1
|
Schiffrin B, Crossley JA, Walko M, Machin JM, Nasir Khan G, Manfield IW, Wilson AJ, Brockwell DJ, Fessl T, Calabrese AN, Radford SE, Zhuravleva A. Dual client binding sites in the ATP-independent chaperone SurA. Nat Commun 2024; 15:8071. [PMID: 39277579 PMCID: PMC11401910 DOI: 10.1038/s41467-024-52021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The ATP-independent chaperone SurA protects unfolded outer membrane proteins (OMPs) from aggregation in the periplasm of Gram-negative bacteria, and delivers them to the β-barrel assembly machinery (BAM) for folding into the outer membrane (OM). Precisely how SurA recognises and binds its different OMP clients remains unclear. Escherichia coli SurA comprises three domains: a core and two PPIase domains (P1 and P2). Here, by combining methyl-TROSY NMR, single-molecule Förster resonance energy transfer (smFRET), and bioinformatics analyses we show that SurA client binding is mediated by two binding hotspots in the core and P1 domains. These interactions are driven by aromatic-rich motifs in the client proteins, leading to SurA core/P1 domain rearrangements and expansion of clients from collapsed, non-native states. We demonstrate that the core domain is key to OMP expansion by SurA, and uncover a role for SurA PPIase domains in limiting the extent of expansion. The results reveal insights into SurA-OMP recognition and the mechanism of activation for an ATP-independent chaperone, and suggest a route to targeting the functions of a chaperone key to bacterial virulence and OM integrity.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
| | - Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Kago G, Turnbough CL, Salazar JC, Payne SM. (p)ppGpp is required for virulence of Shigella flexneri. Infect Immun 2024; 92:e0033423. [PMID: 38099658 PMCID: PMC10790822 DOI: 10.1128/iai.00334-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Infection by the enteric pathogen Shigella flexneri requires transit through the gastrointestinal tract and invasion of and replication within the cells of the host colonic epithelium. This process exposes the pathogen to a range of diverse microenvironments. Furthermore, the unique composition and physical environment of the eukaryotic cell cytosol represents a stressful environment for S. flexneri, and extensive physiological adaptations are needed for the bacterium to thrive. In this work, we show that disrupting synthesis of the stringent response alarmone (p)ppGpp in S. flexneri diminished expression of key virulence genes, including ipaA, ipaB, ipaC, and icsA, and it reduced bacterial invasion and intercellular spread. Deletion of the (p)ppGpp synthase gene relA alone had no effect on S. flexneri virulence, but disruption of both relA and the (p)ppGpp synthase/hydrolase gene spoT resulted in loss of (p)ppGpp synthesis and virulence. While the relA spoT deletion mutant was able to invade a cultured human epithelial cell monolayer, albeit at reduced levels, it was unable to maintain the infection and spread to adjacent cells, as indicated by loss of plaque formation. Complementation with spoT on a plasmid vector restored plaque formation. Thus, SpoT alone is sufficient to provide the necessary level of (p)ppGpp for virulence. These results indicate that (p)ppGpp is required for S. flexneri virulence and adaptation to the intracellular environment, adding to the repertoire of signaling pathways that affect Shigella pathogenesis.
Collapse
Affiliation(s)
- Grace Kago
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Charles L. Turnbough
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Carlos Salazar
- Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Shelley M. Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
- John Ring LaMontagne Center for Infectious Disease, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Navarro-Garcia F. Serine proteases autotransporter of Enterobacteriaceae: Structures, subdomains, motifs, functions, and targets. Mol Microbiol 2023; 120:178-193. [PMID: 37392318 DOI: 10.1111/mmi.15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Serine protease autotransporters of Enterobacteriaceae (SPATE) constitute a superfamily of virulence factors, resembling the trypsin-like superfamily of serine proteases. SPATEs accomplish multiple functions associated to disease development of their hosts, which could be the consequence of SPATE cleavage of host cell components. SPATEs have been divided into class-1 and class-2 based on structural differences and biological effects, including similar substrate specificity, cytotoxic effects on cultured cells, and enterotoxin activity on intestinal tissues for class-1 SPATEs, whereas most class-2 SPATEs exhibit a lectin-like activity with a predilection to degrade a variety of mucins, including leukocyte surface O-glycoproteins and soluble host proteins, resulting in mucosal colonization and immune modulation. In this review, the structure of class-1 and class-2 are analyzed, making emphasis on their putative functional subdomains as well as a description of their function is provided, including prototypical mechanism of action.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, Mexico
| |
Collapse
|
4
|
Kadhim BA, Alqaseer K, Al-Ganahi SA. Identification and characterization of a novel lytic peptidoglycan transglycosylase (MltC) in Shigella dysenteriae. Braz J Microbiol 2023:10.1007/s42770-023-00957-9. [PMID: 36973582 DOI: 10.1007/s42770-023-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Shigellosis remains a worldwide health problem due to the lack of vaccines and the emergence of antibiotic-resistant strains. Shigella (S.) dysenteriae has rigid peptidoglycan (PG), and its tight regulation of biosynthesis and remodeling is essential for bacterial integrity. Lytic transglycosylases are highly conserved PG autolysins in bacteria that play essential roles in bacterial growth. However, their precise functions are obscure. We aimed to identify, clone, and express MltC, a unique autolysin in Escherichia (E.) coli C41 strain. The purification of recombinant MltC protein was performed using affinity chromatography and size-exclusion chromatography methods. The PG enzymatic activity of MltC was investigated using Zymogram and Fluorescein isothiocyanate (FITC)-labeled PG assays. Also, we aimed to detect its localization in bacterial fractions (cytoplasm and membrane) by western blot using specific polyclonal anti-MltC antibodies and its probable partners using immunoprecipitation and mass spectrometry applications. Purified MltC showed autolysin activity. Native MltC showed various locations in S. dysenteriae cells during different growth phases. In the Lag and early stationary phases, MltC was not found in cytoplasm and membrane fractions. However, it was detected in cytoplasm and membrane fractions during the exponential phase. In the late stationary phase, MltC was expressed in the membrane fraction only. Different candidate protein partners of MltC were identified that could be essential for bacterial growth and pathogenicity. This is the first study to suggest that MltC is indeed autolysin and could be a new drug target for the treatment of shigellosis by understanding its biological functions.
Collapse
Affiliation(s)
- Baleegh A Kadhim
- Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq.
| | - Kawther Alqaseer
- Department of Basic Science, College of Nursing, University of Kufa, Kufa, Iraq
| | - Sura A Al-Ganahi
- Department of Biology, College of Science, University of Al-Qadisiyah, Al Diwaniyah, Iraq
| |
Collapse
|
5
|
Toward a Shigella Vaccine: Opportunities and Challenges to Fight an Antimicrobial-Resistant Pathogen. Int J Mol Sci 2023; 24:ijms24054649. [PMID: 36902092 PMCID: PMC10003550 DOI: 10.3390/ijms24054649] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.
Collapse
|
6
|
SurA-like and Skp-like Proteins as Important Virulence Determinants of the Gram Negative Bacterial Pathogens. Int J Mol Sci 2022; 24:ijms24010295. [PMID: 36613738 PMCID: PMC9820271 DOI: 10.3390/ijms24010295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
In the Gram-negative bacteria, many important virulence factors reach their destination via two-step export systems, and they must traverse the periplasmic space before reaching the outer membrane. Since these proteins must be maintained in a structure competent for transport into or across the membrane, they frequently require the assistance of chaperones. Based on the results obtained for the model bacterium Escherichia coli and related species, it is assumed that in the biogenesis of the outer membrane proteins and the periplasmic transit of secretory proteins, the SurA peptidyl-prolyl isomerase/chaperone plays a leading role, while the Skp chaperone is rather of secondary importance. However, detailed studies carried out on several other Gram-negative pathogens indicate that the importance of individual chaperones in the folding and transport processes depends on the properties of client proteins and is species-specific. Taking into account the importance of SurA functions in bacterial virulence and severity of phenotypes due to surA mutations, this folding factor is considered as a putative therapeutic target to combat microbial infections. In this review, we present recent findings regarding SurA and Skp proteins: their mechanisms of action, involvement in processes related to virulence, and perspectives to use them as therapeutic targets.
