1
|
Pfeil-Gardiner O, Rosa HVD, Riedel D, Chen YS, Lörks D, Kükelhan P, Linck M, Müller H, Van Petegem F, Murphy BJ. Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis. Nat Methods 2024; 21:2299-2306. [PMID: 39448878 PMCID: PMC11621030 DOI: 10.1038/s41592-024-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.
Collapse
Affiliation(s)
- Olivia Pfeil-Gardiner
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Higor Vinícius Dias Rosa
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany
- Mattei Lab, Structural and Computational Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Dietmar Riedel
- Facility for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yu Seby Chen
- The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | - Filip Van Petegem
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Bonnie J Murphy
- Redox and Metalloprotein Research Group, Max Planck Institute of Biophysics, Frankfurt, Germany.
| |
Collapse
|
2
|
Furuki T, Togo A, Usuda H, Nobeyama T, Hirano A, Shiraki K. Monovalent Ion Effect on Liquid-Liquid Phase Separation of Aqueous Polyphosphate-Salt Mixtures. J Phys Chem B 2024; 128:11435-11440. [PMID: 39508447 DOI: 10.1021/acs.jpcb.4c03457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Polyphosphate (polyP) is one of the most conserved biomacromolecules and can form aggregates, such as polyP granules in bacteria, which are generated through liquid-liquid phase separation (LLPS). Studies have examined the mechanism of polyP aggregation using LLPS systems containing artificial polyP molecules as aggregation system models, where LLPS is typically induced by multivalent salts and polyelectrolytes. Although the typical concentrations of monovalent ions in living cells are approximately 100 times higher than those of divalent ions, the effects of monovalent ions on the LLPS of polyP solutions are little known. This study demonstrated that submolar NaCl induces LLPS of polyP solutions, whereas other monovalent salts did not induce LLPS at the same concentrations. Small-angle X-ray scattering measurements revealed that NaCl significantly stabilizes the intermolecular association of polyP, inducing LLPS. These findings suggest that the modulation of monovalent ion concentrations is an underlying mechanism of polyP aggregate formation and deformation within living cells.
Collapse
Affiliation(s)
- Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Azusa Togo
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
3
|
Chawla R, Tom JKA, Boyd T, Tu NH, Bai T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. Nat Commun 2024; 15:9258. [PMID: 39462120 PMCID: PMC11513989 DOI: 10.1038/s41467-024-53469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
The inorganic biopolymer polyphosphate (polyP) occurs in all domains of life and affects myriad cellular processes. A longstanding observation is polyP's frequent proximity to chromatin, and, in many bacteria, its occurrence as magnesium (Mg2+)-enriched condensates embedded in the nucleoid region, particularly in response to stress. The physical basis of the interaction between polyP, DNA and Mg2+, and the resulting effects on the organization of the nucleoid and polyP condensates, remain poorly understood. Here, using a minimal system of polyP, Mg2+, and DNA, we find that DNA can form shells around polyP-Mg2+ condensates. These shells show reentrant behavior, that is, they form within a window of Mg2+ concentrations, representing a tunable architecture with potential relevance in other multicomponent condensates. This surface association tunes condensate size and DNA morphology in a manner dependent on DNA length and concentration, even at DNA concentrations orders of magnitude lower than found in the cell. Our work also highlights the remarkable capacity of two primordial inorganic species to organize DNA.
Collapse
Affiliation(s)
- Ravi Chawla
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- Chakra Techworks Inc., San Diego, CA, USA
| | - Jenna K A Tom
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Nicholas H Tu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Tanxi Bai
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ashok A Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Lisa R Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Parrell D, Olson J, Lemke RA, Donohue TJ, Wright ER. Quantitative Analysis of Rhodobacter sphaeroides Storage Organelles via Cryo-Electron Tomography and Light Microscopy. Biomolecules 2024; 14:1006. [PMID: 39199393 PMCID: PMC11352279 DOI: 10.3390/biom14081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Bacterial cytoplasmic organelles are diverse and serve many varied purposes. Here, we employed Rhodobacter sphaeroides to investigate the accumulation of carbon and inorganic phosphate in the storage organelles, polyhydroxybutyrate (PHB) and polyphosphate (PP), respectively. Using cryo-electron tomography (cryo-ET), these organelles were observed to increase in size and abundance when growth was arrested by chloramphenicol treatment. The accumulation of PHB and PP was quantified from three-dimensional (3D) segmentations in cryo-tomograms and the analysis of these 3D models. The quantification of PHB using both segmentation analysis and liquid chromatography and mass spectrometry (LCMS) each demonstrated an over 10- to 20-fold accumulation of PHB. The cytoplasmic location of PHB in cells was assessed with fluorescence light microscopy using a PhaP-mNeonGreen fusion-protein construct. The subcellular location and enumeration of these organelles were correlated by comparing the cryo-ET and fluorescence microscopy data. A potential link between PHB and PP localization and possible explanations for co-localization are discussed. Finally, the study of PHB and PP granules, and their accumulation, is discussed in the context of advancing fundamental knowledge about bacterial stress response, the study of renewable sources of bioplastics, and highly energetic compounds.
Collapse
Affiliation(s)
- Daniel Parrell
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Joseph Olson
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
| | - Rachelle A. Lemke
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Elizabeth R. Wright
- Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA; (D.P.); (J.O.)
