1
|
Seniya SP, Jain V. Decoding phage resistance by mpr and its role in survivability of Mycobacterium smegmatis. Nucleic Acids Res 2022; 50:6938-6952. [PMID: 35713559 PMCID: PMC9262609 DOI: 10.1093/nar/gkac505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bacteria and bacteriophages co-evolve in a constant arms race, wherein one tries and finds newer ways to overcome the other. Phage resistance poses a great threat to the development of phage therapy. Hence, it is both essential and important to understand the mechanism of phage resistance in bacteria. First identified in Mycobacterium smegmatis, the gene mpr, upon overexpression, confers resistance against D29 mycobacteriophage. Presently, the mechanism behind phage resistance by mpr is poorly understood. Here we show that Mpr is a membrane-bound DNA exonuclease, which digests DNA in a non-specific manner independent of the sequence, and shares no sequence or structural similarity with any known nuclease. Exonuclease activity of mpr provides resistance against phage infection, but the role of mpr may very well go beyond just phage resistance. Our experiments show that mpr plays a crucial role in the appearance of mutant colonies (phage resistant strains). However, the molecular mechanism behind the emergence of these mutant/resistant colonies is yet to be understood. Nevertheless, it appears that mpr is involved in the survival and evolution of M. smegmatis against phage. A similar mechanism may be present in other organisms, which requires further exploration.
Collapse
Affiliation(s)
- Surya Pratap Seniya
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462066, India
| | - Vikas Jain
- To whom correspondence should be addressed. Tel: +91 755 2691425; Fax: +91 755 2692392;
| |
Collapse
|
2
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Tittes C, Schwarzer S, Quax TEF. Viral Hijack of Filamentous Surface Structures in Archaea and Bacteria. Viruses 2021; 13:v13020164. [PMID: 33499367 PMCID: PMC7911016 DOI: 10.3390/v13020164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
The bacterial and archaeal cell surface is decorated with filamentous surface structures that are used for different functions, such as motility, DNA exchange and biofilm formation. Viruses hijack these structures and use them to ride to the cell surface for successful entry. In this review, we describe currently known mechanisms for viral attachment, translocation, and entry via filamentous surface structures. We describe the different mechanisms used to exploit various surface structures bacterial and archaeal viruses. This overview highlights the importance of filamentous structures at the cell surface for entry of prokaryotic viruses.
Collapse
|
4
|
Papathanasiou P, Erdmann S, Leon-Sobrino C, Sharma K, Urlaub H, Garrett RA, Peng X. Stable maintenance of the rudivirus SIRV3 in a carrier state in Sulfolobus islandicus despite activation of the CRISPR-Cas immune response by a second virus SMV1. RNA Biol 2018; 16:557-565. [PMID: 30146914 DOI: 10.1080/15476286.2018.1511674] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carrier state viral infection constitutes an equilibrium state in which a limited fraction of a cellular population is infected while the remaining cells are transiently resistant to infection. This type of infection has been characterized for several bacteriophages but not, to date, for archaeal viruses. Here we demonstrate that the rudivirus SIRV3 can produce a host-dependent carrier state infection in the model crenarchaeon Sulfolobus. SIRV3 only infected a fraction of a Sulfolobus islandicus REY15A culture over several days during which host growth was unimpaired and no chromosomal DNA degradation was observed. CRISPR spacer acquisition from SIRV3 DNA was induced by coinfecting with the monocaudavirus SMV1 and it was coincident with increased transcript levels from subtype I-A adaptation and interference cas genes. However, this response did not significantly affect the carrier state infection of SIRV3 and both viruses were maintained in the culture over 12 days during which SIRV3 anti-CRISPR genes were shown to be expressed. Transcriptome and proteome analyses demonstrated that most SIRV3 genes were expressed at varying levels over time whereas SMV1 gene expression was generally low. The study yields insights into the basis for the stable infection of SIRV3 and the resistance to the different host CRISPR-Cas interference mechanisms. It also provides a rationale for the commonly observed coinfection of archaeal cells by different viruses in natural environments.
Collapse
Affiliation(s)
- Pavlos Papathanasiou
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Susanne Erdmann
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark.,b ithree Institute, University of Technology Sydney , Sydney , Australia
| | - Carlos Leon-Sobrino
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark.,c Centre for Microbial Ecology and Genomics, Department of Genetics , University of Pretoria , Hatfield , South Africa
| | - Kundan Sharma
- d Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, D37077 Göttingen , Germany.,e Ludwig Institute for Cancer Research, University of Oxford , Oxford , UK
| | - Henning Urlaub
- d Max Planck Institute of Biophysical Chemistry , Am Faßberg 11, D37077 Göttingen , Germany.,f Bioanalytics Research Group, Institute of Clinical Chemistry, University Medical Center Göttingen , Göttingen , Germany
| | - Roger A Garrett
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| | - Xu Peng
- a Danish Archaea Centre, Department of Biology , University of Copenhagen , Copenhagen N , Denmark
| |
Collapse
|
5
|
Structure and assembly mechanism of virus-associated pyramids. Biophys Rev 2017; 10:551-557. [PMID: 29204884 DOI: 10.1007/s12551-017-0357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/16/2017] [Indexed: 01/08/2023] Open
Abstract
Viruses have developed intricate molecular machines to infect, replicate within and escape from their host cells. Perhaps one of the most intriguing of these mechanisms is the pyramidal egress structure that has evolved in archaeal viruses, such as SIRV2 or STIV1. The structure and mechanism of these virus-associated pyramids (VAPs) has been studied by cryo-electron tomography and complementary biochemical techniques, revealing that VAPs are formed by multiple copies of a virus-encoded 10-kDa protein (PVAP) that integrate into the cell membrane and assemble into hollow, sevenfold symmetric pyramids. In this process, growing VAPs puncture the protective surface layer and ultimately open to release newly replicated viral particles into the surrounding medium. PVAP has the striking capability to spontaneously integrate and self-assemble into VAPs in biological membranes of the archaea, bacteria and eukaryotes. This renders the VAP a universal membrane remodelling system. In this review, we provide an overview of the VAP structure and assembly mechanism and discuss the possible use of VAPs in nano-biotechnology.
Collapse
|
6
|
Abstract
One of the most prominent features of archaea is the extraordinary diversity of their DNA viruses. Many archaeal viruses differ substantially in morphology from bacterial and eukaryotic viruses and represent unique virus families. The distinct nature of archaeal viruses also extends to the gene composition and architectures of their genomes and the properties of the proteins that they encode. Environmental research has revealed prominent roles of archaeal viruses in influencing microbial communities in ocean ecosystems, and recent metagenomic studies have uncovered new groups of archaeal viruses that infect extremophiles and mesophiles in diverse habitats. In this Review, we summarize recent advances in our understanding of the genomic and morphological diversity of archaeal viruses and the molecular biology of their life cycles and virus-host interactions, including interactions with archaeal CRISPR-Cas systems. We also examine the potential origins and evolution of archaeal viruses and discuss their place in the global virosphere.
