, an etiological agent of skin ulcers in marine fish, offering new opportunities to develop antibacterial drugs for fish farming.
Collapse
Affiliation(s)
- Dandan Li
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Atsumi Hasada
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masafumi Shimizu
- Laboratory of Plant Pathology, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
44
|
Ó Muimhneacháin E, Reen FJ, O'Gara F, McGlacken GP. Analogues ofPseudomonas aeruginosasignalling molecules to tackle infections. Org Biomol Chem 2018; 16:169-179. [DOI: 10.1039/c7ob02395b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of antibiotic resistance coupled with the lack of investment by pharmaceutical companies necessitates a new look at how we tackle bacterial infections.
Collapse
Affiliation(s)
- Eoin Ó Muimhneacháin
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| | - F. Jerry Reen
- School of Microbiology
- University College Cork
- Ireland
- BIOMERIT Research Centre
- School of Microbiology
| | - Fergal O'Gara
- BIOMERIT Research Centre
- School of Microbiology
- University College Cork
- Ireland
- School of Biomedical Sciences
| | - Gerard P. McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| |
Collapse
|
45
|
Lépine F, Milot S, Groleau MC, Déziel E. Liquid Chromatography/Mass Spectrometry (LC/MS) for the Detection and Quantification of N-Acyl-L-Homoserine Lactones (AHLs) and 4-Hydroxy-2-Alkylquinolines (HAQs). Methods Mol Biol 2018; 1673:49-59. [PMID: 29130163 DOI: 10.1007/978-1-4939-7309-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
High-performance liquid chromatography (HPLC) coupled in-line with mass spectrometry (MS) permits rapid and specific identification and quantification of N-acyl-L-homoserine lactones (AHLs) and 4-hydroxy-2-alkylquinolines (HAQs). We are presenting here methods for the analysis of these molecules directly from biological samples using LC/MS.
Collapse
Affiliation(s)
- François Lépine
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada, H7V 1B7
| | - Sylvain Milot
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada, H7V 1B7
| | | | - Eric Déziel
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada, H7V 1B7.
| |
Collapse
|
46
|
Kourmentza C, Costa J, Azevedo Z, Servin C, Grandfils C, De Freitas V, Reis MAM. Burkholderia thailandensis as a microbial cell factory for the bioconversion of used cooking oil to polyhydroxyalkanoates and rhamnolipids. BIORESOURCE TECHNOLOGY 2018; 247:829-837. [PMID: 30060419 DOI: 10.1016/j.biortech.2017.09.138] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/08/2023]
Abstract
The present work assessed the feasibility of used cooking oil as a low cost carbon source for rhamnolipid biosurfactant production employing the strain Burkholderia thailandensis. According to the results, B. thailandensis was able to produce rhamnolipids up to 2.2 g/L, with the dominant congener being the di-rhamnolipid Rha-Rha-C14-C14. Rhamnolipids had the ability to reduce the surface tension to 37.7 mN/m and the interfacial tension against benzene and oleic acid to 4.2 and 1.5 mN/m, while emulsification index against kerosene reached up to 64%. The ability of B. thailandensis to accumulate intracellular biopolymers, in the form of polyhydroxyalkanoates (PHA), was also monitored. Polyhydroxybutyrate (PHB) was accumulated simultaneously and consisted of up to 60% of the cell dry weight. PHB was further characterized in terms of its molecular weight and thermal properties. This is the first study reporting the simultaneous production of polyhydroxyalkanoates and rhamnolipids by the non-pathogen rhamnolipid producer B. thailandensis.
Collapse
Affiliation(s)
- C Kourmentza
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal.
| | - J Costa
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal
| | - Z Azevedo
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - C Servin
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - C Grandfils
- Interfacultary Research Centre of Biomaterials (CEIB), University of Liège, B-4000 Liège, Belgium
| | - V De Freitas
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - M A M Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (FCT/UNL), 2829-516 Caparica, Portugal
| |
Collapse
|
47
|
Gupta A, Bedre R, Thapa SS, Sabrin A, Wang G, Dassanayake M, Grove A. Global Awakening of Cryptic Biosynthetic Gene Clusters in Burkholderia thailandensis. ACS Chem Biol 2017; 12:3012-3021. [PMID: 29087175 DOI: 10.1021/acschembio.7b00681] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many bacteria encode biosynthetic proteins that produce a vast array of natural products. These compounds are often synthesized during host invasion as they function as virulence factors. In addition, such secondary metabolites have yielded numerous molecular scaffolds with pharmaceutical and clinical importance. The gene clusters that encode proteins responsible for synthesis of these compounds are typically silenced or "cryptic" under laboratory growth conditions, hampering discovery of novel lead compounds. We report here that MftR is a global repressor of secondary metabolite synthesis in Burkholderia thailandensis and that urate functions as a physiologically relevant inducer of gene expression. Biosynthetic gene clusters under MftR control include those associated with production of the antimicrobial bactobolins, the iron siderophore malleobactin, and the virulence factor malleilactone. MftR also controls additional genes associated with survival in a host environment, such as genes encoding components of the type III secretion system (T3SS) and proteins linked to anaerobic respiration. This observation not only has implications for understanding activation of gene regulatory networks during host invasion, but it also paves the way for isolation of novel therapeutic leads.
