1
|
Deblais L, Drozd M, Kumar A, Antwi J, Fuchs J, Khupse R, Helmy YA, Rajashekara G. Identification of novel small molecule inhibitors of twin arginine translocation (Tat) pathway and their effect on the control of Campylobacter jejuni in chickens. Front Microbiol 2024; 15:1342573. [PMID: 38694802 PMCID: PMC11061419 DOI: 10.3389/fmicb.2024.1342573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/08/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Control of Campylobacter from farm to fork is challenging due to the frequent emergence of antimicrobial-resistant isolates. Furthermore, poultry production systems are known reservoirs of Campylobacter. The twin-arginine translocation (Tat) pathway is a crucial bacterial secretion system that allows Campylobacter to colonize the host intestinal tract by using formate as the main source of energy. However, Tat pathway is also a major contributing factor for resistance to copper sulfate (CuSO4). Methods Since mammals and chickens do not have proteins or receptors that are homologous to bacterial Tat proteins, identification of small molecule (SM) inhibitors targeting the Tat system would allow the development of safe and effective control methods to mitigate Campylobacter in infected or colonized hosts in both pre-harvest and post-harvest. In this study, we screened 11 commercial libraries (n = 50,917 SM) for increased susceptibility to CuSO4 (1 mM) in C. jejuni 81-176, a human isolate which is widely studied. Results Furthermore, we evaluated 177 SM hits (2.5 μg/mL and above) that increased the susceptibility to CuSO4 for the inhibition of formate dehydrogenase (Fdh) activity, a Tat-dependent substrate. Eight Tat-dependent inhibitors (T1-T8) were selected for further studies. These selected eight Tat inhibitors cleared all tested Campylobacter strains (n = 12) at >10 ng/mL in the presence of 0.5 mM CuSO4in vitro. These selected SMs were non-toxic to colon epithelial (Caco-2) cells when treated with 50 μg/mL for 24 h and completely cleared intracellular C. jejuni cells when treated with 0.63 μg/mL of SM for 24 h in the presence of 0.5 mM of CuSO4. Furthermore, 3 and 5-week-old chicks treated with SM candidates for 5 days had significantly decreased cecal colonization (up to 1.2 log; p < 0.01) with minimal disruption of microbiota. In silico analyses predicted that T7 has better drug-like properties than T2 inhibitor and might target a key amino acid residue (glutamine 165), which is located in the hydrophobic core of TatC protein. Discussion Thus, we have identified novel SM inhibitors of the Tat pathway, which represent a potential strategy to control C. jejuni spread on farms.
Collapse
Affiliation(s)
- Loïc Deblais
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Mary Drozd
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Anand Kumar
- Los Alamos National Laboratory, Bioscience Division, Group B-10: Biosecurity and Public Health, Los Alamos, NM, United States
| | - Janet Antwi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - James Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, OH, United States
| | - Yosra A. Helmy
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| | - Gireesh Rajashekara
- Department of Animal Sciences, The Ohio State University, OARDC, Wooster, OH, United States
| |
Collapse
|
2
|
Sharma KK, Singh D, Mohite SV, Williamson PR, Kennedy JF. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases". Int J Biol Macromol 2023; 233:123534. [PMID: 36740121 DOI: 10.1016/j.ijbiomac.2023.123534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
The chemistry of metal ions with human pathogens is essential for their survival, energy generation, redox signaling, and niche dominance. To regulate and manipulate the metal ions, various enzymes and metal chelators are present in pathogenic bacteria. Metalloenzymes incorporate transition metal such as iron, zinc, cobalt, and copper in their reaction centers to perform essential metabolic functions; however, iron and copper have gained more importance. Multicopper oxidases have the ability to perform redox reaction on phenolic substrates with the help of copper ions. They have been reported from Enterobacteriaceae, namely Salmonella enterica, Escherichia coli, and Yersinia enterocolitica, but their role in virulence is still poorly understood. Similarly, superoxide dismutases participate in reducing oxidative stress and allow the survival of pathogens. Their role in virulence and survival is well established in Salmonella typhimurium and Mycobacterium tuberculosis. Further, to ensure survival against stress, like metal starvation or metal toxicity, redox metalloenzymes and metal transportation systems of pathogens actively participate in metal homeostasis. Recently, the omics and protein structure biology studies have helped to predict new targets for regulation the colonization potential of the pathogenic strains. The current review is focused on the major roles of redox metalloenzymes, especially MCOs and SODs of human pathogenic bacteria.