Collapse
|
7
|
Peeters E, Boon M, Rollie C, Willaert RG, Voet M, White MF, Prangishvili D, Lavigne R, Quax TEF. DNA-Interacting Characteristics of the Archaeal Rudiviral Protein SIRV2_Gp1. Viruses 2017; 9:v9070190. [PMID: 28718834 PMCID: PMC5537682 DOI: 10.3390/v9070190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/02/2022] Open
Abstract
Whereas the infection cycles of many bacterial and eukaryotic viruses have been characterized in detail, those of archaeal viruses remain largely unexplored. Recently, studies on a few model archaeal viruses such as SIRV2 (Sulfolobus islandicus rod-shaped virus) have revealed an unusual lysis mechanism that involves the formation of pyramidal egress structures on the host cell surface. To expand understanding of the infection cycle of SIRV2, we aimed to functionally characterize gp1, which is a SIRV2 gene with unknown function. The SIRV2_Gp1 protein is highly expressed during early stages of infection and it is the only protein that is encoded twice on the viral genome. It harbours a helix-turn-helix motif and was therefore hypothesized to bind DNA. The DNA-binding behavior of SIRV2_Gp1 was characterized with electrophoretic mobility shift assays and atomic force microscopy. We provide evidence that the protein interacts with DNA and that it forms large aggregates, thereby causing extreme condensation of the DNA. Furthermore, the N-terminal domain of the protein mediates toxicity to the viral host Sulfolobus. Our findings may lead to biotechnological applications, such as the development of a toxic peptide for the containment of pathogenic bacteria, and add to our understanding of the Rudiviral infection cycle.
Collapse
Affiliation(s)
- Eveline Peeters
- Research Group of Microbiology, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Maarten Boon
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Clare Rollie
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | - Ronnie G Willaert
- Alliance Research Group VUB-UGhent NanoMicrobiology, IJRG VUB-EPFL, BioNanotechnology & NanoMedicine, Research Group Structural Biology Brussels, Department of Bio-Engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Marleen Voet
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, Fife, North Haugh, St. Andrews KY16 9AJ, UK.
| | | | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| | - Tessa E F Quax
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Kasteelpark Arenberg 21 box 2462, Heverlee, 3001 Leuven, Belgium.
| |
Collapse
|
8
|
Formation of a Viral Replication Focus in Sulfolobus Cells Infected by the Rudivirus Sulfolobus islandicus Rod-Shaped Virus 2. J Virol 2017; 91:JVI.00486-17. [PMID: 28424282 DOI: 10.1128/jvi.00486-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Viral factories are compartmentalized centers for viral replication and assembly in infected eukaryotic cells. Here, we report the formation of a replication focus by prototypical archaeal Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in the model archaeon Sulfolobus This rod-shaped virus belongs to the viral family Rudiviridae, carrying linear double-stranded DNA (dsDNA) genomes, which are very common in geothermal environments. We demonstrate that SIRV2 DNA synthesis is confined to a focus near the periphery of infected cells. Moreover, viral and cellular replication proteins are recruited to, and concentrated in, the viral replication focus. Furthermore, we show that of the four host DNA polymerases (DNA polymerase I [Dpo1] to Dpo4), only Dpo1 participates in viral DNA synthesis. This constitutes the first report of the formation of a viral replication focus in archaeal cells, suggesting that organization of viral replication in foci is a widespread strategy employed by viruses of the three domains of life.IMPORTANCE The organization of viral replication in foci or viral factories has been mostly described for different eukaryotic viruses and for several bacteriophages. This work constitutes the first report of the formation of a viral replication center by a virus infecting members of the Archaea domain.
Collapse
|
9
|
Differentiation and Structure in Sulfolobus islandicus Rod-Shaped Virus Populations. Viruses 2017; 9:v9050120. [PMID: 28534836 PMCID: PMC5454432 DOI: 10.3390/v9050120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 11/17/2022] Open
Abstract
In the past decade, molecular surveys of viral diversity have revealed that viruses are the most diverse and abundant biological entities on Earth. In culture, however, most viral isolates that infect microbes are represented by a few variants isolated on type strains, limiting our ability to study how natural variation affects virus-host interactions in the laboratory. We screened a set of 137 hot spring samples for viruses that infect a geographically diverse panel of the hyperthemophilic crenarchaeon Sulfolobus islandicus. We isolated and characterized eight SIRVs (Sulfolobus islandicus rod-shaped viruses) from two different regions within Yellowstone National Park (USA). Comparative genomics revealed that all SIRV sequenced isolates share 30 core genes that represent 50–60% of the genome. The core genome phylogeny, as well as the distribution of variable genes (shared by some but not all SIRVs) and the signatures of host-virus interactions recorded on the CRISPR (clustered regularly interspaced short palindromic repeats) repeat-spacer arrays of S. islandicus hosts, identify different SIRV lineages, each associated with a different geographic location. Moreover, our studies reveal that SIRV core genes do not appear to be under diversifying selection and thus we predict that the abundant and diverse variable genes govern the coevolutionary arms race between SIRVs and their hosts.
Collapse
|
10
|
Green JJ, Elisseeff JH. Mimicking biological functionality with polymers for biomedical applications. Nature 2017; 540:386-394. [PMID: 27974772 DOI: 10.1038/nature21005] [Citation(s) in RCA: 299] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022]
Abstract
The vast opportunities for biomaterials design and functionality enabled by mimicking nature continue to stretch the limits of imagination. As both biological understanding and engineering capabilities develop, more sophisticated biomedical materials can be synthesized that have multifaceted chemical, biological and physical characteristics designed to achieve specific therapeutic goals. Mimicry is being used in the design of polymers for biomedical applications that are required locally in tissues, systemically throughout the body, and at the interface with tissues.
