1
|
Bakale RD, Phatak PS, Rathod SS, Choudhari PB, Rekha EM, Sriram D, Kulkarni RS, Haval KP. In vitro and in silico exploration of newly synthesized triazolyl- isonicotinohydrazides as potent antitubercular agents. J Biomol Struct Dyn 2025; 43:1372-1391. [PMID: 38079301 DOI: 10.1080/07391102.2023.2291826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/14/2023] [Indexed: 01/16/2025]
Abstract
In the present study, we have reported the synthesis of novel isoniazid-triazole derivatives (4a-r), via the click chemistry approach. The synthesized isoniazid-triazole derivatives have potent in vitro antitubercular activity against the Mycobacterium tuberculosis (MTB) H37Rv strain. Among these compounds, 4b, 4f, 4g, 4j, 4k, 4m, 4o, 4p, and 4r were found to be the most active ones with a MIC value of 0.78 μg/mL. This activity is better than ciprofloxacin (MIC value = 1.56 μg/mL) and ethambutol (MIC value = 3.12 μg/mL). The compounds, 4a, 4c, 4d, 4e, 4h, 4i, 4l, and 4n have displayed activity equal to ciprofloxacin (MIC value = 1.56 μg/mL). The cytotoxicity of the active isoniazid-triazole derivatives was studied against RAW 264.7 cell line by MTT assay at 25 μg/mL concentration and no toxicity was observed. Moreover, in-vitro results were supported by in-silico studies with the known antitubercular target (PanK). The drug-likeness, density functional study, molecular docking, and molecular dynamics simulation studies of isoniazid-triazole derivatives validated the ability to form a stable complex with Pantothenate kinase (PanK), which will result in inhibiting the Pantothenate kinase (PanK). Therefore, the results obtained indicate that this class of compounds may offer candidates for future development, and positively provide drug alternatives for tuberculosis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rajubai D Bakale
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Pramod S Phatak
- Late Pushpadevi Patil Arts and Science College, Washim, India
| | - Sanket S Rathod
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Prafulla B Choudhari
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, India
| | - Estharla Madhu Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - Ravibhushan S Kulkarni
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad, India
| |
Collapse
|
2
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a depupylation regulator for an essential enzyme in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2407239121. [PMID: 39585979 PMCID: PMC11626117 DOI: 10.1073/pnas.2407239121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
In Mycobacterium tuberculosis (Mtb), proteins that are posttranslationally modified with a prokaryotic ubiquitin-like protein (Pup) can be degraded by bacterial proteasomes. A single Pup-ligase and depupylase shape the pupylome, but the mechanisms regulating their substrate specificity are incompletely understood. Here, we identified a depupylation regulator, a protein called CoaX, through its copurification with the depupylase Dop. CoaX is a pseudopantothenate kinase that showed evidence of binding to pantothenate, an essential nutrient Mtb synthesizes, but not its phosphorylation. In a ∆coaX mutant, pantothenate synthesis enzymes including PanB, a substrate of the Pup-proteasome system (PPS), were more abundant than in the parental strain. In vitro, CoaX specifically accelerated depupylation of Pup~PanB, while addition of pantothenate inhibited this reaction. In culture, media supplementation with pantothenate decreased PanB levels, which required CoaX. Collectively, we propose CoaX regulates PanB abundance in response to pantothenate levels by modulating its vulnerability to proteolysis by Mtb proteasomes.
Collapse
Affiliation(s)
- Shoshanna C. Kahne
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - Jin Hee Yoo
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| | - James Chen
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
| | - Kehilwe Nakedi
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - Lakshminarayan M. Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Gregory Putzel
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Nora M. Samhadaneh
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, NY10016
- Microbial Computational Genomic Core Lab, New York University Grossman School of Medicine, New York, NY10016
| | - L. Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD20894
| | - Damian C. Ekiert
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Gira Bhabha
- Department of Cell Biology, New York University School of Medicine, New York, NY10016
- Department of Biology, Johns Hopkins University, Baltimore, MD21218
| | - Kyu Y. Rhee
- Department of Medicine, Weill Cornell Medicine, New York, NY10021
| | - K. Heran Darwin
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY10016
| |
Collapse
|
3
|
Hasnat S, Hoque MN, Mahbub MM, Sakif TI, Shahinuzzaman A, Islam T. Pantothenate kinase: A promising therapeutic target against pathogenic Clostridium species. Heliyon 2024; 10:e34544. [PMID: 39130480 PMCID: PMC11315101 DOI: 10.1016/j.heliyon.2024.e34544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Current treatment of clostridial infections includes broad-spectrum antibiotics and antitoxins, yet antitoxins are ineffective against all Clostridiumspecies. Moreover, rising antimicrobial resistance (AMR) threatens treatment effectiveness and public health. This study therefore aimed to discover a common drug target for four pathogenic clostridial species, Clostridium botulinum, C. difficile, C. tetani, and C. perfringens through an in-silico core genomic approach. Using four reference genomes of C. botulinum, C. difficile, C. tetani, and C. perfringens, we identified 1484 core genomic proteins (371/genome) and screened them for potential drug targets. Through a subtractive approach, four core proteins were finally identified as drug targets, represented by type III pantothenate kinase (CoaX) and, selected for further analyses. Interestingly, the CoaX is involved in the phosphorylation of pantothenate (vitamin B5), which is a critical precursor for coenzyme A (CoA) biosynthesis. Investigation of druggability analysis on the identified drug target reinforces CoaX as a promising novel drug target for the selected Clostridium species. During the molecular screening of 1201 compounds, a known agonist drug compound (Vibegron) showed strong inhibitory activity against targeted clostridial CoaX. Additionally, we identified tazobactam, a beta-lactamase inhibitor, as effective against the newly proposed target, CoaX. Therefore, identifying CoaX as a single drug target effective against all four clostridial pathogens presents a valuable opportunity to develop a cost-effective treatment for multispecies clostridial infections.
Collapse
Affiliation(s)
- Soharth Hasnat
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
- Molecular Biology and Bioinformatics Laboratory (MBBL), Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, 1706, Bangladesh
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory (MBBL), Department of Gynecology, Obstetrics and Reproductive Health, BSMRAU, Gazipur, 1706, Bangladesh
| | - M Murshida Mahbub
- Department of Genetic Engineering and Biotechnology, East West University, Dhaka, 1212, Bangladesh
| | - Tahsin Islam Sakif
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV, WV 26506, USA
| | - A.D.A. Shahinuzzaman
- Pharmaceutical Sciences Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
4
|
Moreno-Ceballos A, Caballero NA, Castro ME, Perez-Aguilar JM, Mammino L, Melendez FJ. In Silico Approach: Anti-Tuberculosis Activity of Caespitate in the H37Rv Strain. Curr Issues Mol Biol 2024; 46:6489-6507. [PMID: 39057029 PMCID: PMC11275643 DOI: 10.3390/cimb46070387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis is a highly lethal bacterial disease worldwide caused by Mycobacterium tuberculosis (Mtb). Caespitate is a phytochemical isolated from Helichrysum caespititium, a plant used in African traditional medicine that shows anti-tubercular activity, but its mode of action remains unknown. It is suggested that there are four potential targets in Mtb, specifically in the H37Rv strain: InhA, MabA, and UGM, enzymes involved in the formation of Mtb's cell wall, and PanK, which plays a role in cell growth. Two caespitate conformational structures from DFT conformational analysis in the gas phase (GC) and in solution with DMSO (CS) were selected. Molecular docking calculations, MM/GBSA analysis, and ADME parameter evaluations were performed. The docking results suggest that CS is the preferred caespitate conformation when interacting with PanK and UGM. In both cases, the two intramolecular hydrogen bonds characteristic of caespitate's molecular structure were maintained to achieve the most stable complexes. The MM/GBSA study confirmed that PanK/caespitate and UGM/caespitate were the most stable complexes. Caespitate showed favorable pharmacokinetic characteristics, suggesting rapid absorption, permeability, and high bioavailability. Additionally, it is proposed that caespitate may exhibit antibacterial and antimonial activity. This research lays the foundation for the design of anti-tuberculosis drugs from natural sources, especially by identifying potential drug targets in Mtb.
