1
|
Jiang Y, Liu J, Wei X, Wang R, Li Y, Liu Y, Xiao P, Cai Y, Shao J, Zhang Z. Biochar leachate reduces primary nitrogen assimilation by inhibiting nitrogen fixation and microbial nitrate assimilation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170608. [PMID: 38307291 DOI: 10.1016/j.scitotenv.2024.170608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Biochar contains biotoxic aromatic compounds, and their influence on nitrogen-fixing cyanobacteria, the critical nitrogen fixer in paddy soil, has never been tested. Here, the physiological, metabolomic, and transcriptomic analyses of Nostoc sp. PCC7120 in response to biochar leachate were performed. The results suggested that biochar leachate inhibited the efficiency of photosynthesis, nitrogen fixation, and nitrate assimilation activities of nitrogen-fixing cyanobacteria. Biochar leachate containing aromatic compounds and odd- and long-chain saturated fatty acids impaired the membrane structure and antenna pigments, damaged the D1 protein of the oxygen evolution complex, and eventually decreased the electron transfer chain activity of photosystem II. Moreover, the nitrogen fixation and nitrate assimilation abilities of nitrogen-fixing cyanobacteria were inhibited by a decrease in photosynthetic productivity. A decrease in iron absorption was another factor limiting nitrogen fixation efficiency. Our study highlights that biochar with relatively high contents of dissolved organic matter poses a risk to primary nitrogen assimilation reduction and ecosystem nitrogen loss. Further evidence of the potential negative effects of biochar leachates on the fixation and assimilation capacity of nitrogen by soil microbes is needed to evaluate the impact of biochar on soil multifunctionality prior to large-scale application.
Collapse
Affiliation(s)
- Yuexi Jiang
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China; College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Ji Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi' an, Shanxi, 710061, PR China; College of Urban and Environmental Sciences, Central China Normal University, Wuhan, Hubei, 430079, PR China; Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, 12587, Germany
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling, Shanxi, 712100, PR China
| | - Rumeng Wang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| | - Yanyan Li
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Yang Liu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, 325035, PR China
| | - Yixiang Cai
- Key Laboratory of Agro-ecological Processes in Subtropical Regions and the Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, PR China
| | - Jihai Shao
- College of Environment and Ecology, Hunan Agricultural University, Changsha, Hunan, 410128, PR China.
| | - Zhenhua Zhang
- College of Resources, Hunan Agricultural University, Changsha, Hunan, 410128, PR China
| |
Collapse
|
2
|
Oh Y, Oh JI. The RsfSR two-component system regulates SigF function by monitoring the state of the respiratory electron transport chain in Mycobacterium smegmatis. J Biol Chem 2024; 300:105764. [PMID: 38367670 PMCID: PMC10950880 DOI: 10.1016/j.jbc.2024.105764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
In Mycobacterium smegmatis, the transcriptional activity of the alternative sigma factor SigF is posttranslationally regulated by the partner switching system consisting of SigF, the anti-SigF RsbW1, and three anti-SigF antagonists (RsfA, RsfB, and RsbW3). We previously demonstrated that expression of the SigF regulon is strongly induced in the Δaa3 mutant of M. smegmatis lacking the aa3 cytochrome c oxidase, the major terminal oxidase in the respiratory electron transport chain. Here, we identified and characterized the RsfSR two-component system involved in regulating the phosphorylation state of the major anti-SigF antagonist RsfB. RsfS (MSMEG_6130) is a histidine kinase with the cyclase/histidine kinase-associated sensing extracellular 3 domain at its N terminus, and RsfR (MSMEG_6131) is a receiver domain-containing protein phosphatase 2C-type phosphatase that can dephosphorylate phosphorylated RsfB. We demonstrated that phosphorylation of RsfR on Asp74 by RsfS reduces the phosphatase activity of RsfR toward phosphorylated RsfB and that the cellular abundance of the active unphosphorylated RsfB is increased in the Δaa3 mutant relative to the WT strain. We also demonstrated that the RsfSR two-component system is required for induction of the SigF regulon under respiration-inhibitory conditions such as inactivation of the cytochrome bcc1 complex and aa3 cytochrome c oxidase, as well as hypoxia, electron donor-limiting, high ionic strength, and low pH conditions. Collectively, our results reveal a key regulatory element involved in regulating the SigF signaling system by monitoring the state of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, Korea; Microbiological Resource Research Institute, Pusan National University, Busan, Korea.
| |
Collapse
|
3
|
Dupuy P, Glickman MS. The C-Terminal Acid Phosphatase Module of the RNase HI Enzyme RnhC Controls Rifampin Sensitivity and Light-Dependent Colony Pigmentation of Mycobacterium smegmatis. J Bacteriol 2023; 205:e0043122. [PMID: 36916909 PMCID: PMC10127661 DOI: 10.1128/jb.00431-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/16/2023] [Indexed: 03/16/2023] Open
Abstract
RNase H enzymes participate in various processes that require processing of RNA-DNA hybrids, including DNA replication, transcription, and ribonucleotide excision from DNA. Mycobacteria encode multiple RNase H enzymes, and prior data indicate that RNase HI activity is essential for mycobacterial viability. However, the additional roles of mycobacterial RNase Hs are unknown, including whether RNase HII (RnhB and RnhD) excises chromosomal ribonucleotides misincorporated during DNA replication and whether individual RNase HI enzymes (RnhA and RnhC) mediate additional phenotypes. We find that loss of RNase HII activity in Mycobacterium smegmatis (through combined deletion of rnhB/rnhD) or individual RNase HI enzymes does not affect growth, hydroxyurea sensitivity, or mutagenesis, whereas overexpression (OE) of either RNase HII severely compromises bacterial viability. We also show that deletion of rnhC, which encodes a protein with an N-terminal RNase HI domain and a C-terminal acid phosphatase domain, confers sensitivity to rifampin and oxidative stress as well as loss of light-induced carotenoid pigmentation. These phenotypes are due to loss of the activity of the C-terminal acid phosphatase domain rather than the RNase HI activity, suggesting that the acid phosphatase activity may confer rifampin resistance through the antioxidant properties of carotenoid pigment production. IMPORTANCE Mycobacteria encode multiple RNase H enzymes, with RNase HI being essential for viability. Here, we examine additional functions of RNase H enzymes in mycobacteria. We find that RNase HII is not involved in mutagenesis but is highly toxic when overexpressed. The RNase HI enzyme RnhC is required for tolerance to rifampin, but this role is surprisingly independent of its RNase H activity and is instead mediated by an autonomous C-terminal acid phosphatase domain. This study provides new insights into the functions of the multiple RNase H enzymes of mycobacteria.