Collapse
Affiliation(s)
- Jordan J Green
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jennifer H Elisseeff
- Translational Tissue Engineering Center, Departments of Biomedical Engineering and Ophthalmology, and the Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
11
|
Gudbergsdóttir SR, Menzel P, Krogh A, Young M, Peng X. Novel viral genomes identified from six metagenomes reveal wide distribution of archaeal viruses and high viral diversity in terrestrial hot springs. Environ Microbiol 2015; 18:863-74. [PMID: 26439881 DOI: 10.1111/1462-2920.13079] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/30/2015] [Indexed: 11/27/2022]
Abstract
Limited by culture-dependent methods the number of viruses identified from thermophilic Archaea and Bacteria is still very small. In this study we retrieved viral sequences from six hot spring metagenomes isolated worldwide, revealing a wide distribution of four archaeal viral families, Ampullaviridae, Bicaudaviridae, Lipothrixviridae and Rudiviridae. Importantly, we identified 10 complete or near complete viral genomes allowing, for the first time, an assessment of genome conservation and evolution of the Ampullaviridae family as well as Sulfolobus Monocaudavirus 1 (SMV1)-related viruses. Among the novel genomes, one belongs to a putative thermophilic virus infecting the bacterium Hydrogenobaculum, for which no virus has been reported in the literature. Moreover, a high viral diversity was observed in the metagenomes, especially among the Lipothrixviridae, as indicated by the large number of unique contigs and the lack of a completely assembled genome for this family. This is further supported by the large number of novel genes in the complete and partial genomes showing no sequence similarities to public databases. CRISPR analysis revealed hundreds of novel CRISPR loci and thousands of novel CRISPR spacers from each metagenome, reinforcing the notion of high viral diversity in the thermal environment.
Collapse
Affiliation(s)
| | - Peter Menzel
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark
| | - Anders Krogh
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark
| | - Mark Young
- Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717-3150, USA
| | - Xu Peng
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK-2200, Denmark
| |
Collapse
|
12
|
Abstract
SUMMARY Research on archaeal extrachromosomal genetic elements (ECEs) has progressed rapidly in the past decade. To date, over 60 archaeal viruses and 60 plasmids have been isolated. These archaeal viruses exhibit an exceptional diversity in morphology, with a wide array of shapes, such as spindles, rods, filaments, spheres, head-tails, bottles, and droplets, and some of these new viruses have been classified into one order, 10 families, and 16 genera. Investigation of model archaeal viruses has yielded important insights into mechanisms underlining various steps in the viral life cycle, including infection, DNA replication and transcription, and virion egression. Many of these mechanisms are unprecedented for any known bacterial or eukaryal viruses. Studies of plasmids isolated from different archaeal hosts have also revealed a striking diversity in gene content and innovation in replication strategies. Highly divergent replication proteins are identified in both viral and plasmid genomes. Genomic studies of archaeal ECEs have revealed a modular sequence structure in which modules of DNA sequence are exchangeable within, as well as among, plasmid families and probably also between viruses and plasmids. In particular, it has been suggested that ECE-host interactions have shaped the coevolution of ECEs and their archaeal hosts. Furthermore, archaeal hosts have developed defense systems, including the innate restriction-modification (R-M) system and the adaptive CRISPR (clustered regularly interspaced short palindromic repeats) system, to restrict invasive plasmids and viruses. Together, these interactions permit a delicate balance between ECEs and their hosts, which is vitally important for maintaining an innovative gene reservoir carried by ECEs. In conclusion, while research on archaeal ECEs has just started to unravel the molecular biology of these genetic entities and their interactions with archaeal hosts, it is expected to accelerate in the next decade.
Collapse
|
13
|
Guo Y, Kragelund BB, White MF, Peng X. Functional Characterization of a Conserved Archaeal Viral Operon Revealing Single-Stranded DNA Binding, Annealing and Nuclease Activities. J Mol Biol 2015; 427:2179-91. [DOI: 10.1016/j.jmb.2015.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/15/2022]
|
14
|
Garrett RA, Shah SA, Erdmann S, Liu G, Mousaei M, León-Sobrino C, Peng W, Gudbergsdottir S, Deng L, Vestergaard G, Peng X, She Q. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life (Basel) 2015; 5:783-817. [PMID: 25764276 PMCID: PMC4390879 DOI: 10.3390/life5010783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022] Open
Abstract
The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney NSW, Australia.
| | - Guannan Liu
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Carlos León-Sobrino
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Wenfang Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Soley Gudbergsdottir
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Ling Deng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Gisle Vestergaard
- Helmholtz Zentrum München, Research Unit Environmental Genomics, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Xu Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Qunxin She
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
15
|
SMV1 virus-induced CRISPR spacer acquisition from the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2. Biochem Soc Trans 2014; 41:1449-58. [PMID: 24256236 PMCID: PMC3839810 DOI: 10.1042/bst20130196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms of the crenarchaeal order Sulfolobales carry complex CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune systems. These systems are modular and show extensive structural and functional diversity, especially in their interference complexes. The primary targets are an exceptional range of diverse viruses, many of which propagate stably within cells and follow lytic life cycles without producing cell lysis. These properties are consistent with the difficulty of activating CRISPR spacer uptake in the laboratory, but appear to conflict with the high complexity and diversity of the CRISPR immune systems that are found among the Sulfolobales. In the present article, we re-examine the first successful induction of archaeal spacer acquisition in our laboratory that occurred exclusively for the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2 that was co-infected with the virus SMV1 (Sulfolobus monocaudavirus 1). Although we reaffirm that protospacer selection is essentially a random process with respect to the pMGB1 genome, we identified single spacer sequences specific for each of CRISPR loci C, D and E that, exceptionally, occurred in many sequenced clones. Moreover, the same sequence was reproducibly acquired for a given locus in independent experiments, consistent with it being the first protospacer to be selected. There was also a small protospacer bias (1.6:1) to the antisense strand of protein genes. In addition, new experiments demonstrated that spacer acquisition in the previously inactive CRISPR locus A could be induced on freeze–thawing of the infected cells, suggesting that environmental stress can facilitate activation. Coincidentally with spacer acquisition, a mobile OrfB element was deleted from pMGB1, suggesting that interplay can occur between spacer acquisition and transposition.
Collapse
|
16
|
Happonen LJ, Erdmann S, Garrett RA, Butcher SJ. Adenosine triphosphatases of thermophilic archaeal double-stranded DNA viruses. Cell Biosci 2014; 4:37. [PMID: 25105011 PMCID: PMC4124505 DOI: 10.1186/2045-3701-4-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 06/13/2014] [Indexed: 12/02/2022] Open
Abstract
Adenosine triphosphatases (ATPases) of double-stranded (ds) DNA archaeal viruses are structurally related to the AAA+ hexameric helicases and translocases. These ATPases have been implicated in viral life cycle functions such as DNA entry into the host, and viral genome packaging into preformed procapsids. We summarize bioinformatical analyses of a wide range of archaeal ATPases, and review the biochemical and structural properties of those archaeal ATPases that have measurable ATPase activity. We discuss their potential roles in genome delivery into the host, virus assembly and genome packaging in comparison to hexameric helicases and packaging motors from bacteriophages.