Collapse
Affiliation(s)
- Ashish Gupta
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Renesh Bedre
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Sudarshan Singh Thapa
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Afsana Sabrin
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Guannan Wang
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Maheshi Dassanayake
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department
of Biological Sciences, ‡School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
48
|
Wu Y, Seyedsayamdost MR. Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chem Biol 2017; 24:1437-1444.e3. [PMID: 29033316 DOI: 10.1016/j.chembiol.2017.08.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/21/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022]
Abstract
Microbial natural products are genetically encoded by dedicated biosynthetic gene clusters (BGCs). A given BGC usually produces a family of related compounds that share a core but contain variable substituents. Though common, the reasons underlying this divergent biosynthesis are in general unknown. Herein, we have addressed this issue using the hydroxyalkylquinoline (HAQ) family of natural products synthesized by Burkholderia thailandensis. Investigations into the detailed functions of two analogs show that they act synergistically in inhibiting bacterial growth. One analog is a nanomolar inhibitor of pyrimidine biosynthesis and at the same time disrupts the proton motive force. A second analog inhibits the cytochrome bc1 complex as well as pyrimidine biogenesis. These results provide a functional rationale for the divergent nature of HAQs. They imply that synergy and target promiscuity are driving forces for the evolution of tailoring enzymes that diversify the products of the HAQ biosynthetic pathway.
Collapse
Affiliation(s)
- Yihan Wu
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
49
|
Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M. Biocontrol of Bacterial Leaf Blight of Rice and Profiling of Secondary Metabolites Produced by Rhizospheric Pseudomonas aeruginosa BRp3. Front Microbiol 2017; 8:1895. [PMID: 29018437 PMCID: PMC5622989 DOI: 10.3389/fmicb.2017.01895] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/15/2017] [Indexed: 01/28/2023] Open
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is widely prevalent and causes Bacterial Leaf Blight (BLB) in Basmati rice grown in different areas of Pakistan. There is a need to use environmentally safe approaches to overcome the loss of grain yield in rice due to this disease. The present study aimed to develop inocula, based on native antagonistic bacteria for biocontrol of BLB and to increase the yield of Super Basmati rice variety. Out of 512 bacteria isolated from the rice rhizosphere and screened for plant growth promoting determinants, the isolate BRp3 was found to be the best as it solubilized 97 μg/ mL phosphorus, produced 30 μg/mL phytohormone indole acetic acid and 15 mg/ L siderophores in vitro. The isolate BRp3 was found to be a Pseudomonas aeruginosa based on 16S rRNA gene sequencing (accession no. HQ840693). This bacterium showed antagonism in vitro against different phytopathogens including Xoo and Fusarium spp. Strain BRp3 showed consistent pathogen suppression of different strains of BLB pathogen in rice. Mass spectrometric analysis detected the production of siderophores (1-hydroxy-phenazine, pyocyanin, and pyochellin), rhamnolipids and a series of already characterized 4-hydroxy-2-alkylquinolines (HAQs) as well as novel 2,3,4-trihydroxy-2-alkylquinolines and 1,2,3,4-tetrahydroxy-2-alkylquinolines in crude extract of BRp3. These secondary metabolites might be responsible for the profound antibacterial activity of BRp3 against Xoo pathogen. Another contributing factor toward the suppression of the pathogen was the induction of defense related enzymes in the rice plant by the inoculated strain BRp3. When used as an inoculant in a field trial, this strain enhanced the grain and straw yields by 51 and 55%, respectively, over non-inoculated control. Confocal Laser Scanning Microscopy (CLSM) used in combination with immunofluorescence marker confirmed P. aeruginosa BRp3 in the rice rhizosphere under sterilized as well as field conditions. The results provide evidence that novel secondary metabolites produced by BRp3 may contribute to its activity as a biological control agent against Xoo and its potential to promote the growth and yield of Super Basmati rice.
Collapse
Affiliation(s)
- Sumera Yasmin
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Fauzia Y Hafeez
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan.,Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Muhammad S Mirza
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Maria Rasul
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hafiz M I Arshad
- Plant Protection Division, Nuclear Institute of Agriculture and Biology, Faisalabad, Pakistan
| | - Muhammad Zubair
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Mazhar Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
50
|
Witzgall F, Ewert W, Blankenfeldt W. Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis. Chembiochem 2017; 18:2045-2055. [PMID: 28834007 DOI: 10.1002/cbic.201700374] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 12/16/2022]
Abstract
Pseudomonas aeruginosa, a prevalent pathogen in nosocomial infections and a major burden in cystic fibrosis, uses three interconnected quorum-sensing systems to coordinate virulence processes. At variance with other Gram-negative bacteria, one of these systems relies on 2-alkyl-4(1H)-quinolones (Pseudomonas quinolone signal, PQS) and might hence be an attractive target for new anti-infective agents. Here we report crystal structures of the N-terminal domain of anthranilate-CoA ligase PqsA, the first enzyme of PQS biosynthesis, in complex with anthraniloyl-AMP and with 6-fluoroanthraniloyl-AMP (6FABA-AMP) at 1.4 and 1.7 Å resolution. We find that PqsA belongs to an unrecognized subfamily of anthranilate-CoA ligases that recognize the amino group of anthranilate through a water-mediated hydrogen bond. The complex with 6FABA-AMP explains why 6FABA, an inhibitor of PQS biosynthesis, is a good substrate of PqsA. Together, our data might pave a way to new pathoblockers in P. aeruginosa infections.
Collapse
Affiliation(s)
- Florian Witzgall
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Wiebke Ewert
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|