Collapse
Affiliation(s)
- Krishna Kant Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| | - Deepti Singh
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shreya Vishwas Mohite
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Peter R Williamson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, 5 the Croft, Buntsford Drive, Stoke Heath, Bromsgrove, Worcs B60 4JE, UK
| |
Collapse
|
3
|
Benoit SL, Maier RJ. Copper toxicity towards Campylobacter jejuni is enhanced by the nickel chelator dimethylglyoxime. Metallomics 2021; 14:6486457. [PMID: 34963007 DOI: 10.1093/mtomcs/mfab076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022]
Abstract
The nickel (Ni)-chelator dimethylglyoxime (DMG) was found to be bacteriostatic towards Campylobacter jejuni. Supplementation of nickel to DMG-containing media restored bacterial growth, whereas supplementation of cobalt or zinc had no effect on the growth inhibition. Unexpectedly, the combination of millimolar levels of DMG with micromolar levels of copper (Cu) was bactericidal, an effect not seen in select Gram-negative pathogenic bacteria. Both the cytoplasmic Ni-binding chaperone SlyD and the twin arginine translocation (Tat)-dependent periplasmic copper oxidase CueO were found to play a central role in the Cu-DMG hypersensitivity phenotype. Ni-replete SlyD is needed for Tat-dependent CueO translocation to the periplasm, whereas Ni-depleted (DMG-treated) SlyD is unable to interact with the CueO Tat signal peptide, leading to mislocalization of CueO and increased copper sensitivity. In support of this model, C. jejuni ΔslyD and ΔcueO mutants were more sensitive to copper than the wild-type (WT); CueO was less abundant in the periplasmic fraction of ΔslyD or DMG-grown WT cells, compared to WT cells grown on plain medium; SlyD binds the CueO signal sequence peptide, with DMG inhibiting and nickel enhancing the binding, respectively. Injection of Cu-DMG into Galleria mellonella before C. jejuni inoculation significantly increased the insect survival rate compared to the control group. In chickens, oral administration of DMG or Cu-DMG decreased and even abolished C. jejuni colonization in some cases, compared to both water-only and Cu-only control groups. The latter finding is important, since campylobacteriosis is the leading bacterial foodborne infection, and chicken meat constitutes the major foodborne source.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| | - Robert J Maier
- Department of Microbiology.,Center for Metalloenzyme Studies, The University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
4
|
Garg N, Taylor AJ, Pastorelli F, Flannery SE, Jackson PJ, Johnson MP, Kelly DJ. Genes Linking Copper Trafficking and Homeostasis to the Biogenesis and Activity of the cbb 3-Type Cytochrome c Oxidase in the Enteric Pathogen Campylobacter jejuni. Front Microbiol 2021; 12:683260. [PMID: 34248902 PMCID: PMC8267372 DOI: 10.3389/fmicb.2021.683260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial C-type haem-copper oxidases in the cbb 3 family are widespread in microaerophiles, which exploit their high oxygen-binding affinity for growth in microoxic niches. In microaerophilic pathogens, C-type oxidases can be essential for infection, yet little is known about their biogenesis compared to model bacteria. Here, we have identified genes involved in cbb 3-oxidase (Cco) assembly and activity in the Gram-negative pathogen Campylobacter jejuni, the commonest cause of human food-borne bacterial gastroenteritis. Several genes of unknown function downstream of the oxidase structural genes ccoNOQP were shown to be essential (cj1483c and cj1486c) or important (cj1484c and cj1485c) for Cco activity; Cj1483 is a CcoH homologue, but Cj1484 (designated CcoZ) has structural similarity to MSMEG_4692, involved in Qcr-oxidase supercomplex formation in Mycobacterium smegmatis. Blue-native polyacrylamide gel electrophoresis of detergent solubilised membranes revealed three major bands, one of which contained CcoZ along with Qcr and oxidase subunits. Deletion of putative copper trafficking genes ccoI (cj1155c) and ccoS (cj1154c) abolished Cco activity, which was partially restored by addition of copper during growth, while inactivation of cj0369c encoding a CcoG homologue led to a partial reduction in Cco activity. Deletion of an operon encoding PCu A C (Cj0909) and Sco (Cj0911) periplasmic copper chaperone homologues reduced Cco activity, which was partially restored in the cj0911 mutant by exogenous copper. Phenotypic analyses of gene deletions in the cj1161c-1166c cluster, encoding several genes involved in intracellular metal homeostasis, showed that inactivation of copA (cj1161c), or copZ (cj1162c) led to both elevated intracellular Cu and reduced Cco activity, effects exacerbated at high external Cu. Our work has therefore identified (i) additional Cco subunits, (ii) a previously uncharacterized set of genes linking copper trafficking and Cco activity, and (iii) connections with Cu homeostasis in this important pathogen.
Collapse
Affiliation(s)
- Nitanshu Garg
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Federica Pastorelli
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah E Flannery
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Phillip J Jackson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Kelley BR, Lu J, Haley KP, Gaddy JA, Johnson JG. Metal homeostasis in pathogenic Epsilonproteobacteria: mechanisms of acquisition, efflux, and regulation. Metallomics 2021; 13:mfaa002. [PMID: 33570133 PMCID: PMC8043183 DOI: 10.1093/mtomcs/mfaa002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
Epsilonproteobacteria are a diverse class of eubacteria within the Proteobacteria phylum that includes environmental sulfur-reducing bacteria and the human pathogens, Campylobacter jejuni and Helicobacter pylori. These pathogens infect and proliferate within the gastrointestinal tracts of multiple animal hosts, including humans, and cause a variety of disease outcomes. While infection of these hosts provides nutrients for the pathogenic Epsilonproteobacteria, many hosts have evolved a variety of strategies to either sequester metals from the invading pathogen or exploit the toxicity of metals and drive their accumulation as an antimicrobial strategy. As a result, C. jejuni and H. pylori have developed mechanisms to sense changes in metal availability and regulate their physiology in order to respond to either metal limitation or accumulation. In this review, we will discuss the challenges of metal availability at the host-pathogen interface during infection with C. jejuni and H. pylori and describe what is currently known about how these organisms alter their gene expression and/or deploy bacterial virulence factors in response to these environments.
