1
|
Getz LJ, Robinson OS, Thomas NA. Functional genomics of chitin degradation by Vibrio parahaemolyticus reveals finely integrated metabolic contributions to support environmental fitness. PLoS Genet 2025; 21:e1011370. [PMID: 40029889 PMCID: PMC11906056 DOI: 10.1371/journal.pgen.1011370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 03/13/2025] [Accepted: 01/27/2025] [Indexed: 03/14/2025] Open
Abstract
Vibrio species are marine prokaryotes that inhabit diverse ecological niches, colonizing abiotic and biotic surfaces. These bacteria are vital players in the global carbon cycle, assimilating billions of tonnes of chitin for carbon (and nitrogen) metabolites. Many bacterial proteins involved in the process-including chitinases, sugar transporters, and modifying enzymes-have been well studied. However, the genetic functional interplay and key drivers of Vibrio competitive survival in the presence of chitin as the dominant carbon source is not understood. To address this question, we carried out transposon sequencing (Tn-seq) to determine the genetic fitness of Vibrio parahaemolyticus mutants grown on chitin as a sole carbon source. Along with validating known Vibrio genes associated with chitin metabolism, our data newly identified vital roles for an unclassified OprD-like import chitoporin and a HexR family transcriptional regulator. Furthermore, we functionally implicated HexR in regulating multiple physiological processes involved in V. parahaemolyticus environmental survival including carbon assimilation and cell growth, biofilm formation, and cell motility. Under nutrient limiting conditions, our data revealed a requirement for HexR in filamentous cell morphology, a critical trait for V. parahaemolyticus environmental fitness. Therefore, a vital import porin and genomic regulation mediated by HexR support multiple physiological processes for Vibrio chitinolytic growth and environmental fitness.
Collapse
Affiliation(s)
- Landon J Getz
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Oriana S Robinson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medicine (Infectious Diseases), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
2
|
Ev LD, Poloni JDF, Damé-Teixeira N, Arthur RA, Corralo DJ, Henz SL, Do T, Maltz M, Parolo CCF. Hub genes and pathways related to caries-free dental biofilm: clinical metatranscriptomic study. Clin Oral Investig 2023; 27:7725-7735. [PMID: 37924358 DOI: 10.1007/s00784-023-05363-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVE This study aimed to evaluate the microbial functional profile of biofilms related to caries-free (CF, n = 6) and caries-arrested (CI, n = 3) compared to caries-active (CA, n = 5) individuals. MATERIALS AND METHODS A metatranscriptomic was performed in supragingival biofilm from different clinical conditions related to caries or health. Total RNA was extracted and cDNAs were obtained and sequenced (Illumina HiSeq3000). Trimmed data (SortMeRNA) were submitted to the SqueezeMeta pipeline in the co-assembly mode for functional analysis and further differential gene expression analysis (DESeq2) and weighted gene co-expression network analysis (WCGNA) to explore and identify gene modules related to these clinical conditions. RESULTS A total of 5303 genes were found in the metatranscriptomic analysis. A co-expression network identified the most relevant modules strongly related to specific caries status. Correlation coefficients were calculated between the eigengene modules and the clinical conditions (CA, CI, and CF) discriminating multiple modules. CA and CI showed weak correlation coefficient strength across the modules, while the CF condition presented a very strong positive correlation coefficient (r = 0.9, p value = 4 × 10-9). Pearson's test was applied to further analyze the module membership and gene significance in CF conditions, and the most relevant were HSPA1s-K03283, Epr- K13277, and SLC1A-K05613. Gene Ontology (GO) shows important bioprocesses, such as two-component system, fructose and mannose metabolism, pentose and glucuronate interconversions, and flagellar assembly (p-adjust < 0.05). The ability to use different carbohydrates, integrate multiple signals, swarm, and bacteriocin production are significant metabolic advantages in the oral environment related to CF. CONCLUSIONS A distinct functional health profile could be found in CF, where co-occurring genes can act in different pathways at the same time. Genes HSPA1s, Epr, and SLC1A may be appointed as potential biomarkers for caries-free biofilms. CLINICAL RELEVANCE Potential biomarkers for caries-free biofilms could contribute to the knowledge of caries prevention and control.
Collapse
Affiliation(s)
- Laís Daniela Ev
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Joice de Faria Poloni
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, National Institute of Science and Technology - Forensic Science, Porto Alegre, Brazil
| | - Nailê Damé-Teixeira
- Department of Dentistry, Faculty of Health Sciences, University of Brasília, Brasília, DF, Brazil
| | - Rodrigo Alex Arthur
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniela Jorge Corralo
- Department of Dentistry, School of Dentistry, Passo Fundo University, Passo Fundo, RS, Brazil
| | - Sandra Liana Henz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, Faculty of Medicine & Health, University of Leeds, Leeds, UK
| | - Marisa Maltz
- Department of Preventive and Social Dentistry, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | |
Collapse
|
3
|
Bina XR, Bina JE. Vibrio cholerae RND efflux systems: mediators of stress responses, colonization and pathogenesis. Front Cell Infect Microbiol 2023; 13:1203487. [PMID: 37256112 PMCID: PMC10225521 DOI: 10.3389/fcimb.2023.1203487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Resistance Nodulation Division (RND) efflux systems are ubiquitous transporters in gram-negative bacteria that provide protection against antimicrobial agents and thereby enhance survival in virtually all environments these prokaryotes inhabit. Vibrio cholerae is a dual lifestyle enteric pathogen that spends much of its existence in aquatic environments. An unwitting encounter with a human host can lead to V. cholerae intestinal colonization by strains that encode cholera toxin and toxin co-regulated pilus virulence factors leading to potentially fatal cholera diarrhea and dissemination in the environment. Adaptive response mechanisms to host factors encountered by these pathogens are therefore critical both to engage survival mechanisms such as RND-mediated transporters and to induce timely expression of virulence factors. Sensing of cues encountered in the host may therefore activate more than protective responses such as efflux systems, but also be coordinated to initiate expression of virulence factors. This review summarizes recent advances that contribute towards the understanding of RND efflux physiological functions and how the transport systems interface with the regulation of virulence factor production in V. cholerae.
