1
|
Chapartegui-González I, Stockton JL, Bowser S, Badten AJ, Torres AG. Unraveling the role of toxin-antitoxin systems in Burkholderia pseudomallei: exploring bacterial pathogenesis and interactions within the HigBA families. Microbiol Spectr 2024; 12:e0074824. [PMID: 38916327 PMCID: PMC11302019 DOI: 10.1128/spectrum.00748-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Burkholderia pseudomallei (Bpm) is a Gram-negative intracellular pathogen that causes melioidosis in humans, a neglected, underreported, and lethal disease that can reach a fatal outcome in over 50% of the cases. It can produce both acute and chronic infections, the latter being particularly challenging to eliminate because of the intracellular life cycle of the bacteria and its ability to generate a "persister" dormant state. The molecular mechanism that allows the switch between growing and persister phenotypes is not well understood but it is hypothesized to be due at least in part to the participation of toxin-antitoxin (TA) systems. We have previously studied the link between one of those systems (defined as HigBA) with specific expression patterns associated with levofloxacin antibiotic exposure. Through in silico methods, we predicted the presence of another three pairs of genes encoding for additional putative HigBA systems. Therefore, our main goal was to establish which mechanisms are conserved as well as which pathways are specific among different Bpm TA systems from the same family. We hypothesize that the high prevalence, and sometimes even redundancy of these systems in the Bpm chromosomes indicates that they can interact with each other and not function as only individual systems, as it was traditionally thought, and might be playing an undefined role in Bpm lifecycle. Here, we show that both the toxin and the antitoxin of the different systems contribute to bacterial survival and that toxins from the same family can have a cumulative effect under environmental stressful conditions. IMPORTANCE Toxin-antitoxin (TA) systems play a significant role in bacterial persistence, a phenomenon where bacterial cells enter a dormant or slow-growing state to survive adverse conditions such as nutrient deprivation, antibiotic exposure, or host immune responses. By studying TA systems in Burkholderia pseudomallei, we can gain insights into how this pathogen survives and persists in the host environment, contributing to its virulence and ability to cause melioidosis chronic infections.
Collapse
Affiliation(s)
| | - Jacob L. Stockton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sarah Bowser
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander J. Badten
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
2
|
Seynos-García E, Castañeda-Lucio M, Muñoz-Rojas J, López-Pliego L, Villalobos M, Bustillos-Cristales R, Fuentes-Ramírez LE. Loci Identification of a N-acyl Homoserine Lactone Type Quorum Sensing System and a New LysR-type Transcriptional Regulator Associated with Antimicrobial Activity and Swarming in Burkholderia Gladioli UAPS07070. Open Life Sci 2019; 14:165-178. [PMID: 33817149 PMCID: PMC7874821 DOI: 10.1515/biol-2019-0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
A random transposition mutant library of B. gladioli UAPS07070 was analyzed for searching mutants with impaired microbial antagonism. Three derivates showed diminished antimicrobial activity against a sensitive strain. The mutated loci showed high similarity to the quorum sensing genes of the AHL-synthase and its regulator. Another mutant was affected in a gene coding for a LysrR-type transcriptional regulator. The production of toxoflavin, the most well known antimicrobial-molecule and a major virulence factor of plant-pathogenic B. glumae and B. gladioli was explored. The absence of a yellowish pigment related to toxoflavin and the undetectable transcription of toxA in the mutants indicated the participation of the QS system and of the LysR-type transcriptional regulator in the regulation of toxoflavin. Additionally, those genes were found to be related to the swarming phenotype. Lettuce inoculated with the AHL synthase and the lysR mutants showed less severe symptoms. We present evidence of the participation of both, the quorum sensing and for the first time, of a LysR-type transcriptional regulator in antibiosis and swarming phenotype in a strain of B. gladioli