Collapse
Affiliation(s)
- Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Jacky Lu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Kathryn P Haley
- Department of Biology, Grand Valley State University, Grand Rapids, MI, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
- Tennessee Valley Healthcare Systems, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
6
|
Barnawi H, Masri N, Hussain N, Al-Lawati B, Mayasari E, Gulbicka A, Jervis AJ, Huang MH, Cavet JS, Linton D. RNA-based thermoregulation of a Campylobacter jejuni zinc resistance determinant. PLoS Pathog 2020; 16:e1009008. [PMID: 33064782 PMCID: PMC7592916 DOI: 10.1371/journal.ppat.1009008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/28/2020] [Accepted: 09/28/2020] [Indexed: 01/04/2023] Open
Abstract
RNA thermometers (RNATs) trigger bacterial virulence factor expression in response to the temperature shift on entering a warm-blooded host. At lower temperatures these secondary structures sequester ribosome-binding sites (RBSs) to prevent translation initiation, whereas at elevated temperatures they "melt" allowing translation. Campylobacter jejuni is the leading bacterial cause of human gastroenteritis worldwide yet little is known about how it interacts with the host including host induced gene regulation. Here we demonstrate that an RNAT regulates a C. jejuni gene, Cj1163c or czcD, encoding a member of the Cation Diffusion Facilitator family. The czcD upstream untranslated region contains a predicted stem loop within the mRNA that sequesters the RBS to inhibit translation at temperatures below 37°C. Mutations that disrupt or enhance predicted secondary structure have significant and predictable effects on temperature regulation. We also show that in an RNAT independent manner, CzcD expression is induced by Zn(II). Mutants lacking czcD are hypersensitive to Zn(II) and also over-accumulate Zn(II) relative to wild-type, all consistent with CzcD functioning as a Zn(II) exporter. Importantly, we demonstrate that C. jejuni Zn(II)-tolerance at 32°C, a temperature at which the RNAT limits CzcD production, is increased by RNAT disruption. Finally we show that czcD inactivation attenuates larval killing in a Galleria infection model and that at 32°C disrupting RNAT secondary structure to allow CzcD production can enhance killing. We hypothesise that CzcD regulation by metals and temperature provides a mechanism for C. jejuni to overcome innate immune system-mediated Zn(II) toxicity in warm-blooded animal hosts.
Collapse
Affiliation(s)
- Heba Barnawi
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Nader Masri
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Natasha Hussain
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Bushra Al-Lawati
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Evita Mayasari
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Microbiology Department, Faculty of Medicine, Universitas Sumatera Utara, Indonesia
| | - Aleksandra Gulbicka
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Adrian J. Jervis
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Manchester Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Min-Hsuan Huang
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| | - Dennis Linton
- The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- * E-mail: (JSC); (DL)
| |
Collapse
|
7
|
Proteomic analysis reveals the damaging role of low redox laccase from Yersinia enterocolitica strain 8081 in the midgut of Helicoverpa armigera. Biotechnol Lett 2020; 42:2189-2210. [PMID: 32472187 DOI: 10.1007/s10529-020-02925-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Earlier, we have found that the enteropathogenic Yersinia enterocolitica have evolved the survival mechanisms that regulate the expression of laccase-encoding genes in the gut. The present study aims to characterize the purified recombinant laccase from Y. enterocolitica strain 8081 biovar 1B and understand its effect on the midgut of cotton bollworm, Helicoverpa armigera (Hübner) larvae. RESULTS The recombinant laccase protein showed high purity fold and low molecular mass (~ 43 kDa). H. armigera larvae fed with laccase protein showed a significant decrease in body weight and damage in the midgut. Further, transmission electron microscopy (TEM) studies revealed the negative effect of laccase protein on trachea, malpighian tubules, and villi of the insect. The proteome comparison between control and laccase-fed larvae of cotton bollworm showed significant expression of proteolytic enzymes, oxidoreductases, cytoskeletal proteins, ribosomal proteins; and proteins for citrate (TCA cycle) cycle, glycolysis, stress response, cell redox homeostasis, xenobiotic degradation, and insect defence. Moreover, it also resulted in the reduction of antioxidants, increased melanization (insect innate immune response), and enhanced free radical generation. CONCLUSIONS All these data collectively suggest that H. armigera (Hübner) larvae can be used to study the effect of microbes and their metabolites on the host physiology, anatomy, and survival.
Collapse
|
8
|
Kaur K, Sidhu H, Capalash N, Sharma P. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microb Pathog 2020; 143:104124. [PMID: 32169492 DOI: 10.1016/j.micpath.2020.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
A putative multicopper oxidase, encoded as CopA in the proteome of Acinetobacter baumannii 19606, and designated as AbMCO, was expressed heterologously in E. coli (pET-28a) and purified by Ni-NTA affinity chromatography. The purified AbMCO exhibited in vitro oxidase activities upon exogenous addition of ≥1 μM copper ions. Kinetic studies revealed its phenol oxidase activity as it could catalyze the oxidation of substrates viz. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol, pyrogallol and catechol. Additionally, AbMCO displayed siderophore oxidase activity which depicted its role in metal homeostasis and protection from the toxic redox states of copper and iron. Importantly, expression of abMCO increased manifold upon challenge with high concentrations of copper sulphate (CuSO4, 1.5 mM) and sodium chloride (NaCl, 700 mM) which suggested its protective role in stress adaptation and management. Intra-macrophage assay of abMCO-expressing and abMCO-non expressing cells depicted no significant change in the survival rate of A. baumannii inside the macrophages. These findings indicate that A. baumannii encodes a multicopper oxidase, conferring copper tolerance and survival under stress conditions but had no role in virulence of this pathogen.