Collapse
Affiliation(s)
| | - James E. Bina
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Kitts G, Rogers A, Teschler JK, Park JH, Trebino MA, Chaudry I, Erill I, Yildiz FH. The Rvv two-component regulatory system regulates biofilm formation and colonization in Vibrio cholerae. PLoS Pathog 2023; 19:e1011415. [PMID: 37216386 PMCID: PMC10237652 DOI: 10.1371/journal.ppat.1011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/02/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
The facultative human pathogen, Vibrio cholerae, employs two-component signal transduction systems (TCS) to sense and respond to environmental signals encountered during its infection cycle. TCSs consist of a sensor histidine kinase (HK) and a response regulator (RR); the V. cholerae genome encodes 43 HKs and 49 RRs, of which 25 are predicted to be cognate pairs. Using deletion mutants of each HK gene, we analyzed the transcription of vpsL, a biofilm gene required for Vibrio polysaccharide and biofilm formation. We found that a V. cholerae TCS that had not been studied before, now termed Rvv, controls biofilm gene transcription. The Rvv TCS is part of a three-gene operon that is present in 30% of Vibrionales species. The rvv operon encodes RvvA, the HK; RvvB, the cognate RR; and RvvC, a protein of unknown function. Deletion of rvvA increased transcription of biofilm genes and altered biofilm formation, while deletion of rvvB or rvvC lead to no changes in biofilm gene transcription. The phenotypes observed in ΔrvvA depend on RvvB. Mutating RvvB to mimic constitutively active and inactive versions of the RR only impacted phenotypes in the ΔrvvA genetic background. Mutating the conserved residue required for kinase activity in RvvA did not affect phenotypes, whereas mutation of the conserved residue required for phosphatase activity mimicked the phenotype of the rvvA mutant. Furthermore, ΔrvvA displayed a significant colonization defect which was dependent on RvvB and RvvB phosphorylation state, but not on VPS production. We found that RvvA's phosphatase activity regulates biofilm gene transcription, biofilm formation, and colonization phenotypes. This is the first systematic analysis of the role of V. cholerae HKs in biofilm gene transcription and resulted in the identification of a new regulator of biofilm formation and virulence, advancing our understanding of the role TCSs play in regulating these critical cellular processes in V. cholerae.
Collapse
Affiliation(s)
- Giordan Kitts
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Andrew Rogers
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jennifer K. Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Jin Hwan Park
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Michael A. Trebino
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| | - Issac Chaudry
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Ivan Erill
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Fitnat H. Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
5
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
6
|
Characterization of GefA, a GGEEF domain-containing protein that modulates Vibrio parahaemolyticus motility, biofilm formation, and virulence. Appl Environ Microbiol 2022; 88:e0223921. [PMID: 35108083 DOI: 10.1128/aem.02239-21] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus is a significant food-borne pathogen that causes economic and public health problems worldwide and has the high capacity to adapt to diverse environments and hosts. The second messenger cyclic diguanylate monophosphate (c-di-GMP) allows bacteria to shift from a planktonic form to a communal multicellular lifestyle and plays an important role in bacterial survival and transmission. Here we characterized single-domain c-di-GMP synthetases in V. parahaemolyticus and identified a novel GGEEF domain-containing protein designated GefA that modulates bacterial swarming motility, biofilm formation, and virulence. GefA inhibits swarming motility by regulating the expression of lateral flagella, while it enhances biofilm formation by controlling exopolysaccharide biosynthesis. Under high-c-di-GMP conditions caused by scrABC knock-out, we found that GefA is bifunctional, as it has no effect on swarming motility but retains the ability to regulate biofilm formation. Subsequent studies suggested that GefA regulates the expression of type III secretion system 1 (T3SS1), which is an important virulence factor in V. parahaemolyticus. Here, we also revealed that the flagella participate in the infection of V. parahaemolyticus. We found that both the T3SS1 and flagella contribute to the GefA-mediated virulence of V. parahaemolyticus in the zebrafish model. Our results expand the knowledge of the V. parahaemolyticus c-di-GMP synthetases and their roles in social behaviors and pathogenicity. Importance The c-di-GMP metabolic enzymes constitute one of the largest clusters of potential orthologues in V. parahaemolyticus. However, the specific roles that these individual c-di-GMP metabolic enzymes play are largely unknown. Here, we identified a GGEEF domain-containing protein designated GefA that regulates bacterial behaviors and virulence. We also demonstrated that flagella participate in the infection of this bacterium, through which GefA regulates the bacterial virulence. To our knowledge, the roles that c-di-GMP and flagella play in V. parahaemolyticus virulence have never been revealed before. Our findings contribute to a better understanding of the function of c-di-GMP and its synthetases in V. parahaemolyticus.
Collapse
|
7
|
Biofilm control by interfering with c-di-GMP metabolism and signaling. Biotechnol Adv 2022; 56:107915. [PMID: 35101567 DOI: 10.1016/j.biotechadv.2022.107915] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/28/2021] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
Abstract
Biofilm formation and biofilm-induced biodeterioration of surfaces have deeply affected the life of our community. Cyclic dimeric guanosine monophosphate (c-di-GMP) is a small nucleic acid signal molecule in bacteria, which functions as a second messenger mediating a wide range of bacterial processes, such as cell motility, biofilm formation, virulence expression, and cell cycle progression. C-di-GMP regulated phenotypes are triggered by a variety of determinants, such as metabolic cues and stress factors that affect c-di-GMP synthesis, the transduction and conduction of signals by specific effectors, and their actions on terminal targets. Therefore, understanding of the regulatory mechanisms of c-di-GMP would greatly benefit the control of the relevant bacterial processes, particularly for the development of anti-biofilm technologies. Here, we discuss the regulatory determinants of c-di-GMP signaling, identify the corresponding chemical inhibitors as anti-biofilm agents, and shed light on further perspectives in the metabolic regulation of c-di-GMP through chemical and biological approaches. This Review will advance the development of anti-biofilm policies applied in the industries of medicine, environment and engineering.