Collapse
Affiliation(s)
- E Seynos-García
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Castañeda-Lucio
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - J Muñoz-Rojas
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L López-Pliego
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - M Villalobos
- Centro de Investigación en Biotecnología Aplicada-Instituto Politécnico Nacional, Carretera Estatal Sta Inés Tecuexcomac‑Tepetitla, km. 1.5, C.P: 90700 Tepetitla de Lárdizabal, Tlaxcala,Mexico
| | - R Bustillos-Cristales
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| | - L E Fuentes-Ramírez
- Lab. Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla. Edif. IC11, Ciudad Universitaria, CP 72570, Puebla, Puebla, México
| |
Collapse
|
3
|
Malleilactone Is a Burkholderia pseudomallei Virulence Factor Regulated by Antibiotics and Quorum Sensing. J Bacteriol 2018; 200:JB.00008-18. [PMID: 29735757 DOI: 10.1128/jb.00008-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, encodes almost a dozen predicted polyketide (PK) biosynthetic gene clusters. Many of these are regulated by LuxR-I-type acyl-homoserine (AHL) quorum-sensing systems. One of the PK gene clusters, the mal gene cluster, is conserved in the close relative Burkholderia thailandensis The B. thailandensis mal genes code for the cytotoxin malleilactone and are regulated by a genetically linked LuxR-type transcription factor, MalR. Although AHLs typically interact with LuxR-type proteins to modulate gene transcription, the B. thailandensis MalR does not appear to be an AHL receptor. Here, we characterize the mal genes and MalR in B. pseudomallei We use chemical analyses to demonstrate that the B. pseudomallei mal genes code for malleilactone. Our results show that MalR and the mal genes contribute to the ability of B. pseudomallei to kill Caenorhabditis elegans In B. thailandensis, antibiotics like trimethoprim can activate MalR by driving transcription of the mal genes, and we demonstrate that some of the same antibiotics induce expression of B. pseudomallei malR We also demonstrate that B. pseudomallei MalR does not respond directly to AHLs. Our results suggest that MalR is indirectly repressed by AHLs, possibly through a repressor, ScmR. We further show that malleilactone is a B. pseudomallei virulence factor and provide the foundation for understanding how malleilactone contributes to the pathology of melioidosis infections.IMPORTANCE Many bacterially produced polyketides are cytotoxic to mammalian cells and are potentially important contributors to pathogenesis during infection. We are interested in the polyketide gene clusters present in Burkholderia pseudomallei, which causes the often-fatal human disease melioidosis. Using knowledge gained by studies in the close relative Burkholderia thailandensis, we show that one of the B. pseudomallei polyketide biosynthetic clusters produces a cytotoxic polyketide, malleilactone. Malleilactone contributes to B. pseudomallei virulence in a Caenorhabditis elegans infection model and is regulated by an orphan LuxR family quorum-sensing transcription factor, MalR. Our studies demonstrate that malleilactone biosynthesis or MalR could be new targets for developing therapeutics to treat melioidosis.
Collapse
|
4
|
The Complex Quorum Sensing Circuitry of Burkholderia thailandensis Is Both Hierarchically and Homeostatically Organized. mBio 2017; 8:mBio.01861-17. [PMID: 29208745 PMCID: PMC5717390 DOI: 10.1128/mbio.01861-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The genome of the bacterium Burkholderia thailandensis encodes three complete LuxI/LuxR-type quorum sensing (QS) systems: BtaI1/BtaR1 (QS-1), BtaI2/BtaR2 (QS-2), and BtaI3/BtaR3 (QS-3). The LuxR-type transcriptional regulators BtaR1, BtaR2, and BtaR3 modulate the expression of target genes in association with various N-acyl-l-homoserine lactones (AHLs) as signaling molecules produced by the LuxI-type synthases BtaI1, BtaI2, and BtaI3. We have systematically dissected the complex QS circuitry of B. thailandensis strain E264. Direct quantification of N-octanoyl-homoserine lactone (C8-HSL), N-3-hydroxy-decanoyl-homoserine lactone (3OHC10-HSL), and N-3-hydroxy-octanoyl-homoserine lactone (3OHC8-HSL), the primary AHLs produced by this