Collapse
Affiliation(s)
- Lotta J Happonen
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, SE-221 84 Lund, Sweden
| | - Susanne Erdmann
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Sarah J Butcher
- Institute of Biotechnology, University of Helsinki, (Viikinkaari 1), P.O. Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|
17
|
Abstract
The Archaea-and their viruses-remain the most enigmatic of life's three domains. Once thought to inhabit only extreme environments, archaea are now known to inhabit diverse environments. Even though the first archaeal virus was described over 40 years ago, only 117 archaeal viruses have been discovered to date. Despite this small number, these viruses have painted a portrait of enormous morphological and genetic diversity. For example, research centered around the various steps of the archaeal virus life cycle has led to the discovery of unique mechanisms employed by archaeal viruses during replication, maturation, and virion release. In many instances, archaeal virus proteins display very low levels of sequence homology to other proteins listed in the public database, and therefore, structural characterization of these proteins has played an integral role in functional assignment. These structural studies have not only provided insights into structure-function relationships but have also identified links between viruses across all three domains of life.
Collapse
Affiliation(s)
- Nikki Dellas
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Jamie C Snyder
- Thermal Biology Institute and Departments of.,Plant Sciences and
| | - Benjamin Bolduc
- Thermal Biology Institute and Departments of.,Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717;
| | - Mark J Young
- Thermal Biology Institute and Departments of.,Plant Sciences and
| |
Collapse
|
18
|
Unveiling cell surface and type IV secretion proteins responsible for archaeal rudivirus entry. J Virol 2014; 88:10264-8. [PMID: 24965447 DOI: 10.1128/jvi.01495-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Sulfolobus mutants resistant to archaeal lytic virus Sulfolobus islandicus rod-shaped virus 2 (SIRV2) were isolated, and mutations were identified in two gene clusters, cluster sso3138 to sso3141 and cluster sso2386 and sso2387, encoding cell surface and type IV secretion proteins, respectively. The involvement of the mutations in the resistance was confirmed by genetic complementation. Blocking of virus entry into the mutants was demonstrated by the lack of early gene transcription, strongly supporting the idea of a role of the proteins in SIRV2 entry.
Collapse
|
19
|
Pina M, Basta T, Quax TEF, Joubert A, Baconnais S, Cortez D, Lambert S, Le Cam E, Bell SD, Forterre P, Prangishvili D. Unique genome replication mechanism of the archaeal virus AFV1. Mol Microbiol 2014; 92:1313-25. [PMID: 24779456 DOI: 10.1111/mmi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2014] [Indexed: 12/29/2022]
Abstract
The exceptional genomic content and genome organization of the Acidianus filamentous virus 1 (AFV1) that infects the hyperthermophilic archaeon Acidianus hospitalis suggest that this virus might exploit an unusual mechanism of genome replication. An analysis of replicative intermediates of the viral genome by two-dimensional (2D) agarose gel electrophoresis revealed that viral genome replication starts by the formation of a D-loop and proceeds via strand displacement replication. Characterization of replicative intermediates using dark-field electron microscopy, in combination with the 2D agarose gel electrophoresis data, suggests that recombination plays a key role in the termination of AFV1 genome replication through the formation of terminal loops. A terminal protein was found to be attached to the ends of the viral genome. The results allow us to postulate a model of genome replication that relies on recombination events for initiation and termination.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Département de Microbiologie, 25 Rue du Dr. Roux, 75015, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
This review presents a personal account of research on archaeal viruses and describes many new viral species and families, demonstrating that viruses of Archaea constitute a distinctive part of the virosphere and display morphotypes that are not associated with the other two domains of life, Bacteria and Eukarya. I focus primarily on viruses that infect hyperthermophilic members of the phylum Crenarchaeota. These viruses' distinctiveness extends from their morphotypes to their genome sequences and the structures of the proteins they encode. Moreover, the mechanisms underlying the interactions of these viruses with their hosts also have unique features. Studies of archaeal viruses provide new perspectives concerning the nature, diversity, and evolution of virus-host interactions. Considering these studies, I associate the distinctions between bacterial and archaeal viruses with the fundamental differences in the envelope compositions of their host cells.
Collapse
|
21
|
Genomics and biology of Rudiviruses, a model for the study of virus-host interactions in Archaea. Biochem Soc Trans 2013; 41:443-50. [PMID: 23356326 DOI: 10.1042/bst20120313] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Archaeal viruses, especially viruses that infect hyperthermophilic archaea of the phylum Crenarchaeota, constitute one of the least understood parts of the virosphere. However, owing to recent substantial research efforts by several groups, archaeal viruses are starting to gradually reveal their secrets. In the present review, we summarize the current knowledge on one of the emerging model systems for studies on crenarchaeal viruses, the Rudiviridae. We discuss the recent advances towards understanding the function and structure of the proteins encoded by the rudivirus genomes, their role in the virus life cycle, and outline the directions for further research on this model system. In addition, a revised genome annotation of SIRV2 (Sulfolobus islandicus rod-shaped virus 2) is presented. Future studies on archaeal viruses, combined with the knowledge on viruses of bacteria and eukaryotes, should lead to a better global understanding of the diversity and evolution of virus-host interactions in the viral world.
Collapse
|
22
|
Genome sequence of a novel archaeal rudivirus recovered from a mexican hot spring. GENOME ANNOUNCEMENTS 2013; 1:genomeA00040-12. [PMID: 23405288 PMCID: PMC3569270 DOI: 10.1128/genomea.00040-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/29/2012] [Indexed: 11/27/2022]
Abstract
We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico.
Collapse
|
23
|
Peng X, Garrett RA, She Q. Archaeal viruses--novel, diverse and enigmatic. SCIENCE CHINA-LIFE SCIENCES 2012; 55:422-33. [PMID: 22645086 DOI: 10.1007/s11427-012-4325-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 04/15/2012] [Indexed: 01/28/2023]
Abstract
Recent research has revealed a remarkable diversity of viruses in archaeal-rich environments where spindles, spheres, filaments and rods are common, together with other exceptional morphotypes never recorded previously. Moreover, their double-stranded DNA genomes carry very few genes exhibiting homology to those of bacterial and eukaryal viruses. Studies on viral life cycles are still at a preliminary stage but important insights are being gained especially from microarray analyses of viral transcripts for a few model virus-host systems. Recently, evidence has been presented for some exceptional archaeal-specific mechanisms for extra-cellular morphological development of virions and for their cellular extrusion. Here we summarise some of the recent developments in this rapidly developing and exciting research area.