Collapse
Affiliation(s)
- Pierre Dupuy
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
| | - Michael S. Glickman
- Immunology Program, Sloan Kettering Institute, New York, New York, USA
- Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, New York, New York, USA
| |
Collapse
|
4
|
Oh Y, Lee HN, Ko EM, Jeong JA, Park SW, Oh JI. Mycobacterial Regulatory Systems Involved in the Regulation of Gene Expression Under Respiration-Inhibitory Conditions. J Microbiol 2023; 61:297-315. [PMID: 36847970 DOI: 10.1007/s12275-023-00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 03/01/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis. M. tuberculosis can survive in a dormant state within the granuloma, avoiding the host-mounting immune attack. M. tuberculosis bacilli in this state show increased tolerance to antibiotics and stress conditions, and thus the transition of M. tuberculosis to the nonreplicating dormant state acts as an obstacle to tuberculosis treatment. M. tuberculosis in the granuloma encounters hostile environments such as hypoxia, nitric oxide, reactive oxygen species, low pH, and nutrient deprivation, etc., which are expected to inhibit respiration of M. tuberculosis. To adapt to and survive in respiration-inhibitory conditions, it is required for M. tuberculosis to reprogram its metabolism and physiology. In order to get clues to the mechanism underlying the entry of M. tuberculosis to the dormant state, it is important to understand the mycobacterial regulatory systems that are involved in the regulation of gene expression in response to respiration inhibition. In this review, we briefly summarize the information regarding the regulatory systems implicated in upregulation of gene expression in mycobacteria exposed to respiration-inhibitory conditions. The regulatory systems covered in this review encompass the DosSR (DevSR) two-component system, SigF partner switching system, MprBA-SigE-SigB signaling pathway, cAMP receptor protein, and stringent response.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea
| | - Ha-Na Lee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Eon-Min Ko
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Ji-A Jeong
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea Disease Control and Prevention Agency, National Institute of Infectious Diseases, National Institute of Health, Osong, 28159, Republic of Korea
| | - Sae Woong Park
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
5
|
Gauthier DT, Doss JH, LaGatta M, Gupta T, Karls RK, Quinn FD. Genomic Degeneration and Reduction in the Fish Pathogen Mycobacterium shottsii. Microbiol Spectr 2022; 10:e0115821. [PMID: 35579461 PMCID: PMC9241763 DOI: 10.1128/spectrum.01158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/26/2022] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium shottsii is a dysgonic, nonpigmented mycobacterium originally isolated from diseased striped bass (Morone saxatilis) in the Chesapeake Bay, USA. Genomic analysis reveals that M. shottsii is a Mycobacterium ulcerans/Mycobacterium marinum clade (MuMC) member, but unlike the superficially similar M. pseudoshottsii, also isolated from striped bass, it is not an M. ulcerans ecovar, instead belonging to a transitional group of strains basal to proposed "Aronson" and "M" lineages. Although phylogenetically distinct from the human pathogen M. ulcerans, the M. shottsii genome shows parallel but nonhomologous genomic degeneration, including massive accumulation of pseudogenes accompanied by proliferation of unique insertion sequences (ISMysh01, ISMysh03), large-scale deletions, and genomic reorganization relative to typical M. marinum strains. Coupled with its observed ecological characteristics and loss of chromogenicity, the genomic structure of M. shottsii is suggestive of evolution toward a state of obligate pathogenicity, as observed for other Mycobacterium spp., including M. ulcerans, M. tuberculosis, and M. leprae. IMPORTANCE Morone saxatilis (striped bass) is an ecologically and economically important finfish species on the United States east coast. Mycobacterium shottsii and Mycobacterium pseudoshottsii were originally described in the early 2000s as novel species from outbreaks of visceral and dermal mycobacteriosis in this species. Biochemical and genetic characterization place these species within the Mycobacterium ulcerans/M. marinum clade (MuMC), and M. pseudoshottsii has been proposed as an ecovar of M. ulcerans. Here, we describe the complete genome of M. shottsii, demonstrating that it is clearly not an M. ulcerans ecovar; however, it has undergone parallel genomic modification suggestive of a transition to obligate pathogenicity. As in M. ulcerans, the M. shottsii genome demonstrates widespread pseudogene formation driven by proliferation of insertion sequences, as well as genomic reorganization. This work clarifies the phylogenetic position of M. shottsii relative to other MuMC members and provides insight into processes shaping its genomic structure.
Collapse
Affiliation(s)
- D. T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - J. H. Doss
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - M. LaGatta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - T. Gupta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - R. K. Karls
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - F. D. Quinn
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| |
Collapse
|
6
|
Ning H, Liang X, Xie Y, Bai L, Zhang W, Wang L, Kang J, Lu Y, Ma Y, Bai G, Bai Y. c-di-AMP Accumulation Regulates Growth, Metabolism, and Immunogenicity of Mycobacterium smegmatis. Front Microbiol 2022; 13:865045. [PMID: 35685938 PMCID: PMC9171234 DOI: 10.3389/fmicb.2022.865045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclic dimeric adenosine monophosphate (c-di-AMP) is a ubiquitous second messenger of bacteria involved in diverse physiological processes as well as host immune responses. MSMEG_2630 is a c-di-AMP phosphodiesterase (cnpB) of Mycobacterium smegmatis, which is homologous to Mycobacterium tuberculosis Rv2837c. In this study, cnpB-deleted (ΔcnpB), -complemented (ΔcnpB::C), and -overexpressed (ΔcnpB::O) strains of M. smegmatis were constructed to investigate the role of c-di-AMP in regulating mycobacterial physiology and immunogenicity. This study provides more precise evidence that elevated c-di-AMP level resulted in smaller colonies, shorter bacteria length, impaired growth, and inhibition of potassium transporter in M. smegmatis. This is the first study to report that elevated c-di-AMP level could inhibit biofilm formation and induce porphyrin accumulation in M. smegmatis by regulating associated gene expressions, which may have effects on drug resistance and virulence of mycobacterium. Moreover, the cnpB-deleted strain with an elevated c-di-AMP level could induce enhanced Th1 immune responses after M. tuberculosis infection. Further, the pathological changes and the bacteria burden in ΔcnpB group were comparable with the wild-type M. smegmatis group against M. tuberculosis venous infection in the mouse model. Our findings enhanced the understanding of the physiological role of c-di-AMP in mycobacterium, and M. smegmatis cnpB-deleted strain with elevated c-di-AMP level showed the potential for a vaccine against tuberculosis.