Collapse
Affiliation(s)
- Kavleen Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
9
|
Multicopper oxidases: Biocatalysts in microbial pathogenesis and stress management. Microbiol Res 2019; 222:1-13. [DOI: 10.1016/j.micres.2019.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 02/14/2019] [Indexed: 02/08/2023]
|
10
|
Zhang X, Tang S, Wang M, Sun W, Xie Y, Peng H, Zhong A, Liu H, Zhang X, Yu H, Giesy JP, Hecker M. Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. CHEMOSPHERE 2019; 217:790-799. [PMID: 30453276 DOI: 10.1016/j.chemosphere.2018.10.210] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/28/2018] [Accepted: 10/29/2018] [Indexed: 05/19/2023]
Abstract
Acid mine drainage (AMD) is one of the most hazardous byproducts of some types of mining. However, research on how AMD affects the bacterial community structure of downstream riverine ecosystems and the distribution of metal resistance genes (MRGs) along pollution gradient is limited. Comprehensive geochemical and high-throughput next-generation sequencing analyses can be integrated to characterize spatial distributions and MRG profiles of sediment bacteria communities along the AMD-contaminated Hengshi River. We found that (1) diversities of bacterial communities significantly and gradually increased along the river with decreasing contamination, suggesting community composition reflected changes in geochemical conditions; (2) relative abundances of phyla Proteobacteria and genus Halomonas and Planococcaceae that function in metal reduction decreased along the AMD gradient; (3) low levels of sediment salinity, sulfate, aquatic lead (Pb), and cadmium (Cd) were negatively correlated with bacterial diversity despite pH was in a positive manner with diversity; and (4) arsenic (As) and copper (Cu) resistance genes corresponded to sediment concentrations of As and Cu, respectively. Altogether, our findings offer initial insight into the distribution patterns of sediment bacterial community structure, diversity and MRGs along a lotic ecosystem contaminated by AMD, and the factors that affect them.
Collapse
Affiliation(s)
- Xiaohui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Song Tang
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3, Canada.
| | - Mao Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Hui Peng
- Department of Chemistry and School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Aimin Zhong
- The Centre for Disease Control and Prevention of Wengyuan County, Shaoguan, Guangdong 512600, China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaowei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Jiangsu Key Laboratory of Environmental Safety and Health Risk of Chemicals, Nanjing, Jiangsu 210023, China; Research Center for Environmental Toxicology & Safety of Chemicals, Nanjing University, Nanjing, Jiangsu 210023, China
| | - John P Giesy
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C3, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
11
|
Interaction of Copper Toxicity and Oxidative Stress in Campylobacter jejuni. J Bacteriol 2018; 200:JB.00208-18. [PMID: 30150230 DOI: 10.1128/jb.00208-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/16/2018] [Indexed: 11/20/2022] Open
Abstract
Copper is both a required micronutrient and a source of toxicity in most organisms, including Campylobacter jejuni Two proteins expressed in C. jejuni (termed CopA and CueO) have been shown to be a copper transporter and multicopper oxidase, respectively. We have isolated strains with mutations in these genes, and here we report that they were more susceptible to both the addition of copper in the growth media and to induced oxidative stress. Both mutant strains were defective in colonization of an avian host, and copper in the feed exacerbated the colonization deficiency. Overexpression of a cytoplasmic peptide derived from the normally periplasmic copper-binding region of CueO also caused copper intolerance compared to nonexpressing strains or strains expressing the non-copper-binding versions of the peptide. Taken together, the results indicate that copper toxicity in C. jejuni is due to a failure to effectively sequester cytoplasmic copper, resulting in an increase in copper-mediated oxidative damage.IMPORTANCE Copper is a required micronutrient for most aerobic organisms, but it is universally toxic at elevated levels. These organisms use homeostatic mechanisms that allow for cells to acquire enough of the element to sustain metabolic requirements while ensuring that lethal levels cannot build up in the cell. Campylobacter jejuni is an important foodborne pathogen that typically makes its way into the food chain through contaminated poultry. C. jejuni has a metabolic requirement for copper and encodes a copper detoxification system. In the course of studying this system, we have learned that it is important for avian colonization. We have also gained insight into how copper exerts its toxic effects in C. jejuni by promoting oxidative stress.
Collapse
|
12
|
Bronowski C, Mustafa K, Goodhead I, James CE, Nelson C, Lucaci A, Wigley P, Humphrey TJ, Williams NJ, Winstanley C. Campylobacter jejuni transcriptome changes during loss of culturability in water. PLoS One 2017; 12:e0188936. [PMID: 29190673 PMCID: PMC5708674 DOI: 10.1371/journal.pone.0188936] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022] Open
Abstract
Background Water serves as a potential reservoir for Campylobacter, the leading cause of bacterial gastroenteritis in humans. However, little is understood about the mechanisms underlying variations in survival characteristics between different strains of C. jejuni in natural environments, including water. Results We identified three Campylobacter jejuni strains that exhibited variability in their ability to retain culturability after suspension in tap water at two different temperatures (4°C and 25°C). Of the three, strains C. jejuni M1 exhibited the most rapid loss of culturability whilst retaining viability. Using RNAseq transcriptomics, we characterised C. jejuni M1 gene expression in response to suspension in water by analyzing bacterial suspensions recovered immediately after introduction into water (Time 0), and from two sampling time/temperature combinations where considerable loss of culturability was evident, namely (i) after 24 h at 25°C, and (ii) after 72 h at 4°C. Transcript data were compared with a culture-grown control. Some gene expression characteristics were shared amongst the three populations recovered from water, with more genes being up-regulated than down. Many of the up-regulated genes were identified in the Time 0 sample, whereas the majority of down-regulated genes occurred in the 25°C (24 h) sample. Conclusions Variations in expression were found amongst genes associated with oxygen tolerance, starvation and osmotic stress. However, we also found upregulation of flagellar assembly genes, accompanied by down-regulation of genes involved in chemotaxis. Our data also suggested a switch from secretion via the sec system to via the tat system, and that the quorum sensing gene luxS may be implicated in the survival of strain M1 in water. Variations in gene expression also occurred in accessory genome regions. Our data suggest that despite the loss of culturability, C. jejuni M1 remains viable and adapts via specific changes in gene expression.