Collapse
Affiliation(s)
- Andrea Moreno-Ceballos
- Laboratorio de Química Teórica, Centro de Investigación, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla C.P. 72570, Mexico; (A.M.-C.); (J.M.P.-A.)
| | - Norma A. Caballero
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Edif. BIO1, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla C.P. 72570, Mexico
| | - María Eugenia Castro
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. IC10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla C.P. 72570, Mexico;
| | - Jose Manuel Perez-Aguilar
- Laboratorio de Química Teórica, Centro de Investigación, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla C.P. 72570, Mexico; (A.M.-C.); (J.M.P.-A.)
| | - Liliana Mammino
- School of Mathematical and Natural Science, University of Venda, Thohoyandou 0950, South Africa;
| | - Francisco J. Melendez
- Laboratorio de Química Teórica, Centro de Investigación, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edif. FCQ10, 22 Sur y San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla C.P. 72570, Mexico; (A.M.-C.); (J.M.P.-A.)
| |
Collapse
|
5
|
Kahne SC, Yoo JH, Chen J, Nakedi K, Iyer LM, Putzel G, Samhadaneh NM, Pironti A, Aravind L, Ekiert DC, Bhabha G, Rhee KY, Darwin KH. Identification of a proteolysis regulator for an essential enzyme in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587195. [PMID: 38585835 PMCID: PMC10996600 DOI: 10.1101/2024.03.29.587195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In Mycobacterium tuberculosis proteins that are post-translationally modified with Pup, a prokaryotic ubiquitin-like protein, can be degraded by proteasomes. While pupylation is reversible, mechanisms regulating substrate specificity have not been identified. Here, we identify the first depupylation regulators: CoaX, a pseudokinase, and pantothenate, an essential, central metabolite. In a Δ coaX mutant, pantothenate synthesis enzymes were more abundant, including PanB, a substrate of the Pup-proteasome system. Media supplementation with pantothenate decreased PanB levels in a coaX and Pup-proteasome-dependent manner. In vitro , CoaX accelerated depupylation of Pup∼PanB, while addition of pantothenate inhibited this reaction. Collectively, we propose CoaX contributes to proteasomal degradation of PanB by modulating depupylation of Pup∼PanB in response to pantothenate levels. One Sentence Summary A pseudo-pantothenate kinase regulates proteasomal degradation of a pantothenate synthesis enzyme in M. tuberculosis .
Collapse
|
6
|
Brigg SE, Koekemoer L, Brand LA, Strauss E. Multifaceted Target Specificity Analysis as a Tool in Antimicrobial Drug Development: Type III Pantothenate Kinases as a Case Study. ChemMedChem 2023; 18:e202200630. [PMID: 36749500 DOI: 10.1002/cmdc.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The research and development of a new antimicrobial drug using a target-based approach raises the question of whether any resulting hits will also show activity against the homologous target in other closely related organisms. While an assessment of the similarities of the predicted interactions between the identified inhibitor and the various targets is an obvious first step in answering this question, no clear and consistent framework has been proposed for how this should be done. Here we developed Multifaceted Target Specificity Analysis (MTSA) and applied it to type III pantothenate kinase (PanKIII ) - an essential enzyme required for coenzyme A biosynthesis in a wide range of pathogenic bacteria - as a case study to establish if targeting a specific organism's PanKIII would lead to a narrow- or broad-spectrum agent. We propose that MTSA is a useful tool and aid for directing new target-based antimicrobial drug development initiatives.
Collapse
Affiliation(s)
- Siobhan Ernan Brigg
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Lizbé Koekemoer
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Leisl A Brand
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Matieland, 7602, South Africa
| |
Collapse
|
7
|
Coenzyme A precursors flow from mother to zygote and from microbiome to host. Mol Cell 2022; 82:2650-2665.e12. [PMID: 35662397 DOI: 10.1016/j.molcel.2022.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 02/09/2022] [Accepted: 05/05/2022] [Indexed: 01/01/2023]
Abstract
Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.
Collapse
|
8
|
Ras TA, Strauss E, Botes A. Evaluating the Genetic Capacity of Mycoplasmas for Coenzyme A Biosynthesis in a Search for New Anti-mycoplasma Targets. Front Microbiol 2021; 12:791756. [PMID: 34987490 PMCID: PMC8721197 DOI: 10.3389/fmicb.2021.791756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
Mycoplasmas are responsible for a wide range of disease states in both humans and animals, in which their parasitic lifestyle has allowed them to reduce their genome sizes and curtail their biosynthetic capabilities. The subsequent dependence on their host offers a unique opportunity to explore pathways for obtaining and producing cofactors - such as coenzyme A (CoA) - as possible targets for the development of new anti-mycoplasma agents. CoA plays an essential role in energy and fatty acid metabolism and is required for membrane synthesis. However, our current lack of knowledge of the relevance and importance of the CoA biosynthesis pathway in mycoplasmas, and whether it could be bypassed within their pathogenic context, prevents further exploration of the potential of this pathway. In the universal, canonical CoA biosynthesis pathway, five enzymes are responsible for the production of CoA. Given the inconsistent presence of the genes that code for these enzymes across Mycoplasma genomes, this study set out to establish the genetic capacity of mycoplasmas to synthesize their own CoA de novo. Existing functional annotations and sequence, family, motif, and domain analysis of protein products were used to determine the existence of relevant genes in Mycoplasma genomes. We found that most Mycoplasma species do have the genetic capacity to synthesize CoA, but there was a differentiated prevalence of these genes across species. Phylogenetic analysis indicated that the phylogenetic position of a species could not be used to predict its enzyme-encoding gene combinations. Despite this, the final enzyme in the biosynthesis pathway - dephospho-coenzyme A kinase (DPCK) - was found to be the most common among the studied species, suggesting that it has the most potential as a target in the search for new broad-spectrum anti-mycoplasma agents.
Collapse
Affiliation(s)
| | | | - Annelise Botes
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
9
|
Systems Biology Engineering of the Pantothenate Pathway to Enhance 3HB Productivity in Escherichia coli. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0033-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Tjhin ET, Howieson VM, Spry C, van Dooren GG, Saliba KJ. A novel heteromeric pantothenate kinase complex in apicomplexan parasites. PLoS Pathog 2021; 17:e1009797. [PMID: 34324601 PMCID: PMC8366970 DOI: 10.1371/journal.ppat.1009797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 08/16/2021] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Coenzyme A is synthesised from pantothenate via five enzyme-mediated steps. The first step is catalysed by pantothenate kinase (PanK). All PanKs characterised to date form homodimers. Many organisms express multiple PanKs. In some cases, these PanKs are not functionally redundant, and some appear to be non-functional. Here, we investigate the PanKs in two pathogenic apicomplexan parasites, Plasmodium falciparum and Toxoplasma gondii. Each of these organisms express two PanK homologues (PanK1 and PanK2). We demonstrate that PfPanK1 and PfPanK2 associate, forming a single, functional PanK complex that includes the multi-functional protein, Pf14-3-3I. Similarly, we demonstrate that TgPanK1 and TgPanK2 form a single complex that possesses PanK activity. Both TgPanK1 and TgPanK2 are essential for T. gondii proliferation, specifically due to their PanK activity. Our study constitutes the first examples of heteromeric PanK complexes in nature and provides an explanation for the presence of multiple PanKs within certain organisms.