Collapse
Affiliation(s)
- Xu Peng
- Archaea Centre, Department of Biology, Copenhagen University, Copenhagen N, Denmark.
| | | | | |
Collapse
|
24
|
A new proposed taxon for double-stranded DNA viruses, the order “Ligamenvirales”. Arch Virol 2012; 157:791-5. [DOI: 10.1007/s00705-012-1229-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/09/2011] [Indexed: 11/26/2022]
|
25
|
Krupovic M, Prangishvili D, Hendrix RW, Bamford DH. Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere. Microbiol Mol Biol Rev 2011; 75:610-35. [PMID: 22126996 PMCID: PMC3232739 DOI: 10.1128/mmbr.00011-11] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes, bacteria and archaea, are the most abundant cellular organisms among those sharing the planet Earth with human beings (among others). However, numerous ecological studies have revealed that it is actually prokaryotic viruses that predominate on our planet and outnumber their hosts by at least an order of magnitude. An understanding of how this viral domain is organized and what are the mechanisms governing its evolution is therefore of great interest and importance. The vast majority of characterized prokaryotic viruses belong to the order Caudovirales, double-stranded DNA (dsDNA) bacteriophages with tails. Consequently, these viruses have been studied (and reviewed) extensively from both genomic and functional perspectives. However, albeit numerous, tailed phages represent only a minor fraction of the prokaryotic virus diversity. Therefore, the knowledge which has been generated for this viral system does not offer a comprehensive view of the prokaryotic virosphere. In this review, we discuss all families of bacterial and archaeal viruses that contain more than one characterized member and for which evolutionary conclusions can be attempted by use of comparative genomic analysis. We focus on the molecular mechanisms of their genome evolution as well as on the relationships between different viral groups and plasmids. It becomes clear that evolutionary mechanisms shaping the genomes of prokaryotic viruses vary between different families and depend on the type of the nucleic acid, characteristics of the virion structure, as well as the mode of the life cycle. We also point out that horizontal gene transfer is not equally prevalent in different virus families and is not uniformly unrestricted for diverse viral functions.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, 25 rue du Dr. Roux, 75015 Paris, France.
| | | | | | | |
Collapse
|
26
|
Garrett RA, Vestergaard G, Shah SA. Archaeal CRISPR-based immune systems: exchangeable functional modules. Trends Microbiol 2011; 19:549-56. [PMID: 21945420 DOI: 10.1016/j.tim.2011.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/05/2011] [Accepted: 08/15/2011] [Indexed: 12/26/2022]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-based immune systems are essentially modular with three primary functions: the excision and integration of new spacers, the processing of CRISPR transcripts to yield mature CRISPR RNAs (crRNAs), and the targeting and cleavage of foreign nucleic acid. The primary target appears to be the DNA of foreign genetic elements, but the CRISPR/Cmr system that is widespread amongst archaea also specifically targets and cleaves RNA in vitro. The archaeal CRISPR systems tend to be both diverse and complex. Here we examine evidence for exchange of functional modules between archaeal systems that is likely to contribute to their diversity, particularly of their nucleic acid targeting and cleavage functions. The molecular constraints that limit such exchange are considered. We also summarize mechanisms underlying the dynamic nature of CRISPR loci and the evidence for intergenomic exchange of CRISPR systems.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Ole Maaløes Vej 5, University of Copenhagen, DK2200 Copenhagen N, Denmark.
| | | | | |
Collapse
|
27
|
Krupovic M, Bamford DH. Double-stranded DNA viruses: 20 families and only five different architectural principles for virion assembly. Curr Opin Virol 2011; 1:118-24. [PMID: 22440622 DOI: 10.1016/j.coviro.2011.06.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 02/03/2023]
Abstract
The number of viral particles in the biosphere is enormous. Virus classification helps to comprehend the virosphere and to understand the relationship between different virus groups. However, the evolutionary reach of the currently employed sequence-based approaches in virus taxonomy is rather limited, producing a fragmented view of the virosphere. As a result, viruses are currently classified into 87 different families. However, studies on virion architectures have unexpectedly revealed that their structural diversity is far more limited. Here we describe structures of the major capsid proteins of double-stranded DNA viruses infecting hosts residing in different domains of life. We note that viruses belonging to 20 different families fall into only five distinct structural groups, suggesting that optimal virus classification approach should equally rely on both sequence and structural information.
Collapse
Affiliation(s)
- Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris, France.
| | | |
Collapse
|
28
|
Abstract
Since their discovery in the early 1980s, viruses that infect the third domain of life, the Archaea, have captivated our attention because of their virions' unusual morphologies and proteins, which lack homologues in extant databases. Moreover, the life cycles of these viruses have unusual features, as revealed by the recent discovery of a novel virus egress mechanism that involves the formation of specific pyramidal structures on the host cell surface. The available data elucidate the particular nature of the archaeal virosphere and shed light on questions concerning the origin and evolution of viruses and cells. In this review, we summarize the current knowledge of archeoviruses, their interaction with hosts and plasmids and their role in the evolution of life.
Collapse
Affiliation(s)
- Mery Pina
- Institut Pasteur, Molecular Biology of the Gene in Extremophiles Unit, Paris, France
| | | | | | | |
Collapse
|
29
|
Prangishvili D, Quax TEF. Exceptional virion release mechanism: one more surprise from archaeal viruses. Curr Opin Microbiol 2011; 14:315-20. [DOI: 10.1016/j.mib.2011.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
30
|
Garrett RA, Prangishvili D, Shah SA, Reuter M, Stetter KO, Peng X. Metagenomic analyses of novel viruses and plasmids from a cultured environmental sample of hyperthermophilic neutrophiles. Environ Microbiol 2011; 12:2918-30. [PMID: 20545752 DOI: 10.1111/j.1462-2920.2010.02266.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two novel viral genomes and four plasmids were assembled from an environmental sample collected from a hot spring at Yellowstone National Park, USA, and maintained anaerobically in a bioreactor at 85°C and pH 6. The double-stranded DNA viral genomes are linear (22.7 kb) and circular (17.7 kb), and derive apparently from archaeal viruses HAV1 and HAV2. Genomic DNA was obtained from samples enriched in filamentous and tadpole-shaped virus-like particles respectively. They yielded few significant matches in public sequence databases reinforcing, further, the wide diversity of archaeal viruses. Several variants of HAV1 exhibit major genomic alterations, presumed to arise from viral adaptation to different hosts. They include insertions up to 350 bp, deletions up to 1.5 kb, and genes with extensively altered sequences. Some result from recombination events occurring at low complexity direct repeats distributed along the genome. In addition, a 33.8 kb archaeal plasmid pHA1 was characterized, encoding a possible conjugative apparatus, as well as three cryptic plasmids of thermophilic bacterial origin, pHB1 of 2.1 kb and two closely related variants pHB2a and pHB2b, of 5.2 and 4.8 kb respectively. Strategies are considered for assembling genomes of smaller genetic elements from complex environmental samples, and for establishing possible host identities on the basis of sequence similarity to host CRISPR immune systems.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Sequence-directed genetic interference pathways control gene expression and preserve genome integrity in all kingdoms of life. The importance of such pathways is highlighted by the extensive study of RNA interference (RNAi) and related processes in eukaryotes. In many bacteria and most archaea, clustered, regularly interspaced short palindromic repeats (CRISPRs) are involved in a more recently discovered interference pathway that protects cells from bacteriophages and conjugative plasmids. CRISPR sequences provide an adaptive, heritable record of past infections and express CRISPR RNAs - small RNAs that target invasive nucleic acids. Here, we review the mechanisms of CRISPR interference and its roles in microbial physiology and evolution. We also discuss potential applications of this novel interference pathway.