Collapse
|
7
|
Qin J, Hong Y, Morona R, Totsika M. Cysteine-Dependent Conformational Heterogeneity of Shigella flexneri Autotransporter IcsA and Implications of Its Function. Microbiol Spectr 2022; 10:e0341022. [PMID: 36374106 PMCID: PMC9769942 DOI: 10.1128/spectrum.03410-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Shigella IcsA is a versatile surface virulence factor required for early and late pathogenesis stages extracellularly and intracellularly. Despite IcsA serving as a model Type V secretion system (T5SS) autotransporter to study host-pathogen interactions, its detailed molecular architecture is poorly understood. Recently, IcsA was found to switch to a different conformation for its adhesin activity upon sensing the host stimuli by Shigella Type III secretion system (T3SS). Here, we reported that the single cysteine residue (C130) near the N terminus of the IcsA passenger had a role in IcsA adhesin activity. We also showed that the IcsA passenger (IcsAp) existed in multiple conformations, and the conformation populations were influenced by a central pair of cysteine residues (C375 and C379), which was not previously reported for any Type V autotransporter passengers. Disruption of either or both central cysteine residues altered the exposure of IcsA epitopes to polyclonal anti-IcsA antibodies previously shown to block Shigella adherence, yet without loss of IcsA intracellular functions in actin-based motility (ABM). Anti-IcsA antibody reactivity was restored when the IcsA-paired cysteine substitution mutants were expressed in an ΔipaD background with a constitutively active T3SS, highlighting an interplay between T3SS and T5SS. The work here uncovered a novel molecular switch empowered by a centrally localized, short-spaced cysteine pair in the Type V autotransporter IcsA that ensured conformational heterogeneity to aid IcsA evasion of host immunity. IMPORTANCE Shigella species are the leading cause of diarrheal-related death globally by causing bacillary dysentery. The surface virulence factor IcsA, which is essential for Shigella pathogenesis, is a unique multifunctional autotransporter that is responsible for cell adhesion, and actin-based motility, yet detailed mechanistic understanding is lacking. Here, we showed that the three cysteine residues in IcsA contributed to the protein's distinct functions. The N-terminal cysteine residue within the IcsA passenger domain played a role in adhesin function, while a centrally localized cysteine pair provided conformational heterogeneity that resulted in IcsA molecules with different reactivity to adhesion-blocking anti-IcsA antibodies. In synergy with the Type III secretion system, this molecular switch preserved biological function in distinct IcsA conformations for cell adhesion, actin-based motility, and autophagy escape, providing a potential strategy by which Shigella evades host immunity and targets this essential virulence factor.
Collapse
Affiliation(s)
- Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yaoqin Hong
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Renato Morona
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Papadopoulos A, Busch M, Reiners J, Hachani E, Baeumers M, Berger J, Schmitt L, Jaeger KE, Kovacic F, Smits SHJ, Kedrov A. The periplasmic chaperone Skp prevents misfolding of the secretory lipase A from Pseudomonas aeruginosa. Front Mol Biosci 2022; 9:1026724. [DOI: 10.3389/fmolb.2022.1026724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a wide-spread opportunistic human pathogen and a high-risk factor for immunodeficient people and patients with cystic fibrosis. The extracellular lipase A belongs to the virulence factors of P. aeruginosa. Prior to the secretion, the lipase undergoes folding and activation by the periplasmic foldase LipH. At this stage, the enzyme is highly prone to aggregation in mild and high salt concentrations typical for the sputum of cystic fibrosis patients. Here, we demonstrate that the periplasmic chaperone Skp of P. aeruginosa efficiently prevents misfolding of the lipase A in vitro. In vivo experiments in P. aeruginosa show that the lipase secretion is nearly abolished in absence of the endogenous Skp. Small-angle X-ray scattering elucidates the trimeric architecture of P. aeruginosa Skp and identifies two primary conformations of the chaperone, a compact and a widely open. We describe two binding modes of Skp to the lipase, with affinities of 20 nM and 2 μM, which correspond to 1:1 and 1:2 stoichiometry of the lipase:Skp complex. Two Skp trimers are required to stabilize the lipase via the apolar interactions, which are not affected by elevated salt concentrations. We propose that Skp is a crucial chaperone along the lipase maturation and secretion pathway that ensures stabilization and carry-over of the client to LipH.
Collapse
|
9
|
Abstract
Shigella flexneri is an intracellular human pathogen that invades colonic cells and causes bloody diarrhea. S. flexneri evolved from commensal Escherichia coli, and genome comparisons reveal that S. flexneri has lost approximately 20% of its genes through the process of pathoadaptation, including a disproportionate number of genes associated with the turnover of the nucleotide-based second messenger cyclic di-GMP (c-di-GMP); however, the remaining c-di-GMP turnover enzymes are highly conserved. c-di-GMP regulates many behavioral changes in other bacteria in response to changing environmental conditions, including biofilm formation, but this signaling system has not been examined in S. flexneri. In this study, we expressed VCA0956, a constitutively active c-di-GMP synthesizing diguanylate cyclase (DGC) from Vibrio cholerae, in S. flexneri to determine if virulence phenotypes were regulated by c-di-GMP. We found that expressing VCA0956 in S. flexneri increased c-di-GMP levels, and this corresponds with increased biofilm formation and reduced acid resistance, host cell invasion, and plaque size. We examined the impact of VCA0956 expression on the S. flexneri transcriptome and found that genes related to acid resistance were repressed, and this corresponded with decreased survival to acid shock. We also found that individual S. flexneri DGC mutants exhibit reduced biofilm formation and reduced host cell invasion and plaque size, as well as increased resistance to acid shock. This study highlights the importance of c-di-GMP signaling in regulating S. flexneri virulence phenotypes. IMPORTANCE The intracellular human pathogen Shigella causes dysentery, resulting in as many as one million deaths per year. Currently, there is no approved vaccine for the prevention of shigellosis, and the incidence of antimicrobial resistance among Shigella species is on the rise. Here, we explored how the widely conserved c-di-GMP bacterial signaling system alters Shigella behaviors associated with pathogenesis. We found that expressing or removing enzymes associated with c-di-GMP synthesis results in changes in Shigella's ability to form biofilms, invade host cells, form lesions in host cell monolayers, and resist acid stress.
Collapse
|
10
|
Harkness RW, Toyama Y, Ripstein ZA, Zhao H, Sever AIM, Luan Q, Brady JP, Clark PL, Schuck P, Kay LE. Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proc Natl Acad Sci U S A 2021. [PMID: 34362850 DOI: proc/self/fd/32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.
Collapse
Affiliation(s)
- Robert W Harkness
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Yuki Toyama
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Zev A Ripstein
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Huaying Zhao
- National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Alexander I M Sever
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Qing Luan
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Jacob P Brady
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Patricia L Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Peter Schuck
- National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD 20892
| | - Lewis E Kay
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; .,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
11
|
Competing stress-dependent oligomerization pathways regulate self-assembly of the periplasmic protease-chaperone DegP. Proc Natl Acad Sci U S A 2021; 118:2109732118. [PMID: 34362850 DOI: 10.1073/pnas.2109732118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DegP is an oligomeric protein with dual protease and chaperone activity that regulates protein homeostasis and virulence factor trafficking in the periplasm of gram-negative bacteria. A number of oligomeric architectures adopted by DegP are thought to facilitate its function. For example, DegP can form a "resting" hexamer when not engaged to substrates, mitigating undesired proteolysis of cellular proteins. When bound to substrate proteins or lipid membranes, DegP has been shown to populate a variety of cage- or bowl-like oligomeric states that have increased proteolytic activity. Though a number of DegP's substrate-engaged structures have been robustly characterized, detailed mechanistic information underpinning its remarkable oligomeric plasticity and the corresponding interplay between these dynamics and biological function has remained elusive. Here, we have used a combination of hydrodynamics and NMR spectroscopy methodologies in combination with cryogenic electron microscopy to shed light on the apo-DegP self-assembly mechanism. We find that, in the absence of bound substrates, DegP populates an ensemble of oligomeric states, mediated by self-assembly of trimers, that are distinct from those observed in the presence of substrate. The oligomeric distribution is sensitive to solution ionic strength and temperature and is shifted toward larger oligomeric assemblies under physiological conditions. Substrate proteins may guide DegP toward canonical cage-like structures by binding to these preorganized oligomers, leading to changes in conformation. The properties of DegP self-assembly identified here suggest that apo-DegP can rapidly shift its oligomeric distribution in order to respond to a variety of biological insults.