- Wisconsin Energy Institute, University of Wisconsin—Madison, Madison, WI 53726, USA;
- Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, WI 53726, USA
- Cryo-Electron Microscopy Research Center, Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin—Madison, Madison, WI 53706, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
5
|
Zhou Y, Yan A, Yang J, He W, Guo S, Li Y, Wu J, Dai Y, Pan X, Cui D, Pereira O, Teng W, Bi R, Chen S, Fan L, Wang P, Liao Y, Qin W, Sui SF, Zhu Y, Zhang C, Liu Z. Ultrastructural insights into cellular organization, energy storage and ribosomal dynamics of an ammonia-oxidizing archaeon from oligotrophic oceans. Front Microbiol 2024; 15:1367658. [PMID: 38737410 PMCID: PMC11082331 DOI: 10.3389/fmicb.2024.1367658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Nitrososphaeria, formerly known as Thaumarchaeota, constitute a diverse and widespread group of ammonia-oxidizing archaea (AOA) inhabiting ubiquitously in marine and terrestrial environments, playing a pivotal role in global nitrogen cycling. Despite their importance in Earth's ecosystems, the cellular organization of AOA remains largely unexplored, leading to a significant unanswered question of how the machinery of these organisms underpins metabolic functions. Methods In this study, we combined spherical-chromatic-aberration-corrected cryo-electron tomography (cryo-ET), scanning transmission electron microscopy (STEM), and energy dispersive X-ray spectroscopy (EDS) to unveil the cellular organization and elemental composition of Nitrosopumilus maritimus SCM1, a representative member of marine Nitrososphaeria. Results and Discussion Our tomograms show the native ultrastructural morphology of SCM1 and one to several dense storage granules in the cytoplasm. STEM-EDS analysis identifies two types of storage granules: one type is possibly composed of polyphosphate and the other polyhydroxyalkanoate. With precise measurements using cryo-ET, we observed low quantity and density of ribosomes in SCM1 cells, which are in alignment with the documented slow growth of AOA in laboratory cultures. Collectively, these findings provide visual evidence supporting the resilience of AOA in the vast oligotrophic marine environment.
Collapse
Affiliation(s)
- Yangkai Zhou
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - An Yan
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiawen Yang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shuai Guo
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yifan Li
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jing Wu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanchao Dai
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Xijiang Pan
- Shanghai NanoPort, Thermo Fisher Scientific Inc., Shanghai, China
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Olivier Pereira
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institut AMU-WUT, Aix-Marseille Université and Wuhan University of Technology, Wuhan, Hubei, China
| | - Wenkai Teng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ran Bi
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Peiyi Wang
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan Liao
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Qin
- School of Biological Sciences and Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
| | - Sen-Fang Sui
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structures, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
- Advanced Institute for Ocean Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zheng Liu
- Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Khanna K, Welch MD. Cryo-electron tomography of stationary phase Burkholderia thailandensis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001178. [PMID: 38725941 PMCID: PMC11079643 DOI: 10.17912/micropub.biology.001178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Burkholderia species belonging to the pseudomallei group include significant human and animal pathogens as well as the non-pathogenic species Burkholderia thailandensis . These bacteria co-opt the host cell machinery for their replication and spread between host cells. Thus, it is of interest to understand the structural features of these cells that contribute to host cell colonization and virulence. This study provides high-resolution cryo-electron tomograms of stationary phase Burkholderia thailandensis . It reveals the presence of compact nucleoids and storage granules, as well as examples of the type III secretion system and chemoreceptor arrays. The data can be used to investigate the near-atomic structure of stationary-phase bacterial macromolecules, such as ribosomes.
Collapse
Affiliation(s)
- Kanika Khanna
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
7
|
Benisch R, Andreas MP, Giessen TW. A widespread bacterial protein compartment sequesters and stores elemental sulfur. SCIENCE ADVANCES 2024; 10:eadk9345. [PMID: 38306423 PMCID: PMC10836720 DOI: 10.1126/sciadv.adk9345] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Subcellular compartments often serve to store nutrients or sequester labile or toxic compounds. As bacteria mostly do not possess membrane-bound organelles, they often have to rely on protein-based compartments. Encapsulins are one of the most prevalent protein-based compartmentalization strategies found in prokaryotes. Here, we show that desulfurase encapsulins can sequester and store large amounts of crystalline elemental sulfur. We determine the 1.78-angstrom cryo-EM structure of a 24-nanometer desulfurase-loaded encapsulin. Elemental sulfur crystals can be formed inside the encapsulin shell in a desulfurase-dependent manner with l-cysteine as the sulfur donor. Sulfur accumulation can be influenced by the concentration and type of sulfur source in growth medium. The selectively permeable protein shell allows the storage of redox-labile elemental sulfur by excluding cellular reducing agents, while encapsulation substantially improves desulfurase activity and stability. These findings represent an example of a protein compartment able to accumulate and store elemental sulfur.
Collapse
Affiliation(s)
- Robert Benisch
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael P. Andreas
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tobias W. Giessen
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Chawla R, Tom JKA, Boyd T, Grotjahn DA, Park D, Deniz AA, Racki LR. Reentrant DNA shells tune polyphosphate condensate size. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557044. [PMID: 37745474 PMCID: PMC10515899 DOI: 10.1101/2023.09.13.557044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The ancient, inorganic biopolymer polyphosphate (polyP) occurs in all three domains of life and affects myriad cellular processes. An intriguing feature of polyP is its frequent proximity to chromatin, and in the case of many bacteria, its occurrence in the form of magnesium-enriched condensates embedded in the nucleoid, particularly in response to stress. The physical basis of the interaction between polyP and DNA, two fundamental anionic biopolymers, and the resulting effects on the organization of both the nucleoid and polyP condensates remain poorly understood. Given the essential role of magnesium ions in the coordination of polymeric phosphate species, we hypothesized that a minimal system of polyP, magnesium ions, and DNA (polyP-Mg2+-DNA) would capture key features of the interplay between the condensates and bacterial chromatin. We find that DNA can profoundly affect polyP-Mg2+ coacervation even at concentrations several orders of magnitude lower than found in the cell. The DNA forms shells around polyP-Mg2+ condensates and these shells show reentrant behavior, primarily forming in the concentration range close to polyP-Mg2+ charge neutralization. This surface association tunes both condensate size and DNA morphology in a manner dependent on DNA properties, including length and concentration. Our work identifies three components that could form the basis of a central and tunable interaction hub that interfaces with cellular interactors. These studies will inform future efforts to understand the basis of polyP granule composition and consolidation, as well as the potential capacity of these mesoscale assemblies to remodel chromatin in response to diverse stressors at different length and time scales.