Collapse
Affiliation(s)
- Erick T. Tjhin
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Vanessa M. Howieson
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Christina Spry
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Giel G. van Dooren
- Research School of Biology, The Australian National University, Canberra, Australia
| | - Kevin J. Saliba
- Research School of Biology, The Australian National University, Canberra, Australia
- Medical School, The Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
11
|
Singla A, Sharma P, Gupta A, Iqbal N, Rani C, Singh TP, Sharma S. Biophysical Characterization of Type III Pantothenate Kinase (PanK) from Acinetobacter baumannii. Protein Pept Lett 2021; 28:450-458. [PMID: 32798368 DOI: 10.2174/0929866527666200813202445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Type-III Pantothenate kinase from the multi drug resistant bacteria, Acinetobacter baumannii (AbPanK) catalyzes the first step of the essential Coenzyme A biosynthesis pathway. AbPanK is an attractive drug target against the bacteria since it is an essential enzyme and its structure is significantly different from the human PanK. METHODS AbPanK was cloned, expressed, purified and crystallized. A good quality single crystal was used for X-ray intensity data collection. Dynamic light scattering was done for calculating the hydrodynamic radii and its oligomeric nature in the solution. Binding studies of this protein with its two substrates, Pantothenate and ATP were done using spectrofluorometer. RESULTS Our results indicated that AbPanK shows a strong affinity with pantothenate with dissociation constant of 1.2 x 10- 8 M and moderate affinity towards ATP of 3.7x 10-3 M. This fact was further substantiated by the calculations of Km of both substrates using kinase assay kit. Dynamic light scattering studies have shown that it exists as homogenous solution with hydrodynamic radii corresponding to the molecular weight of 29.55 kDa. A low-resolution X-ray intensity data set was collected, which shows that AbPank crystallizes in P2 space group with cell dimensions of a= 165 Å, b= 260 Å, and, c= 197 Å and α= 90.0, β= 113.60, γ= 90.0. DISCUSSION Recombinant Pantothenate kinase from Acinetobacter baumannii was purified to homogeneity and crystallized. The enzyme exhibits very low sequence identity (28%) to other corresponding enzymes. CONCLUSION The recombinant enzyme was active and its binding affinities with its substrates pantothenate and ATP have been studied. This information would be very useful while designing the inhibitors of this enzyme in order to fight bacterial infections associated to this pathogen.
Collapse
Affiliation(s)
- Ankita Singla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Pradeep Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Akshita Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Naseer Iqbal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Chitra Rani
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - T P Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Sujata Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
12
|
Thomès L, Lescure A. Mosaic Evolution of the Phosphopantothenate Biosynthesis Pathway in Bacteria and Archaea. Genome Biol Evol 2020; 13:6035135. [PMID: 33320181 PMCID: PMC7883664 DOI: 10.1093/gbe/evaa262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2020] [Indexed: 11/13/2022] Open
Abstract
Phosphopantothenate is a precursor to synthesis of coenzyme A, a molecule essential to many metabolic pathways. Organisms of the archaeal phyla were shown to utilize a different phosphopantothenate biosynthetic pathway from the eukaryotic and bacterial one. In this study, we report that symbiotic bacteria from the group Candidatus poribacteria present enzymes of the archaeal pathway, namely pantoate kinase and phosphopantothenate synthetase, mirroring what was demonstrated for Picrophilus torridus, an archaea partially utilizing the bacterial pathway. Our results not only support the ancient origin of the coenzyme A pathway in the three domains of life but also highlight its complex and dynamic evolution. Importantly, this study helps to improve protein annotation for this pathway in the C. poribacteria group and other related organisms.
Collapse
Affiliation(s)
- Luc Thomès
- Architecture et Réactivité de l'ARN, CNRS, UPR9002, Université de Strasbourg, France
| | - Alain Lescure
- Architecture et Réactivité de l'ARN, CNRS, UPR9002, Université de Strasbourg, France
| |
Collapse
|
13
|
Kita A, Kishimoto A, Shimosaka T, Tomita H, Yokooji Y, Imanaka T, Atomi H, Miki K. Crystal structure of pantoate kinase from Thermococcus kodakarensis. Proteins 2019; 88:718-724. [PMID: 31697438 DOI: 10.1002/prot.25852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 11/09/2022]
Abstract
The coenzyme A biosynthesis pathways in most archaea involve two unique enzymes, pantoate kinase and phosphopantothenate synthetase, to convert pantoate to 4'-phosphopantothenate. Here, we report the first crystal structure of pantoate kinase from the hyperthermophilic archaeon, Thermococcus kodakarensis and its complex with ATP and a magnesium ion. The electron density for the adenosine moiety of ATP was very weak, which most likely relates to its broad nucleotide specificity. Based on the structure of the active site that contains a glycerol molecule, the pantoate binding site and the roles of the highly conserved residues are suggested.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, Japan
| | - Asako Kishimoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Takahiro Shimosaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuusuke Yokooji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.,JST, CREST, Tokyo, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.,JST, CREST, Tokyo, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.,JST, CREST, Tokyo, Japan
| |
Collapse
|
14
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
15
|
Liyanage SI, Gupta M, Wu F, Taylor M, Carter MD, Weaver DF. Inhibition of Pantothenate Synthetase by Analogs of β-Alanine Precursor Ineffective as an Antibacterial Strategy. Chemotherapy 2019; 64:22-27. [PMID: 31167192 DOI: 10.1159/000499899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pantothenate, the fundamental precursor to coenzyme A, is required for optimal growth and virulence of microbial pathogens. It is synthesized by the enzyme-catalyzed condensation of β-alanine and pantoate, which has shown susceptibility to inhibition by analogs of its molecular constituents. Accordingly, analogs of β-alanine are gaining inquiry as potential antimicrobial chemotherapeutics. METHODS We synthesized and evaluated 35 derivatives of β-alanine, substituted at the α, β, amine, and carboxyl sites, derived from in silico, dynamic molecular modeling to be potential competitive inhibitors of pantothenate synthetase. Employing the Clinical Laboratory Standards M7-A6 broth microdilution method, we tested these for inhibition of growth in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. RESULTS All compounds proved entirely ineffective in all species tested, with no inhibition of growth being observed up to 200 µM/mL. CONCLUSIONS Upon revision of the literature, we conclude that high enzyme selectivity or external salvage mechanisms may render this strategy futile against most bacteria.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcy Taylor
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael D Carter
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada, .,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada, .,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, .,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
16
|
Shapiro JA, Varga JJ, Parsonage D, Walton W, Redinbo MR, Ross LJ, White EL, Bostwick R, Wuest WM, Claiborne A, Goldberg JB. Identification of Specific and Nonspecific Inhibitors of Bacillus anthracis Type III Pantothenate Kinase (PanK). ChemMedChem 2019; 14:78-82. [PMID: 30376607 PMCID: PMC6456334 DOI: 10.1002/cmdc.201800652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Antibiotics with novel mechanisms of action are desperately needed to combat the increasing rates of multidrug-resistant infections. Bacterial pantothenate kinase (PanK) has emerged as a target of interest to cut off the biosynthesis of coenzyme A. Herein we report the results of an in vitro high-throughput screen of over 10 000 small molecules against Bacillus anthracis PanK, as well as a follow-up screen of hits against PanK isolated from Pseudomonas aeruginosa and Burkholderia cenocepacia. Nine hits are structurally categorized and analyzed to set the stage for future drug development.