Collapse
Affiliation(s)
- Huanhuan Ning
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Xuan Liang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yanling Xie
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Lu Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- School of Life Sciences, Yan’an University, Yan’an, China
| | - Wei Zhang
- Department of Pediatrics, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Lifei Wang
- Graduate School, Chang’an University, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanzhi Lu
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
| | - Yanling Ma
- College of Life Sciences, Northwest University, Xi’an, China
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
- *Correspondence: Guangchun Bai,
| | - Yinlan Bai
- Department of Microbiology and Pathogen Biology, Air Force Medical University, Xi’an, China
- Yinlan Bai,
| |
Collapse
|
7
|
Sengupta S, Bhawsinghka N, Shaw R, Patra MM, Das Gupta SK. Mycobacteriophage D29 induced association of Mycobacterial RNA polymerase with ancillary factors leads to increased transcriptional activity. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35353035 DOI: 10.1099/mic.0.001158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mycobacteriophage D29 infects species belonging to the genus Mycobacterium including the deadly pathogen Mycobacterium tuberculosis. D29 is a lytic phage, although, related to the lysogenic mycobacteriophage L5. This phage is unable to lysogenize in mycobacteria as it lacks the gene encoding the phage repressor. Infection by many mycobacteriophages cause various changes in the host that ultimately leads to inactivation of the latter. One of the host targets often modified in the process is RNA polymerase. During our investigations with phage D29 infected Mycobacterium smegmatis (Msm) we observed that the promoters from both phage, and to a lesser extent those of the host were found to be more active in cells that were exposed to D29, as compared to the unexposed. Further experiments indicate that the RNA polymerase purified from phage infected cells possessed higher affinity for promoters particularly those that were phage derived. Comparison of the purified RNA polymerase preparations from infected and uninfected cells showed that several ancillary transcription factors, Sigma factor F, Sigma factor H, CarD and RbpA are prominently associated with the RNA polymerase from infected cells. Based on our observations we conclude that the higher activity of RNA polymerase observed in D29 infected cells is due to its increased association with ancillary transcription factors.
Collapse
Affiliation(s)
- Shreya Sengupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Niketa Bhawsinghka
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India.,Present address: Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Rahul Shaw
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Madhu Manti Patra
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| | - Sujoy K Das Gupta
- Department of Microbiology, Bose Institute, P-1/12 C.I.T Road. Scheme VIIM, Kolkata-700054, West Bengal, India
| |
Collapse
|
8
|
Henke NA, Göttl VL, Schmitt I, Peters-Wendisch P, Wendisch VF. A synthetic biology approach to study carotenoid production in Corynebacterium glutamicum: Read-out by a genetically encoded biosensor combined with perturbing native gene expression by CRISPRi. Methods Enzymol 2022; 671:383-419. [DOI: 10.1016/bs.mie.2021.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Tran T, Dawrs SN, Norton GJ, Virdi R, Honda JR. Brought to you courtesy of the red, white, and blue-pigments of nontuberculous mycobacteria. AIMS Microbiol 2020; 6:434-450. [PMID: 33364537 PMCID: PMC7755587 DOI: 10.3934/microbiol.2020026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022] Open
Abstract
Pigments are chromophores naturally synthesized by animals, plants, and microorganisms, as well as produced synthetically for a wide variety of industries such as food, pharmaceuticals, and textiles. Bacteria produce various pigments including melanin, pyocyanin, bacteriochlorophyll, violacein, prodigiosin, and carotenoids that exert diverse biological activities as antioxidants and demonstrate anti-inflammatory, anti-cancer, and antimicrobial properties. Nontuberculous mycobacteria (NTM) include over 200 environmental and acid-fast species; some of which can cause opportunistic disease in humans. Early in the study of mycobacteriology, the vast majority of mycobacteria were not known to synthesize pigments, particularly NTM isolates of clinical significance such as the Mycobacterium avium complex (MAC) species. This paper reviews the overall understanding of microbial pigments, their applications, as well as highlights what is currently known about pigments produced by NTM, the circumstances that trigger their production, and their potential roles in NTM survival and virulence.
Collapse
Affiliation(s)
- Tru Tran
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Stephanie N Dawrs
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Grant J Norton
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Ravleen Virdi
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Honda
- Center for Genes, Environment, and Health; Department of Immunology and Genomic Research, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
10
|
Oh Y, Song SY, Kim HJ, Han G, Hwang J, Kang HY, Oh JI. The Partner Switching System of the SigF Sigma Factor in Mycobacterium smegmatis and Induction of the SigF Regulon Under Respiration-Inhibitory Conditions. Front Microbiol 2020; 11:588487. [PMID: 33304334 PMCID: PMC7693655 DOI: 10.3389/fmicb.2020.588487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa3 mutant strain lacking the aa3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.
Collapse
Affiliation(s)
- Yuna Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Su-Yeon Song
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Hye-Jun Kim
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Ho-Young Kang
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| | - Jeong-Il Oh
- Department of Integrated Biological Science, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Abstract
Abstract
Purpose
The aim of the present study was to investigate the tolerance of five new Achromobacter and Pseudomonas strains to kerosene and to establish if the production of several secondary metabolites increases or not when these bacteria were grown in the presence of kerosene. The biodegradation of kerosene by isolated bacteria was also investigated in this study.