Collapse
|
32
|
Abstract
CRISPR (cluster of regularly interspaced palindromic repeats)/Cas and CRISPR/Cmr systems of Sulfolobus, targeting DNA and RNA respectively of invading viruses or plasmids are complex and diverse. We address their classification and functional diversity, and the wide sequence diversity of RAMP (repeat-associated mysterious protein)-motif containing proteins encoded in Cmr modules. Factors influencing maintenance of partially impaired CRISPR-based systems are discussed. The capacity for whole CRISPR transcripts to be generated despite the uptake of transcription signals within spacer sequences is considered. Targeting of protospacer regions of invading elements by Cas protein-crRNA (CRISPR RNA) complexes exhibit relatively low sequence stringency, but the integrity of protospacer-associated motifs appears to be important. Different mechanisms for circumventing or inactivating the immune systems are presented.
Collapse
|
33
|
Cady KC, White AS, Hammond JH, Abendroth MD, Karthikeyan RSG, Lalitha P, Zegans ME, O'Toole GA. Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. MICROBIOLOGY (READING, ENGLAND) 2011; 157:430-7. [PMID: 21081758 PMCID: PMC3090132 DOI: 10.1099/mic.0.045732-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/28/2022]
Abstract
Here, we report the characterization of 122 Pseudomonas aeruginosa clinical isolates from three distinct geographical locations: Dartmouth Hitchcock Medical Center in New Hampshire, USA, the Charles T. Campbell Eye Microbiology Lab at the University of Pittsburgh Medical Center, USA, and the Aravind Eye Hospital in Madurai, India. We identified and located clustered regularly interspaced short palindromic repeats (CRISPR) in 45/122 clinical isolates and sequenced these CRISPR, finding that Yersinia subtype CRISPR regions (33 %) were more prevalent than the Escherichia CRISPR region subtype (6 %) in these P. aeruginosa clinical isolates. Further, we observed 132 unique spacers from these 45 CRISPR that are 100 % identical to prophages or sequenced temperate bacteriophage capable of becoming prophages. Most intriguingly, all of these 132 viral spacers matched to temperate bacteriophage/prophages capable of inserting into the host chromosome, but not to extrachromosomally replicating lytic P. aeruginosa bacteriophage. We next assessed the ability of the more prevalent Yersinia subtype CRISPR regions to mediate resistance to bacteriophage infection or lysogeny by deleting the entire CRISPR region from sequenced strain UCBPP-PA14 and six clinical isolates. We found no change in CRISPR-mediated resistance to bacteriophage infection or lysogeny rate even for CRISPR with spacers 100 % identical to a region of the infecting bacteriophage. Lastly, to show these CRISPR and cas genes were expressed and functional, we demonstrated production of small CRISPR RNAs. This work provides both the first examination to our knowledge of CRISPR regions within clinical P. aeruginosa isolates and a collection of defined CRISPR-positive and -negative strains for further CRISPR and cas gene studies.
Collapse
Affiliation(s)
- K. C. Cady
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - A. S. White
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - J. H. Hammond
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | - M. D. Abendroth
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | - P. Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital, Madurai, India
| | - M. E. Zegans
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Surgery, Dartmouth Medical School, Lebanon, NH 03766, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover, NH 03755, USA
| |
Collapse
|
34
|
Abstract
Some viruses of Archaea use an unusual egress mechanism that involves the formation of virus-associated pyramids (VAPs) on the host cell surface. At the end of the infection cycle, these structures open outward and create apertures through which mature virions escape from the cell. Here we describe in detail the structure and composition of VAPs formed by the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in cells of its hyperthermophilic archaeal host. We show that the VAPs are stable and autonomous assemblies that can be isolated from membranes of infected cells and purified without affecting their structure. The purified VAPs are heterogeneous in size, reflecting the dynamics of VAP development in a population of infected cells; however, they have a uniform geometry, consisting of seven isosceles triangular faces forming a baseless pyramid. Biochemical and immunoelectron microscopy analyses revealed that the 10-kDa P98 protein encoded by the SIRV2 virus is the sole component of the VAPs. The VAPs were produced in Sulfolobus acidocaldarius and Escherichia coli by heterologous expression of the SIRV2-P98 gene. The results confirm that P98 is the only constituent of the VAPs and demonstrate that no other viral protein is involved in the assembly of pyramids. P98 was able to produce stable structures under conditions ranging from moderate to extremely high temperatures (80 °C) and from neutral to extremely acidic pH (pH 2), demonstrating another remarkable property of this exceptional viral protein.
Collapse
|
35
|
Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 2010; 64:475-93. [PMID: 20528693 DOI: 10.1146/annurev.micro.112408.134123] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPRs) along with Cas proteins is a widespread system across bacteria and archaea that causes interference against foreign nucleic acids. The CRISPR/Cas system acts in at least two general stages: the adaptation stage, where the cell acquires new spacer sequences derived from foreign DNA, and the interference stage, which uses the recently acquired spacers to target and cleave invasive nucleic acid. The CRISPR/Cas system participates in a constant evolutionary battle between phages and bacteria through addition or deletion of spacers in host cells and mutations or deletion in phage genomes. This review describes the recent progress made in this fast-expanding field.
Collapse
Affiliation(s)
- Hélène Deveau
- Département de Biochimie, Microbiologie et Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Université Laval, Quebec City, Quebec, G1V 0A6, Canada.
| | | | | |
Collapse
|
36
|
A dimeric Rep protein initiates replication of a linear archaeal virus genome: implications for the Rep mechanism and viral replication. J Virol 2010; 85:925-31. [PMID: 21068244 DOI: 10.1128/jvi.01467-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The Rudiviridae are a family of rod-shaped archaeal viruses with covalently closed, linear double-stranded DNA (dsDNA) genomes. Their replication mechanisms remain obscure, although parallels have been drawn to the Poxviridae and other large cytoplasmic eukaryotic viruses. Here we report that a protein encoded in the 34-kbp genome of the rudivirus SIRV1 is a member of the replication initiator (Rep) superfamily of proteins, which initiate rolling-circle replication (RCR) of diverse viruses and plasmids. We show that SIRV Rep nicks the viral hairpin terminus, forming a covalent adduct between an active-site tyrosine and the 5' end of the DNA, releasing a 3' DNA end as a primer for DNA synthesis. The enzyme can also catalyze the joining reaction that is necessary to reseal the DNA hairpin and terminate replication. The dimeric structure points to a simple mechanism through which two closely positioned active sites, each with a single tyrosine residue, work in tandem to catalyze DNA nicking and joining. We propose a novel mechanism for rudivirus DNA replication, incorporating the first known example of a Rep protein that is not linked to RCR. The implications for Rep protein function and viral replication are discussed.