Collapse
Affiliation(s)
| | | | - Tumara Boyd
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Ashok A. Deniz
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Lisa R. Racki
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
9
|
Wang J, Tao Y, Juan Y, Zhou H, Zhao X, Cheng X, Wang X, Quan X, Li J, Huang K, Wei W, Zhao J. Hierarchical Assembly of Flexible Biopolymer Polyphosphate-Manganese into Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203200. [PMID: 36084167 DOI: 10.1002/smll.202203200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Polyphosphate (polyP) is one of the most compact inorganic polyanionic biopolymers that participates in various physiological processes. However, the development of polyP-based nanomaterials is still in its infancy. Here, biocompatible polyphosphate-manganese nanosheets are designed and synthesized by a hierarchical assembly strategy. The thickness and the lateral size of the resulting polyP-Mn nanosheets (PMNSs) are 5 nm and 120-130 nm, respectively. Molecular dynamics simulations suggested that the polyP-hexadecyl trimethyl ammonium bromide flat structure possesses a strong aggregating capacity and serves as the template for the 2D assembly of polyP-Mn. The PMNSs can activate the inflammatory response of macrophages resulting in the recovery of innate immunological functions to inhibit tumor proliferation. This work has initiated a new direction in constructing layered polyP-based nanomaterials and provides guidance for biocompatible and biodegradable biopolymer-based materials in the regulation of innate responses.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Yucheng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Yewen Juan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
| | - Hang Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiaomei Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
| | - Xuebo Quan
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Junyan Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Kai Huang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518067, China
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210008, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210008, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518057, China
| |
Collapse
|
10
|
The Histone H1-Like Protein AlgP Facilitates Even Spacing of Polyphosphate Granules in Pseudomonas aeruginosa. mBio 2022; 13:e0246321. [PMID: 35435704 PMCID: PMC9239181 DOI: 10.1128/mbio.02463-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Synthesis of polyphosphate (polyP) is an ancient and universal stress and starvation response in bacteria. In many bacteria, polyP chains come together to form granular superstructures within cells. Some species appear to regulate polyP granule subcellular organization. Despite the critical role of polyP in starvation fitness, the composition of these structures, mechanism(s) underpinning their organization, and functional significance of such organization are poorly understood. We previously determined that granules become transiently evenly spaced on the cell’s long axis during nitrogen starvation in the opportunistic human pathogen Pseudomonas aeruginosa. Here, we developed a granule-enrichment protocol to screen for polyP granule-localizing proteins. We identified AlgP as a protein that associates with polyP granules. We further discovered that AlgP is required for the even spacing of polyP granules. AlgP is a DNA-binding protein with a 154 amino acid C-terminal domain enriched in “KPAA” repeats and variants of this repeat, with an overall sequence composition similar to the C-terminal tail of eukaryotic histone H1. Granule size, number, and spacing are significantly perturbed in the absence of AlgP, or when AlgP is truncated to remove the C-terminus. The ΔalgP and algPΔCTD mutants have fewer, larger granules. We speculate that AlgP may contribute to spacing by tethering polyP granules to the chromosome, thereby inhibiting fusion with neighboring granules. Our discovery that AlgP facilitates granule spacing allows us for the first time to directly uncouple granule biogenesis from even spacing, and will inform future efforts to explore the functional significance of granule organization on fitness during starvation.
Collapse
|
11
|
Sexton DL, Burgold S, Schertel A, Tocheva EI. Super-resolution confocal cryo-CLEM with cryo-FIB milling for in situ imaging of Deinococcus radiodurans. Curr Res Struct Biol 2022; 4:1-9. [PMID: 34977598 PMCID: PMC8688812 DOI: 10.1016/j.crstbi.2021.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
Studying bacterial cell envelope architecture with electron microscopy is challenging due to the poor preservation of microbial ultrastructure with traditional methods. Here, we established and validated a super-resolution cryo-correlative light and electron microscopy (cryo-CLEM) method, and combined it with cryo-focused ion beam (cryo-FIB) milling and scanning electron microscopy (SEM) volume imaging to structurally characterize the bacterium Deinococcus radiodurans. Subsequent cryo-electron tomography (cryo-ET) revealed an unusual diderm cell envelope architecture with a thick layer of peptidoglycan (PG) between the inner and outer membranes, an additional periplasmic layer, and a proteinaceous surface S-layer. Cells grew in tetrads, and division septa were formed by invagination of the inner membrane (IM), followed by a thick layer of PG. Cytoskeletal filaments, FtsA and FtsZ, were observed at the leading edges of constricting septa. Numerous macromolecular complexes were found associated with the cytoplasmic side of the IM. Altogether, our study revealed several unique ultrastructural features of D. radiodurans cells, opening new lines of investigation into the physiology and evolution of the bacterium. User-friendly, commercially available method for correlative cryo-super resolution light microscopy (LM) and cryo-FIB-milling. Cryo-super resolution LM, cryo-FIB milling, cryo-SEM volume imaging, and cryo-electron tomography (cryo-ET) to study Deinococcus radiodurans. Unique D. radiodurans cell envelope is composed of two membranes, thick peptidoglycan, an additional layer, and an S-layer. Cytoskeletal filaments FtsA and FtsZ were observed at the leading edges of division septa.
Collapse
Affiliation(s)
- Danielle L Sexton
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Abstract
The bacterial flagellar motor is a complex macromolecular machine whose function and self-assembly present a fascinating puzzle for structural biologists. Here, we report that in diverse bacterial species, cell lysis leads to loss of the cytoplasmic switch complex and associated ATPase before other components of the motor. This loss may be prevented by the formation of a cytoplasmic vesicle around the complex. These observations suggest a relatively loose association of the switch complex with the rest of the flagellar machinery. IMPORTANCE We show in eight different bacterial species (belonging to different phyla) that the flagellar motor loses its cytoplasmic switch complex upon cell lysis, while the rest of the flagellum remains attached to the cell body. This suggests an evolutionary conserved weak interaction between the switch complex and the rest of the flagellum which is important to understand how the motor evolved. In addition, this information is crucial for mimicking such nanomachines in the laboratory.