Methods
Five Proteobacteria were isolated from different samples polluted with petroleum and petroleum products. Based on their morphological, biochemical, and molecular characteristics, isolated bacteria were identified as Achromobacter spanius IBBPo18 and IBBPo21, Pseudomonas putida IBBPo19, and Pseudomonas aeruginosa IBBPo20 and IBBPo22.
Results
All these bacteria were able to tolerate and degrade kerosene. Higher tolerance to kerosene and degradation rates were observed for P. aeruginosa IBBPo20 and IBBPo22, compared with that observed for A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19. All these bacteria were able to produce several secondary metabolites, such as surfactants and pigments. Glycolipid surfactants produced by P. aeruginosa IBBPo20 and IBBPo22, A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19 have a very good emulsification activity, and their activity increased when they were grown in the presence of kerosene. The production of rhamnolipid surfactants by P. aeruginosa IBBPo20 and IBBPo22 was confirmed by detection of rhlAB gene involved in their biosynthesis. Pyocyanin and pyoverdin pigments were produced only by P. aeruginosa IBBPo20 and IBBPo22, while carotenoid pigments were produced by all the isolated bacteria. Significant changes in pigments production were observed when P. aeruginosa IBBPo20 and IBBPo22, A. spanius IBBPo18 and IBBPo21, and P. putida IBBPo19 were grown in the presence of kerosene.
Conclusion
Due to their ability to tolerate and degrade kerosene, and also to produce several secondary metabolites, the isolated bacteria could be used in the bioremediation of kerosene-polluted environments.
Collapse
|
12
|
Metabolite Profiling: A Tool for the Biochemical Characterisation of Mycobacterium sp. Microorganisms 2019; 7:microorganisms7050148. [PMID: 31130621 PMCID: PMC6560386 DOI: 10.3390/microorganisms7050148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/13/2019] [Accepted: 05/25/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last decades, the prevalence of drug-resistance in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has increased. These findings have rekindled interest in elucidating the unique adaptive molecular and biochemistry physiology of Mycobacterium. The use of metabolite profiling independently or in combination with other levels of "-omic" analyses has proven an effective approach to elucidate key physiological/biochemical mechanisms associated with Mtb throughout infection. The following review discusses the use of metabolite profiling in the study of tuberculosis, future approaches, and the technical and logistical limitations of the methodology.
Collapse
|
13
|
Dow A, Prisic S. Alternative ribosomal proteins are required for growth and morphogenesis of Mycobacterium smegmatis under zinc limiting conditions. PLoS One 2018; 13:e0196300. [PMID: 29684089 PMCID: PMC5912738 DOI: 10.1371/journal.pone.0196300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023] Open
Abstract
Zinc is an essential micronutrient required for proper structure and function of many proteins. Bacteria regularly encounter zinc depletion and have evolved diverse mechanisms to continue growth when zinc is limited, including the expression of zinc-independent paralogs of zinc-binding proteins. Mycobacteria have a conserved operon encoding four zinc-independent alternative ribosomal proteins (AltRPs) that are expressed when zinc is depleted. It is unknown if mycobacterial AltRPs replace their primary paralogs in the ribosome and maintain protein synthesis under zinc-limited conditions, and if such replacements contribute to their physiology. This study shows that AltRPs from Mycobacterium smegmatis are essential for growth when zinc ion is scarce. Specifically, the deletion mutant of this operon (ΔaltRP) is unable to grow in media containing a high-affinity zinc chelator, while growth of the wild type strain is unaffected under the same conditions. However, when zinc is gradually depleted during growth in zinc-limited medium, the ΔaltRP mutant maintains the same growth rate as seen for the wild type strain. In contrast to M. smegmatis grown with sufficient zinc supplementation that forms shorter cells when transitioning from logarithmic to stationary phase, M. smegmatis deficient for zinc elongates after the expression of AltRPs in late logarithmic phase. These zinc-depleted bacteria also exhibit a remarkable morphology characterized by a condensed chromosome, increased number of polyphosphate granules, and distinct appearance of lipid bodies and the cell wall compared to the zinc-replete cells. However, the ΔaltRP cells fail to elongate and transition into the zinc-limited morphotype, resembling the wild type zinc-replete bacteria instead. Therefore, the altRP operon in M. smegmatis has a vital role in continuation of growth when zinc is scarce and in triggering specific morphogenesis during the adaptation to zinc limitation, suggesting that AltRPs can functionally replace their zinc-dependent paralogs, but also contribute to mycobacterial physiology in a unique way.
Collapse
Affiliation(s)
- Allexa Dow
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
| | - Sladjana Prisic
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
- * E-mail:
| |
Collapse
|
14
|
Lee HN, Ji CJ, Lee HH, Park J, Seo YS, Lee JW, Oh JI. Roles of three FurA paralogs in the regulation of genes pertaining to peroxide defense in Mycobacterium smegmatis mc 2 155. Mol Microbiol 2018; 108:661-682. [PMID: 29569300 DOI: 10.1111/mmi.13956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2018] [Indexed: 11/28/2022]
Abstract
Mycobacterium smegmatis mc2 155 has three genes (MSMEG_6383, furA1; MSMEG_3460, furA2; MSMEG_6253, furA3) encoding FurA (ferric-uptake regulator A) paralogs. Three FurA paralogs in M. smegmatis are functionally redundant and negatively regulate expression of a subset of genes involved in peroxide detoxification such as ahpC, katG1 and katG2, as well as their own genes. The FurA paralogs sense H2 O2 via metal-catalyzed His oxidation (MCHO) in the same way as PerR. The propensity of FurA2 and FurA3 for MCHO is greater than that of FurA1. The three furA genes are transcribed into leaderless mRNAs lacking the Shine-Dalgarno (SD) sequence. FurA1 and FurA3 have the quaternary structure of homodimers like most Fur homologs, whereas FurA2 occurs as a monomer. The monomeric structure of FurA2 is determined by the C-terminal region of its dimerization domain. FurA2 monomers appear to cooperatively bind to the FurA-binding site with an inverted repeat configuration and have a broader binding specificity for the target DNA than dimeric FurA1 and FurA3. Comparative transcriptomic analysis revealed that the FurA paralogs do not regulate genes related to iron homeostasis in M. smegmatis, and that expression of SigF-regulated genes is significantly decreased in a furA triple mutant relative to the wild-type strain of M. smegmatis.