Collapse
Affiliation(s)
- Christina Bronowski
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Kasem Mustafa
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Ian Goodhead
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Chloe E. James
- School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Charlotte Nelson
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Anita Lucaci
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Tom J. Humphrey
- Medical Microbiology and Infectious Diseases, School of Medicine, Swansea University, Swansea, United Kingdom
| | - Nicola J. Williams
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | | |
Collapse
|
13
|
Complete Genome Sequence of Campylobacter jejuni subsp. jejuni ATCC 35925. GENOME ANNOUNCEMENTS 2017; 5:5/30/e00743-17. [PMID: 28751407 PMCID: PMC5532845 DOI: 10.1128/genomea.00743-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report the complete genome sequence of Campylobacter jejuni ATCC 35925, an avian isolate from Sweden. The genome gives insight into the ATCC 35925 strain’s remarkable ability to tolerate copper and its permissiveness to plasmid transformation.
Collapse
|
14
|
Gao B, Vorwerk H, Huber C, Lara-Tejero M, Mohr J, Goodman AL, Eisenreich W, Galán JE, Hofreuter D. Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biol 2017; 15:e2001390. [PMID: 28542173 PMCID: PMC5438104 DOI: 10.1371/journal.pbio.2001390] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Campylobacter jejuni is one of the leading infectious causes of food-borne illness around the world. Its ability to persistently colonize the intestinal tract of a broad range of hosts, including food-producing animals, is central to its epidemiology since most infections are due to the consumption of contaminated food products. Using a highly saturated transposon insertion library combined with next-generation sequencing and a mouse model of infection, we have carried out a comprehensive genome-wide analysis of the fitness determinants for growth in vitro and in vivo of a highly pathogenic strain of C. jejuni. A comparison of the C. jejuni requirements to colonize the mouse intestine with those necessary to grow in different culture media in vitro, combined with isotopologue profiling and metabolic flow analysis, allowed us to identify its metabolic requirements to establish infection, including the ability to acquire certain nutrients, metabolize specific substrates, or maintain intracellular ion homeostasis. This comprehensive analysis has identified metabolic pathways that could provide the basis for the development of novel strategies to prevent C. jejuni colonization of food-producing animals or to treat human infections.
Collapse
Affiliation(s)
- Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hanne Vorwerk
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Claudia Huber
- Lehrstuhl für Biochemie, Technische Universität München, Garching, Germany
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Juliane Mohr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Andrew L. Goodman
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Microbial Sciences Institute, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | | | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail: (JEG); (DH)
| | - Dirk Hofreuter
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail: (JEG); (DH)
| |
Collapse
|
15
|
Xu F, Wu C, Guo F, Cui G, Zeng X, Yang B, Lin J. Transcriptomic analysis of Campylobacter jejuni NCTC 11168 in response to epinephrine and norepinephrine. Front Microbiol 2015; 6:452. [PMID: 26042101 PMCID: PMC4435418 DOI: 10.3389/fmicb.2015.00452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/27/2015] [Indexed: 12/02/2022] Open
Abstract
Upon colonization in the host gastrointestinal tract, the enteric bacterial pathogen Campylobacter jejuni is exposed to a variety of signaling molecules including the catecholamine hormones epinephrine (Epi) and norepinephrine (NE). NE has been observed to stimulate the growth and potentially enhance the pathogenicity of C. jejuni. However, the underlying mechanisms are still largely unknown. In this study, both Epi and NE were also observed to promote C. jejuni growth in MEMα-based iron-restricted medium. Adhesion and invasion of Caco-2 cells by C. jejuni were also enhanced upon exposure to Epi or NE. To further examine the effect of Epi or NE on the pathobiology of C. jejuni, transcriptomic profiles were conducted for C. jejuni NCTC 11168 that was cultured in iron-restricted medium supplemented with Epi or NE. Compared to the genes expressed in the absence of the catecholamine hormones, 183 and 156 genes were differentially expressed in C. jejuni NCTC 11168 that was grown in the presence of Epi and NE, respectively. Of these differentially expressed genes, 102 genes were common for both Epi and NE treatments. The genes differentially expressed by Epi or NE are involved in diverse cellular functions including iron uptake, motility, virulence, oxidative stress response, nitrosative stress tolerance, enzyme metabolism, DNA repair and metabolism and ribosomal protein biosynthesis. The transcriptome analysis indicated that Epi and NE have similar effects on the gene expression of C. jejuni, and provided insights into the delicate interaction between C. jejuni and intestinal stress hormones in the host.