bacterium, was performed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) in the wild-type strain and in QS deletion mutants. This was compared to the transcription of btaI1, btaI2, and btaI3 using chromosomal mini-CTX-lux transcriptional reporters. Furthermore, the levels of expression of btaR1, btaR2, and btaR3 were monitored by quantitative reverse transcription-PCR (qRT-PCR). We observed that C8-HSL, 3OHC10-HSL, and 3OHC8-HSL are differentially produced over time during bacterial growth and correlate with the btaI1, btaI2, and btaI3 gene expression profiles, revealing a successive activation of the corresponding QS systems. Moreover, the transcription of the btaR1, btaR2, and btaR3 genes is modulated by cognate and noncognate AHLs, showing that their regulation depends on themselves and on other QS systems. We conclude that the three QS systems in B. thailandensis are interdependent, suggesting that they cooperate dynamically and function in a concerted manner in modulating the expression of QS target genes through a successive regulatory network. Quorum sensing (QS) is a widespread bacterial communication system coordinating the expression of specific genes in a cell density-dependent manner and allowing bacteria to synchronize their activities and to function as multicellular communities. QS plays a crucial role in bacterial pathogenicity by regulating the expression of a wide spectrum of virulence/survival factors and is essential to environmental adaptation. The results presented here demonstrate that the multiple QS systems coexisting in the bacterium Burkholderia thailandensis, which is considered the avirulent version of the human pathogen Burkholderia pseudomallei and thus commonly used as an alternative study model, are hierarchically and homeostatically organized. We found these QS systems to be finely integrated into a complex regulatory network, including transcriptional and posttranscriptional interactions, and further incorporating growth stages and temporal expression. These results provide a unique, comprehensive illustration of a sophisticated QS network and will contribute to a better comprehension of the regulatory mechanisms that can be involved in the expression of QS-controlled genes, in particular those associated with the establishment of host-pathogen interactions and acclimatization to the environment.
Collapse
|
5
|
Quorum Sensing in Burkholderia pseudomallei and Other Burkholderia species. CURRENT TROPICAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40475-017-0127-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Mongkolrob R, Taweechaisupapong S, Tungpradabkul S. Correlation between biofilm production, antibiotic susceptibility and exopolysaccharide composition in Burkholderia pseudomallei bpsI, ppk, and rpoS mutant strains. Microbiol Immunol 2016; 59:653-63. [PMID: 26486518 DOI: 10.1111/1348-0421.12331] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 11/28/2022]
Abstract
Burkholderia pseudomallei is the cause of melioidosis, a fatal tropical infectious disease, which has been reported to have a high rate of recurrence, even when an intensive dose of antibiotics is used. Biofilm formation is believed to be one of the possible causes of relapse because of its ability to increase drug resistance. EPS in biofilms have been reported to be related to the limitation of antibiotic penetration in B. pseudomallei. However, the mechanisms by which biofilms restrict the diffusion of antibiotics remain unclear. The present study presents a correlation between exopolysaccharide production in biofilm matrix and antibiotic resistance in B. pseudomallei using bpsI, ppk, and rpoS mutant strains. CLSM revealed a reduction in exopolysaccharide production and disabled micro-colony formation in B. pseudomallei mutants, which paralleled the antibiotic resistance. Different ratios of carbohydrate contents in the exopolysaccharides of the mutants were detected, although they have the same components, including glucose, galactose, mannose, and rhamnose, with the exception being that no detectable rhamnose peak was observed in the bpsI mutant. These results indicate that the correlation between these phenomena in the B. pseudomallei biofilm at least results from the exopolysaccharide, which may be under the regulation of bpsI, ppk, or rpoS genes.