Collapse
|
8
|
Analysis of HubP-dependent cell pole protein targeting in Vibrio cholerae uncovers novel motility regulators. PLoS Genet 2022; 18:e1009991. [PMID: 35020734 PMCID: PMC8789113 DOI: 10.1371/journal.pgen.1009991] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/25/2022] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
In rod-shaped bacteria, the emergence and maintenance of long-axis cell polarity is involved in key cellular processes such as cell cycle, division, environmental sensing and flagellar motility among others. Many bacteria achieve cell pole differentiation through the use of polar landmark proteins acting as scaffolds for the recruitment of functional macromolecular assemblies. In Vibrio cholerae a large membrane-tethered protein, HubP, specifically interacts with proteins involved in chromosome segregation, chemotaxis and flagellar biosynthesis. Here we used comparative proteomics, genetic and imaging approaches to identify additional HubP partners and demonstrate that at least six more proteins are subject to HubP-dependent polar localization. These include a cell-wall remodeling enzyme (DacB), a likely chemotaxis sensory protein (HlyB), two presumably cytosolic proteins of unknown function (VC1210 and VC1380) and two membrane-bound proteins, named here MotV and MotW, that exhibit distinct effects on chemotactic motility. We show that while both ΔmotW and ΔmotV mutants retain monotrichous flagellation, they present significant to severe motility defects when grown in soft agar. Video-tracking experiments further reveal that ΔmotV cells can swim in liquid environments but are unable to tumble or penetrate a semisolid matrix, whereas a motW deletion affects both tumbling frequency and swimming speed. Motility suppressors and gene co-occurrence analyses reveal co-evolutionary linkages between MotV, a subset of non-canonical CheV proteins and flagellar C-ring components FliG and FliM, whereas MotW regulatory inputs appear to intersect with specific c-di-GMP signaling pathways. Together, these results reveal an ever more versatile role for the landmark cell pole organizer HubP and identify novel mechanisms of motility regulation. Cell polarity is the result of controlled asymmetric distribution of protein macrocomplexes, genetic material, membrane lipids and cellular metabolites, and can play crucial physiological roles not only in multicellular organisms but also in unicellular bacteria. In the opportunistic cholera pathogen Vibrio cholerae, the polar landmark protein HubP tethers key actors in chromosome segregation, chemotaxis and flagellar biosynthesis and thus converts the cell pole into an important functional microdomain for cell proliferation, environmental sensing and adaptation between free-living and pathogenic life-styles. Using a comparative proteomics approach, we here-in present a comprehensive analysis of HubP-dependent cell pole protein sorting and identify novel HubP partners including ones likely involved in cell wall remodeling (DacB), chemotaxis (HlyB) and motility regulation (MotV and MotW). Unlike previous studies which have identified early roles for HubP in flagellar assembly, functional, genetic and phylogenetic analyses of its MotV and MotW partners suggest a direct role in flagellar rotary mechanics and provide new insights into the coevolution and functional interdependence of chemotactic signaling, bacterial motility and biofilm formation.
Collapse
|
9
|
Tagua VG, Molina‐Henares MA, Travieso ML, Nisa‐Martínez R, Quesada JM, Espinosa‐Urgel M, Ramos‐González MI. C‐di‐GMP
and biofilm are regulated in
Pseudomonas putida
by the
CfcA
/
CfcR
two‐component system in response to salts. Environ Microbiol 2022; 24:158-178. [DOI: 10.1111/1462-2920.15891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/14/2021] [Accepted: 12/26/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Víctor G. Tagua
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | | - María L. Travieso
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Rafael Nisa‐Martínez
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - José Miguel Quesada
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | - Manuel Espinosa‐Urgel
- Department of Environmental Protection Estación Experimental del Zaidín, CSIC Granada Spain
| | | |
Collapse
|
10
|
Abstract
Vibrio cholerae, a Gram-negative bacterium, is a natural inhabitant of the aqueous environment. However, once ingested, this bacterium can colonize the human host and cause the disease cholera. CsrA is a posttranscriptional global regulator in Vibrio cholerae. Although CsrA is critical for V. cholerae survival within the mammalian host, the regulatory targets of CsrA remain mostly unknown. To identify pathways controlled by CsrA, RNA-seq transcriptome analysis was carried out by comparing the wild type and the csrA mutant grown to early exponential, mid-exponential, and stationary phases of growth. This enabled us to identify the global effects of CsrA-mediated regulation throughout the V. cholerae growth cycle. We found that CsrA regulates 22% of the V. cholerae transcriptome, with significant regulation within the gene ontology (GO) processes that involve amino acid transport and metabolism, central carbon metabolism, lipid metabolism, iron uptake, and flagellum-dependent motility. Through CsrA-RNA coimmunoprecipitation experiments, we found that CsrA binds to multiple mRNAs that encode regulatory proteins. These include transcripts encoding the major sigma factors RpoS and RpoE, which may explain how CsrA regulation affects such a large proportion of the V. cholerae transcriptome. Other direct targets include flrC, encoding a central regulator in flagellar gene expression, and aphA, encoding the virulence gene transcription factor AphA. We found that CsrA binds to the aphA mRNA both in vivo and in vitro, and CsrA significantly increases AphA protein synthesis. The increase in AphA was due to increased translation, not transcription, in the presence of CsrA, consistent with CsrA binding to the aphA transcript and enhancing its translation. CsrA is required for the virulence of V. cholerae and this study illustrates the central role of CsrA in virulence gene regulation.
Collapse
|
11
|
Zhou Y, Lee ZL, Zhu J. On or Off: Life-Changing Decisions Made by Vibrio cholerae Under Stress. INFECTIOUS MICROBES & DISEASES 2020; 2:127-135. [PMID: 38630076 PMCID: PMC7769058 DOI: 10.1097/im9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 11/25/2022]
Abstract
Vibrio cholerae, the causative agent of the infectious disease, cholera, is commonly found in brackish waters and infects human hosts via the fecal-oral route. V. cholerae is a master of stress resistance as V. cholerae's dynamic lifestyle across different physical environments constantly exposes it to diverse stressful circumstances. Specifically, V. cholerae has dedicated genetic regulatory networks to sense different environmental cues and respond to these signals. With frequent outbreaks costing a tremendous amount of lives and increased global water temperatures providing more suitable aquatic habitats for V. cholerae, cholera pandemics remain a probable catastrophic threat to humanity. Understanding how V. cholerae copes with different environmental stresses broadens our repertoire of measures against infectious diseases and expands our general knowledge of prokaryotic stress responses. In this review, we summarize the regulatory mechanisms of how V. cholerae fights against stresses in vivo and in vitro.