Collapse
Affiliation(s)
- Fuzhou Xu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Cun Wu
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Fangfang Guo
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Guolin Cui
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee Knoxville, TN, USA
| | - Bing Yang
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences Beijing, China
| | - Jun Lin
- Department of Animal Science, The University of Tennessee Knoxville, TN, USA
| |
Collapse
|
16
|
Wu T, Wang S, Wang Z, Peng X, Lu Y, Wu Q. A multicopper oxidase contributes to the copper tolerance of Brucella melitensis 16M. FEMS Microbiol Lett 2015; 362:fnv078. [DOI: 10.1093/femsle/fnv078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 12/22/2022] Open
|
17
|
Martins LO, Durão P, Brissos V, Lindley PF. Laccases of prokaryotic origin: enzymes at the interface of protein science and protein technology. Cell Mol Life Sci 2015; 72:911-22. [PMID: 25572294 PMCID: PMC11113980 DOI: 10.1007/s00018-014-1822-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
The ubiquitous members of the multicopper oxidase family of enzymes oxidize a range of aromatic substrates such as polyphenols, methoxy-substituted phenols, amines and inorganic compounds, concomitantly with the reduction of molecular dioxygen to water. This family of enzymes can be broadly divided into two functional classes: metalloxidases and laccases. Several prokaryotic metalloxidases have been described in the last decade showing a robust activity towards metals, such as Cu(I), Fe(II) or Mn(II) and have been implicated in the metal metabolism of the corresponding microorganisms. Many laccases, with a superior efficiency for oxidation of organic compounds when compared with metals, have also been identified and characterized from prokaryotes, playing roles that more closely conform to those of intermediary metabolism. This review aims to present an update of current knowledge on prokaryotic multicopper oxidases, with a special emphasis on laccases, anticipating their enormous potential for industrial and environmental applications.
Collapse
Affiliation(s)
- Lígia O Martins
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2781-901, Oeiras, Portugal,
| | | | | | | |
Collapse
|
18
|
Liu YW, Hitchcock A, Salmon RC, Kelly DJ. It takes two to tango: two TatA paralogues and two redox enzyme-specific chaperones are involved in the localization of twin-arginine translocase substrates in Campylobacter jejuni. MICROBIOLOGY-SGM 2014; 160:2053-2066. [PMID: 24961951 PMCID: PMC4148689 DOI: 10.1099/mic.0.080713-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The food-borne zoonotic pathogen Campylobacter jejuni has complex electron transport chains required for growth in the host, many of which contain cofactored periplasmic enzymes localized by the twin-arginine translocase (TAT). We report here the identification of two paralogues of the TatA translocase component in C. jejuni strain NCTC 11168, encoded by cj1176c (tatA1) and cj0786 (tatA2). Deletion mutants constructed in either or both of the tatA1 and tatA2 genes displayed distinct growth and enzyme activity phenotypes. For sulphite oxidase (SorAB), the multi-copper oxidase (CueO) and alkaline phosphatase (PhoX), complete dependency on TatA1 for correct periplasmic activity was observed. However, the activities of nitrate reductase (NapA), formate dehydrogenase (FdhA) and trimethylamine N-oxide reductase (TorA) were significantly reduced in the tatA2 mutant. In contrast, the specific rate of fumarate reduction catalysed by the flavoprotein subunit of the methyl menaquinone fumarate reductase (MfrA) was similar in periplasmic fractions of both the tatA1 and the tatA2 mutants and only the deletion of both genes abolished activity. Nevertheless, unprocessed MfrA accumulated in the periplasm of the tatA1 (but not tatA2) mutant, indicating aberrant signal peptide cleavage. Surprisingly, TatA2 lacks two conserved residues (Gln8 and Phe39) known to be essential in Escherichia coli TatA and we suggest it is unable to function correctly in the absence of TatA1. Finally, only two TAT chaperones (FdhM and NapD) are encoded in strain NCTC 11168, which mutant studies confirmed are highly specific for formate dehydrogenase and nitrate reductase assembly, respectively. Thus, other TAT substrates must use general chaperones in their biogenesis.
Collapse
Affiliation(s)
- Yang-Wei Liu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Robert C Salmon
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
19
|
Su J, Deng L, Huang L, Guo S, Liu F, He J. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide. WATER RESEARCH 2014; 56:304-313. [PMID: 24699422 DOI: 10.1016/j.watres.2014.03.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/19/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Manganese(II) contamination is naturally occurring in many groundwater and surface water sources. Moreover, industrial wastewater is also responsible for much of the Mn(II) contamination. Nowadays, Mn(II) contamination has become a serious environmental problem in some regions of the world. To explore a biological approach for removing excessive amounts of aqueous Mn(II) from water, we found a new biocatalyst multicopper oxidase CueO, which was firstly proved to catalyze the oxidation of Mn(II) both in vitro and in vivo. Subsequently, we established a CueO-mediated catalysis system to prepare biogenic Mn oxide (BioMnOx), which was confirmed to be γ-Mn3O4 by X-ray diffraction. This newly prepared BioMnOx consisted of 53.6% Mn(II), 18.4% Mn(III) and 28.0% Mn(IV) characterized by X-ray photoelectron spectroscopy. It exhibited distinct polyhedral structure with nanoparticles of 150-350 nm diameters observed by transmission electron microscopy. Importantly, CueO could remove 35.7% of Mn(II) after a seven-day reaction, and on the other hand, the cueO-overexpressing Escherichia coli strain (ECueO) could also oxidize 58.1% dissolved Mn(II), and simultaneously remove 97.7% Mn(II). Based on these results, we suggest that ECueO strain and CueO enzyme have potential applications on Mn(II) decontamination in water treatment.