Collapse
Affiliation(s)
- Justin A. Shapiro
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (USA),
| | - John J. Varga
- Department of Pediatrics, Emory University School of Medicine, 1510 Clifton, Road NE, Suite 3009, Atlanta, GA 30322 (USA),
| | - Derek Parsonage
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (USA),
| | - William Walton
- Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290 (USA)
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina at Chapel Hill, 4350 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599-3290 (USA)
| | - Larry J. Ross
- Southern Research, High-Throughput Screening Center, 2000 Ninth Avenue South, Birmingham, AL 35205 (USA),
| | - E. Lucile White
- Southern Research, High-Throughput Screening Center, 2000 Ninth Avenue South, Birmingham, AL 35205 (USA),
| | - Robert Bostwick
- Southern Research, High-Throughput Screening Center, 2000 Ninth Avenue South, Birmingham, AL 35205 (USA),
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA 30322 (USA),
- Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322 (USA)
| | - Al Claiborne
- Department of Biochemistry, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (USA),
| | - Joanna B. Goldberg
- Department of Pediatrics, Emory University School of Medicine, 1510 Clifton, Road NE, Suite 3009, Atlanta, GA 30322 (USA),
- Emory Antibiotic Resistance Center, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322 (USA)
| |
Collapse
|
17
|
Probing the ligand preferences of the three types of bacterial pantothenate kinase. Bioorg Med Chem 2018; 26:5896-5902. [DOI: 10.1016/j.bmc.2018.10.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
|
18
|
Ellis BD, Milligan JC, White AR, Duong V, Altman PX, Mohammed LY, Crump MP, Crosby J, Luo R, Vanderwal CD, Tsai SC. An Oxetane-Based Polyketide Surrogate To Probe Substrate Binding in a Polyketide Synthase. J Am Chem Soc 2018; 140:4961-4964. [PMID: 29620883 DOI: 10.1021/jacs.7b11793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyketides are a large class of bioactive natural products with a wide range of structures and functions. Polyketides are biosynthesized by large, multidomain enzyme complexes termed polyketide synthases (PKSs). One of the primary challenges when studying PKSs is the high reactivity of their poly-β-ketone substrates. This has hampered structural and mechanistic characterization of PKS-polyketide complexes, and, as a result, little is known about how PKSs position the unstable substrates for proper catalysis while displaying high levels of regio- and stereospecificity. As a first step toward a general plan to use oxetanes as carbonyl isosteres to broadly interrogate PKS chemistry, we describe the development and application of an oxetane-based PKS substrate mimic. This enabled the first structural determination of the acyl-enzyme intermediate of a ketosynthase (KS) in complex with an inert extender unit mimic. The crystal structure, in combination with molecular dynamics simulations, led to a proposed mechanism for the unique activity of DpsC, the priming ketosynthase for daunorubicin biosynthesis. The successful application of an oxetane-based polyketide mimic suggests that this novel class of probes could have wide-ranging applications to the greater biosynthetic community interested in the mechanistic enzymology of iterative PKSs.
Collapse
Affiliation(s)
- Bryan D Ellis
- Department of Chemistry , University of California Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Jacob C Milligan
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States
| | - Alexander R White
- Department of Chemistry , University of California Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Vy Duong
- Departments of Molecular Biology and Biochemistry, Biomedical Engineering, and Chemical Engineering & Materials Science , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States
| | - Pilar X Altman
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States
| | - Lina Y Mohammed
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Matthew P Crump
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - John Crosby
- School of Chemistry , University of Bristol , Cantock's Close, Bristol BS8 1TS , United Kingdom
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Biomedical Engineering, and Chemical Engineering & Materials Science , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States
| | - Christopher D Vanderwal
- Department of Chemistry , University of California Irvine , 1102 Natural Sciences II , Irvine , California 92697 , United States
| | - Shiou-Chuan Tsai
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences , University of California Irvine , 2218 Natural Sciences I , Irvine , California 92697 , United States
| |
Collapse
|
19
|
Nurkanto A, Jeelani G, Yamamoto T, Naito Y, Hishiki T, Mori M, Suematsu M, Shiomi K, Hashimoto T, Nozaki T. Characterization and validation of Entamoeba histolytica pantothenate kinase as a novel anti-amebic drug target. Int J Parasitol Drugs Drug Resist 2018; 8:125-136. [PMID: 29518650 PMCID: PMC6114107 DOI: 10.1016/j.ijpddr.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 11/02/2022]
Abstract
The Coenzyme A (CoA), as a cofactor involved in >100 metabolic reactions, is essential to the basic biochemistry of life. Here, we investigated the CoA biosynthetic pathway of Entamoeba histolytica (E. histolytica), an enteric protozoan parasite responsible for human amebiasis. We identified four key enzymes involved in the CoA pathway: pantothenate kinase (PanK, EC 2.7.1.33), bifunctional phosphopantothenate-cysteine ligase/decarboxylase (PPCS-PPCDC), phosphopantetheine adenylyltransferase (PPAT) and dephospho-CoA kinase (DPCK). Cytosolic enzyme PanK, was selected for further biochemical, genetic, and phylogenetic characterization. Since E. histolytica PanK (EhPanK) is physiologically important and sufficiently divergent from its human orthologs, this enzyme represents an attractive target for the development of novel anti-amebic chemotherapies. Epigenetic gene silencing of PanK resulted in a significant reduction of PanK activity, intracellular CoA concentrations, and growth retardation in vitro, reinforcing the importance of this gene in E. histolytica. Furthermore, we screened the Kitasato Natural Products Library for inhibitors of recombinant EhPanK, and identified 14 such compounds. One compound demonstrated moderate inhibition of PanK activity and cell growth at a low concentration, as well as differential toxicity towards E. histolytica and human cells.