Collapse
|
12
|
Hsiao A, Zhu J. Pathogenicity and virulence regulation of Vibrio cholerae at the interface of host-gut microbiome interactions. Virulence 2020; 11:1582-1599. [PMID: 33172314 PMCID: PMC7671094 DOI: 10.1080/21505594.2020.1845039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative bacterium Vibrio cholerae is responsible for the severe diarrheal pandemic disease cholera, representing a major global public health concern. This pathogen transitions from aquatic reservoirs into epidemics in human populations, and has evolved numerous mechanisms to sense this transition in order to appropriately regulate its gene expression for infection. At the intersection of pathogen and host in the gastrointestinal tract lies the community of native gut microbes, the gut microbiome. It is increasingly clear that the diversity of species and biochemical activities within the gut microbiome represents a driver of infection outcome, through their ability to manipulate the signals used by V. cholerae to regulate virulence and fitness in vivo. A better mechanistic understanding of how commensal microbial action interacts with V. cholerae pathogenesis may lead to novel prophylactic and therapeutic interventions for cholera. Here, we review a subset of this burgeoning field of research.
Collapse
Affiliation(s)
- Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, CA, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Vibrio cholerae Type VI Activity Alters Motility Behavior in Mucin. J Bacteriol 2020; 202:JB.00261-20. [PMID: 32868403 DOI: 10.1128/jb.00261-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/11/2020] [Indexed: 01/16/2023] Open
Abstract
Motility is required for many bacterial pathogens to reach and colonize target sites. Vibrio cholerae traverses a thick mucus barrier coating the small intestine to reach the underlying epithelium. We screened a transposon library in motility medium containing mucin to identify factors that influence mucus transit. Lesions in structural genes of the type VI secretion system (T6SS) were among those recovered. Two-dimensional (2D) and 3D single-cell tracking was used to compare the motility behaviors of wild-type cells and a mutant that collectively lacked three essential T6SS structural genes (T6SS-). In the absence of mucin, wild-type and T6SS- cells exhibited similar speeds and run-reverse-flick (RRF) swimming patterns, in which forward-moving cells briefly backtrack before stochastically reorienting (flicking) in a new direction upon resuming forward movement. We show that mucin induced T6SS expression and activity in wild-type bacteria but significantly decreased their swimming speed and flicking, yielding curvilinear or near-surface circular traces for many cells. Conversely, mucin slowed T6SS- cells to a lesser extent, and many continued to flick and produce RRF-like traces. ΔcheY3 cells, which exclusively swim in the forward direction and thus cannot flick, also produced curvilinear traces with or without mucin present and, on occasion, near-surface circular traces in the presence of mucin. The dependence of flicking on swimming speed suggested that mucin-induced T6SS activity further decreased V. cholerae motility and thereby reduced flicking probability during reverse-to-forward transitions. We propose that this encourages cells to continue on their current trajectory rather than reorienting, which may benefit those tracking toward the epithelial surface.IMPORTANCE V. cholerae deploys an arsenal of virulence factors as it attempts to traverse a protective mucus layer and reach the epithelial surface of the distal small intestine. The T6SS used to cull bacterial competition during infection is induced by mucus. We show that this activity may serve an additional purpose by further decreasing motility in the presence of mucin, thereby reducing the probability of speed-dependent, near-perpendicular directional changes. We posit that this encourages cells to maintain course rather than change direction, which may aid those attempting to reach and colonize the epithelial surface.
Collapse
|
14
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Montánchez I, Ogayar E, Plágaro AH, Esteve-Codina A, Gómez-Garrido J, Orruño M, Arana I, Kaberdin VR. Analysis of Vibrio harveyi adaptation in sea water microcosms at elevated temperature provides insights into the putative mechanisms of its persistence and spread in the time of global warming. Sci Rep 2019; 9:289. [PMID: 30670759 PMCID: PMC6343004 DOI: 10.1038/s41598-018-36483-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
Discovering the means to control the increasing dissemination of pathogenic vibrios driven by recent climate change is challenged by the limited knowledge of the mechanisms in charge of Vibrio spp. persistence and spread in the time of global warming. To learn about physiological and gene expression patterns associated with the long-term persistence of V. harveyi at elevated temperatures, we studied adaptation of this marine bacterium in seawater microcosms at 30 °C which closely mimicked the upper limit of sea surface temperatures around the globe. We found that nearly 90% of cells lost their culturability and became partly damaged after two weeks, thus suggesting a negative impact of the combined action of elevated temperature and shortage of carbon on V. harveyi survival. Moreover, further gene expression analysis revealed that major adaptive mechanisms were poorly coordinated and apparently could not sustain cell fitness. On the other hand, elevated temperature and starvation promoted expression of many virulence genes, thus potentially reinforcing the pathogenicity of this organism. These findings suggest that the increase in disease outbreaks caused by V. harveyi under rising sea surface temperatures may not reflect higher cell fitness, but rather an increase in virulence enabling V. harveyi to escape from adverse environments to nutrient rich, host-pathogen associations.
Collapse
Affiliation(s)
- Itxaso Montánchez
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Elixabet Ogayar
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Ander Hernández Plágaro
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, 08003, Spain
| | - Maite Orruño
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Inés Arana
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain
| | - Vladimir R Kaberdin
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain. .,Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), 48620, Plentzia, Spain. .,IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013, Bilbao, Spain.
| |
Collapse
|
16
|
Fontaine BM, Duggal Y, Weinert EE. Exploring the Links between Nucleotide Signaling and Quorum Sensing Pathways in Regulating Bacterial Virulence. ACS Infect Dis 2018; 4:1645-1655. [PMID: 30381948 DOI: 10.1021/acsinfecdis.8b00255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The survival of all organisms depends on implementation of appropriate phenotypic responses upon perception of relevant environmental stimuli. Sensory inputs are propagated via interconnected biochemical and/or electrical cascades mediated by diverse signaling molecules, including gases, metal cations, lipids, peptides, and nucleotides. These networks often comprise second messenger signaling systems in which a ligand (the primary messenger) binds to an extracellular receptor, thereby altering the intracellular concentration of a second messenger molecule which ultimately modulates gene expression through interaction with various effectors. The identification of intersections of these signaling pathways, such as nucleotide second messengers and quorum sensing, provides new insights into the mechanisms by which bacteria use multiple inputs to regulate cellular metabolism and phenotypes. Further investigations of the overlap between bacterial signaling pathways may yield new targets and methods to control bacterial behavior, such as biofilm formation and virulence.