Collapse
|
37
|
Shah SA, Garrett RA. CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Res Microbiol 2010; 162:27-38. [PMID: 20863886 DOI: 10.1016/j.resmic.2010.09.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
CRISPR/Cas and CRISPR/Cmr immune machineries of archaea and bacteria provide an adaptive and effective defence mechanism directed specifically against viruses and plasmids. Present data suggest that both CRISPR/Cas and Cmr modules can behave like integral genetic elements. They tend to be located in the more variable regions of chromosomes and are displaced by genome shuffling mechanisms including transposition. CRISPR loci may be broken up and dispersed in chromosomes by transposons with the potential for creating genetic novelty. Both CRISPR/Cas and Cmr modules appear to exchange readily between closely related organisms where they may be subjected to strong selective pressure. It is likely that this process occurs primarily via conjugative plasmids or chromosomal conjugation. It is inferred that interdomain transfer between archaea and bacteria has occurred, albeit very rarely, despite the significant barriers imposed by their differing conjugative, transcriptional and translational mechanisms. There are parallels between the CRISPR crRNAs and eukaryal siRNAs, most notably to germ cell piRNAs which are directed, with the help of effector proteins, to silence or destroy transposons. No homologous proteins are identifiable at a sequence level between eukaryal siRNA proteins and those of archaeal or bacterial CRISPR/Cas and Cmr modules.
Collapse
Affiliation(s)
- Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, DK2200 Copenhagen N, Denmark
| | | |
Collapse
|
38
|
Sime-Ngando T, Lucas S, Robin A, Tucker KP, Colombet J, Bettarel Y, Desmond E, Gribaldo S, Forterre P, Breitbart M, Prangishvili D. Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 2010; 13:1956-72. [PMID: 20738373 DOI: 10.1111/j.1462-2920.2010.02323.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remarkable morphological diversity of virus-like particles was observed by transmission electron microscopy in a hypersaline water sample from Lake Retba, Senegal. The majority of particles morphologically resembled hyperthermophilic archaeal DNA viruses isolated from extreme geothermal environments. Some hypersaline viral morphotypes have not been previously observed in nature, and less than 1% of observed particles had a head-and-tail morphology, which is typical for bacterial DNA viruses. Culture-independent analysis of the microbial diversity in the sample suggested the dominance of extremely halophilic archaea. Few of the 16S sequences corresponded to known archeal genera (Haloquadratum, Halorubrum and Natronomonas), whereas the majority represented novel archaeal clades. Three sequences corresponded to a new basal lineage of the haloarchaea. Bacteria belonged to four major phyla, consistent with the known diversity in saline environments. Metagenomic sequencing of DNA from the purified virus-like particles revealed very few similarities to the NCBI non-redundant database at either the nucleotide or amino acid level. Some of the identifiable virus sequences were most similar to previously described haloarchaeal viruses, but no sequence similarities were found to archaeal viruses from extreme geothermal environments. A large proportion of the sequences had similarity to previously sequenced viral metagenomes from solar salterns.
Collapse
Affiliation(s)
- Télesphore Sime-Ngando
- Laboratoire Microorganismes: Génome et Environnement, Université Blaise Pascal (Clermont-Ferrand II), UMR CNRS 6023, F-63177, Aubière Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The Sulfolobus rod-shaped virus 2 encodes a prominent structural component of the unique virion release system in Archaea. Virology 2010; 404:1-4. [PMID: 20488501 DOI: 10.1016/j.virol.2010.04.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 03/08/2010] [Accepted: 04/20/2010] [Indexed: 10/19/2022]
Abstract
Recently a unique mechanism of virion release was discovered in Archaea, different from lysis and egress systems of bacterial and eukaryotic viruses. It involves formation of pyramidal structures on the host cell surface that rupture the S-layer and by opening outwards, create apertures through which mature virions escape the cell. Here we present results of a protein analysis of Sulfolobus islandicus cells infected with the rudivirus SIRV2, which enable us to postulate SIRV2-encoded protein P98 as the major constituent of these exceptional cellular ultrastructures.
Collapse
|
40
|
Abstract
Phages are now acknowledged as the most abundant microorganisms on the planet and are also possibly the most diversified. This diversity is mostly driven by their dynamic adaptation when facing selective pressure such as phage resistance mechanisms, which are widespread in bacterial hosts. When infecting bacterial cells, phages face a range of antiviral mechanisms, and they have evolved multiple tactics to avoid, circumvent or subvert these mechanisms in order to thrive in most environments. In this Review, we highlight the most important antiviral mechanisms of bacteria as well as the counter-attacks used by phages to evade these systems.
Collapse
Affiliation(s)
- Simon J Labrie
- Department of Civil & Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
41
|
Inskeep WP, Rusch DB, Jay ZJ, Herrgard MJ, Kozubal MA, Richardson TH, Macur RE, Hamamura N, Jennings RD, Fouke BW, Reysenbach AL, Roberto F, Young M, Schwartz A, Boyd ES, Badger JH, Mathur EJ, Ortmann AC, Bateson M, Geesey G, Frazier M. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 2010; 5:e9773. [PMID: 20333304 PMCID: PMC2841643 DOI: 10.1371/journal.pone.0009773] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 02/25/2010] [Indexed: 01/07/2023] Open
Abstract
The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.
Collapse
Affiliation(s)
- William P. Inskeep
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (WPI); (DBR)
| | - Douglas B. Rusch
- J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail: (WPI); (DBR)
| | - Zackary J. Jay
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Mark A. Kozubal
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | | | - Richard E. Macur
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Natsuko Hamamura
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Ryan deM. Jennings
- Thermal Biology Institute and Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Bruce W. Fouke
- University of Illinois, Urbana, Illinois, United States of America
| | | | - Frank Roberto
- Idaho National Laboratory, Idaho Falls, Idaho, United States of America
| | - Mark Young
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Ariel Schwartz
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Eric S. Boyd
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Jonathan H. Badger
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eric J. Mathur
- Synthetic Genomics Inc., La Jolla, California, United States of America
| | - Alice C. Ortmann
- Department of Marine Science, University of South Alabama, Mobile, Alabama, United States of America
| | - Mary Bateson
- Thermal Biology Institute and Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
| | - Gill Geesey
- Thermal Biology Institute and Department of Microbiology, Montana State University, Bozeman, Montana, United States of America
| | - Marvin Frazier
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| |
Collapse
|
42
|
Díez-Villaseñor C, Almendros C, García-Martínez J, Mojica FJM. Diversity of CRISPR loci in Escherichia coli. MICROBIOLOGY-SGM 2010; 156:1351-1361. [PMID: 20133361 DOI: 10.1099/mic.0.036046-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of Escherichia coli studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in E. coli, following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in E. coli ancestors could have been brought about by self-interference.