Collapse
|
12
|
Dautin N. Folding Control in the Path of Type 5 Secretion. Toxins (Basel) 2021; 13:341. [PMID: 34064645 PMCID: PMC8151025 DOI: 10.3390/toxins13050341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.
Collapse
Affiliation(s)
- Nathalie Dautin
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université de Paris, LBPC-PM, CNRS, UMR7099, 75005 Paris, France;
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild pour le Développement de la Recherche Scientifique, 75005 Paris, France
| |
Collapse
|
13
|
Bruchmann S, Feltwell T, Parkhill J, Short FL. Identifying virulence determinants of multidrug-resistant Klebsiella pneumoniae in Galleria mellonella. Pathog Dis 2021; 79:6123718. [PMID: 33512418 PMCID: PMC7981267 DOI: 10.1093/femspd/ftab009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for non-hypervirulent strains which cause the majority of infections. The insect Galleria mellonella larva is a widely used alternative model organism for bacterial pathogens. We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of G. mellonella, to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function. Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors specific to ST258, reflecting strain-dependent fitness effects. Our analysis also identified a role for the metalloregulatory protein NfeR (YqjI) in virulence. Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae, and provides a framework for using the highly flexible and easily scalable G. mellonella infection model to dissect molecular virulence mechanisms of bacterial pathogens.
Collapse
Affiliation(s)
- Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.,Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Theresa Feltwell
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesca L Short
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK.,Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| |
Collapse
|
14
|
Shome A, Sarkhel R, Apoorva S, Nair SS, Chauhan TKS, Bhure SK, Mahawar M. Role of protein repair enzymes in oxidative stress survival and virulence of Salmonella. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01597-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Abstract
Purpose
Proteins are the principal biomolecules in bacteria that are affected by the oxidants produced by the phagocytic cells. Most of the protein damage is irreparable though few unfolded proteins and covalently modified amino acids can be repaired by chaperones and repair enzymes respectively. This study reviews the three protein repair enzymes, protein l-isoaspartyl O-methyl transferase (PIMT), peptidyl proline cis-trans isomerase (PPIase), and methionine sulfoxide reductase (MSR).
Methods
Published articles regarding protein repair enzymes were collected from Google Scholar and PubMed. The information obtained from the research articles was analyzed and categorized into general information about the enzyme, mechanism of action, and role played by the enzymes in bacteria. Special emphasis was given to the importance of these enzymes in Salmonella Typhimurium.
Results
Protein repair is the direct and energetically preferred way of replenishing the cellular protein pool without translational synthesis. Under the oxidative stress mounted by the host during the infection, protein repair becomes very crucial for the survival of the bacterial pathogens. Only a few covalent modifications of amino acids are reversible by the protein repair enzymes, and they are highly specific in activity. Deletion mutants of these enzymes in different bacteria revealed their importance in the virulence and oxidative stress survival.
Conclusion
PIMT repairs isoaspartate residues, PPiase catalyzes the conversion of cis-trans forms of proline residues, while MSR repairs oxidized methionine (Met) residues in the proteins. These repair enzymes maintain the activities of the target protein(s), thus aid in bacterial survival and virulence. The interventions which can interfere with this mechanism could be used for the development of novel therapeutics.
Collapse
|
15
|
Scheuplein NJ, Bzdyl NM, Kibble EA, Lohr T, Holzgrabe U, Sarkar-Tyson M. Targeting Protein Folding: A Novel Approach for the Treatment of Pathogenic Bacteria. J Med Chem 2020; 63:13355-13388. [PMID: 32786507 DOI: 10.1021/acs.jmedchem.0c00911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Infectious diseases are a major cause of morbidity and mortality worldwide, exacerbated by increasing antibiotic resistance in many bacterial species. The development of drugs with new modes of action is essential. A leading strategy is antivirulence, with the aim to target bacterial proteins that are important in disease causation and progression but do not affect growth, resulting in reduced selective pressure for resistance. Immunophilins, a superfamily of peptidyl-prolyl cis-trans isomerase (PPIase) enzymes have been shown to be important for virulence in a broad-spectrum of pathogenic bacteria. This Perspective will provide an overview of the recent advances made in understanding the role of each immunophilin family, cyclophilins, FK506 binding proteins (FKBPs), and parvulins in bacteria. Inhibitor design and medicinal chemistry strategies for development of novel drugs against bacterial FKBPs will be discussed. Furthermore, drugs against human cyclophilins and parvulins will be reviewed in their current indication as antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia.,School of Veterinary and Life Sciences, Murdoch University, 6150 Murdoch, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, 6009 Perth, Australia
| |
Collapse
|
16
|
Mrnjavac N, Vazdar M, Bertoša B. Molecular dynamics study of functionally relevant interdomain and active site interactions in the autotransporter esterase EstA from Pseudomonas aeruginosa. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1770750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Natalia Mrnjavac
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
17
|
A novel FRET peptide assay reveals efficient Helicobacter pylori HtrA inhibition through zinc and copper binding. Sci Rep 2020; 10:10563. [PMID: 32601479 PMCID: PMC7324608 DOI: 10.1038/s41598-020-67578-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) secretes the chaperone and serine protease high temperature requirement A (HtrA) that cleaves gastric epithelial cell surface proteins to disrupt the epithelial integrity and barrier function. First inhibitory lead structures have demonstrated the essential role of HtrA in H. pylori physiology and pathogenesis. Comprehensive drug discovery techniques allowing high-throughput screening are now required to develop effective compounds. Here, we designed a novel fluorescence resonance energy transfer (FRET) peptide derived from a gel-based label-free proteomic approach (direct in-gel profiling of protease specificity) as a valuable substrate for H. pylori HtrA. Since serine proteases are often sensitive to metal ions, we investigated the influence of different divalent ions on the activity of HtrA. We identified Zn++ and Cu++ ions as inhibitors of H. pylori HtrA activity, as monitored by in vitro cleavage experiments using casein or E-cadherin as substrates and in the FRET peptide assay. Putative binding sites for Zn++ and Cu++ were then analyzed in thermal shift and microscale thermophoresis assays. The findings of this study will contribute to the development of novel metal ion-dependent protease inhibitors, which might help to fight bacterial infections.
Collapse
|
18
|
Gangadharappa BS, Rajashekarappa S, Sathe G. Proteomic profiling of Serratia marcescens by high-resolution mass spectrometry. ACTA ACUST UNITED AC 2020; 10:123-135. [PMID: 32363156 PMCID: PMC7186543 DOI: 10.34172/bi.2020.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/07/2019] [Accepted: 09/03/2019] [Indexed: 11/09/2022]
Abstract
Introduction: Serratia marcescens, an opportunistic human pathogen, is reported as an important cause of nosocomial infection and outbreaks. Although the genome of S. marcescens (ATCC 13880) was completely sequenced by 2014, there are no studies on the proteomic profile of the organism. The objective of the present study is to analyze the protein profile of S. marcescens (ATCC 13880) using a high resolution mass spectrometry (MS). Methods: Serratia marcescens ATCC 13880 strain was grown in Luria-Bertani broth and the protein extracted was subjected to trypsin digestion, followed by basic reverse phase liquid chromatography fractionation. The peptide fractions were then analysed using Orbitrap Fusion Mass Spectrometry and the raw MS data were processed in Proteome Discoverer software. Results: The proteomic analysis identified 15 009 unique peptides mapping to 2541 unique protein groups, which corresponds to approximately 54% of the computationally predicted protein-coding genes. Bioinformatic analysis of these identified proteins showed their involvement in biological processes such as cell wall organization, chaperone-mediated protein folding and ATP binding. Pathway analysis revealed that some of these proteins are associated with bacterial chemotaxis and beta-lactam resistance pathway. Conclusion: To the best of our knowledge, this is the first high-throughput proteomics study of S. marcescens (ATCC 13880). These novel observations provide a crucial baseline molecular profile of the S. marcescens proteome which will prove to be helpful for the future research in understanding the host-pathogen interactions during infection, elucidating the mechanism of multidrug resistance, and developing novel diagnostic markers or vaccine for the disease.