Collapse
Affiliation(s)
- Benjamin M. Fontaine
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Yashasvika Duggal
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| | - Emily E. Weinert
- Department of Chemistry, Emory University, 1515 Dickey Drive NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Russell R, Wang H, Benitez JA, Silva AJ. Deletion of gene encoding the nucleoid-associated protein H-NS unmasks hidden regulatory connections in El Tor biotype Vibrio cholerae. MICROBIOLOGY-SGM 2018; 164:998-1003. [PMID: 29813015 DOI: 10.1099/mic.0.000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervirulent atypical El Tor biotype Vibrio cholerae O1 isolates harbour mutations in the DNA-binding domain of the nucleoid-associated protein H-NS and the receiver domain of the response regulator VieA. Here, we provide two examples in which inactivation of H-NS in El Tor biotype vibrios unmasks hidden regulatory connections. First, deletion of the helix-turn-helix domain of VieA in an hns mutant background diminished biofilm formation and exopolysaccharide gene expression, a function that phenotypically opposes its phosphodiesterase activity. Second, deletion of vieA in an hns mutant diminished the expression of σE, a virulence determinant that mediates the envelope stress response. hns mutants were highly sensitive to envelope stressors compared to wild-type. However, deletion of vieA in the hns mutant restored or exceeded wild-type resistance. These findings suggest an evolutionary path for the emergence of hypervirulent strains starting from nucleotide sequence diversification affecting the interaction of H-NS with DNA.
Collapse
Affiliation(s)
- Raedeen Russell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.,Present address: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
18
|
Ayala JC, Wang H, Benitez JA, Silva AJ. Molecular basis for the differential expression of the global regulator VieA in Vibrio cholerae biotypes directed by H-NS, LeuO and quorum sensing. Mol Microbiol 2017; 107:330-343. [PMID: 29152799 DOI: 10.1111/mmi.13884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
Abstract
VieA is a cyclic diguanylate phosphodiesterase that modulates biofilm development and motility in Vibrio cholerae O1 of the classical biotype. vieA is part of an operon encoding the VieSAB signal transduction pathway that is nearly silent in V. cholerae of the El Tor biotype. A DNA pull-down assay for proteins interacting with the vieSAB promoter identified the LysR-type regulator LeuO. We show that in classical biotype V. cholerae, LeuO cooperates with the nucleoid-associated protein H-NS to repress vieSAB transcription. LeuO and H-NS interacted with the vieSAB promoter of both biotypes with similar affinities and protected overlapping DNA sequences. H-NS was expressed at similar levels in both cholera biotypes. In contrast, El Tor biotype strains expressed negligible LeuO under identical conditions. In El Tor biotype vibrios, transcription of vieSAB is repressed by the quorum sensing regulator HapR, which is absent in classical biotype strains. Restoring HapR expression in classical biotype V. cholerae repressed vieSAB transcription by binding to its promoter. We propose that double locking of the vieSAB promoter by H-NS and HapR in the El Tor biotype prior to the cessation of exponential growth results in a more pronounced decline in VieA specific activity compared to the classical biotype.
Collapse
Affiliation(s)
- Julio C Ayala
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
19
|
The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr Opin Microbiol 2017; 36:20-29. [PMID: 28171809 DOI: 10.1016/j.mib.2017.01.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 11/20/2022]
Abstract
The second messenger nucleotide cyclic dimeric guanosine monophosphate (c-di-GMP) governs many cellular processes in the facultative human pathogen Vibrio cholerae. This organism copes with changing environmental conditions in aquatic environments and during transitions to and from human hosts. Modulation of c-di-GMP allows V. cholerae to shift between motile and sessile stages of life, thus allowing adaptation to stressors and environmental conditions during its transmission cycle. The V. cholerae genome encodes a large set of proteins predicted to degrade and produce c-di-GMP. A subset of these enzymes has been demonstrated to control cellular processes - particularly motility, biofilm formation, and virulence - through transcriptional, post-transcriptional, and translational mechanisms. Recent studies have identified and characterized enzymes that modulate or sense c-di-GMP levels and have led towards mechanistic understanding of c-di-GMP regulatory circuits in V. cholerae.
Collapse
|
20
|
Chourashi R, Mondal M, Sinha R, Debnath A, Das S, Koley H, Chatterjee NS. Role of a sensor histidine kinase ChiS of Vibrio cholerae in pathogenesis. Int J Med Microbiol 2016; 306:657-665. [PMID: 27670078 DOI: 10.1016/j.ijmm.2016.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/08/2016] [Accepted: 09/16/2016] [Indexed: 11/29/2022] Open
Abstract
Vibrio cholera survival in an aquatic environment depends on chitin utilization pathway that requires two factors, chitin binding protein and chitinases. The chitinases and the chitin utilization pathway are regulated by a two-component sensor histidine kinase ChiS in V. cholerae. In recent studies these two factors are also shown to be involved in V. cholerae pathogenesis. However, the role played by their upstream regulator ChiS in pathogenesis is yet to be known. In this study, we investigated the activation of ChiS in presence of mucin and its functional role in pathogenesis. We found ChiS is activated in mucin supplemented media. The isogenic chiS mutant (ChiS-) showed less growth compared to the wild type strain (ChiS+) in the presence of mucin supplemented media. The ChiS- strain also showed highly retarded motility as well as mucin layer penetration in vitro. Our result also showed that ChiS was important for adherence and survival in HT-29 cell. These observations indicate that ChiS is activated in presence of intestinal mucin and subsequently switch on the chitin utilization pathway. In animal models, our results also supported the in vitro observation. We found reduced fluid accumulation and colonization during infection with ChiS- strain. We also found ChiS- mutant with reduced expression of ctxA, toxT and tcpA. The cumulative effect of these events made V. cholerae ChiS- strain hypovirulent. Hence, we propose that ChiS plays a vital role in V. cholerae pathogenesis.