Collapse
|
13
|
Rosigkeit H, Kneißle L, Obruča S, Jendrossek D. The Multiple Roles of Polyphosphate in Ralstonia eutropha and Other Bacteria. Microb Physiol 2021; 31:163-177. [PMID: 34015783 DOI: 10.1159/000515741] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/06/2021] [Indexed: 11/19/2022]
Abstract
An astonishing variety of functions has been attributed to polyphosphate (polyP) in prokaryotes. Besides being a reservoir of phosphorus, functions in exopolysaccharide formation, motility, virulence and in surviving various forms of stresses such as exposure to heat, extreme pH, oxidative agents, high osmolarity, heavy metals and others have been ascribed to polyP. In this contribution, we will provide a historical overview on polyP, will then describe the key proteins of polyP synthesis, the polyP kinases, before we will critically assess of the underlying data on the multiple functions of polyP and provide evidence that - with the exception of a P-storage-function - most other functions of polyP are not relevant for survival of Ralstonia eutropha, a biotechnologically important beta-proteobacterial species.
Collapse
Affiliation(s)
- Hanna Rosigkeit
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Lea Kneißle
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| | - Stanislav Obruča
- Faculty of Chemistry, Brno University of Technology, Brno, Czechia
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
14
|
Single- or double-membrane-bound vesicles and P, Ca, and Fe-containing granules in Xanthomonas citri cultured on a solid medium. Micron 2021; 143:103024. [PMID: 33549851 DOI: 10.1016/j.micron.2021.103024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 11/21/2022]
Abstract
The organelle-like structures of Xanthomonas citri, a bacterial pathogen that causes citrus canker, were investigated using an analytical transmission electron microscope. After high-pressure freezing, the bacteria were then freeze-substituted for imaging and element analysis. Miniscule electron-dense structures of varying shapes without a membrane enclosure were frequently observed near the cell poles in a 3-day culture. The bacteria formed cytoplasmic electron-dense spherical structures measuring approximately 50 nm in diameter. Furthermore, X. citri produced electron-dense or translucent ellipsoidal intracellular or extracellular granules. Single- or double-membrane-bound vesicles, including outer-inner membrane vesicles, were observed both inside and outside the cells. Most cells had been lysed in the 3-week X. citri culture, but they harbored one or two electron-dense spherical structures. Contrast-inverted scanning transmission electron microscopy images revealed distinct white spherical structures within the cytoplasm of X. citri. Likewise, energy-dispersive X-ray spectrometry showed the spatial heterogeneity and co-localization of phosphorus, oxygen, calcium, and iron only in the cytoplasmic electron-dense spherical structures, thus corroborating the nature of polyphosphate granules.
Collapse
|
15
|
Suess PM, Smith SA, Morrissey JH. Platelet polyphosphate induces fibroblast chemotaxis and myofibroblast differentiation. J Thromb Haemost 2020; 18:3043-3052. [PMID: 32808449 PMCID: PMC7719587 DOI: 10.1111/jth.15066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Platelets secrete many pro-wound healing molecules such as growth factors and cytokines. We found that releasates from activated human platelets induced the differentiation of cultured murine and human fibroblasts into a myofibroblast phenotype. Surprisingly, most of this differentiation-inducing activity was heat-stable, suggesting it was not due to the protein component of the releasates. Inorganic polyphosphate is a major constituent of platelet-dense granules and promotes blood coagulation and inflammation. OBJECTIVES We aim to investigate the contribution of polyphosphate on myofibroblast differentiating activity of platelet releasates. METHODS Using NIH-3T3 cells and primary human fibroblasts, we examined the effect of human platelet releasates and chemically synthesized polyphosphate on fibroblast differentiation and migration. RESULTS We found that the myofibroblast-inducing activity of platelet releasates was severely attenuated after incubation with a polyphosphate-degrading enzyme, and that fibroblasts responded to platelet-sized polyphosphate by increased levels of α-smooth muscle actin, stress fibers, and collagen. Furthermore, fibroblasts were chemotactic toward polyphosphate. CONCLUSIONS These findings indicate that platelet-derived polyphosphate acts as a cell signaling molecule by inducing murine and human fibroblasts to differentiate into myofibroblasts, a cell type known to drive both wound healing and fibrosing diseases. Polyphosphate therefore not only promotes early wound responses through enhancing fibrin clot formation, but also may play roles in the later stages of wound healing, and, potentially, progression of fibrotic diseases, by recruiting fibroblasts and inducing their differentiation into myofibroblasts.
Collapse
Affiliation(s)
- Patrick M. Suess
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
16
|
Abstract
How do organisms deal with free iron? On the one hand, iron is an essential metal that plays crucial structural and functional roles in many organisms. On the other hand, free iron is extremely toxic, particularly under aerobic conditions, where iron rapidly undergoes the Fenton reaction and produces highly reactive hydroxyl radicals. Our study now demonstrates that we have discovered one of the first physiologically relevant nonproteinaceous iron chelators and Fenton inhibitors. We found that polyphosphate, a highly conserved and ubiquitous inorganic polyanion, chelates iron and, through its multivalency, prevents the interaction of iron with peroxide and therefore the formation of hydroxyl radicals. We show that polyP provides a crucial iron reservoir for metalloproteins under nonstress conditions and effectively chelates free iron during iron stress. Importantly, polyP is present in all cells and organisms and hence is likely to take on this crucial function in both prokaryotic and eukaryotic cells. Maintaining cellular iron homeostasis is critical for organismal survival. Whereas iron depletion negatively affects the many metabolic pathways that depend on the activity of iron-containing enzymes, any excess of iron can cause the rapid formation of highly toxic reactive oxygen species (ROS) through Fenton chemistry. Although several cellular iron chelators have been identified, little is known about if and how organisms can prevent the Fenton reaction. By studying the effects of cisplatin, a commonly used anticancer drug and effective antimicrobial, we discovered that cisplatin elicits severe iron stress and oxidative DNA damage in bacteria. We found that both of these effects are successfully prevented by polyphosphate (polyP), an abundant polymer consisting solely of covalently linked inorganic phosphates. Subsequent in vitro and in vivo studies revealed that polyP provides a crucial iron reservoir under nonstress conditions and effectively complexes free iron and blocks ROS formation during iron stress. These results demonstrate that polyP, a universally conserved biomolecule, plays a hitherto unrecognized role as an iron chelator and an inhibitor of the Fenton reaction.