Collapse
Affiliation(s)
- Ha-Na Lee
- Department of Microbiology, Pusan National University, Busan, 46241, Korea
| | - Chang-Jun Ji
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Hyun-Hee Lee
- Department of Microbiology, Pusan National University, Busan, 46241, Korea
| | - Jungwook Park
- Department of Microbiology, Pusan National University, Busan, 46241, Korea
| | - Young-Su Seo
- Department of Microbiology, Pusan National University, Busan, 46241, Korea
| | - Jin-Won Lee
- Department of Life Science and Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Korea
| |
Collapse
|
15
|
Kundu P, Dutta D, Kumar Das A. The α1β1 region is crucial for biofilm enhancement activity of MTC28 in Mycobacterium smegmatis. FEBS Lett 2017; 591:3333-3347. [PMID: 28833086 DOI: 10.1002/1873-3468.12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/12/2017] [Accepted: 08/15/2017] [Indexed: 11/09/2022]
Abstract
We show here that MTC28, a secretory antigen of 28 kDa from Mycobacterium tuberculosis, is involved in biofilm formation. The exogenous addition of MTC28 to the culture medium as well its expression in Mycobacterium smegmatis mc2 155 shows an enhancement in biofilm formation, which leads to drug resistance. Structural analysis of MTC28 followed by mutational studies confirms the role of its α1β1 region in the biofilm enhancement activity. Confocal and flow cytometry studies show that the α1β1 region of MTC28 is crucial for binding to the M. smegmatis cell wall. The enhancement in biofilm formation due to MTC28 is also observed in M. tuberculosis H37Ra. This is the first report on the structure-function relationship of MTC28.
Collapse
Affiliation(s)
- Prasun Kundu
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Debabrata Dutta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, India
| |
Collapse
|
16
|
Henke NA, Heider SAE, Hannibal S, Wendisch VF, Peters-Wendisch P. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum. Front Microbiol 2017; 8:633. [PMID: 28484430 PMCID: PMC5401885 DOI: 10.3389/fmicb.2017.00633] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/28/2017] [Indexed: 11/29/2022] Open
Abstract
Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin.
Collapse
Affiliation(s)
- Nadja A Henke
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Sabine A E Heider
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Silvin Hannibal
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| | - Petra Peters-Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Center for Biotechnology, Bielefeld UniversityBielefeld, Germany
| |
Collapse
|
17
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
18
|
Sigma Factors: Key Molecules in Mycobacterium tuberculosis Physiology and Virulence. Microbiol Spectr 2015; 2:MGM2-0007-2013. [PMID: 26082107 DOI: 10.1128/microbiolspec.mgm2-0007-2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid adaptation to changing environments is one of the keys to the success of microorganisms. Since infection is a dynamic process, it is possible to predict that Mycobacterium tuberculosis adaptation involves continuous modulation of its global transcriptional profile in response to the changing environment found in the human body. In the last 18 years several studies have stressed the role of sigma (σ) factors in this process. These are small interchangeable subunits of the RNA polymerase holoenzyme that are required for transcriptional initiation and that determine promoter specificity. The M. tuberculosis genome encodes 13 of these proteins, one of which--the principal σ factor σA--is essential. Of the other 12 σ factors, at least 6 are required for virulence. In this article we review our current knowledge of mycobacterial σ factors, their regulons, the complex mechanisms determining their regulation, and their roles in M. tuberculosis physiology and virulence.
Collapse
|
19
|
Singh AK, Dutta D, Singh V, Srivastava V, Biswas RK, Singh BN. Characterization of Mycobacterium smegmatis sigF mutant and its regulon: overexpression of SigF antagonist (MSMEG_1803) in M. smegmatis mimics sigF mutant phenotype, loss of pigmentation, and sensitivity to oxidative stress. Microbiologyopen 2015; 4:896-916. [PMID: 26434659 PMCID: PMC4694148 DOI: 10.1002/mbo3.288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
In Mycobacterium smegmatis, sigF is widely expressed during different growth stages and plays role in adaptation to stationary phase and oxidative stress. Using a sigF deletion mutant of M. smegmatis mc2155, we demonstrate that SigF is not essential for growth of bacterium. Deletion of sigF results in loss of carotenoid pigmentation which rendered increased susceptibility to H2O2 induced oxidative stress in M. smegmatis. SigF modulates the cell surface architecture and lipid biosynthesis extending the repertoire of SigF function in this species. M. smegmatis SigF regulon included variety of genes expressed during exponential and stationary phases of growth and those responsible for oxidative stress, lipid biosynthesis, energy, and central intermediary metabolism. Furthermore, we report the identification of a SigF antagonist, an anti‐sigma factor (RsbW), which upon overexpression in M. smegmatis wild type strain produced a phenotype similar to M. smegmatis mc2155 ΔsigF strain. The SigF‐anti‐SigF interaction is duly validated using bacterial two‐hybrid and pull down assays. In addition, anti‐sigma factor antagonists, RsfA and RsfB were identified and their interactions with anti‐sigma factor were experimentally validated. Identification of these proteins will help decode regulatory circuit of this alternate sigma factor.