Collapse
Affiliation(s)
- Rhishita Chourashi
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Moumita Mondal
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Ritam Sinha
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Anusuya Debnath
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Suman Das
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Hemanta Koley
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India
| | - Nabendu Sekhar Chatterjee
- Division of Biochemistry, National Institute of Cholera and Enteric Diseases, Kolkata 700010, India.
| |
Collapse
|
21
|
Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2016; 7:493-512. [PMID: 25875875 DOI: 10.4155/fmc.15.6] [Citation(s) in RCA: 406] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biofilms are communities of microorganisms that are attached to a surface and play a significant role in the persistence of bacterial infections. Bacteria within a biofilm are several orders of magnitude more resistant to antibiotics, compared with planktonic bacteria. Thus far, no drugs are in clinical use that specifically target bacterial biofilms. This is probably because until recently the molecular details of biofilm formation were poorly understood. Bacteria integrate information from the environment, such as quorum-sensing autoinducers and nutrients, into appropriate biofilm-related gene expression, and the identity of the key players, such as cyclic dinucleotide second messengers and regulatory RNAs are beginning to be uncovered. Herein, we highlight the current understanding of the processes that lead to biofilm formation in many bacteria.
Collapse
|
22
|
Mitchell SL, Ismail AM, Kenrick SA, Camilli A. The VieB auxiliary protein negatively regulates the VieSA signal transduction system in Vibrio cholerae. BMC Microbiol 2015; 15:59. [PMID: 25887601 PMCID: PMC4352251 DOI: 10.1186/s12866-015-0387-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vibrio cholerae is a facultative pathogen that lives in the aquatic environment and the human host. The ability of V. cholerae to monitor environmental changes as it transitions between these diverse environments is vital to its pathogenic lifestyle. One way V. cholerae senses changing external stimuli is through the three-component signal transduction system, VieSAB, which is encoded by the vieSAB operon. The VieSAB system plays a role in the inverse regulation of biofilm and virulence genes by controlling the concentration of the secondary messenger, cyclic-di-GMP. While the sensor kinase, VieS, and the response regulator, VieA, behave similar to typical two-component phosphorelay systems, the role of the auxiliary protein, VieB, is unclear. RESULTS Here we show that VieB binds to VieS and inhibits its autophosphorylation and phosphotransfer activity thus preventing phosphorylation of VieA. Additionally, we show that phosphorylation of the highly conserved Asp residue in the receiver domain of VieB regulates the inhibitory activity of VieB. CONCLUSION Taken together, these data point to an inhibitory role of VieB on the VieSA phosphorelay, allowing for additional control over the signal output. Insight into the function and regulatory mechanism of the VieSAB system improves our understanding of how V. cholerae controls gene expression as it transitions between the aquatic environment and human host.
Collapse
Affiliation(s)
- Stephanie L Mitchell
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | - Ayman M Ismail
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| | | | - Andrew Camilli
- Howard Hughes Medical Institute and the Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, USA.
| |
Collapse
|
23
|
Dupré E, Herrou J, Lensink MF, Wintjens R, Vagin A, Lebedev A, Crosson S, Villeret V, Locht C, Antoine R, Jacob-Dubuisson F. Virulence regulation with Venus flytrap domains: structure and function of the periplasmic moiety of the sensor-kinase BvgS. PLoS Pathog 2015; 11:e1004700. [PMID: 25738876 PMCID: PMC4352136 DOI: 10.1371/journal.ppat.1004700] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/14/2015] [Indexed: 11/23/2022] Open
Abstract
Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Elian Dupré
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Julien Herrou
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Marc F. Lensink
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - René Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexey Vagin
- Structural Biology Laboratory, University of York, York, England, United Kingdom
| | - Andrey Lebedev
- Research Complex at Harwell, Science and Technology Facilities Council Rutherford Appleton Laboratory, Didcot, England, United Kingdom
| | - Sean Crosson
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Vincent Villeret
- Unité de Glycobiologie Structurale et Fonctionnelle, CNRS UMR8576, University Lille North of France, Villeneuve d’Ascq, France
| | - Camille Locht
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Rudy Antoine
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| | - Françoise Jacob-Dubuisson
- Center for Infection and Immunity (CIIL), Institut Pasteur de Lille, Lille, France
- Center for Infection and Immunity (CIIL), University Lille North of France, Lille, France
- UMR 8204, Centre National de la Recherche Scientifique (CNRS), Lille, France
- U1019, Institut National de la Santé et de la Recherche Médicale (INSERM), Lille, France
| |
Collapse
|
24
|
Two DHH subfamily 1 proteins in Streptococcus pneumoniae possess cyclic di-AMP phosphodiesterase activity and affect bacterial growth and virulence. J Bacteriol 2013; 195:5123-32. [PMID: 24013631 DOI: 10.1128/jb.00769-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclic di-AMP (c-di-AMP) and cyclic di-GMP (c-di-GMP) are signaling molecules that play important roles in bacterial biology and pathogenesis. However, these nucleotides have not been explored in Streptococcus pneumoniae, an important bacterial pathogen. In this study, we characterized the c-di-AMP-associated genes of S. pneumoniae. The results showed that SPD_1392 (DacA) is a diadenylate cyclase that converts ATP to c-di-AMP. Both SPD_2032 (Pde1) and SPD_1153 (Pde2), which belong to the DHH subfamily 1 proteins, displayed c-di-AMP phosphodiesterase activity. Pde1 cleaved c-di-AMP into phosphoadenylyl adenosine (pApA), whereas Pde2 directly hydrolyzed c-di-AMP into AMP. Additionally, Pde2, but not Pde1, degraded pApA into AMP. Our results also demonstrated that both Pde1 and Pde2 played roles in bacterial growth, resistance to UV treatment, and virulence in a mouse pneumonia model. These results indicate that c-di-AMP homeostasis is essential for pneumococcal biology and disease.