Collapse
Affiliation(s)
- Rungrawee Mongkolrob
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Suwimol Taweechaisupapong
- Melioidosis Research Center and Biofilm research group, Faculty of Dentistry, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sumalee Tungpradabkul
- Biochemistry Department, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| |
Collapse
|
7
|
The organization of the quorum sensing luxI/R family genes in Burkholderia. Int J Mol Sci 2013; 14:13727-47. [PMID: 23820583 PMCID: PMC3742214 DOI: 10.3390/ijms140713727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
Members of the Burkholderia genus of Proteobacteria are capable of living freely in the environment and can also colonize human, animal and plant hosts. Certain members are considered to be clinically important from both medical and veterinary perspectives and furthermore may be important modulators of the rhizosphere. Quorum sensing via N-acyl homoserine lactone signals (AHL QS) is present in almost all Burkholderia species and is thought to play important roles in lifestyle changes such as colonization and niche invasion. Here we present a census of AHL QS genes retrieved from public databases and indicate that the local arrangement (topology) of QS genes, their location within chromosomes and their gene neighborhoods show characteristic patterns that differ between the known Burkholderia clades. In sequence phylogenies, AHL QS genes seem to cluster according to the local gene topology rather than according to the species, which suggests that the basic topology types were present prior to the appearance of current Burkholderia species. The data are available at http://net.icgeb.org/burkholderia/.
Collapse
|
8
|
Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V. Common features of environmental and potentially beneficial plant-associated Burkholderia. MICROBIAL ECOLOGY 2012; 63:249-266. [PMID: 21850446 DOI: 10.1007/s00248-011-9929-1] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 08/01/2011] [Indexed: 05/31/2023]
Abstract
The genus Burkholderia comprises more than 60 species isolated from a wide range of niches. Although they have been shown to be diverse and ubiquitously distributed, most studies have thus far focused on the pathogenic species due to their clinical importance. However, the increasing number of recently described Burkholderia species associated with plants or with the environment has highlighted the division of the genus into two main clusters, as suggested by phylogenetical analyses. The first cluster includes human, animal, and plant pathogens, such as Burkholderia glumae, Burkholderia pseudomallei, and Burkholderia mallei, as well as the 17 defined species of the Burkholderia cepacia complex, while the other, more recently established cluster comprises more than 30 non-pathogenic species, which in most cases have been found to be associated with plants, and thus might be considered to be potentially beneficial. Several species from the latter group share characteristics that are of use when associating with plants, such as a quorum sensing system, the presence of nitrogen fixation and/or nodulation genes, and the ability to degrade aromatic compounds. This review examines the commonalities in this growing subgroup of Burkholderia species and discusses their prospective biotechnological applications.
Collapse
Affiliation(s)
- Zulma Rocío Suárez-Moreno
- Bacteriology Group, International Centre for Genetic Engineering & Biotechnology, Padriciano 99, 34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Gamage AM, Shui G, Wenk MR, Chua KL. N-Octanoylhomoserine lactone signalling mediated by the BpsI–BpsR quorum sensing system plays a major role in biofilm formation of Burkholderia pseudomallei. Microbiology (Reading) 2011; 157:1176-1186. [DOI: 10.1099/mic.0.046540-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genome of Burkholderia pseudomallei encodes three acylhomoserine lactone (AHL) quorum sensing systems, each comprising an AHL synthase and a signal receptor/regulator. The BpsI–BpsR system produces N-octanoylhomoserine lactone (C8HL) and is positively auto-regulated by its AHL product. The products of the remaining two systems have not been identified. In this study, tandem MS was used to identify and quantify the AHL species produced by three clinical B. pseudomallei isolates – KHW, K96243 and H11 – three isogenic KHW mutants that each contain a null mutation in an AHL synthase gene, and recombinant Escherichia coli heterologously expressing each of the three B. pseudomallei AHL synthase genes. BpsI synthesized predominantly C8HL, which accounted for more than 95 % of the extracellular AHLs produced in stationary-phase KHW cultures. The major products of BpsI2 and BpsI3 were N-(3-hydroxy-octanoyl)homoserine lactone (OHC8HL) and N-(3-hydroxy-decanoyl)homoserine lactone, respectively, and their corresponding transcriptional regulators, BpsR2 and BpsR3, were capable of driving reporter gene expression in the presence of these cognate lactones. Formation of biofilm by B. pseudomallei KHW was severely impaired in mutants lacking either BpsI or BpsR but could be restored to near wild-type levels by exogenous C8HL. BpsI2 was not required, and BpsI3 was partially required for biofilm formation. Unlike the bpsI mutant, biofilm formation in the bpsI3
mutant could not be restored to wild-type levels in the presence of OHC8HL, the product of BpsI3. C8HL and OHC8HL had opposite effects on biofilm formation; exogenous C8HL enhanced biofilm formation in both the bpsI3
mutant and wild-type KHW while exogenous OHC8HL suppressed the formation of biofilm in the same strains. We propose that exogenous OHC8HL antagonizes biofilm formation in B. pseudomallei, possibly by competing with endogenous C8HL for binding to BpsR.