Collapse
Affiliation(s)
- Bhavya Somalapura Gangadharappa
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru-560054, Karnataka, India.,Visvesvaraya Technological University, Belagavi-590018, Karnataka, India
| | | | - Gajanan Sathe
- Institute of Bioinformatics, International Technology Park, Bangalore-560066, Karnataka, India.,Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore-560029, Karnataka, India
| |
Collapse
|
19
|
Differential gene expression profile of Shigella dysenteriae causing bacteremia in an immunocompromised individual. Future Sci OA 2020; 6:FSO456. [PMID: 32257369 PMCID: PMC7117556 DOI: 10.2144/fsoa-2019-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIM Shigella species has varying levels of virulence gene expression with respect to different sites of infection. In this study, the differential gene expression of S. dysenteriae in response to its site of infection was analyzed by transcriptomics. METHODS This study includes four clinical Shigella isolates. Transcriptomics was done for the stool and blood samples of a single patient. Isolates were screened for the presence of antimicrobial resistance genes. RESULTS The majority of genes involved in invasion were highly expressed in the strain isolated from the primary site of infection. Additionally, antimicrobial resistance (dhfr1A, sulII, bla OXA. bla CTX-M-1 and qnrS) genes were identified. CONCLUSION This study provides a concise view of the transcriptional expression of clinical strains and provides a basis for future functional studies on Shigella spp.
Collapse
|
20
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
21
|
Pokharel P, Habouria H, Bessaiah H, Dozois CM. Serine Protease Autotransporters of the Enterobacteriaceae (SPATEs): Out and About and Chopping It Up. Microorganisms 2019; 7:E594. [PMID: 31766493 PMCID: PMC6956023 DOI: 10.3390/microorganisms7120594] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Autotransporters are secreted proteins with multiple functions produced by a variety of Gram-negative bacteria. In Enterobacteriaceae, a subgroup of these autotransporters are the SPATEs (serine protease autotransporters of Enterobacteriaceae). SPATEs play a crucial role in survival and virulence of pathogens such as Escherichia coli and Shigella spp. and contribute to intestinal and extra-intestinal infections. These high molecular weight proteases are transported to the external milieu by the type Va secretion system and function as proteases with diverse substrate specificities and biological functions including adherence and cytotoxicity. Herein, we provide an overview of SPATEs and discuss recent findings on the biological roles of these secreted proteins, including proteolysis of substrates, adherence to cells, modulation of the immune response, and virulence in host models. In closing, we highlight recent insights into the regulation of expression of SPATEs that could be exploited to understand fundamental SPATE biology.
Collapse
Affiliation(s)
- Pravil Pokharel
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hajer Habouria
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (P.P.); (H.H.); (H.B.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Institut Pasteur International Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
22
|
Leibiger K, Schweers JM, Schütz M. Biogenesis and function of the autotransporter adhesins YadA, intimin and invasin. Int J Med Microbiol 2019; 309:331-337. [PMID: 31176600 DOI: 10.1016/j.ijmm.2019.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Bacteria often express numerous virulence factors. These virulence factors make them successful pathogens, by e.g. mediating attachment to host cells and thereby facilitating persistence or invasion, or by contributing to the evasion of the host immune system to allow proliferation and spread within the host and in the environment. The site of first contact of Gram negative bacteria with the host is the bacterial outer membrane (OM). Consisting of an asymmetrical lipid bilayer with phospholipids forming the inner, and lipopolysaccharides forming the outer leaflet, the OM harbors numerous integral membrane proteins that are almost exclusively β-barrel proteins. One distinct family of OM β-barrel proteins strongly linked to bacterial virulence are the autotransporter (AT) proteins. During the last years huge progress has been made to better understand the mechanisms underlying the insertion of AT proteins into the OM and also AT function for interaction with the host. This review shortly summarizes our current knowledge about outer membrane protein (OMP) and more specifically AT biogenesis and function. We focused on the AT proteins that we haved studied in most detail: i.e. the Yersinia adhesin A (YadA) and invasin of Yersinia enterocolitica (Ye) as well as its homolog intimin (Int) expressed by enteropathogenic Escherichia coli. In addition, this review provides a short outlook about how we could possibly use this knowledge to fight infection.
Collapse
Affiliation(s)
- Karolin Leibiger
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Jonas Malte Schweers
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany
| | - Monika Schütz
- Institut für Medizinische Mikrobiologie und Hygiene, Elfriede-Aulhorn-Str. 6, 72076, Tübingen, Germany.
| |
Collapse
|
23
|
|
24
|
Krokowski S, Atwal S, Lobato-Márquez D, Chastanet A, Carballido-López R, Salje J, Mostowy S. Shigella MreB promotes polar IcsA positioning for actin tail formation. J Cell Sci 2019; 132:jcs.226217. [PMID: 30992346 PMCID: PMC6526709 DOI: 10.1242/jcs.226217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 04/01/2019] [Indexed: 01/17/2023] Open
Abstract
Pathogenic Shigella bacteria are a paradigm to address key issues of cell and infection biology. Polar localisation of the Shigella autotransporter protein IcsA is essential for actin tail formation, which is necessary for the bacterium to travel from cell-to-cell; yet how proteins are targeted to the bacterial cell pole is poorly understood. The bacterial actin homologue MreB has been extensively studied in broth culture using model organisms including Escherichia coli, Bacillus subtilis and Caulobacter crescentus, but has never been visualised in rod-shaped pathogenic bacteria during infection of host cells. Here, using single-cell analysis of intracellular Shigella, we discover that MreB accumulates at the cell pole of bacteria forming actin tails, where it colocalises with IcsA. Pharmacological inhibition of host cell actin polymerisation and genetic deletion of IcsA is used to show, respectively, that localisation of MreB to the cell poles precedes actin tail formation and polar localisation of IcsA. Finally, by exploiting the MreB inhibitors A22 and MP265, we demonstrate that MreB polymerisation can support actin tail formation. We conclude that Shigella MreB promotes polar IcsA positioning for actin tail formation, and suggest that understanding the bacterial cytoskeleton during host–pathogen interactions can inspire development of new therapeutic regimes for infection control. This article has an associated First Person interview with the first author of the paper. Summary: The pathogen Shigella forms actin tails to move through the cytosol of infected cells. We show that the bacterial actin homologue MreB can help to position the autotransporter protein IcsA for such actin tail formation.
Collapse
Affiliation(s)
- Sina Krokowski
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sharanjeet Atwal
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 PHRI 07103, Thailand.,Public Health Research Institute, Rutgers Biomedical and Health Science, Newark, New Jersey NJ 07103, USA
| | - Damián Lobato-Márquez
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK.,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Arnaud Chastanet
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rut Carballido-López
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Jeanne Salje
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7JT, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400 PHRI 07103, Thailand.,Public Health Research Institute, Rutgers Biomedical and Health Science, Newark, New Jersey NJ 07103, USA
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, Armstrong Road, London SW7 2AZ, UK .,Department of Immunology & Infection, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
25
|
Abstract
Type V, or "autotransporter," secretion is a term used to refer to several simple protein export pathways that are found in a wide range of Gram-negative bacteria. Autotransporters are generally single polypeptides that consist of an extracellular ("passenger") domain and a β barrel domain that anchors the protein to the outer membrane (OM). Although it was originally proposed that the passenger domain is secreted through a channel formed solely by the covalently linked β barrel domain, experiments performed primarily on the type Va, or "classical," autotransporter pathway have challenged this hypothesis. Several lines of evidence strongly suggest that both the secretion of the passenger domain and the membrane integration of the β barrel domain are catalyzed by the barrel assembly machinery (Bam) complex, a conserved hetero-oligomer that plays an essential role in the assembly of most integral OM proteins. The secretion reaction appears to be driven at least in part by the folding of the passenger domain in the extracellular space. Although many aspects of autotransporter biogenesis remain to be elucidated, it will be especially interesting to determine whether the different classes of proteins that fall under the type V rubric-most of which have not been examined in detail-are assembled by the same basic mechanism as classical autotransporters.