Collapse
Affiliation(s)
- Arif Nurkanto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan; Department of Parasitology, National Institute of Infectious Diseases (NIID), Tokyo, Japan; Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan; Research Center for Biology, Indonesia Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiko Naito
- Clinical and Translational Research Center, Keio University School of Medicine, Japan
| | - Takako Hishiki
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan; Clinical and Translational Research Center, Keio University School of Medicine, Japan
| | - Mihoko Mori
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Makoto Suematsu
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan
| | - Tetsuo Hashimoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Japan.
| |
Collapse
|
20
|
Hammerer F, Chang JH, Duncan D, Castañeda Ruiz A, Auclair K. Small Molecule Restores Itaconate Sensitivity inSalmonella enterica: A Potential New Approach to Treating Bacterial Infections. Chembiochem 2016; 17:1513-7. [DOI: 10.1002/cbic.201600078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Fabien Hammerer
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Justin H. Chang
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | - Dustin Duncan
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| | | | - Karine Auclair
- Department of Chemistry; McGill University; Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
21
|
Regulation of Coenzyme A Biosynthesis in the Hyperthermophilic Bacterium Thermotoga maritima. J Bacteriol 2016; 198:1993-2000. [PMID: 27161115 DOI: 10.1128/jb.00077-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/04/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Regulation of coenzyme A (CoA) biosynthesis in bacteria and eukaryotes occurs through feedback inhibition targeting type I and type II pantothenate kinase (PanK), respectively. In contrast, the activity of type III PanK is not affected by CoA. As the hyperthermophilic bacterium Thermotoga maritima harbors only a single type III PanK (Tm-PanK), here we examined the mechanisms that regulate CoA biosynthesis in this organism. We first examined the enzyme responsible for the ketopantoate reductase (KPR) reaction, which is the target of feedback inhibition in archaea. A classical KPR homolog was not present on the T. maritima genome, but we found a homolog (TM0550) of the ketol-acid reductoisomerase (KARI) from Corynebacterium glutamicum, which exhibits KPR activity. The purified TM0550 protein displayed both KPR and KARI activities and was designated Tm-KPR/KARI. When T. maritima cell extract was subjected to anion-exchange chromatography, the fractions containing high levels of KPR activity also displayed positive signals in a Western blot analysis using polyclonal anti-TM0550 protein antisera, strongly suggesting that Tm-KPR/KARI was the major source of KPR activity in the organism. The KPR activity of Tm-KPR/KARI was not inhibited in the presence of CoA. We thus examined the properties of Tm-PanK and the pantothenate synthetase (Tm-PS) of this organism. Tm-PS was not affected by CoA. Surprisingly however, Tm-PanK was inhibited by CoA, with almost complete inhibition in the presence of 400 μM CoA. Our results suggest that CoA biosynthesis in T. maritima is regulated by feedback inhibition targeting PanK, although Tm-PanK is a type III enzyme. IMPORTANCE Bacteria and eukaryotes regulate the biosynthesis of coenzyme A (CoA) by feedback inhibition targeting type I or type II pantothenate kinase (PanK). The hyperthermophilic bacterium Thermotoga maritima harbors a single type III PanK (Tm-PanK), previously considered to be unaffected by CoA. By examining the properties of three enzymes involved in CoA biosynthesis in this organism, we found that Tm-PanK, although a type III enzyme, is inhibited by CoA. The results provide a feasible explanation of how CoA biosynthesis is regulated in T. maritima, which may also apply for other bacteria that harbor only type III PanK enzymes.
Collapse
|
22
|
Abstract
CoA (coenzyme A) is an essential cofactor in all living organisms. CoA and its thioester derivatives [acetyl-CoA, malonyl-CoA, HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) etc.] participate in diverse anabolic and catabolic pathways, allosteric regulatory interactions and the regulation of gene expression. The biosynthesis of CoA requires pantothenic acid, cysteine and ATP, and involves five enzymatic steps that are highly conserved from prokaryotes to eukaryotes. The intracellular levels of CoA and its derivatives change in response to extracellular stimuli, stresses and metabolites, and in human pathologies, such as cancer, metabolic disorders and neurodegeneration. In the present mini-review, we describe the current understanding of the CoA biosynthetic pathway, provide a detailed overview on expression and subcellular localization of enzymes implicated in CoA biosynthesis, their regulation and the potential to form multi-enzyme complexes for efficient and highly co-ordinated biosynthetic process.
Collapse
|
23
|
Recent advances in targeting coenzyme A biosynthesis and utilization for antimicrobial drug development. Biochem Soc Trans 2015; 42:1080-6. [PMID: 25110006 DOI: 10.1042/bst20140131] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biosynthesis and utilization of CoA (coenzyme A), the ubiquitous and essential acyl carrier in all organisms, have long been regarded as excellent targets for the development of new antimicrobial drugs. Moreover, bioinformatics and biochemical studies have highlighted significant differences between several of the bacterial enzyme targets and their human counterparts, indicating that selective inhibition of the former should be possible. Over the past decade, a large amount of structural and mechanistic data has been gathered on CoA metabolism and the CoA biosynthetic enzymes, and this has facilitated the discovery and development of several promising candidate antimicrobial agents. These compounds include both target-specific inhibitors, as well as CoA antimetabolite precursors that can reduce CoA levels and interfere with processes that are dependent on this cofactor. In the present mini-review we provide an overview of the most recent of these studies that, taken together, have also provided chemical validation of CoA biosynthesis and utilization as viable targets for antimicrobial drug development.
Collapse
|
24
|
de Villiers M, Barnard L, Koekemoer L, Snoep JL, Strauss E. Variation in pantothenate kinase type determines the pantothenamide mode of action and impacts on coenzyme A salvage biosynthesis. FEBS J 2014; 281:4731-53. [PMID: 25156889 DOI: 10.1111/febs.13013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/18/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022]
Abstract
N-substituted pantothenamides are analogues of pantothenic acid, the vitamin precursor of CoA, and constitute a class of well-studied bacterial growth inhibitors that show potential as new antibacterial agents. Previous studies have highlighted the importance of pantothenate kinase (PanK; EC 2.7.1.33) (the first enzyme of CoA biosynthesis) in mediating pantothenamide-induced growth inhibition by one of two proposed mechanisms: first, by acting on the pantothenamides as alternate substrates (allowing their conversion into CoA antimetabolites, with subsequent effects on CoA- and acyl carrier protein-dependent processes) or, second, by being directly inhibited by them (causing a reduction in CoA biosynthesis). In the present study we used structurally modified pantothenamides to probe whether PanKs interact with these compounds in the same manner. We show that the three distinct types of eubacterial PanKs that are known to exist (PanKI , PanKII and PanKIII ) respond very differently and, consequently, are responsible for determining the pantothenamide mode of action in each case: although the promiscuous PanKI enzymes accept them as substrates, the highly selective PanKIII s are resistant to their inhibitory effects. Most unexpectedly, Staphylococcus aureus PanK (the only known example of a bacterial PanKII ) experiences uncompetitive inhibition in a manner that is described for the first time. In addition, we show that pantetheine, a CoA degradation product that closely resembles the pantothenamides, causes the same effect. This suggests that, in S. aureus, pantothenamides may act by usurping a previously unknown role of pantetheine in the regulation of CoA biosynthesis, and validates its PanK as a target for the development of new antistaphylococcal agents.
Collapse
|
25
|
Khanal A, Yu McLoughlin S, Kershner JP, Copley SD. Differential effects of a mutation on the normal and promiscuous activities of orthologs: implications for natural and directed evolution. Mol Biol Evol 2014; 32:100-8. [PMID: 25246702 PMCID: PMC4271523 DOI: 10.1093/molbev/msu271] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Neutral drift occurring over millions or billions of years results in substantial sequence divergence among enzymes that catalyze the same reaction. Although natural selection maintains the primary activity of orthologous enzymes, there is, by definition, no selective pressure to maintain physiologically irrelevant promiscuous activities. Thus, the levels and the evolvabilities of promiscuous activities may vary among orthologous enzymes. Consistent with this expectation, we have found that the levels of a promiscuous activity in nine gamma-glutamyl phosphate reductase (ProA) orthologs vary by about 50-fold. Remarkably, a single amino acid change from Glu to Ala near the active site appeared to be critical for improvement of the promiscuous activity in every ortholog. The effects of this change varied dramatically. The improvement in the promiscuous activity varied from 50- to 770-fold, and, importantly, was not correlated with the initial level of the promiscuous activity. The decrease in the original activity varied from 190- to 2,100-fold. These results suggest that evolution of a novel enzyme may be possible in some microbes, but not in others. Further, these results underscore the importance of using multiple orthologs as starting points for directed evolution of novel enzyme activities.