Collapse
Affiliation(s)
- Anirudh K Singh
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Debashis Dutta
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vandana Singh
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Vishal Srivastava
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rajesh K Biswas
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Bhupendra N Singh
- Division of Microbiology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
20
|
Kumar S, Matange N, Umapathy S, Visweswariah SS. Linking carbon metabolism to carotenoid production in mycobacteria using Raman spectroscopy. FEMS Microbiol Lett 2015; 362:1-6. [DOI: 10.1093/femsle/fnu048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
Serafini A, Pisu D, Palù G, Rodriguez GM, Manganelli R. The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS One 2013; 8:e78351. [PMID: 24155985 PMCID: PMC3796483 DOI: 10.1371/journal.pone.0078351] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
ESX-3 is one of the five type VII secretion systems encoded by the Mycobacterium tuberculosis genome. We recently showed the essentiality of ESX-3 for M. tuberculosis viability and proposed its involvement in iron and zinc metabolism. In this study we confirmed the role of ESX-3 in iron uptake and its involvement in the adaptation to low zinc environment in M. tuberculosis. Moreover, we unveiled functional differences between the ESX-3 roles in M. tuberculosis and M. smegmatis showing that in the latter ESX-3 is only involved in the adaptation to iron and not to zinc restriction. Finally, we also showed that in M. tuberculosis this secretion system is essential for iron and zinc homeostasis not only in conditions in which the concentrations of these metals are limiting but also in metal sufficient conditions.
Collapse
Affiliation(s)
- Agnese Serafini
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Davide Pisu
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - G. Marcela Rodriguez
- Public Health Research Institute - Rutgers, the State University of New Jersey, Newark, New Jersey, United States of America
| | - Riccardo Manganelli
- Department of Molecular Medicine, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
22
|
Mycoketide: a CD1c-presented antigen with important implications in mycobacterial infection. Clin Dev Immunol 2012; 2012:981821. [PMID: 22536277 PMCID: PMC3318773 DOI: 10.1155/2012/981821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 01/24/2012] [Indexed: 11/18/2022]
Abstract
Mycobacterium tuberculosis and related mycobacteria species are unique in that the acid-fast bacilli possess a highly lipid-rich cell wall that not simply confers resistance to treatment with acid alcohol, but also controls their survival and virulence. It has recently been established that a fraction of the cell wall lipid components of mycobacteria can function as antigens targeted by the acquired immunity of the host. Human group 1 CD1 molecules (CD1a, CD1b, and CD1c) bind a pool of lipid antigens expressed by mycobacteria and present them to specific T cells, thereby mediating an effective pathway for host defense against tuberculosis. The contrasting and mutually complementary functions of CD1a and CD1b molecules in terms of the repertoire of antigens they bind have been well appreciated, but it remains to be established how CD1c may play a unique role. Nevertheless, recent advances in our understanding of the CD1c structure as well as the biosynthetic pathway of a CD1c-presented antigen, mannose-1, β-phosphomycoketide, expressed by pathogenic mycobacteria now unravel a new aspect of the group 1 CD1 biology that has not been appreciated in previous studies of CD1a and CD1b molecules.
Collapse
|
23
|
Characterization of airborne bacteria at an underground subway station. Appl Environ Microbiol 2012; 78:1917-29. [PMID: 22247150 DOI: 10.1128/aem.07212-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The reliable detection of airborne biological threat agents depends on several factors, including the performance criteria of the detector and its operational environment. One step in improving the detector's performance is to increase our knowledge of the biological aerosol background in potential operational environments. Subway stations are enclosed public environments, which may be regarded as potential targets for incidents involving biological threat agents. In this study, the airborne bacterial community at a subway station in Norway was characterized (concentration level, diversity, and virulence- and survival-associated properties). In addition, a SASS 3100 high-volume air sampler and a matrix-assisted laser desorption ionization-time of flight mass spectrometry-based isolate screening procedure was used for these studies. The daytime level of airborne bacteria at the station was higher than the nighttime and outdoor levels, and the relative bacterial spore number was higher in outdoor air than at the station. The bacterial content, particle concentration, and size distribution were stable within each environment throughout the study (May to September 2010). The majority of the airborne bacteria belonged to the genera Bacillus, Micrococcus, and Staphylococcus, but a total of 37 different genera were identified in the air. These results suggest that anthropogenic sources are major contributors to airborne bacteria at subway stations and that such airborne communities could harbor virulence- and survival-associated properties of potential relevance for biological detection and surveillance, as well as for public health. Our findings also contribute to the development of realistic testing and evaluation schemes for biological detection/surveillance systems by providing information that can be used to mimic real-life operational airborne environments in controlled aerosol test chambers.
Collapse
|
24
|
Scherzinger D, Scheffer E, Bär C, Ernst H, Al-Babili S. The Mycobacterium tuberculosis ORF Rv0654 encodes a carotenoid oxygenase mediating central and excentric cleavage of conventional and aromatic carotenoids. FEBS J 2010; 277:4662-73. [PMID: 20929460 DOI: 10.1111/j.1742-4658.2010.07873.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is assumed to lack carotenoids, which are widespread pigments fulfilling important functions as radical scavengers and as a source of apocarotenoids. In mammals, the synthesis of apocarotenoids, including retinoic acid, is initiated by the β-carotene cleavage oxygenases I and II catalyzing either a central or an excentric cleavage of β-carotene, respectively. The M. tuberculosis ORF Rv0654 codes for a putative carotenoid oxygenase conserved in other mycobacteria. In the present study, we investigated the corresponding enzyme, here named M. tuberculosis carotenoid cleavage oxygenase (MtCCO). Using heterologously expressed and purified protein, we show that MtCCO converts several carotenoids and apocarotenoids in vitro. Moreover, the identification of the products suggests that, in contrast to other carotenoid oxygenases, MtCCO cleaves the central C15-C15' and an excentric double bond at the C13-C14 position, leading to retinal (C(20)), β-apo-14'-carotenal (C(22)) and β-apo-13-carotenone (C(18)) from β-carotene, as well as the corresponding hydroxylated products from zeaxanthin and lutein. Moreover, the enzyme cleaves also 3,3'-dihydroxy-isorenieratene representing aromatic carotenoids synthesized by other mycobacteria. Quantification of the products from different substrates indicates that the preference for each of the cleavage positions is determined by the hydroxylation and the nature of the ionone ring. The data obtained in the present study reveal MtCCO to be a novel carotenoid oxygenase and indicate that M. tuberculosis may utilize carotenoids from host cells and interfere with their retinoid metabolism.