Collapse
|
26
|
Backert S, Bernegger S, Skórko-Glonek J, Wessler S. Extracellular HtrA serine proteases: An emerging new strategy in bacterial pathogenesis. Cell Microbiol 2018; 20:e12845. [PMID: 29582532 DOI: 10.1111/cmi.12845] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The HtrA family of chaperones and serine proteases is important for regulating stress responses and controlling protein quality in the periplasm of bacteria. HtrA is also associated with infectious diseases since inactivation of htrA genes results in significantly reduced virulence properties by various bacterial pathogens. These virulence features of HtrA can be attributed to reduced fitness of the bacteria, higher susceptibility to environmental stress and/or diminished secretion of virulence factors. In some Gram-negative and Gram-positive pathogens, HtrA itself can be exposed to the extracellular environment promoting bacterial colonisation and invasion of host tissues. Most of our knowledge on the function of exported HtrAs stems from research on Helicobacter pylori, Campylobacter jejuni, Borrelia burgdorferi, Bacillus anthracis, and Chlamydia species. Here, we discuss recent progress showing that extracellular HtrAs are able to cleave cell-to-cell junction factors including E-cadherin, occludin, and claudin-8, as well as extracellular matrix proteins such as fibronectin, aggrecan, and proteoglycans, disrupting the epithelial barrier and producing substantial host cell damage. We propose that the export of HtrAs is a newly discovered strategy, also applied by additional bacterial pathogens. Consequently, exported HtrA proteases represent highly attractive targets for antibacterial treatment by inhibiting their proteolytic activity or application in vaccine development.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sabine Bernegger
- Department of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Joanna Skórko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
27
|
Albenne C, Ieva R. Job contenders: roles of the β-barrel assembly machinery and the translocation and assembly module in autotransporter secretion. Mol Microbiol 2017; 106:505-517. [PMID: 28887826 DOI: 10.1111/mmi.13832] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 01/17/2023]
Abstract
In Gram-negative bacteria, autotransporters secrete effector protein domains that are linked to virulence. Although they were once thought to be simple and autonomous secretion machines, mounting evidence reveals that multiple factors of the bacterial envelope are necessary for autotransporter assembly. Secretion across the outer membrane of their soluble effector "passenger domain" is promoted by the assembly of an outer membrane-spanning "β-barrel domain". Both reactions require BamA, an essential component of the β-barrel assembly machinery (BAM complex) that catalyzes the final reaction step by which outer membrane proteins are integrated into the lipid bilayer. A large amount of data generated in the last decade has shed key insights onto the mechanistic coordination of autotransporter β-barrel domain assembly and passenger domain secretion. These results, together with the recently solved structures of the BAM complex, offer an unprecedented opportunity to discuss a detailed model of autotransporter assembly. Importantly, some autotransporters benefit from the presence of an additional machinery, the translocation and assembly module (TAM), a two-membrane spanning complex, which contains a BamA-homologous subunit. Although it remains unclear how the BAM complex and the TAM cooperate, it is evident that multiple preparatory steps are necessary for efficient autotransporter biogenesis.
Collapse
Affiliation(s)
- Cécile Albenne
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Raffaele Ieva
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
28
|
Abstract
Cardiolipin, an anionic phospholipid that resides at the poles of the inner and outer membranes, is synthesized primarily by the putative cardiolipin synthase ClsA in Shigella flexneri. An S. flexneri clsA mutant had no cardiolipin detected within its membrane, grew normally in vitro, and invaded cultured epithelial cells, but it failed to form plaques in epithelial cell monolayers, indicating that cardiolipin is required for virulence. The clsA mutant was initially motile within the host cell cytoplasm but formed filaments and lost motility during replication and failed to spread efficiently to neighboring cells. Mutation of pbgA, which encodes the transporter for cardiolipin from the inner membrane to the outer membrane, also resulted in loss of plaque formation. The S. flexneri pbgA mutant had normal levels of cardiolipin in the inner membrane, but no cardiolipin was detected in the outer membrane. The pbgA mutant invaded and replicated normally within cultured epithelial cells but failed to localize the actin polymerization protein IcsA properly on the bacterial surface and was unable to spread to neighboring cells. The clsA mutant, but not the pbgA mutant, had increased phosphatidylglycerol in the outer membrane. This appeared to compensate partially for the loss of cardiolipin in the outer membrane, allowing some IcsA localization in the outer membrane of the clsA mutant. We propose a dual function for cardiolipin in S. flexneri pathogenesis. In the inner membrane, cardiolipin is essential for proper cell division during intracellular growth. In the outer membrane, cardiolipin facilitates proper presentation of IcsA on the bacterial surface. The human pathogen Shigella flexneri causes bacterial dysentery by invading colonic epithelial cells, rapidly multiplying within their cytoplasm, and then spreading intercellularly to neighboring cells. Worldwide, Shigella spp. infect hundreds of millions of people annually, with fatality rates up to 15%. Antibiotic treatment of Shigella infections is compromised by increasing antibiotic resistance, and there is no approved vaccine to prevent future infections. This has created a growing need to understand Shigella pathogenesis and identify new targets for antimicrobial therapeutics. Here we show a previously unknown role of phospholipids in S. flexneri pathogenesis. We demonstrate that cardiolipin is required in the outer membrane for proper surface localization of IcsA and in the inner membrane for cell division during growth in the host cell cytoplasm.
Collapse
|
29
|
Abstract
Mosquitoes host communities of microbes in their digestive tract that consist primarily of bacteria. We previously reported that several mosquito species, including Aedes aegypti, do not develop beyond the first instar when fed a nutritionally complete diet in the absence of a gut microbiota. In contrast, several species of bacteria, including Escherichia coli, rescue development of axenic larvae into adults. The molecular mechanisms underlying bacteria-dependent growth are unknown. Here, we designed a genetic screen around E. coli that identified high-affinity cytochrome bd oxidase as an essential bacterial gene product for mosquito growth. Bioassays showed that bacteria in nonsterile larvae and gnotobiotic larvae inoculated with wild-type E. coli reduced midgut oxygen levels below 5%, whereas larvae inoculated with E. coli mutants defective for cytochrome bd oxidase did not. Experiments further supported that hypoxia leads to growth and ecdysone-induced molting. Altogether, our results identify aerobic respiration by bacteria as a previously unknown but essential process for mosquito development.
Collapse
|
30
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
31
|
Marsh JW, Ong VA, Lott WB, Timms P, Tyndall JDA, Huston WM. CtHtrA: the lynchpin of the chlamydial surface and a promising therapeutic target. Future Microbiol 2017; 12:817-829. [PMID: 28593794 DOI: 10.2217/fmb-2017-0017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chlamydia trachomatis is the most prevalent sexually transmitted bacterial infection worldwide and the leading cause of preventable blindness. Reports have emerged of treatment failure, suggesting a need to develop new antibiotics to battle Chlamydia infection. One possible candidate for a new treatment is the protease inhibitor JO146, which is an effective anti-Chlamydia agent that targets the CtHtrA protein. CtHtrA is a lynchpin on the chlamydial cell surface due to its essential and multifunctional roles in the bacteria's stress response, replicative phase of development, virulence and outer-membrane protein assembly. This review summarizes the current understanding of CtHtrA function and presents a mechanistic model that highlights CtHtrA as an effective target for anti-Chlamydia drug development.