Collapse
Affiliation(s)
- Akhil Khanal
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
| | - Sean Yu McLoughlin
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
| | - Jamie P Kershner
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
| | - Shelley D Copley
- Department of Molecular, Cellular and Developmental Biology and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder
| |
Collapse
|
26
|
Wulff NA, Zhang S, Setubal JC, Almeida NF, Martins EC, Harakava R, Kumar D, Rangel LT, Foissac X, Bové JM, Gabriel DW. The complete genome sequence of 'Candidatus Liberibacter americanus', associated with Citrus huanglongbing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:163-76. [PMID: 24200077 DOI: 10.1094/mpmi-09-13-0292-r] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Liberibacter spp. form a Rhizobiaceae clade of phloem-limited pathogens of limited host range. Two obligately parasitic species have been sequenced: 'Candidatus Liberibacter asiaticus', which causes citrus huanglongbing (HLB) worldwide, and 'Ca. L. solanacearum', which causes potato "zebra chip" disease. A third (proposed) species, Liberibacter crescens, was isolated from mountain papaya, grown in axenic culture, and sequenced. In an effort to identify common host determinants, the complete genomic DNA sequence of a second HLB species, 'Ca. L. americanus' strain 'São Paulo' was determined. The circular genome of 1,195,201 bp had an average 31.12% GC content and 983 predicted protein encoding genes, 800 (81.4%) of which had a predicted function. There were 658 genes common to all sequenced Liberibacter spp. and only 8 genes common to 'Ca. L. americanus' and 'Ca. L. asiaticus' but not found in 'Ca. L. solanacearum'. Surprisingly, most of the lipopolysaccharide biosynthetic genes were missing from the 'Ca. L. americanus' genome, as well as OmpA and a key regulator of flagellin, all indicating a 'Ca. L. americanus' strategy of avoiding production of major pathogen-associated molecular patterns present in 'Ca. L. asiaticus' and 'Ca. L. solanacearum'. As with 'Ca. L. asiaticus', one of two 'Ca. L. americanus' prophages replicated as an excision plasmid and carried potential lysogenic conversion genes that appeared fragmentary or degenerated in 'Ca. L. solanacearum'.
Collapse
|
27
|
Combination of pantothenamides with vanin inhibitors as a novel antibiotic strategy against gram-positive bacteria. Antimicrob Agents Chemother 2013; 57:4794-800. [PMID: 23877685 DOI: 10.1128/aac.00603-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents.
Collapse
|
28
|
Björkelid C, Bergfors T, Raichurkar AKV, Mukherjee K, Malolanarasimhan K, Bandodkar B, Jones TA. Structural and biochemical characterization of compounds inhibiting Mycobacterium tuberculosis pantothenate kinase. J Biol Chem 2013; 288:18260-70. [PMID: 23661699 DOI: 10.1074/jbc.m113.476473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.
Collapse
Affiliation(s)
- Christofer Björkelid
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, SE-751 24 Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Pantothenate, commonly referred to as vitamin B(5), is an essential molecule in the metabolism of living organisms and forms the core of coenzyme A. Unlike humans, some bacteria and plants are capable of de novo biosynthesis of pantothenate, making this pathway a potential target for drug development. Francisella tularensis subsp. tularensis Schu S4 is a zoonotic bacterial pathogen that is able to synthesize pantothenate but is lacking the known ketopantoate reductase (KPR) genes, panE and ilvC, found in the canonical Escherichia coli pathway. Described herein is a gene encoding a novel KPR, for which we propose the name panG (FTT1388), which is conserved in all sequenced Francisella species and is the sole KPR in Schu S4. Homologs of this KPR are present in other pathogenic bacteria such as Enterococcus faecalis, Coxiella burnetii, and Clostridium difficile. Both the homologous gene from E. faecalis V583 (EF1861) and E. coli panE functionally complemented Francisella novicida lacking any KPR. Furthermore, panG from F. novicida can complement an E. coli KPR double mutant. A Schu S4 ΔpanG strain is a pantothenate auxotroph and was genetically and chemically complemented with panG in trans or with the addition of pantolactone. There was no virulence defect in the Schu S4 ΔpanG strain compared to the wild type in a mouse model of pneumonic tularemia. In summary, we characterized the pantothenate pathway in Francisella novicida and F. tularensis and identified an unknown and previously uncharacterized KPR that can convert 2-dehydropantoate to pantoate, PanG.
Collapse
|
30
|
van der Westhuyzen R, Hammons JC, Meier JL, Dahesh S, Moolman WJA, Pelly SC, Nizet V, Burkart MD, Strauss E. The antibiotic CJ-15,801 is an antimetabolite that hijacks and then inhibits CoA biosynthesis. ACTA ACUST UNITED AC 2012; 19:559-71. [PMID: 22633408 DOI: 10.1016/j.chembiol.2012.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/13/2012] [Accepted: 03/27/2012] [Indexed: 01/21/2023]
Abstract
The natural product CJ-15,801 is an inhibitor of Staphylococcus aureus, but not other bacteria. Its close structural resemblance to pantothenic acid, the vitamin precursor of coenzyme A (CoA), and its Michael acceptor moiety suggest that it irreversibly inhibits an enzyme involved in CoA biosynthesis or utilization. However, its mode of action and the basis for its specificity have not been elucidated to date. We demonstrate that CJ-15,801 is transformed by the uniquely selective S. aureus pantothenate kinase, the first CoA biosynthetic enzyme, into a substrate for the next enzyme, phosphopantothenoylcysteine synthetase, which is inhibited through formation of a tight-binding structural mimic of its native reaction intermediate. These findings reveal CJ-15,801 as a vitamin biosynthetic pathway antimetabolite with a mechanism similar to that of the sulfonamide antibiotics and highlight CoA biosynthesis as a viable antimicrobial drug target.
Collapse
|
31
|
Venkatraman J, Bhat J, Solapure SM, Sandesh J, Sarkar D, Aishwarya S, Mukherjee K, Datta S, Malolanarasimhan K, Bandodkar B, Das KS. Screening, identification, and characterization of mechanistically diverse inhibitors of the Mycobacterium tuberculosis enzyme, pantothenate kinase (CoaA). ACTA ACUST UNITED AC 2011; 17:293-302. [PMID: 22086722 DOI: 10.1177/1087057111423069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.
Collapse
|
32
|
Shortridge MD, Triplet T, Revesz P, Griep MA, Powers R. Bacterial protein structures reveal phylum dependent divergence. Comput Biol Chem 2011; 35:24-33. [PMID: 21315656 DOI: 10.1016/j.compbiolchem.2010.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 01/26/2023]
Abstract
Protein sequence space is vast compared to protein fold space. This raises important questions about how structures adapt to evolutionary changes in protein sequences. A growing trend is to regard protein fold space as a continuum rather than a series of discrete structures. From this perspective, homologous protein structures within the same functional classification should reveal a constant rate of structural drift relative to sequence changes. The clusters of orthologous groups (COG) classification system was used to annotate homologous bacterial protein structures in the Protein Data Bank (PDB). The structures and sequences of proteins within each COG were compared against each other to establish their relatedness. As expected, the analysis demonstrates a sharp structural divergence between the bacterial phyla Firmicutes and Proteobacteria. Additionally, each COG had a distinct sequence/structure relationship, indicating that different evolutionary pressures affect the degree of structural divergence. However, our analysis also shows the relative drift rate between sequence identity and structure divergence remains constant.