Collapse
|
17
|
Holland AT, Bergk Pinto B, Layton R, Williamson CJ, Anesio AM, Vogel TM, Larose C, Tranter M. Over Winter Microbial Processes in a Svalbard Snow Pack: An Experimental Approach. Front Microbiol 2020; 11:1029. [PMID: 32547512 PMCID: PMC7273115 DOI: 10.3389/fmicb.2020.01029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Snow packs cover large expanses of Earth’s land surface, making them integral components of the cryosphere in terms of past climate and atmospheric proxies, surface albedo regulators, insulators for other Arctic environments and habitats for diverse microbial communities such as algae, bacteria and fungi. Yet, most of our current understanding of snow pack environments, specifically microbial activity and community interaction, is limited to the main microbial growing season during spring ablation. At present, little is known about microbial activity and its influence on nutrient cycling during the subfreezing temperatures and 24-h darkness of the polar winter. Here, we examined microbial dynamics in a simulated cold (−5°C), dark snow pack to determine polar winter season microbial activity and its dependence on critical nutrients. Snow collected from Ny-Ålesund, Svalbard was incubated in the dark over a 5-week period with four different nutrient additions, including glacial mineral particles, dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and a combined treatment of DIN plus DIP. Data indicate a consumption of dissolved inorganic nutrients, particularly DIN, by heterotrophic communities, suggesting a potential nitrogen limitation, contradictory to phosphorus limitations found in most aquatic environments. 16S amplicon sequencing also reveal a clear difference in microbial community composition in the particulate mineral treatment compared to dissolved nutrient treatments and controls, suggesting that certain species of heterotrophs living within the snow pack are more likely to associate with particulates. Particulate phosphorus analyses indicate a potential ability of heterotrophic communities to access particulate sources of phosphorous, possibly explaining the lack of phosphorus limitation. These findings have importance for understanding microbial activity during the polar winter season and its potential influences on the abundance and bioavailability of nutrients released to surface ice and downstream environments during the ablation season.
Collapse
Affiliation(s)
- Alexandra T Holland
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Benoît Bergk Pinto
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Rose Layton
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France.,ENOVEO, Lyon, France
| | - Christopher J Williamson
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Copenhagen, Denmark
| | - Timothy M Vogel
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Catherine Larose
- Environmental Microbial Genomics, CNRS, École Centrale de Lyon, Université de Lyon, Lyon, France
| | - Martyn Tranter
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
18
|
Bacterial flagellar motor PL-ring disassembly subcomplexes are widespread and ancient. Proc Natl Acad Sci U S A 2020; 117:8941-8947. [PMID: 32241888 PMCID: PMC7183148 DOI: 10.1073/pnas.1916935117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In order to understand the evolution of complex biological machines like the bacterial flagellar motor, it is crucial to know what each component does and when it arose. Here, we show that a subcomplex of the motor thought to act as a bushing for the spinning motor likely also serves another function—it plugs the hole in the outer membrane left when the flagellum disassembles. Moreover, this component and function is ancient, since it appears in diverse phyla without evidence of recent gene transfer. The bacterial flagellum is an amazing nanomachine. Understanding how such complex structures arose is crucial to our understanding of cellular evolution. We and others recently reported that in several Gammaproteobacterial species, a relic subcomplex comprising the decorated P and L rings persists in the outer membrane after flagellum disassembly. Imaging nine additional species with cryo-electron tomography, here, we show that this subcomplex persists after flagellum disassembly in other phyla as well. Bioinformatic analyses fail to show evidence of any recent horizontal transfers of the P- and L-ring genes, suggesting that this subcomplex and its persistence is an ancient and conserved feature of the flagellar motor. We hypothesize that one function of the P and L rings is to seal the outer membrane after motor disassembly.
Collapse
|
19
|
Biopearling of Interconnected Outer Membrane Vesicle Chains by a Marine Flavobacterium. Appl Environ Microbiol 2019; 85:AEM.00829-19. [PMID: 31324630 DOI: 10.1128/aem.00829-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/06/2019] [Indexed: 01/25/2023] Open
Abstract
Large surface-to-volume ratios provide optimal nutrient uptake conditions for small microorganisms in oligotrophic habitats. The surface area can be increased with appendages. Here, we describe chains of interconnecting vesicles protruding from cells of strain Hel3_A1_48, affiliating with Formosa spp. within the Flavobacteriia and originating from coastal free-living bacterioplankton. The chains were up to 10 μm long and had vesicles emanating from the outer membrane with a single membrane and a size of 80 to 100 nm by 50 to 80 nm. Cells extruded membrane tubes in the exponential phase, whereas vesicle chains dominated on cells in the stationary growth phase. This formation is known as pearling, a physical morphogenic process in which membrane tubes protrude from liposomes and transform into chains of interconnected vesicles. Proteomes of whole-cell membranes and of detached vesicles were dominated by outer membrane proteins, including the type IX secretion system and surface-attached peptidases, glycoside hydrolases, and endonucleases. Fluorescein-labeled laminarin stained the cells and the vesicle chains. Thus, the appendages provide binding domains and degradative enzymes on their surfaces and probably storage volume in the vesicle lumen. Both may contribute to the high abundance of these Formosa-affiliated bacteria during laminarin utilization shortly after spring algal blooms.IMPORTANCE Microorganisms produce membrane vesicles. One synthesis pathway seems to be pearling that describes the physical formation of vesicle chains from phospholipid vesicles via extended tubes. Bacteria with vesicle chains had been observed as well as bacteria with tubes, but pearling was so far not observed. Here, we report the observation of, initially, tubes and then vesicle chains during the growth of a flavobacterium, suggesting biopearling of vesicle chains. The flavobacterium is abundant during spring bacterioplankton blooms developing after algal blooms and has a special set of enzymes for laminarin, the major storage polysaccharide of microalgae. We demonstrated with fluorescently labeled laminarin that the vesicle chains bind laminarin or contain laminarin-derived compounds. Proteomic analyses revealed surface-attached degradative enzymes on the outer membrane vesicles. We conclude that the large surface area and the lumen of vesicle chains may contribute to the ecological success of this marine bacterium.