Collapse
Affiliation(s)
- James W Marsh
- The ithree institute, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| | - Vanissa A Ong
- Institute of Health & Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, 4059, QLD, Australia
| | - William B Lott
- Institute of Health & Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Brisbane, 4059, QLD, Australia
| | - Peter Timms
- Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, Sippy Downs, 4558, QLD, Australia
| | - Joel DA Tyndall
- National School of Pharmacy, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, 2007, NSW, Australia
| |
Collapse
|
32
|
Cao P, Guo D, Liu J, Jiang Q, Xu Z, Qu L. Genome-Wide Analyses Reveal Genes Subject to Positive Selection in Pasteurella multocida. Front Microbiol 2017; 8:961. [PMID: 28611758 PMCID: PMC5447721 DOI: 10.3389/fmicb.2017.00961] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023] Open
Abstract
Pasteurella multocida, a Gram-negative opportunistic pathogen, has led to a broad range of diseases in mammals and birds, including fowl cholera in poultry, pneumonia and atrophic rhinitis in swine and rabbit, hemorrhagic septicemia in cattle, and bite infections in humans. In order to better interpret the genetic diversity and adaptation evolution of this pathogen, seven genomes of P. multocida strains isolated from fowls, rabbit and pigs were determined by using high-throughput sequencing approach. Together with publicly available P. multocida genomes, evolutionary features were systematically analyzed in this study. Clustering of 70,565 protein-coding genes showed that the pangenome of 33 P. multocida strains was composed of 1,602 core genes, 1,364 dispensable genes, and 1,070 strain-specific genes. Of these, we identified a full spectrum of genes related to virulence factors and revealed genetic diversity of these potential virulence markers across P. multocida strains, e.g., bcbAB, fcbC, lipA, bexDCA, ctrCD, lgtA, lgtC, lic2A involved in biogenesis of surface polysaccharides, hsf encoding autotransporter adhesin, and fhaB encoding filamentous haemagglutinin. Furthermore, based on genome-wide positive selection scanning, a total of 35 genes were subject to strong selection pressure. Extensive analyses of protein subcellular location indicated that membrane-associated genes were highly abundant among all positively selected genes. The detected amino acid sites undergoing adaptive selection were preferably located in extracellular space, perhaps associated with bacterial evasion of host immune responses. Our findings shed more light on conservation and distribution of virulence-associated genes across P. multocida strains. Meanwhile, this study provides a genetic context for future researches on the mechanism of adaptive evolution in P. multocida.
Collapse
Affiliation(s)
- Peili Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Dongchun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Jiasen Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Qian Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China
| | - Liandong Qu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural SciencesHarbin, China
| |
Collapse
|
33
|
Weirich J, Bräutigam C, Mühlenkamp M, Franz-Wachtel M, Macek B, Meuskens I, Skurnik M, Leskinen K, Bohn E, Autenrieth I, Schütz M. Identifying components required for OMP biogenesis as novel targets for antiinfective drugs. Virulence 2017; 8:1170-1188. [PMID: 28118090 PMCID: PMC5711350 DOI: 10.1080/21505594.2016.1278333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.
Collapse
Affiliation(s)
- Johanna Weirich
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Cornelia Bräutigam
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Melanie Mühlenkamp
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | | | - Boris Macek
- b Proteome Center Tübingen, Universität Tübingen , Tübingen , Germany
| | - Ina Meuskens
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Mikael Skurnik
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Katarzyna Leskinen
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Erwin Bohn
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Ingo Autenrieth
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Monika Schütz
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| |
Collapse
|
34
|
Abstract
Type V secretion denotes a variety of secretion systems that cross the outer membrane in Gram-negative bacteria but that depend on the Sec machinery for transport through the inner membrane. They are possibly the simplest bacterial secretion systems, because they consist only of a single polypeptide chain (or two chains in the case of two-partner secretion). Their seemingly autonomous transport through the outer membrane has led to the term "autotransporters" for various subclasses of type V secretion. In this chapter, we review the structure and function of these transporters and review recent findings on additional factors involved in the secretion process, which have put the term "autotransporter" to debate.
Collapse
|
35
|
Abfalter CM, Schubert M, Götz C, Schmidt TP, Posselt G, Wessler S. HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens. Cell Commun Signal 2016; 14:30. [PMID: 27931258 PMCID: PMC5146865 DOI: 10.1186/s12964-016-0153-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/01/2016] [Indexed: 02/08/2023] Open
Abstract
Background The serine proteases HtrA/DegP secreted by the human gastrointestinal pathogens Helicobacter pylori (H. pylori) and Campylobacter jejuni (C. jejuni) cleave the mammalian cell adhesion protein E-cadherin to open intercellular adhesions. A wide range of bacteria also expresses the HtrA/DegP homologs DegQ and/or DegS, which significantly differ in structure and function. Methods E-cadherin shedding was investigated in infection experiments with the Gram-negative pathogens H. pylori, enteropathogenic Escherichia coli (EPEC), Salmonella enterica subsp. Enterica (S. Typhimurium), Yersinia enterocolitica (Y. enterocolitica), and Proteus mirabilis (P. mirabilis), which express different combinations of HtrAs. Annotated wild-type htrA/degP, degQ and degS genes were cloned and proteolytically inactive mutants were generated by a serine—to—alanine exchange in the active center. All HtrA variants were overexpressed and purified to compare their proteolytic activities in casein zymography and in vitro E-cadherin cleavage experiments. Results Infection of epithelial cells resulted in a strong E-cadherin ectodomain shedding as reflected by the loss of full length E-cadherin in whole cell lysates and formation of the soluble 90 kDa extracellular domain of E-cadherin (NTF) in the supernatants of infected cells. Importantly, comparing the caseinolytic and E-cadherin cleavage activities of HtrA/DegP, DegQ and DegS proteins revealed that DegP and DegQ homologs from H. pylori, S. Typhimurium, Y. enterocolitica, EPEC and P. mirabilis, but not activated DegS, cleaved E-cadherin as a substrate in vitro. Conclusions These data indicate that E-cadherin cleavage is confined to HtrA/DegP and DegQ proteins representing an important prevalent step in bacterial pathogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0153-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carmen M Abfalter
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Maria Schubert
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Camilla Götz
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Thomas P Schmidt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gernot Posselt
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Silja Wessler
- Division of Microbiology, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria.
| |
Collapse
|
36
|
Braselmann E, Chaney JL, Champion MM, Clark PL. DegP Chaperone Suppresses Toxic Inner Membrane Translocation Intermediates. PLoS One 2016; 11:e0162922. [PMID: 27626276 PMCID: PMC5023192 DOI: 10.1371/journal.pone.0162922] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/30/2016] [Indexed: 11/18/2022] Open
Abstract
The periplasm of Gram-negative bacteria includes a variety of molecular chaperones that shepherd the folding and targeting of secreted proteins. A central player of this quality control network is DegP, a protease also suggested to have a chaperone function. We serendipitously discovered that production of the Bordetella pertussis autotransporter virulence protein pertactin is lethal in Escherichia coli ΔdegP strains. We investigated specific contributions of DegP to secretion of pertactin as a model system to test the functions of DegP in vivo. The DegP chaperone activity was sufficient to restore growth during pertactin production. This chaperone dependency could be relieved by changing the pertactin signal sequence: an E. coli signal sequence leading to co-translational inner membrane (IM) translocation was sufficient to suppress lethality in the absence of DegP, whereas an E. coli post-translational signal sequence was sufficient to recapitulate the lethal phenotype. These results identify a novel connection between the DegP chaperone and the mechanism used to translocate a protein across the IM. Lethality coincided with loss of periplasmic proteins, soluble σE, and proteins regulated by this essential stress response. These results suggest post-translational IM translocation can lead to the formation of toxic periplasmic folding intermediates, which DegP can suppress.
Collapse
Affiliation(s)
- Esther Braselmann
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Julie L. Chaney
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Matthew M. Champion
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Patricia L. Clark
- Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
37
|
Rollauer SE, Sooreshjani MA, Noinaj N, Buchanan SK. Outer membrane protein biogenesis in Gram-negative bacteria. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0023. [PMID: 26370935 DOI: 10.1098/rstb.2015.0023] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Gram-negative bacteria contain a double membrane which serves for both protection and for providing nutrients for viability. The outermost of these membranes is called the outer membrane (OM), and it contains a host of fully integrated membrane proteins which serve essential functions for the cell, including nutrient uptake, cell adhesion, cell signalling and waste export. For pathogenic strains, many of these outer membrane proteins (OMPs) also serve as virulence factors for nutrient scavenging and evasion of host defence mechanisms. OMPs are unique membrane proteins in that they have a β-barrel fold and can range in size from 8 to 26 strands, yet can still serve many different functions for the cell. Despite their essential roles in cell survival and virulence, the exact mechanism for the biogenesis of these OMPs into the OM has remained largely unknown. However, the past decade has witnessed significant progress towards unravelling the pathways and mechanisms necessary for moulding a nascent polypeptide into a functional OMP within the OM. Here, we will review some of these recent discoveries that have advanced our understanding of the biogenesis of OMPs in Gram-negative bacteria, starting with synthesis in the cytoplasm to folding and insertion into the OM.