Collapse
Affiliation(s)
- Matthew D Shortridge
- Department of Chemistry, University of Nebraska-Lincoln, 68588-0304, United States
| | | | | | | | | |
Collapse
|
33
|
Awasthy D, Ambady A, Bhat J, Sheikh G, Ravishankar S, Subbulakshmi V, Mukherjee K, Sambandamurthy V, Sharma U. Essentiality and functional analysis of type I and type III pantothenate kinases of Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2010; 156:2691-2701. [PMID: 20576686 DOI: 10.1099/mic.0.040717-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Pantothenate kinase, an essential enzyme in bacteria and eukaryotes, is involved in catalysing the first step of conversion of pantothenate to coenzyme A (CoA). Three isoforms (type I, II and III) of this enzyme have been reported from various organisms, which can be differentiated from each other on the basis of their biochemical and structural characteristics. Though most bacteria carry only one of the isoforms of pantothenate kinases, some of them possess two isoforms. The physiological relevance of the presence of two types of isozymes in a single organism is not clear. Mycobacterium tuberculosis, an intracellular pathogen, possesses two isoforms of pantothenate kinases (CoaA and CoaX) belonging to type I and III. In order to determine which pantothenate kinase is essential in mycobacteria, we performed gene inactivation of coaA and coaX of M. tuberculosis individually. It was found that coaA could only be inactivated in the presence of an extra copy of the gene, while coaX could be inactivated in the wild-type cells, proving that CoaA is the essential pantothenate kinase in M. tuberculosis. Additionally, the coaA gene of M. tuberculosis was able to complement a temperature-sensitive coaA mutant of Escherichia coli at a non-permissive temperature while coaX could not. The coaX deletion mutant showed no growth defects in vitro, in macrophages or in mice. Taken together, our data suggest that CoaX, which is essential in Bacillus anthracis and thus had been suggested to be a drug target in this organism, might not be a valid target in M. tuberculosis. We have established that the type I isoform, CoaA, is the essential pantothenate kinase in M. tuberculosis and thus can be explored as a drug target.
Collapse
Affiliation(s)
- Disha Awasthy
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Anisha Ambady
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Jyothi Bhat
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Gulebahar Sheikh
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | - Sudha Ravishankar
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | | | - Kakoli Mukherjee
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| | | | - Umender Sharma
- AstraZeneca R & D, 'Avishkar' Bellary Road, Hebbal, Bangalore, India
| |
Collapse
|
34
|
Pantothenate kinase from the thermoacidophilic archaeon Picrophilus torridus. J Bacteriol 2010; 192:233-41. [PMID: 19854913 DOI: 10.1128/jb.01021-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pantothenate kinase (CoaA) catalyzes the first step of the coenzyme A (CoA) biosynthetic pathway and controls the intracellular concentrations of CoA through feedback inhibition in bacteria. An alternative enzyme found in archaea, pantoate kinase, is missing in the order Thermoplasmatales. The PTO0232 gene from Picrophilus torridus, a thermoacidophilic euryarchaeon, is shown to be a distant homologue of the prokaryotic type I CoaA. The cloned gene clearly complements the poor growth of the temperature-sensitive Escherichia coli CoaA mutant strain ts9, and the recombinant protein expressed in E. coli cells transfers phosphate to pantothenate at pH 5 and 55 degrees C. In contrast to E. coli CoaA, the P. torridus enzyme is refractory to feedback regulation by CoA, indicating that in P. torridus cells the CoA levels are not regulated by the CoaA step. These data suggest the existence of two subtypes within the class of prokaryotic type I CoaAs.
Collapse
|
35
|
Rowan AS, Nicely NI, Cochrane N, Wlassoff WA, Claiborne A, Hamilton CJ. Nucleoside triphosphate mimicry: a sugar triazolyl nucleoside as an ATP-competitive inhibitor of B. anthracis pantothenate kinase. Org Biomol Chem 2009; 7:4029-36. [PMID: 19763307 PMCID: PMC6074028 DOI: 10.1039/b909729e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a library of nucleoside triphosphate mimetics is described where the Mg(2+) chelated triphosphate sidechain is replaced by an uncharged methylene-triazole linked monosaccharide sidechain. The compounds have been evaluated as inhibitors of Bacillus anthracis pantothenate kinase and a competitive inhibitor has been identified with a K(i) that is 3-fold lower than the K(m) value of ATP.
Collapse
Affiliation(s)
- Andrew S Rowan
- School of Chemistry and Chemical Engineering, David Keir Building, Stranmillis Road, Queen's University Belfast, Belfast, BT9 5AG
| | | | | | | | | | | |
Collapse
|
36
|
Yokooji Y, Tomita H, Atomi H, Imanaka T. Pantoate kinase and phosphopantothenate synthetase, two novel enzymes necessary for CoA biosynthesis in the Archaea. J Biol Chem 2009; 284:28137-28145. [PMID: 19666462 DOI: 10.1074/jbc.m109.009696] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria/eukaryotes share a common pathway for coenzyme A (CoA) biosynthesis. Although archaeal genomes harbor homologs for most of these enzymes, homologs of bacterial/eukaryotic pantothenate synthetase (PS) and pantothenate kinase (PanK) are missing. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to produce pantothenate, whereas PanK catalyzes the ATP-dependent phosphorylation of pantothenate to produce 4'-phosphopantothenate. When we examined the cell-free extracts of the hyperthermophilic archaeon Thermococcus kodakaraensis, PanK activity could not be detected. A search for putative kinase-encoding genes widely distributed in Archaea, but not present in bacteria/eukaryotes, led to four candidate genes. Among these genes, TK2141 encoded a protein with relatively low PanK activity. However, higher levels of activity were observed when pantothenate was replaced with pantoate. V(max) values were 7-fold higher toward pantoate, indicating that TK2141 encoded a novel enzyme, pantoate kinase (PoK). A search for genes with a distribution similar to TK2141 led to the identification of TK1686. The protein product catalyzed the ATP-dependent conversion of phosphopantoate and beta-alanine to produce 4'-phosphopantothenate and did not exhibit PS activity, indicating that TK1686 also encoded a novel enzyme, phosphopantothenate synthetase (PPS). Although the classic PS/PanK system performs condensation with beta-alanine prior to phosphorylation, the PoK/PPS system performs condensation after phosphorylation of pantoate. Gene disruption of TK2141 and TK1686 led to CoA auxotrophy, indicating that both genes are necessary for CoA biosynthesis in T. kodakaraensis. Homologs of both genes are widely distributed among the Archaea, suggesting that the PoK/PPS system represents the pathway for 4'-phosphopantothenate biosynthesis in the Archaea.