Collapse
Affiliation(s)
- Daniel Scherzinger
- Institute of Biology II, Albert-Ludwigs University of Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
25
|
Sigma factor F does not prevent rifampin inhibition of RNA polymerase or cause rifampin tolerance in Mycobacterium tuberculosis. J Bacteriol 2010; 192:5472-9. [PMID: 20729364 DOI: 10.1128/jb.00687-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tolerance of Mycobacterium tuberculosis to antituberculosis drugs is a major reason for the lengthy therapy needed to treat a tuberculosis infection. Rifampin is a potent inhibitor of RNA polymerase (RNAP) in vivo but has been shown to be less effective against stationary-phase bacteria. Sigma factor F is associated with bacteria entering stationary phase and has been proposed to impact rifampin activity. Here we investigate whether RNAP containing SigF is more resistant to rifampin inhibition in vitro and whether overexpression of sigF renders M. tuberculosis more tolerant to rifampin. Real-time and radiometric in vitro transcription assays revealed that rifampin equally inhibits transcription by RNAP containing sigma factors SigA and SigF, therefore ruling out the hypothesis that SigF may be responsible for increased resistance of the enzyme to rifampin in vitro. In addition, overexpression or deletion of sigF did not alter rifampin susceptibility in axenic cultures of M. tuberculosis, indicating that SigF does not affect rifampin tolerance in vivo.
Collapse
|
26
|
Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155. BMC Microbiol 2010; 10:121. [PMID: 20412585 PMCID: PMC2867950 DOI: 10.1186/1471-2180-10-121] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 04/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background The usually non-pathogenic soil bacterium Mycobacterium smegmatis is commonly used as a model mycobacterial organism because it is fast growing and shares many features with pathogenic mycobacteria. Proteomic studies of M. smegmatis can shed light on mechanisms of mycobacterial growth, complex lipid metabolism, interactions with the bacterial environment and provide a tractable system for antimycobacterial drug development. The cell wall proteins are particularly interesting in this respect. The aim of this study was to construct a reference protein map for these proteins in M. smegmatis. Results A proteomic analysis approach, based on one dimensional polyacrylamide gel electrophoresis and LC-MS/MS, was used to identify and characterize the cell wall associated proteins of M. smegmatis. An enzymatic cell surface shaving method was used to determine the surface-exposed proteins. As a result, a total of 390 cell wall proteins and 63 surface-exposed proteins were identified. Further analysis of the 390 cell wall proteins provided the theoretical molecular mass and pI distributions and determined that 26 proteins are shared with the surface-exposed proteome. Detailed information about functional classification, signal peptides and number of transmembrane domains are given next to discussing the identified transcriptional regulators, transport proteins and the proteins involved in lipid metabolism and cell division. Conclusion In short, a comprehensive profile of the M. smegmatis cell wall subproteome is reported. The current research may help the identification of some valuable vaccine and drug target candidates and provide foundation for the future design of preventive, diagnostic, and therapeutic strategies against mycobacterial diseases.
Collapse
|
27
|
Lauten EH, Pulliam BL, DeRousse J, Bhatta D, Edwards DA. Gene Expression, Bacteria Viability and Survivability Following Spray Drying of Mycobacterium smegmatis. MATERIALS 2010. [PMCID: PMC5445863 DOI: 10.3390/ma3042684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elizabeth Hunter Lauten
- Harvard School of Engineering and Applied Sciences, 58 Oxford Street, ESL 406, Cambridge, MA 02138, USA; E-Mails: (E.H.L.); (J.D.); (D.B.)
| | - Brian L. Pulliam
- Harvard School of Engineering and Applied Sciences, 58 Oxford Street, ESL 406, Cambridge, MA 02138, USA; E-Mails: (E.H.L.); (J.D.); (D.B.)
- Authors to whom correspondence should be addressed; E-Mails: (D.A.E.); (B.L.P.); Tel.: +1-617-495-1328; Fax: +1-617-495-9837
| | - Jessica DeRousse
- Harvard School of Engineering and Applied Sciences, 58 Oxford Street, ESL 406, Cambridge, MA 02138, USA; E-Mails: (E.H.L.); (J.D.); (D.B.)
| | - Deen Bhatta
- Harvard School of Engineering and Applied Sciences, 58 Oxford Street, ESL 406, Cambridge, MA 02138, USA; E-Mails: (E.H.L.); (J.D.); (D.B.)
| | - David A. Edwards
- Harvard School of Engineering and Applied Sciences, 29 Oxford Street, 322 Pierce Hall, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University HIM, 10th Floor,4 Blackfan Circle, Boston, MA 02115, USA
- Authors to whom correspondence should be addressed; E-Mails: (D.A.E.); (B.L.P.); Tel.: +1-617-495-1328; Fax: +1-617-495-9837
| |
Collapse
|
28
|
The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 2010; 192:2491-502. [PMID: 20233930 DOI: 10.1128/jb.00035-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SigF is an alternative sigma factor that is highly conserved among species of the genus Mycobacterium. In this study we identified the SigF regulon in Mycobacterium smegmatis using whole-genome microarray and promoter consensus analyses. In total, 64 genes in exponential phase and 124 genes in stationary phase are SigF dependent (P < 0.01, >2-fold expression change). Our experimental data reveal the SigF-dependent promoter consensus GTTT-N((15-17))-GGGTA for M. smegmatis, and we propose 130 potential genes under direct control of SigF, of which more than 50% exhibited reduced expression in a Delta sigF strain. We previously reported an increased susceptibility of the Delta sigF strain to heat and oxidative stress, and our expression data indicate a molecular basis for these phenotypes. We observed SigF-dependent expression of several genes purportedly involved in oxidative stress defense, namely, a heme-containing catalase, a manganese-containing catalase, a superoxide dismutase, the starvation-induced DNA-protecting protein MsDps1, and the biosynthesis genes for the carotenoid isorenieratene. Our data suggest that SigF regulates the biosynthesis of the thermoprotectant trehalose, as well as an uptake system for osmoregulatory compounds, and this may explain the increased heat susceptibility of the Delta sigF strain. We identified the regulatory proteins SigH3, PhoP, WhiB1, and WhiB4 as possible genes under direct control of SigF and propose four novel anti-sigma factor antagonists that could be involved in the posttranslational regulation of SigF in M. smegmatis. This study emphasizes the importance of this sigma factor for stationary-phase adaptation and stress response in mycobacteria.