Collapse
Affiliation(s)
- Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Lin Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Liangbo Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Shujin Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China.
| |
Collapse
|
20
|
Singh D, Sharma KK, Dhar MS, Virdi JS. Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding. Biochem Biophys Res Commun 2014; 449:157-62. [DOI: 10.1016/j.bbrc.2014.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
|
21
|
Wen Q, Liu X, Wang H, Lin J. A versatile and efficient markerless gene disruption system forAcidithiobacillus thiooxidans: application for characterizing a copper tolerance related multicopper oxidase gene. Environ Microbiol 2014; 16:3499-514. [DOI: 10.1111/1462-2920.12494] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 11/26/2022]
Affiliation(s)
- Qing Wen
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Xiangmei Liu
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Huiyan Wang
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| | - Jianqun Lin
- State Key Laboratory of Microbial Technology; Shandong University; Jinan 250100 China
| |
Collapse
|
22
|
A multicopper oxidase is required for copper resistance in Mycobacterium tuberculosis. J Bacteriol 2013; 195:3724-33. [PMID: 23772064 DOI: 10.1128/jb.00546-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is one of the most important bacterial pathogens. Recent work has revealed that the natural bactericidal properties of copper are utilized by the host immune system to combat infections with bacteria, including M. tuberculosis. However, M. tuberculosis employs multiple mechanisms to reduce the internal copper amount by efflux and sequestration, which are required for virulence of M. tuberculosis. Here, we describe an alternative mechanism of copper resistance by M. tuberculosis. Deletion of the rv0846c gene increased the susceptibility of M. tuberculosis to copper at least 10-fold, establishing Rv0846c as a major component of copper resistance in M. tuberculosis. In vitro assays showed that Rv0846c oxidized organic substrates and Fe(II). Importantly, mutation of the predicted copper-coordinating cysteine 486 resulted in inactive Rv0846c protein which did not protect M. tuberculosis against copper stress. Hence, Rv0846c is a multicopper oxidase of M. tuberculosis and was renamed mycobacterial multicopper oxidase (MmcO). MmcO is membrane associated, probably by lipidation after export across the inner membrane by the twin-arginine translocation system. However, mutation of the lipidation site did not affect the oxidase activity or the copper protective function of MmcO. Our study revealed MmcO as an important copper resistance mechanism of M. tuberculosis, which possibly acts by oxidation of toxic Cu(I) in the periplasm.
Collapse
|
23
|
Su J, Bao P, Bai T, Deng L, Wu H, Liu F, He J. CotA, a multicopper oxidase from Bacillus pumilus WH4, exhibits manganese-oxidase activity. PLoS One 2013; 8:e60573. [PMID: 23577125 PMCID: PMC3618234 DOI: 10.1371/journal.pone.0060573] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Multicopper oxidases (MCOs) are a family of enzymes that use copper ions as cofactors to oxidize various substrates. Previous research has demonstrated that several MCOs such as MnxG, MofA and MoxA can act as putative Mn(II) oxidases. Meanwhile, the endospore coat protein CotA from Bacillus species has been confirmed as a typical MCO. To study the relationship between CotA and the Mn(II) oxidation, the cotA gene from a highly active Mn(II)-oxidizing strain Bacillus pumilus WH4 was cloned and overexpressed in Escherichia coli strain M15. The purified CotA contained approximately four copper atoms per molecule and showed spectroscopic properties typical of blue copper oxidases. Importantly, apart from the laccase activities, the CotA also displayed substantial Mn(II)-oxidase activities both in liquid culture system and native polyacrylamide gel electrophoresis. The optimum Mn(II) oxidase activity was obtained at 53°C in HEPES buffer (pH 8.0) supplemented with 0.8 mM CuCl2. Besides, the addition of o-phenanthroline and EDTA both led to a complete suppression of Mn(II)-oxidizing activity. The specific activity of purified CotA towards Mn(II) was 0.27 U/mg. The Km, Vmax and kcat values towards Mn(II) were 14.85±1.17 mM, 3.01×10(-6)±0.21 M·min(-1) and 0.32±0.02 s(-1), respectively. Moreover, the Mn(II)-oxidizing activity of the recombinant E. coli strain M15-pQE-cotA was significantly increased when cultured both in Mn-containing K liquid medium and on agar plates. After 7-day liquid cultivation, M15-pQE-cotA resulted in 18.2% removal of Mn(II) from the medium. Furthermore, the biogenic Mn oxides were clearly observed on the cell surfaces of M15-pQE-cotA by scanning electron microscopy. To our knowledge, this is the first report that provides the direct observation of Mn(II) oxidation with the heterologously expressed protein CotA, Therefore, this novel finding not only establishes the foundation for in-depth study of Mn(II) oxidation mechanisms, but also offers a potential biocatalyst for Mn(II) removal.
Collapse
Affiliation(s)
- Jianmei Su
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Peng Bao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Tenglong Bai
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Lin Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Hui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Jin He
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Abstract
P(IB)-type ATPases transport heavy metals (Cu(2+), Cu(+), Ag(+), Zn(2+), Cd(2+), Co(2+)) across biomembranes, playing a key role in homeostasis and in the mechanisms of biotolerance of these metals. Three genes coding for putative P(IB)-type ATPases are present in the genome of Thermus thermophilus (HB8 and HB27): the TTC1358, TTC1371, and TTC0354 genes; these genes are annotated, respectively, as two copper transporter (CopA and CopB) genes and a zinc-cadmium transporter (Zn(2+)/Cd(2+)-ATPase) gene. We cloned and expressed the three proteins with 8His tags using a T. thermophilus expression system. After purification, each of the proteins was shown to have phosphodiesterase activity at 65°C with ATP and p-nitrophenyl phosphate (pNPP) as substrates. CopA was found to have greater activity in the presence of Cu(+), while CopB was found to have greater activity in the presence of Cu(2+). The putative Zn(2+)/Cd(2+)-ATPase was truncated at the N terminus and was, surprisingly, activated in vitro by copper but not by zinc or cadmium. When expressed in Escherichia coli, however, the putative Zn(2+)/Cd(2+)-ATPase could be isolated as a full-length protein and the ATPase activity was increased by the addition of Zn(2+) and Cd(2+) as well as by Cu(+). Mutant strains in which each of the three P-type ATPases was deleted singly were constructed. In each case, the deletion increased the sensitivity of the strain to growth in the presence of copper in the medium, indicating that each of the three can pump copper out of the cells and play a role in copper detoxification.