Collapse
Affiliation(s)
- Yuusuke Yokooji
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Hiroya Tomita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Noji-Higashi, Kusatsu 525-8577, Japan.
| |
Collapse
|
37
|
Sequence and structural analysis of the Asp-box motif and Asp-box beta-propellers; a widespread propeller-type characteristic of the Vps10 domain family and several glycoside hydrolase families. BMC STRUCTURAL BIOLOGY 2009; 9:46. [PMID: 19594936 PMCID: PMC2716378 DOI: 10.1186/1472-6807-9-46] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/13/2009] [Indexed: 11/25/2022]
Abstract
Background The Asp-box is a short sequence and structure motif that folds as a well-defined β-hairpin. It is present in different folds, but occurs most prominently as repeats in β-propellers. Asp-box β-propellers are known to be characteristically irregular and to occur in many medically important proteins, most of which are glycosidase enzymes, but they are otherwise not well characterized and are only rarely treated as a distinct β-propeller family. We have analyzed the sequence, structure, function and occurrence of the Asp-box and s-Asp-box -a related shorter variant, and provide a comprehensive classification and computational analysis of the Asp-box β-propeller family. Results We find that all conserved residues of the Asp-box support its structure, whereas the residues in variable positions are generally used for other purposes. The Asp-box clearly has a structural role in β-propellers and is highly unlikely to be involved in ligand binding. Sequence analysis of the Asp-box β-propeller family reveals it to be very widespread especially in bacteria and suggests a wide functional range. Disregarding the Asp-boxes, sequence conservation of the propeller blades is very low, but a distinct pattern of residues with specific properties have been identified. Interestingly, Asp-boxes are occasionally found very close to other propeller-associated repeats in extensive mixed-motif stretches, which strongly suggests the existence of a novel class of hybrid β-propellers. Structural analysis reveals that the top and bottom faces of Asp-box β-propellers have striking and consistently different loop properties; the bottom is structurally conserved whereas the top shows great structural variation. Interestingly, only the top face is used for functional purposes in known structures. A structural analysis of the 10-bladed β-propeller fold, which has so far only been observed in the Asp-box family, reveals that the inner strands of the blades are unusually far apart, which explains the surprisingly large diameter of the central tunnel of sortilin. Conclusion We have provided new insight into the structure and function of the Asp-box motif and of Asp-box β-propellers, and expect that the classification and analysis presented here will prove helpful in interpreting future data on Asp-box proteins in general and on Asp-box β-propellers in particular.
Collapse
|
38
|
The type III pantothenate kinase encoded by coaX is essential for growth of Bacillus anthracis. J Bacteriol 2008; 190:6271-5. [PMID: 18641144 DOI: 10.1128/jb.00860-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In Bacillus anthracis, the novel type III pantothenate kinase (PanK(Ba); encoded by coaX) catalyzes the first committed step in coenzyme A biosynthesis. We have demonstrated by analyzing the growth characteristics of a conditional coaX mutant that PanK(Ba) is an essential enzyme, thus contributing to its validation as a new antimicrobial target.
Collapse
|
39
|
Abstract
Pantothenic acid, a precursor of coenzyme A (CoA), is essential for the growth of pathogenic microorganisms. Since the structure of pantothenic acid was determined, many analogues of this essential metabolite have been prepared. Several have been demonstrated to exert an antimicrobial effect against a range of microorganisms by inhibiting the utilization of pantothenic acid, validating pantothenic acid utilization as a potential novel antimicrobial drug target. This review commences with an overview of the mechanisms by which various microorganisms acquire the pantothenic acid they require for growth, and the universal CoA biosynthesis pathway by which pantothenic acid is converted into CoA. A detailed survey of studies that have investigated the inhibitory activity of analogues of pantothenic acid and other precursors of CoA follows. The potential of inhibitors of both pantothenic acid utilization and biosynthesis as novel antibacterial, antifungal and antimalarial agents is discussed, focusing on inhibitors and substrates of pantothenate kinase, the enzyme catalysing the rate-limiting step of CoA biosynthesis in many organisms. The best strategies are considered for identifying inhibitors of pantothenic acid utilization and biosynthesis that are potent and selective inhibitors of microbial growth and that may be suitable for use as chemotherapeutic agents in humans.
Collapse
Affiliation(s)
- Christina Spry
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra, Australia
| | | | | |
Collapse
|
40
|
Hong BS, Senisterra G, Rabeh WM, Vedadi M, Leonardi R, Zhang YM, Rock CO, Jackowski S, Park HW. Crystal structures of human pantothenate kinases. Insights into allosteric regulation and mutations linked to a neurodegeneration disorder. J Biol Chem 2007; 282:27984-93. [PMID: 17631502 DOI: 10.1074/jbc.m701915200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pantothenate kinase (PanK) catalyzes the first step in CoA biosynthesis and there are three human genes that express four isoforms with highly conserved catalytic core domains. Here we report the homodimeric structures of the catalytic cores of PanK1alpha and PanK3 in complex with acetyl-CoA, a feedback inhibitor. Each monomer adopts a fold of the actin kinase superfamily and the inhibitor-bound structures explain the basis for the allosteric regulation by CoA thioesters. These structures also provide an opportunity to investigate the structural effects of the PanK2 mutations that have been implicated in neurodegeneration. Biochemical and thermodynamic analyses of the PanK3 mutant proteins corresponding to PanK2 mutations show that mutant proteins with compromised activities and/or stabilities correlate with a higher incidence of the early onset of disease.
Collapse
Affiliation(s)
- Bum Soo Hong
- Structural Genomics Consortium and Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Nicely NI, Parsonage D, Paige C, Newton GL, Fahey RC, Leonardi R, Jackowski S, Mallett TC, Claiborne A. Structure of the type III pantothenate kinase from Bacillus anthracis at 2.0 A resolution: implications for coenzyme A-dependent redox biology. Biochemistry 2007; 46:3234-45. [PMID: 17323930 PMCID: PMC2613803 DOI: 10.1021/bi062299p] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Coenzyme A (CoASH) is the major low-molecular weight thiol in Staphylococcus aureus and a number of other bacteria; the crystal structure of the S. aureus coenzyme A-disulfide reductase (CoADR), which maintains the reduced intracellular state of CoASH, has recently been reported [Mallett, T.C., Wallen, J.R., Karplus, P.A., Sakai, H., Tsukihara, T., and Claiborne, A. (2006) Biochemistry 45, 11278-89]. In this report we demonstrate that CoASH is the major thiol in Bacillus anthracis; a bioinformatics analysis indicates that three of the four proteins responsible for the conversion of pantothenate (Pan) to CoASH in Escherichia coli are conserved in B. anthracis. In contrast, a novel type III pantothenate kinase (PanK) catalyzes the first committed step in the biosynthetic pathway in B. anthracis; unlike the E. coli type I PanK, this enzyme is not subject to feedback inhibition by CoASH. The crystal structure of B. anthracis PanK (BaPanK), solved using multiwavelength anomalous dispersion data and refined at a resolution of 2.0 A, demonstrates that BaPanK is a new member of the Acetate and Sugar Kinase/Hsc70/Actin (ASKHA) superfamily. The Pan and ATP substrates have been modeled into the active-site cleft; in addition to providing a clear rationale for the absence of CoASH inhibition, analysis of the Pan-binding pocket has led to the development of two new structure-based motifs (the PAN and INTERFACE motifs). Our analyses also suggest that the type III PanK in the spore-forming B. anthracis plays an essential role in the novel thiol/disulfide redox biology of this category A biodefense pathogen.
Collapse
Affiliation(s)
- Nathan I Nicely
- Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|