Collapse
Affiliation(s)
- C Díez-Villaseñor
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Spain
| | | | | | | |
Collapse
|
43
|
Guillière F, Peixeiro N, Kessler A, Raynal B, Desnoues N, Keller J, Delepierre M, Prangishvili D, Sezonov G, Guijarro JI. Structure, function, and targets of the transcriptional regulator SvtR from the hyperthermophilic archaeal virus SIRV1. J Biol Chem 2009; 284:22222-22237. [PMID: 19535331 PMCID: PMC2755947 DOI: 10.1074/jbc.m109.029850] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 06/04/2009] [Indexed: 11/06/2022] Open
Abstract
We have characterized the structure and the function of the 6.6-kDa protein SvtR (formerly called gp08) from the rod-shaped virus SIRV1, which infects the hyperthermophilic archaeon Sulfolobus islandicus that thrives at 85 degrees C in hot acidic springs. The protein forms a dimer in solution. The NMR solution structure of the protein consists of a ribbon-helix-helix (RHH) fold between residues 13 and 56 and a disordered N-terminal region (residues 1-12). The structure is very similar to that of bacterial RHH proteins despite the low sequence similarity. We demonstrated that the protein binds DNA and uses its beta-sheet face for the interaction like bacterial RHH proteins. To detect all the binding sites on the 32.3-kb SIRV1 linear genome, we designed and performed a global genome-wide search of targets based on a simplified electrophoretic mobility shift assay. Four targets were recognized by the protein. The strongest binding was observed with the promoter of the gene coding for a virion structural protein. When assayed in a host reconstituted in vitro transcription system, the protein SvtR (Sulfolobus virus transcription regulator) repressed transcription from the latter promoter, as well as from the promoter of its own gene.
Collapse
Affiliation(s)
- Florence Guillière
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| | - Nuno Peixeiro
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Alexandra Kessler
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Bertrand Raynal
- the Institut Pasteur, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 75015 Paris
| | - Nicole Desnoues
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Jenny Keller
- the Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, CNRS-UMR 8619, Université Paris 11, IFR115, Bâtiment 430, 91405 Orsay, and
| | - Muriel Delepierre
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| | - David Prangishvili
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
| | - Guennadi Sezonov
- the Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, 75015 Paris
- the Université Pierre et Marie Curie, 4 place Jussieu, 75005 Paris, France
| | - J. Iñaki Guijarro
- From the Institut Pasteur, Unité de RMN des Biomolécules, CNRS URA 2185, 75015 Paris
| |
Collapse
|
44
|
Redder P, Peng X, Brügger K, Shah SA, Roesch F, Greve B, She Q, Schleper C, Forterre P, Garrett RA, Prangishvili D. Four newly isolated fuselloviruses from extreme geothermal environments reveal unusual morphologies and a possible interviral recombination mechanism. Environ Microbiol 2009; 11:2849-62. [PMID: 19638177 DOI: 10.1111/j.1462-2920.2009.02009.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Spindle-shaped virus-like particles are abundant in extreme geothermal environments, from which five spindle-shaped viral species have been isolated to date. They infect members of the hyperthermophilic archaeal genus Sulfolobus, and constitute the Fuselloviridae, a family of double-stranded DNA viruses. Here we present four new members of this family, all from terrestrial acidic hot springs. Two of the new viruses exhibit a novel morphotype for their proposed attachment structures, and specific features of their genome sequences strongly suggest the identity of the host-attachment protein. All fuselloviral genomes are highly conserved at the nucleotide level, although the regions of conservation differ between virus-pairs, consistent with a high frequency of homologous recombination having occurred between them. We propose a fuselloviral specific mechanism for interviral recombination, and show that the spacers of the Sulfolobus CRISPR antiviral system are not biased to the highly similar regions of the fusellovirus genomes.
Collapse
Affiliation(s)
- Peter Redder
- Unite de Biologie Moleculaire du Gene chez les Extremophiles, Institut Pasteur, 25, rue du Dr Roux, F-75015 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Little is known about the infection cycles of viruses infecting cells from Archaea, the third domain of life. Here, we demonstrate that the virions of the archaeal Sulfolobus islandicus rod-shaped virus 2 (SIRV2) are released from the host cell through a mechanism, involving the formation of specific cellular structures. Large pyramidal virus-induced protrusions transect the cell envelope at several positions, rupturing the S-layer; they eventually open out, thus creating large apertures through which virions escape the cell. We also demonstrate that massive degradation of the host chromosomes occurs because of virus infection, and that virion assembly occurs in the cytoplasm. Furthermore, intracellular viral DNA is visualized by flow cytometry. The results show that SIRV2 is a lytic virus, and that the host cell dies as a consequence of elaborated mechanisms orchestrated by the virus. The generation of specific cellular structures for a distinct step of virus life cycle is known in eukaryal virus-host systems but is unprecedented in cells from other domains.
Collapse
|
46
|
Lawrence CM, Menon S, Eilers BJ, Bothner B, Khayat R, Douglas T, Young MJ. Structural and functional studies of archaeal viruses. J Biol Chem 2009; 284:12599-603. [PMID: 19158076 PMCID: PMC2675988 DOI: 10.1074/jbc.r800078200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses populate virtually every ecosystem on the planet, including the extreme acidic, thermal, and saline environments where archaeal organisms can dominate. For example, recent studies have identified crenarchaeal viruses in the hot springs of Yellowstone National Park and other high temperature environments worldwide. These viruses are often morphologically and genetically unique, with genomes that show little similarity to genes of known function, complicating efforts to understand their viral life cycles. Here, we review progress in understanding these fascinating viruses at the molecular level and the evolutionary insights coming from these studies.
Collapse
Affiliation(s)
- C Martin Lawrence
- Department of Chemistry and Biochemistry and Microbiology, Montana State University, Bozeman, MT 59717, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lillestøl RK, Shah SA, Brügger K, Redder P, Phan H, Christiansen J, Garrett RA. CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 2009; 72:259-72. [DOI: 10.1111/j.1365-2958.2009.06641.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem Soc Trans 2009; 37:23-8. [DOI: 10.1042/bst0370023] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcripts from spacer sequences within chromosomal repeat clusters [CRISPRs (clusters of regularly interspaced palindromic repeats)] from archaea have been implicated in inhibiting or regulating the propagation of archaeal viruses and plasmids. For the crenarchaeal thermoacidophiles, the chromosomal spacers show a high level of matches (∼30%) with viral or plasmid genomes. Moreover, their distribution along the virus/plasmid genomes, as well as their DNA strand specificity, appear to be random. This is consistent with the hypothesis that chromosomal spacers are taken up directly and randomly from virus and plasmid DNA and that the spacer transcripts target the genomic DNA of the extrachromosomal elements and not their transcripts.
Collapse
|