Collapse
Affiliation(s)
- Akshamal Mihiranga Gamage
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Guanghou Shui
- Life Science Institute, National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Markus R. Wenk
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| | - Kim Lee Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597 Singapore
| |
Collapse
|
10
|
Commonalities and differences in regulation of N-acyl homoserine lactone quorum sensing in the beneficial plant-associated burkholderia species cluster. Appl Environ Microbiol 2010; 76:4302-17. [PMID: 20435760 DOI: 10.1128/aem.03086-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Burkholderia includes over 60 species isolated from a wide range of environmental niches and can be tentatively divided into two major species clusters. The first cluster includes pathogens such as Burkholderia glumae, B. pseudomallei, and B. mallei and 17 well-studied species of the Burkholderia cepacia complex. The other recently established cluster comprises at least 29 nonpathogenic species, which in most cases have been found to be associated with plants. It was previously established that Burkholderia kururiensis, a member of the latter cluster, possesses an N-acyl homoserine lactone (AHL) quorum-sensing (QS) system designated "BraI/R," which is found in all species of the plant-associated cluster. In the present study, two other BraI/R-like systems were characterized in B. xenovorans and B. unamae and were designated the BraI/R(XEN) and BraI/R(UNA) systems, respectively. Several phenotypes were analyzed, and it was determined that exopolysaccharide was positively regulated by the BraIR-like system in the species B. kururiensis, B. unamae, and B. xenovorans, highlighting commonality in targets. However, the three BraIR-like systems also revealed differences in targets since biofilm formation and plant colonization were differentially regulated. In addition, a second AHL QS system designated XenI2/R2 and an unpaired LuxR solo protein designated BxeR solo were also identified and characterized in B. xenovorans LB400(T). The two AHL QS systems of B. xenovorans are not transcriptionally regulating each other, whereas BxeR solo negatively regulated xenI2. The XenI2/R2 and BxeR solo proteins are not widespread in the Burkholderia species cluster. In conclusion, the present study represents an extensive analysis of AHL QS in the Burkholderia plant-associated cluster demonstrating both commonalities and differences, probably reflecting environmental adaptations of the various species.
Collapse
|
11
|
Estes DM, Dow SW, Schweizer HP, Torres AG. Present and future therapeutic strategies for melioidosis and glanders. Expert Rev Anti Infect Ther 2010; 8:325-38. [PMID: 20192686 PMCID: PMC2856610 DOI: 10.1586/eri.10.4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. Both Gram-negative pathogens are endemic in many parts of the world. Although natural acquisition of these pathogens is rare in the majority of countries, these bacteria have recently gained much interest because of their potential as bioterrorism agents. In modern times, their potential destructive impact on public health has escalated owing to the ability of these pathogens to cause opportunistic infections in diabetic and perhaps otherwise immunocompromised people, two growing populations worldwide. For both pathogens, severe infection in humans carries a high mortality rate, both species are recalcitrant to antibiotic therapy - B. pseudomallei more so than B. mallei - and no licensed vaccine exists for either prophylactic or therapeutic use. The potential malicious use of these organisms has accelerated the investigation of new ways to prevent and to treat the diseases. The availability of several B. pseudomallei and B. mallei genome sequences has greatly facilitated target identification and development of new therapeutics. This review provides a compilation of literature covering studies in antimelioidosis and antiglanders antimicrobial drug discovery, with a particular focus on potential novel therapeutic approaches to combat these diseases.