Collapse
|
29
|
Jean-Marc Reyrat (29/04/1967-28/10/2009). Mol Microbiol 2010. [PMCID: PMC2848975 DOI: 10.1111/j.1365-2958.2010.07049.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Sachdeva P, Misra R, Tyagi AK, Singh Y. The sigma factors of Mycobacterium tuberculosis: regulation of the regulators. FEBS J 2009; 277:605-26. [DOI: 10.1111/j.1742-4658.2009.07479.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Khaneja R, Perez-Fons L, Fakhry S, Baccigalupi L, Steiger S, To E, Sandmann G, Dong TC, Ricca E, Fraser PD, Cutting SM. Carotenoids found in Bacillus. J Appl Microbiol 2009; 108:1889-902. [PMID: 19878522 DOI: 10.1111/j.1365-2672.2009.04590.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To identify the diversity of pigmented aerobic spore formers found in the environment and to characterize the chemical nature of this pigmentation. MATERIALS AND RESULTS Sampling of heat-resistant bacterial counts from soil, sea water and the human gastrointestinal tract. Phylogenetic profiling using analysis of 16S rRNA sequences to define species. Pigment profiling using high-performance liquid chromatography-photo diode array analysis. CONCLUSIONS The most commonly found pigments were yellow, orange and pink. Isolates were nearly always members of the Bacillus genus and in most cases were related with known species such as Bacillus marisflavi, Bacillus indicus, Bacillus firmus, Bacillus altitudinis and Bacillus safensis. Three types of carotenoids were found with absorption maxima at 455, 467 and 492 nm, corresponding to the visible colours yellow, orange and pink, respectively. Although the presence of other carotenoids cannot be ruled out, these three predominant carotenoids appear to account for the pigments obtained in most pigmented bacilli, and our analysis reveals the existence of a C30 biosynthetic pathway. Interestingly, we report the presence of a water-soluble pigment that may also be a carotenoid. The function of carotenoids is photoprotection, and carotenoid-containing spores exhibited significantly higher levels of resistance to UV radiation than non-carotenoid-containing Bacillus species. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that pigmented bacilli are ubiquitous and contain new carotenoid biosynthetic pathways that may have industrial importance.
Collapse
Affiliation(s)
- R Khaneja
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This unit gives background information on Mycobacterium smegmatis, a mycobacterial model system, and covers all the laboratory maintenance for this species including growth in liquid and on solid medium. It also contains recommendations concerning long-term strain storage. Although M. smegmatis is a Biosafety Level 1 organism, some rare infections in humans have been reported, and, thus all of the required safety measures are discussed here.
Collapse
|
33
|
Chacon O, Bermudez LE, Zinniel DK, Chahal HK, Fenton RJ, Feng Z, Hanford K, Adams LG, Barletta RG. Impairment of d-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology (Reading) 2009; 155:1440-1450. [DOI: 10.1099/mic.0.024901-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
d-Alanine is a structural component of mycobacterial peptidoglycan. The primary route of d-alanine biosynthesis in eubacteria is the enantiomeric conversion from l-alanine, a reaction catalysed by d-alanine racemase (Alr). Mycobacterium smegmatis alr insertion mutants are not dependent on d-alanine for growth and display a metabolic pattern consistent with an alternative pathway for d-alanine biosynthesis. In this study, we demonstrate that the M. smegmatis alr insertion mutant TAM23 can synthesize d-alanine at lower levels than the parental strain. The insertional inactivation of the alr gene also decreases the intracellular survival of mutant strains within primary human monocyte-derived macrophages. By complementation studies, we confirmed that the impairment of alr gene function is responsible for this reduced survival. Inhibition of superoxide anion and nitric oxide formation in macrophages suppresses the differential survival. In contrast, for bacteria grown in broth, both strains had approximately the same susceptibility to hydrogen peroxide, acidified sodium nitrite, low pH and polymyxin B. In contrast, TAM23 exhibited increased resistance to lysozyme. d-Alanine supplementation considerably increased TAM23 viability in nutritionally deficient media and within macrophages. These results suggest that nutrient deprivation in phagocytic cells combined with killing mediated by reactive intermediates underlies the decreased survival of alr mutants. This knowledge may be valuable in the construction of mycobacterial auxotrophic vaccine candidates.
Collapse
Affiliation(s)
- Ofelia Chacon
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Denise K. Zinniel
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Harpreet K. Chahal
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Robert J. Fenton
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhengyu Feng
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| | - Kathy Hanford
- Department of Statistics, University of Nebraska, Lincoln, NE 68583, USA
| | - L. Garry Adams
- Sección de Bacteriología, Corporación para Investigaciones Biológicas (CIB), Carrera 72A No. 78B 141, A.A. 7378, Medellín, Colombia
| | - Raúl G. Barletta
- Department of Veterinary and Biomedical Sciences, University of Nebraska, Lincoln, NE 68583, USA
| |
Collapse
|
34
|
Differential expression of sigH paralogs during growth and under different stress conditions in Mycobacterium smegmatis. J Bacteriol 2009; 191:2888-93. [PMID: 19218386 DOI: 10.1128/jb.01773-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SigH regulates a transcriptional network that responds to heat and oxidative stress in mycobacteria. Seven sigH paralogs are reported to exist in the Mycobacterium smegmatis genome. A comprehensive real-time reverse transcriptase PCR analysis during different stages of growth and upon exposure to various stress conditions and antimycobacterial compounds showed differential expression of sigH paralogs during stationary phase and severalfold increases in the levels of transcription of sigH1, sigH4, sigH5, sigH6, and sigH7 under specific stress conditions.
Collapse
|