Collapse
|
25
|
Zhao X, Koestler BJ, Waters CM, Hammer BK. Post-transcriptional activation of a diguanylate cyclase by quorum sensing small RNAs promotes biofilm formation in Vibrio cholerae. Mol Microbiol 2013; 89:989-1002. [PMID: 23841714 DOI: 10.1111/mmi.12325] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/28/2022]
Abstract
Biofilms promote attachment of Vibrio cholerae in aquatic ecosystems and aid in transmission. Intracellular c-di-GMP levels that control biofilm development positively correlate with expression of Qrr sRNAs, which are transcribed when quorum sensing (QS) autoinducer levels are low. The Qrr sRNAs base-pair with and repress translation of hapR encoding the QS 'master regulator', hence increased c-di-GMP and biofilm development at low density were believed to be solely a consequence of Qrr/hapR pairing. We show that Qrr sRNAs also base-pair with and activate translation of the mRNA of a diguanylate cyclase (DGC), Vca0939; relieving an inhibitory structure in vca0939 that occludes the ribosome binding site. A nucleotide substitution in vca0939 disrupted sRNA/mRNA base-pairing and prevented vca0939 translation, while a compensating Qrr sRNA substitution restored pairing and Vca0939 levels. Qrr-dependent DGC activation led to c-di-GMP accumulation and biofilm development in V. cholerae. This represents the first description of (1) a DGC post-transcriptionally activated by direct pairing with an Hfq-dependent sRNA, and (2) control of a V. cholerae QS phenotype, independent of HapR. Thus, direct interactions of the same sRNAs with two mRNAs promote c-di-GMP-dependent biofilm formation by complementary mechanisms in V. cholerae; by negatively regulating HapR, and positively regulating the DGC Vca0939.
Collapse
Affiliation(s)
- Xiaonan Zhao
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332-0230, USA
| | | | | | | |
Collapse
|
26
|
Histidine phosphotransfer proteins in fungal two-component signal transduction pathways. EUKARYOTIC CELL 2013; 12:1052-60. [PMID: 23771905 DOI: 10.1128/ec.00083-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.
Collapse
|
27
|
Abstract
Biofilm formation is a key factor in Vibrio cholerae environmental survival and host colonization. Production of biofilm enables V. cholerae to survive and persist in aquatic environments and aids in the passage through the gastric acid barrier to allow access to the small intestine. The genes involved in biofilm formation are regulated by the transcriptional activators vpsR and vpsT, which are in turn transcriptionally regulated by a number of environmental signals. In this study, the role of the stringent response in biofilm formation was examined. V. cholerae mutants deficient in stringent response had a reduced ability to form biofilms, although they were not completely deficient in biofilm formation. There are three (p)ppGpp synthases in V. cholerae: RelA, SpoT, and RelV. All three synthases were necessary for vpsR transcription, with RelV showing the strongest effect. RelA was the only synthase that was necessary for vpsT expression. Stringent response regulation of vpsR and vpsT was shown to partially occur through rpoS. Biofilm formation in V. cholerae is controlled by a complex regulatory apparatus, with negative regulators of biofilm gene expression, such as quorum sensing, and positive regulators of biofilm genes, including stringent response, interacting to ensure that biofilm formation is coordinated with the environment.
Collapse
|
28
|
Schaller GE, Shiu SH, Armitage JP. Two-component systems and their co-option for eukaryotic signal transduction. Curr Biol 2011; 21:R320-30. [PMID: 21549954 DOI: 10.1016/j.cub.2011.02.045] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two-component signaling pathways involve histidine kinases, response regulators, and sometimes histidine-containing phosphotransfer proteins. Prevalent in prokaryotes, these signaling elements have also been co-opted to meet the needs of signal transduction in eukaryotes such as fungi and plants. Here we consider the evolution of such regulatory systems, with a particular emphasis on the roles they play in signaling by the plant hormones cytokinin and ethylene, in phytochrome-mediated perception of light, and as integral components of the circadian clock.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
29
|
Abstract
A Vibrio cholerae tolC mutant showed increased toxT expression in M9 medium, but not in the presence of four amino acids that induce cholera toxin production, and in LB with high osmolarity but not high pH or temperature. TolC did not affect expression of other regulatory genes in the ToxR regulon.
Collapse
|
30
|
Levet-Paulo M, Lazzaroni JC, Gilbert C, Atlan D, Doublet P, Vianney A. The atypical two-component sensor kinase Lpl0330 from Legionella pneumophila controls the bifunctional diguanylate cyclase-phosphodiesterase Lpl0329 to modulate bis-(3'-5')-cyclic dimeric GMP synthesis. J Biol Chem 2011; 286:31136-44. [PMID: 21757706 DOI: 10.1074/jbc.m111.231340] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A significant part of bacterial two-component system response regulators contains effector domains predicted to be involved in metabolism of bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), a second messenger that plays a key role in many physiological processes. The intracellular level of c-di-GMP is controlled by diguanylate cyclase and phosphodiesterases activities associated with GGDEF and EAL domains, respectively. The Legionella pneumophila Lens genome displays 22 GGDEF/EAL domain-encoding genes. One of them, lpl0329, encodes a protein containing a two-component system receiver domain and both GGDEF and EAL domains. Here, we demonstrated that the GGDEF and EAL domains of Lpl0329 are both functional and lead to simultaneous synthesis and hydrolysis of c-di-GMP. Moreover, these two opposite activities are finely regulated by Lpl0329 phosphorylation due to the atypical histidine kinase Lpl0330. Indeed, Lpl0330 was found to autophosphorylate on a histidine residue in an atypical H box, which is conserved in various bacteria species and thus defines a new histidine kinase subfamily. Lpl0330 also catalyzes the phosphotransferase to Lpl0329, which results in a diguanylate cyclase activity decrease whereas phosphodiesterase activity remains efficient. Altogether, these data present (i) a new histidine kinase subfamily based on the conservation of an original H box that we named HGN H box, and (ii) the first example of a bifunctional enzyme that modulates synthesis and turnover of c-di-GMP in response to phosphorylation of its receiver domain.