Collapse
Affiliation(s)
- D Mark Estes
- Department of Microbiology and Immunology, Department of Pathology and The Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070, USA, Tel.: +1 409 266 6523, Fax: +1 409 266 6810,
| | - Steven W Dow
- Department of Microbiology, Immunology and Pathology, Colorado State University, College of Veterinary Medicine and Biomedical Science, Fort Collins, CO 80523, USA,
| | - Herbert P Schweizer
- Department of Microbiology, Immunology and Pathology, Colorado State University, College of Veterinary Medicine and Biomedical Science, Fort Collins, CO 80523, USA,
| | - Alfredo G Torres
- Department of Microbiology and Immunology, Department of Pathology and The Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555-1070, USA,
| |
Collapse
|
12
|
Lazar Adler NR, Govan B, Cullinane M, Harper M, Adler B, Boyce JD. The molecular and cellular basis of pathogenesis in melioidosis: how does Burkholderia pseudomallei cause disease? FEMS Microbiol Rev 2009; 33:1079-99. [PMID: 19732156 DOI: 10.1111/j.1574-6976.2009.00189.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Melioidosis, a febrile illness with disease states ranging from acute pneumonia or septicaemia to chronic abscesses, was first documented by Whitmore & Krishnaswami (1912). The causative agent, Burkholderia pseudomallei, was subsequently identified as a motile, gram-negative bacillus, which is principally an environmental saprophyte. Melioidosis has become an increasingly important disease in endemic areas such as northern Thailand and Australia (Currie et al., 2000). This health burden, plus the classification of B. pseudomallei as a category B biological agent (Rotz et al., 2002), has resulted in an escalation of research interest. This review focuses on the molecular and cellular basis of pathogenesis in melioidosis, with a comprehensive overview of the current knowledge on how B. pseudomallei can cause disease. The process of B. pseudomallei movement from the environmental reservoir to attachment and invasion of epithelial and macrophage cells and the subsequent intracellular survival and spread is outlined. Furthermore, the diverse assortment of virulence factors that allow B. pseudomallei to become an effective opportunistic pathogen, as well as to avoid or subvert the host immune response, is discussed. With the recent increase in genomic and molecular studies, the current understanding of the infection process of melioidosis has increased substantially, yet, much still remains to be elucidated.
Collapse
|
13
|
|
14
|
A Burkholderia cenocepacia orphan LuxR homolog is involved in quorum-sensing regulation. J Bacteriol 2009; 191:2447-60. [PMID: 19201791 DOI: 10.1128/jb.01746-08] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia utilizes quorum sensing to control gene expression, including the expression of genes involved in virulence. In addition to CepR and CciR, a third LuxR homolog, CepR2, was found to regulate gene expression and virulence factor production. All B. cenocepacia strains examined contained this orphan LuxR homolog, which was not associated with an adjacent N-acyl-homoserine lactone synthase gene. Expression of cepR2 was negatively autoregulated and was negatively regulated by CciR in strain K56-2. Microarray analysis and quantitative reverse transcription-PCR determined that CepR2 did not influence expression of cepIR or cciIR. However, in strain K56-2, CepR2 negatively regulated expression of several known quorum-sensing-controlled genes, including genes encoding zinc metalloproteases. CepR2 exerted positive and negative regulation on genes on three chromosomes, including strong negative regulation of a gene cluster located adjacent to cepR2. In strain H111, which lacks the CciIR quorum-sensing system, CepR2 positively regulated pyochelin production by controlling transcription of one of the operons required for the biosynthesis of the siderophore in an N-acyl-homoserine lactone-independent manner. CepR2 activation of a luxI promoter was demonstrated in a heterologous Escherichia coli host, providing further evidence that CepR2 can function in the absence of signaling molecules. This study demonstrates that the orphan LuxR homolog CepR2 contributes to the quorum-sensing regulatory network in two distinct strains of B. cenocepacia.
Collapse
|