Collapse
|
20
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
21
|
Santarriaga S, Fikejs A, Scaglione J, Scaglione KM. A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development. mSphere 2019; 4:e00314-19. [PMID: 31217303 PMCID: PMC6584373 DOI: 10.1128/msphere.00314-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/04/2019] [Indexed: 11/20/2022] Open
Abstract
The social amoeba Dictyostelium discoideum's proteome contains a vast array of simple sequence repeats, providing a unique model to investigate proteostasis. Upon conditions of cellular stress, D. discoideum undergoes a developmental process, transitioning from a unicellular amoeba to a multicellular fruiting body. Little is known about how proteostasis is maintained during D. discoideum's developmental process. Here, we have identified a novel α-crystallin domain-containing protein, heat shock protein 48 (HSP48), that is upregulated during D. discoideum development. HSP48 functions in part by forming a biomolecular condensate via its highly positively charged intrinsically disordered carboxy terminus. In addition to HSP48, the highly negatively charged primordial chaperone polyphosphate is also upregulated during D. discoideum development, and polyphosphate functions to stabilize HSP48. Upon germination, levels of both HSP48 and polyphosphate dramatically decrease, consistent with a role for HSP48 and polyphosphate during development. Together, our data demonstrate that HSP48 is strongly induced during Dictyostelium discoideum development. We also demonstrate that HSP48 forms a biomolecular condensate and that polyphosphate is necessary to stabilize the HSP48 biomolecular condensate.IMPORTANCE During cellular stress, many microbes undergo a transition to a dormant state. This includes the social amoeba Dictyostelium discoideum that transitions from a unicellular amoeba to a multicellular fruiting body upon starvation. In this work, we identify heat shock protein 48 (HSP48) as a chaperone that is induced during development. We also show that HSP48 forms a biomolecular condensate and is stabilized by polyphosphate. The findings here identify Dictyostelium discoideum as a novel microbe to investigate protein quality control pathways during the transition to dormancy.
Collapse
Affiliation(s)
| | - Alicia Fikejs
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jamie Scaglione
- Department of Computational and Physical Sciences, Carroll University, Waukesha, Wisconsin, USA
| | - K Matthew Scaglione
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
22
|
Chandramohan A, Duprat E, Remusat L, Zirah S, Lombard C, Kish A. Novel Mechanism for Surface Layer Shedding and Regenerating in Bacteria Exposed to Metal-Contaminated Conditions. Front Microbiol 2019; 9:3210. [PMID: 30697196 PMCID: PMC6341005 DOI: 10.3389/fmicb.2018.03210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/11/2018] [Indexed: 12/17/2022] Open
Abstract
Surface layers (S-layers) are components of the cell walls throughout the Bacteria and the Archaea that provide protection for microorganisms against diverse environmental stresses, including metal stress. We have previously characterized the process by which S-layers serve as a nucleation site for metal mineralization in an archaeon for which the S-layer represents the only cell wall component. Here, we test the hypothesis originally proposed in cyanobacteria that a “shedding” mechanism exists for replacing S-layers that have become mineral-encrusted, using Lysinibacillus sp. TchIII 20n38, metallotolerant gram-positive bacterium, as a model organism. We characterize for the first time a mechanism for resistance to metals through S-layer shedding and regeneration. S-layers nucleate the formation of Fe-mineral on the cell surface, depending on physiological state of the cells and metal exposure times, leading to the encrustation of the S-layer and changes in the cell morphology as observed by scanning electron microscopy. Using Nanoscale Secondary Ion Mass Spectrometry, we show that mineral-encrusted S-layers are shed by the bacterial cells after a period of latency (2 days under the conditions tested) in a heterogeneous fashion likely reflecting natural variations in metal stress resistance. The emerging cells regenerate new S-layers as part of their cell wall structure. Given the wide diversity of S-layer bearing prokaryotes, S-layer shedding may represent an important mechanism for microbial survival in metal-contaminated environments.
Collapse
Affiliation(s)
- Archjana Chandramohan
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, CNRS UMR 7245, Paris, France
| | - Elodie Duprat
- Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD UMR 206, Paris, France
| | - Laurent Remusat
- Institut de Minéralogie, Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS UMR 7590, IRD UMR 206, Paris, France
| | - Severine Zirah
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, CNRS UMR 7245, Paris, France
| | - Carine Lombard
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, CNRS UMR 7245, Paris, France
| | - Adrienne Kish
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM), Muséum National d'Histoire Naturelle, CNRS UMR 7245, Paris, France
| |
Collapse
|
23
|
Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro. Mar Drugs 2018; 16:md16090322. [PMID: 30201855 PMCID: PMC6163655 DOI: 10.3390/md16090322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH2PO4, 11.76 mM of NaNO3, and 30.42 mM of Na2SO4. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30–70 nm and 10–30 nm, respectively. 4′,6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14–18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.
Collapse
|
24
|
Proteins with CHADs (Conserved Histidine α-Helical Domains) Are Attached to Polyphosphate Granules In Vivo and Constitute a Novel Family of Polyphosphate-Associated Proteins (Phosins). Appl Environ Microbiol 2017; 83:AEM.03399-16. [PMID: 28130300 DOI: 10.1128/aem.03399-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 01/13/2023] Open
Abstract
On the basis of bioinformatic evidence, we suspected that proteins with a CYTH (CyaB thiamine triphosphatase) domain and/or a CHAD (conserved histidine α-helical domain) motif might represent polyphosphate (polyP) granule-associated proteins. We found no evidence of polyP targeting by proteins with CYTH domains. In contrast, two CHAD motif-containing proteins from Ralstonia eutropha H16 (A0104 and B1017) that were expressed as fusions with enhanced yellow fluorescent protein (eYFP) colocalized with polyP granules. While the expression of B1017 was not detectable, the A0104 protein was specifically identified in an isolated polyP granule fraction by proteome analysis. Moreover, eYFP fusions with the CHAD motif-containing proteins MGMSRV2-1987 from Magnetospirillum gryphiswaldense and PP2307 from Pseudomonas putida also colocalized with polyP granules in a transspecies-specific manner. These data indicated that CHAD-containing proteins are generally attached to polyP granules. Together with the findings from four previously polyP-attached proteins (polyP kinases), the results of this study raised the number of polyP-associated proteins in R. eutropha to six. We suggest designating polyP granule-bound proteins with CHAD motifs as phosins (phosphate), analogous to phasins and oleosins that are specifically bound to the surface of polyhydroxyalkanoate (PHA) granules in PHA-accumulating bacteria and to oil droplets in oil seed plants, respectively.IMPORTANCE The importance of polyphosphate (polyP) for life is evident from the ubiquitous presence of polyP in all species on earth. In unicellular eukaryotic microorganisms, polyP is located in specific membrane-enclosed organelles, called acidocalcisomes. However, in most prokaryotes, polyP is present as insoluble granules that have been designated previously as volutin granules. Almost nothing is known regarding the macromolecular composition of polyP granules. Particularly, the absence or presence of cellular compounds on the surface of polyP granules has not yet been investigated. In this study, we identified a novel class of proteins that are attached to the surface of polyP granules in three model species of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria These proteins are characterized by the presence of a CHAD (conserved histidine α-helical domain) motif that functions as a polyP granule-targeting signal. We suggest designating CHAD motif-containing proteins as phosins [analogous to phasins for poly(3-hydroxybutyrate)-associated proteins and to oleosins for oil droplet-associated proteins in oil seed plants]. The expression of phosins in different species confirmed their polyP-targeting function in a transspecies-specific manner. We postulate that polyP granules in prokaryotic species generally have a complex surface structure that consists of one to several polyP kinases and phosin proteins. We suggest differentiating polyP granules from acidocalcisomes by designating them as polyphosphatosomes.