Collapse
Affiliation(s)
- Mélanie Levet-Paulo
- Université de Lyon, Université Lyon 1, CNRS UMR5240 Microbiologie, Adaptation et Pathogénie, 69622 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
31
|
Kostick JL, Szkotnicki LT, Rogers EA, Bocci P, Raffaelli N, Marconi RT. The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes. Mol Microbiol 2011; 81:219-31. [PMID: 21542866 DOI: 10.1111/j.1365-2958.2011.07687.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rrp1 is the sole c-di-GMP-producing protein (diguanylate cyclase) of Borrelia burgdorferi. To test the hypothesis that Rrp1 regulates critical processes involved in the transmission of spirochetes between ticks and mammals, an rrp1 deletion mutant (B31-Δrrp1) and a strain that constitutively produces elevated levels of Rrp1 (B31-OV) were constructed. The strains were assessed for progression through the enzootic cycle using an Ixodes tick/C3H-HeJ mouse model and tick immersion feeding methods. B31-Δrrp1 infected mice as efficiently as wild type but had altered motility, decreased chemotactic responses to N-acetylglucosamine (NAG) and attenuated ability to disseminate or colonize distal organs. While this strain infected mice, it was not able to survive in ticks. In contrast, B31-OV displayed normal motility patterns and chemotactic responses but was non-infectious in mice. Using immersion feeding techniques, we demonstrate that B31-OV can establish a population in ticks and survive exposure to a natural bloodmeal. The results presented here indicate Rrp1, and by extension, c-di-GMP, are not strictly required for murine infection, but are required for the successful establishment of a productive population of B. burgdorferi in ticks. These analyses provide significant new insight into the genetic regulatory mechanisms of the Lyme disease spirochetes.
Collapse
Affiliation(s)
- Jessica L Kostick
- Department of Microbiology and Immunology, Center for the Study of Biological Complexity, Medical College of Virginia at Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | | | | | | | |
Collapse
|
32
|
Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci U S A 2010; 107:1588-93. [PMID: 20080633 DOI: 10.1073/pnas.0913404107] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The factors that enhance the waterborne spread of bacterial epidemics and sustain the pathogens in nature are unclear. The epidemic diarrheal disease cholera caused by Vibrio cholerae spreads through water contaminated with the pathogen. However, the bacteria exist in water mostly as clumps of cells, which resist cultivation by standard techniques but revive into fully virulent form in the intestinal milieu. These conditionally viable environmental cells (CVEC), alternatively called viable but nonculturable cells, presumably play a crucial role in cholera epidemiology. However, the precise mechanism causing the transition of V. cholerae to the CVEC form and this form's significance in the biology of the pathogen are unknown. Here we show that this process involves biofilm formation that is dependent on quorum sensing, a regulatory response that is controlled by cell density. V. cholerae strains carrying mutations in genes required for quorum sensing and biofilm formation displayed altered CVEC formation in environmental water following intestinal infections. Analysis of naturally occurring V. cholerae CVEC showed that organisms that adopt this quiescent physiological state typically exist as clumps of cells that comprise a single clone closely related to isolates causing the most recent local cholera epidemic. These results support a model of cholera transmission in which in vivo-formed biofilms convert to CVEC upon the introduction of cholera stools into environmental water. Our data further suggest that a temporary loss of quorum sensing due to dilution of extracellular autoinducers confers a selective advantage to communities of V. cholerae by blocking quorum-mediated regulatory responses that would break down biofilms and thus interfere with CVEC formation.
Collapse
|
33
|
Jonas K, Melefors O, Römling U. Regulation of c-di-GMP metabolism in biofilms. Future Microbiol 2009; 4:341-58. [PMID: 19327118 DOI: 10.2217/fmb.09.7] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cyclic (5 to 3 )-diguanosine monophosphate (c-di-GMP) is a small molecule that regulates the transition between the sessile and motile lifestyle, an integrative part of biofilm formation and other multicellular behavior, in many bacteria. The recognition of c-di-GMP as a novel secondary messenger soon raised the question about the specificity of the signaling system, as individual bacterial genomes frequently encode numerous c-di-GMP metabolizing proteins. Recent work has demonstrated that several global regulators concertedly modify the expression of selected panels of c-di-GMP metabolizing proteins, which act on targets with physiological functions. Within complex feed-forward arrangements, the global regulators commonly combine the control of c-di-GMP metabolism with the direct regulation of proteins with functions in motility or biofilm formation, leading to precise and fine-tuned output responses that determine bacterial behavior. c-di-GMP metabolizing proteins are also controlled at the post-translational level by mechanisms including phosphorylation, localization, protein-protein interactions or protein stability. A detailed understanding of such complex regulatory mechanisms will not only help to explain the specificity in c-di-GMP signaling systems, but will also be necessary to understand the high phenotypic diversity within bacterial biofilms at the single cell level.
Collapse
Affiliation(s)
- Kristina Jonas
- Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, SE-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
34
|
|
35
|
Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 2008; 191:169-77. [PMID: 18952786 DOI: 10.1128/jb.01307-08] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Quorum sensing (QS), or cell-cell communication in bacteria, is achieved through the production and subsequent response to the accumulation of extracellular signal molecules called autoinducers (AIs). To identify AI-regulated target genes in Vibrio cholerae El Tor (V. cholerae(El)), the strain responsible for the current cholera pandemic, luciferase expression was assayed in an AI(-) strain carrying a random lux transcriptional reporter library in the presence and absence of exogenously added AIs. Twenty-three genes were identified and shown to require the QS transcription factor, HapR, for their regulation. Several of the QS-dependent target genes, annotated as encoding hypothetical proteins, in fact encode HD-GYP proteins, phosphodiesterases that degrade the intracellular second messenger cyclic dimeric GMP (c-di-GMP), which is important for controlling biofilm formation. Indeed, overexpression of a representative QS-activated HD-GYP protein in V. cholerae(El) reduced the intracellular concentration of c-di-GMP, which in turn decreased exopolysaccharide production and biofilm formation. The V. cholerae classical biotype (V. cholerae(Cl)), which caused previous cholera pandemics and is HapR(-), controls c-di-GMP levels and biofilm formation by the VieA signaling pathway. We show that the VieA pathway is dispensable for biofilm formation in V. cholerae(El) but that restoring HapR in V. cholerae(Cl) reestablishes QS-dependent repression of exopolysaccharide production. Thus, different pandemic strains of V. cholerae modulate c-di-GMP levels and control biofilm formation in response to distinct sensory pathways.
Collapse
|