Collapse
Affiliation(s)
- Sarah E Rollauer
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moloud A Sooreshjani
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Susan K Buchanan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Ishikawa M, Yoshimoto S, Hayashi A, Kanie J, Hori K. Discovery of a novel periplasmic protein that forms a complex with a trimeric autotransporter adhesin and peptidoglycan. Mol Microbiol 2016; 101:394-410. [PMID: 27074146 DOI: 10.1111/mmi.13398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/06/2016] [Indexed: 12/01/2022]
Abstract
Trimeric autotransporter adhesins (TAAs), fibrous proteins on the cell surface of Gram-negative bacteria, have attracted attention as virulence factors. However, little is known about the mechanism of their biogenesis. AtaA, a TAA of Acinetobacter sp. Tol 5, confers nonspecific, high adhesiveness to bacterial cells. We identified a new gene, tpgA, which forms a single operon with ataA and encodes a protein comprising two conserved protein domains identified by Pfam: an N-terminal SmpA/OmlA domain and a C-terminal OmpA_C-like domain with a peptidoglycan (PGN)-binding motif. Cell fractionation and a pull-down assay showed that TpgA forms a complex with AtaA, anchoring it to the outer membrane (OM). Isolation of total PGN-associated proteins showed TpgA binding to PGN. Disruption of tpgA significantly decreased the adhesiveness of Tol 5 because of a decrease in surface-displayed AtaA, suggesting TpgA involvement in AtaA secretion. This is reminiscent of SadB, which functions as a specific chaperone for SadA, a TAA in Salmonella species; however, SadB anchors to the inner membrane, whereas TpgA anchors to the OM through AtaA. The genetic organization encoding the TAA-TpgA-like protein cassette can be found in diverse Gram-negative bacteria, suggesting a common contribution of TpgA homologues to TAA biogenesis.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Shogo Yoshimoto
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Ayumi Hayashi
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Junichi Kanie
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
39
|
Agaisse H. Molecular and Cellular Mechanisms of Shigella flexneri Dissemination. Front Cell Infect Microbiol 2016; 6:29. [PMID: 27014639 PMCID: PMC4786538 DOI: 10.3389/fcimb.2016.00029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/26/2016] [Indexed: 11/13/2022] Open
Abstract
The intracellular pathogen Shigella flexneri is the causative agent of bacillary dysentery in humans. The disease is characterized by bacterial invasion of intestinal cells, dissemination within the colonic epithelium through direct spread from cell to cell, and massive inflammation of the intestinal mucosa. Here, we review the mechanisms supporting S. flexneri dissemination. The dissemination process primarily relies on actin assembly at the bacterial pole, which propels the pathogen throughout the cytosol of primary infected cells. Polar actin assembly is supported by polar expression of the bacterial autotransporter family member IcsA, which recruits the N-WASP/ARP2/3 actin assembly machinery. As motile bacteria encounter cell-cell contacts, they form plasma membrane protrusions that project into adjacent cells. In addition to the ARP2/3-dependent actin assembly machinery, protrusion formation relies on formins and myosins. The resolution of protrusions into vacuoles occurs through the collapse of the protrusion neck, leading to the formation of an intermediate membrane-bound compartment termed vacuole-like protrusions (VLPs). VLP formation requires tyrosine kinase and phosphoinositide signaling in protrusions, which relies on the integrity of the bacterial type 3 secretion system (T3SS). The T3SS is also required for escaping double membrane vacuoles through the activity of the T3SS translocases IpaB and IpaC, and the effector proteins VirA and IcsB. Numerous factors supporting envelope biogenesis contribute to IcsA exposure and maintenance at the bacterial pole, including LPS synthesis, membrane proteases, and periplasmic chaperones. Although less characterized, the assembly and function of the T3SS in the context of bacterial dissemination also relies on factors supporting envelope biogenesis. Finally, the dissemination process requires the adaptation of the pathogen to various cellular compartments through transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Hervé Agaisse
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine Charlottesville, VA, USA
| |
Collapse
|
40
|
Survival protein A is essential for virulence in Yersinia pestis. Microb Pathog 2016; 92:50-53. [DOI: 10.1016/j.micpath.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 01/13/2023]
|
41
|
Humbert MV, Almonacid Mendoza HL, Jackson AC, Hung MC, Bielecka MK, Heckels JE, Christodoulides M. Vaccine potential of bacterial macrophage infectivity potentiator (MIP)-like peptidyl prolyl cis/trans isomerase (PPIase) proteins. Expert Rev Vaccines 2015; 14:1633-49. [PMID: 26468663 DOI: 10.1586/14760584.2015.1095638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Peptidyl prolyl cis/trans isomerases (PPIases) are a superfamily of proteins ubiquitously distributed among living organisms, which function primarily to assist the folding and structuring of unfolded and partially folded polypeptide chains and proteins. In this review, we focus specifically on the Macrophage Infectivity Potentiator (MIP)-like PPIases, which are members of the immunophilin family of FK506-binding proteins (FKBP). MIP-like PPIases have accessory roles in virulence and are candidates for inclusion in vaccines protective against both animal and human bacterial pathogens. A structural vaccinology approach obviates any issues over molecular mimicry and potential cross-reactivity with human FKBP proteins and studies with a representative antigen, the Neisseria meningitidis-MIP, support this strategy. Moreover, a dual approach of vaccination and drug targeting could be considered for controlling bacterial infectious diseases of humans and animals.
Collapse
Affiliation(s)
- María Victoria Humbert
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Hannia L Almonacid Mendoza
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Alexandra C Jackson
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Miao-Chiu Hung
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Magdalena K Bielecka
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - John E Heckels
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| | - Myron Christodoulides
- a Neisseria Research, Molecular Microbiology, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories , University of Southampton Faculty of Medicine , Southampton , UK
| |
Collapse
|
42
|
Bernstein HD. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol Microbiol 2015; 97:205-15. [PMID: 25881492 DOI: 10.1111/mmi.13031] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2015] [Indexed: 12/14/2022]
Abstract
Autotransporters are a large superfamily of cell surface proteins produced by Gram-negative bacteria that consist of an N-terminal extracellular domain ('passenger domain') and a C-terminal β-barrel domain that resides in the outer membrane (OM). Although it was originally proposed that the passenger domain is translocated across the OM through a channel formed exclusively by the covalently linked β-barrel domain, this idea has been strongly challenged by a variety of observations. Recent experimental results have suggested a new model in which both the translocation of the passenger domain and the membrane integration of the β-barrel domain are facilitated by the Bam complex, a highly conserved heteroligomer that plays a general role in OM protein assembly. Other factors, including periplasmic chaperones and inner membrane proteins, have also recently been implicated in the biogenesis of at least some members of the autotransporter superfamily. New results have raised intriguing questions about the energetics of the secretion reaction and the relationship between the assembly of autotransporters and the assembly of other classes of OM proteins. Concomitantly, new mechanistic and structural insights have expanded the utility of the autotransporter pathway for the surface display of heterologous peptides and proteins of interest.