Collapse
|
25
|
Berditsch M, Trapp M, Afonin S, Weber C, Misiewicz J, Turkson J, Ulrich AS. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Sci Rep 2017; 7:44324. [PMID: 28295017 PMCID: PMC5353757 DOI: 10.1038/srep44324] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/06/2017] [Indexed: 11/25/2022] Open
Abstract
Many antimicrobial peptides are synthesized non-ribosomally in bacteria, but little is known about their subcellular route of biosynthesis, their mode of intracellular accumulation, or their role in the physiology of the producer cells. Here, we present a comprehensive view on the biosynthesis of gramicidin S (GS) in Aneurinibacillus migulanus, having observed a peripheral membrane localization of its synthetases. The peptide gets accumulated in nano-globules, which mature by fusion into larger granules and end up within vacuolar structures. These granules serve as energy storage devices, as they contain GS molecules that are non-covalently attached to alkyl phosphates and protect them from dephosphorylation and premature release of energy. This finding of a fundamentally new type of high-energy phosphate storage mechanism can explain the curious role of GS biosynthesis in the physiology of the bacterial producer cells. The unknown role of the GrsT protein, which is part of the non-ribosomal GS synthetase operon, can thus be assumed to be responsible for the biosynthesis of alkyl phosphates. GS binding to alkyl phosphates may suggest its general affinity to phosphagens such as ATP and GTP, which can represent the important intracellular targets in pathogenic bacteria.
Collapse
Affiliation(s)
- Marina Berditsch
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Mareike Trapp
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- KIT, Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| | - Christian Weber
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Julia Misiewicz
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Joana Turkson
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,KIT, Institute of Biological Interfaces (IBG-2), P.O.B. 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
26
|
Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2017; 114:E2440-E2449. [PMID: 28265086 DOI: 10.1073/pnas.1615575114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyphosphate (polyP) granule biogenesis is an ancient and ubiquitous starvation response in bacteria. Although the ability to make polyP is important for survival during quiescence and resistance to diverse environmental stresses, granule genesis is poorly understood. Using quantitative microscopy at high spatial and temporal resolution, we show that granule genesis in Pseudomonas aeruginosa is tightly organized under nitrogen starvation. Following nucleation as many microgranules throughout the nucleoid, polyP granules consolidate and become transiently spatially organized during cell cycle exit. Between 1 and 3 h after nitrogen starvation, a minority of cells have divided, yet the total granule number per cell decreases, total granule volume per cell dramatically increases, and individual granules grow to occupy diameters as large as ∼200 nm. At their peak, mature granules constitute ∼2% of the total cell volume and are evenly spaced along the long cell axis. Following cell cycle exit, granules initially retain a tight spatial organization, yet their size distribution and spacing relax deeper into starvation. Mutant cells lacking polyP elongate during starvation and contain more than one origin. PolyP promotes cell cycle exit by functioning at a step after DNA replication initiation. Together with the universal starvation alarmone (p)ppGpp, polyP has an additive effect on nucleoid dynamics and organization during starvation. Notably, cell cycle exit is temporally coupled to a net increase in polyP granule biomass, suggesting that net synthesis, rather than consumption of the polymer, is important for the mechanism by which polyP promotes completion of cell cycle exit during starvation.
Collapse
|
27
|
Tavormina PL, Kellermann MY, Antony CP, Tocheva EI, Dalleska NF, Jensen AJ, Valentine DL, Hinrichs K, Jensen GJ, Dubilier N, Orphan VJ. Starvation and recovery in the deep‐sea methanotroph
M
ethyloprofundus sedimenti. Mol Microbiol 2016; 103:242-252. [DOI: 10.1111/mmi.13553] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Patricia L. Tavormina
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Matthias Y. Kellermann
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | | | - Elitza I. Tocheva
- Department of Stomatology and Department of Biochemistry and Molecular MedicineUniversité de MontréalP. O. Box 6128 Station Centre‐VilleMontreal QCH3C 3J7 Canada
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nathan F. Dalleska
- Environmental Analysis CenterCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Ashley J. Jensen
- Division of Biology and Biological Engineering andCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - David L. Valentine
- Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta Barbara CA93106 USA
| | - Kai‐Uwe Hinrichs
- MARUM Center for Marine Environmental SciencesUniversity of Bremen, Leobener StrBremen28359 Germany
| | - Grant J. Jensen
- Division of Biology and Biological Engineering and Howard Hughes Medical InstituteCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| | - Nicole Dubilier
- Max Planck Institute for Marine MicrobiologyCelsiusstraße 1Bremen28359 Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary SciencesCalifornia Institute of Technology1200 E. California BlvdPasadena CA91125 USA
| |
Collapse
|
28
|
Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Sci Rep 2016; 6:35860. [PMID: 27796326 PMCID: PMC5087111 DOI: 10.1038/srep35860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/05/2016] [Indexed: 01/25/2023] Open
Abstract
Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.
Collapse
|
29
|
Abstract
Inorganic polyphosphate (polyP) accumulates in acidocalcisomes, acidic calcium stores that have been found from bacteria to human cells. Proton pumps, such as the vacuolar proton pyrophosphatase (V-H(+)-PPase or VP1), the vacuolar proton ATPase (V-H(+)-ATPase) or both, maintain their acidity. A vacuolar transporter chaperone (VTC) complex is involved in the synthesis and translocation of polyP to these organelles in several eukaryotes, such as yeast, trypanosomatids, Apicomplexan and algae. Studies in trypanosomatids have revealed the role of polyP and acidocalcisomes in osmoregulation and calcium signalling.
Collapse
|
30
|
Oikonomou CM, Chang YW, Jensen GJ. A new view into prokaryotic cell biology from electron cryotomography. Nat Rev Microbiol 2016; 14:205-20. [PMID: 26923112 PMCID: PMC5551487 DOI: 10.1038/nrmicro.2016.7] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.
Collapse
Affiliation(s)
- Catherine M Oikonomou
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Yi-Wei Chang
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| | - Grant J Jensen
- Howard Hughes Medical Institute; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125, USA
| |
Collapse
|
31
|
Oikonomou C, Swulius M, Briegel A, Beeby M, Yao Q, Chang YW, Jensen G. Electron cryotomography. METHODS IN MICROBIOLOGY 2016. [DOI: 10.1016/bs.mim.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Shen Y, Jarboe L, Brown R, Wen Z. A thermochemical–biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals. Biotechnol Adv 2015; 33:1799-813. [DOI: 10.1016/j.biotechadv.2015.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
33
|
Docampo R. The origin and evolution of the acidocalcisome and its interactions with other organelles. Mol Biochem Parasitol 2015; 209:3-9. [PMID: 26523947 DOI: 10.1016/j.molbiopara.2015.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/04/2015] [Accepted: 10/19/2015] [Indexed: 01/11/2023]
Abstract
Acidocalcisomes are acidic calcium stores that have been found from bacteria to human cells. They are rich in phosphorus compounds in the form of orthophosphate (Pi), pyrophosphate (PPi), and polyphosphate (polyP) and their acidity is maintained by proton pumps such as the vacuolar proton pyrophosphatase (V-H+-PPase, or VP1), the vacuolar proton ATPase (V-H+-ATPase), or both. Recent studies in trypanosomatids and in other species have revealed their role in phosphate metabolism, and cation and water homeostasis, as suggested by the presence of novel pumps, transporters, and channels. An important role in autophagy has also been described. The study of the biogenesis of acidocalcisomes as well as of the interactions of these lysosome-related organelles with other organelles have uncovered important roles in calcium signaling and osmoregulation. Significantly, despite conservation of acidocalcisomes across all of cellular life, there is evidence for intimate integration of these organelles with eukaryotic cellular functions, and which are directly relevant to parasites.
Collapse
Affiliation(s)
- Roberto Docampo
- Center for Tropical and Global Emerging Diseases and Department of Cellular Biology, University of Georgia, Athens 30602, USA; Departamento de Patología Clínica, Universidade Estadual de Campinas, São Paulo 13083-877, Brazil.
| |
Collapse
|
34
|
Delaplace P, Delory BM, Baudson C, Mendaluk-Saunier de Cazenave M, Spaepen S, Varin S, Brostaux Y, du Jardin P. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC PLANT BIOLOGY 2015; 15:195. [PMID: 26264238 PMCID: PMC4531529 DOI: 10.1186/s12870-015-0585-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/03/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. RESULTS An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. CONCLUSIONS This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the context of the inherent characteristics of our in vitro system, this paper identifies the next critical experimental steps and discusses them from both a fundamental and an applied perspective.
Collapse
Affiliation(s)
- Pierre Delaplace
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Benjamin M Delory
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Caroline Baudson
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | | | - Stijn Spaepen
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| | - Sébastien Varin
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Yves Brostaux
- University of Liège, Gembloux Agro-Bio Tech, Applied Statistics, Computer Science and Modeling, Passage des Déportés 2, 5030, Gembloux, Belgium.
| | - Patrick du Jardin
- University of Liège, Gembloux Agro-Bio Tech, Plant Biology, Passage des Déportés 2, 5030, Gembloux, Belgium.
| |
Collapse
|
35
|
WOLF SHARONGRAYER, REZ PETER, ELBAUM MICHAEL. Phosphorus detection in vitrified bacteria by cryo-STEM annular dark-field analysis. J Microsc 2015. [DOI: 10.1111/jmi.12289] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- SHARON GRAYER WOLF
- Department of Chemical Research Support; Weizmann Institute of Science; Rehovot Israel
| | - PETER REZ
- Department of Physics; Arizona State University; Tempe Arizona U.S.A
| | - MICHAEL ELBAUM
- Department of Materials and Interfaces; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
36
|
Müller A, Beeby M, McDowall AW, Chow J, Jensen GJ, Clemons WM. Ultrastructure and complex polar architecture of the human pathogen Campylobacter jejuni. Microbiologyopen 2014; 3:702-10. [PMID: 25065852 PMCID: PMC4234261 DOI: 10.1002/mbo3.200] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is one of the most successful food-borne human pathogens. Here we use electron cryotomography to explore the ultrastructure of C. jejuni cells in logarithmically growing cultures. This provides the first look at this pathogen in a near-native state at macromolecular resolution (~5 nm). We find a surprisingly complex polar architecture that includes ribosome exclusion zones, polyphosphate storage granules, extensive collar-shaped chemoreceptor arrays, and elaborate flagellar motors.
Collapse
Affiliation(s)
- Axel Müller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California, 91125
| | | | | | | | | | | |
Collapse
|
37
|
Wolf SG, Houben L, Elbaum M. Cryo-scanning transmission electron tomography of vitrified cells. Nat Methods 2014; 11:423-8. [DOI: 10.1038/nmeth.2842] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/23/2013] [Indexed: 01/26/2023]
|