Collapse
Affiliation(s)
- Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
43
|
Doyle MT, Tran ENH, Morona R. The passenger-associated transport repeat promotes virulence factor secretion efficiency and delineates a distinct autotransporter subtype. Mol Microbiol 2015; 97:315-29. [PMID: 25869731 DOI: 10.1111/mmi.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2015] [Indexed: 11/28/2022]
Abstract
Autotransporters are a superfamily of virulence factors secreted by Gram negative bacteria. They are comprised of an N-terminal passenger domain that is translocated across the outer membrane and a C-terminal domain that inserts into the outer membrane forming a β-barrel anchor. It is still poorly understood how the passenger is efficiently translocated in the absence of external energy inputs. Several mechanisms have been proposed in solution of this problem, yet due to the vast diversity of size, sequence and function of the passenger, it is not clear how widely these mechanisms are employed. In this study we functionally characterize a conserved repeat found in many passengers that we designate the Passenger-associated Transport Repeat (PATR). Using the autotransporter IcsA from the enteropathogen Shigella flexneri, we identified conserved PATR residues that are required for efficient export of the passenger during growth and infection. Furthermore, PATR-containing autotransporters are significantly larger than non-PATR autotransporters, with PATR copy number correlating with passenger size. We also show that PATR-containing autotransporters delineate a subgroup that associates with specific virulence traits and architectures. These results advance our understanding of autotransporter composition and indicate that an additional transport mechanism is important for thousands of these proteins.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Elizabeth Ngoc Hoa Tran
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Renato Morona
- Department of Molecular and Cellular Biology, School of Biological Sciences, Discipline of Microbiology and Immunology, School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
44
|
Microbial peptidyl-prolyl cis/trans isomerases (PPIases): virulence factors and potential alternative drug targets. Microbiol Mol Biol Rev 2015; 78:544-71. [PMID: 25184565 DOI: 10.1128/mmbr.00015-14] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Initially discovered in the context of immunomodulation, peptidyl-prolyl cis/trans isomerases (PPIases) were soon identified as enzymes catalyzing the rate-limiting protein folding step at peptidyl bonds preceding proline residues. Intense searches revealed that PPIases are a superfamily of proteins consisting of three structurally distinguishable families with representatives in every described species of prokaryote and eukaryote and, recently, even in some giant viruses. Despite the clear-cut enzymatic activity and ubiquitous distribution of PPIases, reports on solely PPIase-dependent biological roles remain scarce. Nevertheless, they have been found to be involved in a plethora of biological processes, such as gene expression, signal transduction, protein secretion, development, and tissue regeneration, underscoring their general importance. Hence, it is not surprising that PPIases have also been identified as virulence-associated proteins. The extent of contribution to virulence is highly variable and dependent on the pleiotropic roles of a single PPIase in the respective pathogen. The main objective of this review is to discuss this variety in virulence-related bacterial and protozoan PPIases as well as the involvement of host PPIases in infectious processes. Moreover, a special focus is given to Legionella pneumophila macrophage infectivity potentiator (Mip) and Mip-like PPIases of other pathogens, as the best-characterized virulence-related representatives of this family. Finally, the potential of PPIases as alternative drug targets and first tangible results are highlighted.
Collapse
|
45
|
|
46
|
Going beyond E. coli: autotransporter based surface display on alternative host organisms. N Biotechnol 2015; 32:644-50. [PMID: 25579193 DOI: 10.1016/j.nbt.2014.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 11/21/2022]
Abstract
Autotransporters represent one of the most popular anchoring motifs used to display peptides, proteins or enzymes on the cell surface of a Gram-negative bacterium. Applications range from vaccine delivery to library screenings to biocatalysis and bioremediation. Although the underlying secretion mechanism is supposed to be available in most, if not all, Gram-negative bacteria, autotransporters have to date almost exclusively been used for surface display on Escherichia coli. However, for their utilisation beyond a laboratory scale, in particular for biocatalysis, host bacteria with specific features and industrial applicability are required. A few groups have addressed this issue and demonstrated that bacteria other than E. coli can also be used for autotransporter based surface display. We summarise these studies and discuss opportunities and challenges that arise from surface display of recombinant proteins using the autotransporter pathway in alternative hosts.
Collapse
|
47
|
Sichwart S, Tozakidis IEP, Teese M, Jose J. Maximized Autotransporter-Mediated Expression (MATE) for Surface Display and Secretion of Recombinant Proteins in Escherichia coli. Food Technol Biotechnol 2015; 53:251-260. [PMID: 27904356 DOI: 10.17113/ftb.53.03.15.3802] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A new optimized system for the surface display and secretion of recombinant proteins is described, termed MATE (maximized autotransporter-mediated expression). It is based on an artificial gene consisting of the coding region for the signal peptide of CtxB, a multiple cloning site for passenger gene insertion, flanked by coding sequences for linear epitopes for monoclonal antibodies and OmpT, and factor Xa protease cleavage sites followed by a codon-optimized DNA sequence of the linker and the β-barrel of the type V autotransporter EhaA from Escherichia coli under control of an IPTG-inducible T5 promoter. The MATE system enabled the continuous secretion of recombinant passenger mCherry via OmpT-mediated cleavage, using native OmpT protease activity in E. coli when grown at 37 °C. It is the first example to show that native OmpT activity is sufficient to facilitate the secretion of a correctly folded target protein in preparative amounts obtaining 240 µg of purified mCherry from 800 mL of crude culture supernatant. Because the release of mCherry was achieved by a simple transfer of the encoding plasmid from an OmpT-negative to an OmpT-positive strain, it bears the option to use surface display for screening purposes and secretion for production of the selected variant. A single plasmid could therefore be used for continuous secretion in OmpT-positive strains or surface display in OmpT-negative strains. In conclusion, the MATE system appears to be a versatile tool for the surface display and for the secretion of target proteins in E. coli.
Collapse
Affiliation(s)
- Shanna Sichwart
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany
| | - Iasson E P Tozakidis
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| | - Mark Teese
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; Present address: Technical University Munich, Weihenstephaner Berg 3, DE-85354 Freising, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Westphalian Wilhelms-University, Corrensstraße 48, DE-48149 Münster, Germany; The NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, DE-48149 Münster, Germany
| |
Collapse
|
48
|
Peptidylprolyl cis–trans isomerases of Legionella pneumophila: virulence, moonlighting and novel therapeutic targets. Biochem Soc Trans 2014; 42:1728-33. [DOI: 10.1042/bst20140202] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Legionella pneumophila, typically a parasite of free-living protozoa, can also replicate in human alveolar macrophages and lung epithelial cells causing Legionnaires’ disease in humans, a severe atypical pneumonia. The pathogen encodes six peptidylprolyl cis–trans isomerases (PPIases), which generally accelerate folding of prolyl peptide bonds, and influence protein folding. PPIases can be divided into three classes, cyclophilins, parvulins and FK506-binding proteins (FKBPs). They contribute to a multitude of cellular functions including bacterial virulence. In the present review, we provide an overview of L. pneumophila PPIases, discussing their known and anticipated functions as well as moonlighting phenomena. By taking the example of the macrophage infectivity potentiator (Mip) of L. pneumophila, we highlight the potential of PPIases as promising drug targets.
Collapse
|
49
|
A Shigella flexneri virulence plasmid encoded factor controls production of outer membrane vesicles. G3-GENES GENOMES GENETICS 2014; 4:2493-503. [PMID: 25378474 PMCID: PMC4267944 DOI: 10.1534/g3.114.014381] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Shigella spp. use a repertoire of virulence plasmid-encoded factors to cause shigellosis. These include components of a Type III Secretion Apparatus (T3SA) that is required for invasion of epithelial cells and many genes of unknown function. We constructed an array of 99 deletion mutants comprising all genes encoded by the virulence plasmid (excluding those known to be required for plasmid maintenance) of Shigella flexneri. We screened these mutants for their ability to bind the dye Congo red: an indicator of T3SA function. This screen focused our attention on an operon encoding genes that modify the cell envelope including virK, a gene of partially characterized function. We discovered that virK is required for controlled release of proteins to the culture supernatant. Mutations in virK result in a temperature-dependent overproduction of outer membrane vesicles (OMVs). The periplasmic chaperone/protease DegP, a known regulator of OMV production in Escherichia coli (encoded by a chromosomal gene), was found to similarly control OMV production in S. flexneri. Both virK and degP show genetic interactions with mxiD, a structural component of the T3SA. Our results are consistent with a model in which VirK and DegP relieve the periplasmic stress that accompanies assembly of the T3SA.
Collapse
|
50
|
Selkrig J, Leyton DL, Webb CT, Lithgow T. Assembly of β-barrel proteins into bacterial outer membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1542-50. [DOI: 10.1016/j.bbamcr.2013.10.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 12/30/2022]
|