Collapse
|
25
|
Stahl M, Butcher J, Stintzi A. Nutrient acquisition and metabolism by Campylobacter jejuni. Front Cell Infect Microbiol 2012; 2:5. [PMID: 22919597 PMCID: PMC3417520 DOI: 10.3389/fcimb.2012.00005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/21/2012] [Indexed: 12/03/2022] Open
Abstract
The gastrointestinal pathogen Campylobacter jejuni is able to colonize numerous different hosts and compete against the gut microbiota. To do this, it must be able to efficiently acquire sufficient nutrients from its environment to support its survival and rapid growth in the intestine. However, despite almost 50 years of research, many aspects as to how C. jejuni accomplishes this feat remain poorly understood. C. jejuni lacks many of the common metabolic pathways necessary for the use of glucose, galactose, or other carbohydrates upon which most other microbes thrive. It does however make efficient use of citric acid cycle intermediates and various amino acids. C. jejuni readily uses the amino acids aspartate, glutamate, serine, and proline, with certain strains also possessing additional pathways allowing for the use of glutamine and asparagine. More recent work has revealed that some C. jejuni strains can metabolize the sugar l-fucose. This finding has upset years of dogma that C. jejuni is an asaccharolytic organism. C. jejuni also possesses diverse mechanisms for the acquisition of various transition metals that are required for metabolic activities. In particular, iron acquisition is critical for the formation of iron–sulfur complexes. C. jejuni is also unique in possessing both molybdate and tungsten cofactored proteins and thus has an unusual regulatory scheme for these metals. Together these various metabolic and acquisition pathways help C. jejuni to compete and thrive in wide variety of hosts and environments.
Collapse
Affiliation(s)
- Martin Stahl
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa Ottawa, ON, Canada
| | | | | |
Collapse
|
26
|
Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 2012; 194:1849-59. [PMID: 22287514 DOI: 10.1128/jb.06274-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The copper-regulated Rhodobacter capsulatus cutO (multicopper oxidase) gene confers copper tolerance and is carried in the tricistronic orf635-cutO-cutR operon. Transcription of cutO strictly depends on the promoter upstream of orf635, as demonstrated by lacZ reporter fusions to nested promoter fragments. Remarkably, orf635 expression was not affected by copper availability, whereas cutO and cutR were expressed only in the presence of copper. Differential regulation was abolished by site-directed mutations within the orf635-cutO intergenic region, suggesting that this region encodes a copper-responsive mRNA element. Bioinformatic predictions and RNA structure probing experiments revealed an intergenic stem-loop structure as the candidate mRNA element. This is the first posttranscriptional copper response mechanism reported in bacteria.
Collapse
|
27
|
Silva CS, Durão P, Fillat A, Lindley PF, Martins LO, Bento I. Crystal structure of the multicopper oxidase from the pathogenic bacterium Campylobacter jejuniCGUG11284: characterization of a metallo-oxidase. Metallomics 2012; 4:37-47. [DOI: 10.1039/c1mt00156f] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
O'Grady EP, Sokol PA. Burkholderia cenocepacia differential gene expression during host-pathogen interactions and adaptation to the host environment. Front Cell Infect Microbiol 2011; 1:15. [PMID: 22919581 PMCID: PMC3417382 DOI: 10.3389/fcimb.2011.00015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 11/20/2011] [Indexed: 01/08/2023] Open
Abstract
Members of the Burkholderia cepacia complex (Bcc) are important in medical, biotechnological, and agricultural disciplines. These bacteria naturally occur in soil and water environments and have adapted to survive in association with plants and animals including humans. All Bcc species are opportunistic pathogens including Burkholderia cenocepacia that causes infections in cystic fibrosis and chronic granulomatous disease patients. The adaptation of B. cenocepacia to the host environment was assessed in a rat chronic respiratory infection model and compared to that of high cell-density in vitro grown cultures using transcriptomics. The distribution of genes differentially expressed on chromosomes 1, 2, and 3 was relatively proportional to the size of each genomic element, whereas the proportion of plasmid-encoded genes differentially expressed was much higher relative to its size and most genes were induced in vivo. The majority of genes encoding known virulence factors, components of types II and III secretion systems and chromosome 2-encoded type IV secretion system were similarly expressed between in vitro and in vivo environments. Lower expression in vivo was detected for genes encoding N-acyl-homoserine lactone synthase CepI, orphan LuxR homolog CepR2, zinc metalloproteases ZmpA and ZmpB, LysR-type transcriptional regulator ShvR, nematocidal protein AidA, and genes associated with flagellar motility, Flp type pilus formation, and type VI secretion. Plasmid-encoded type IV secretion genes were markedly induced in vivo. Additional genes induced in vivo included genes predicted to be involved in osmotic stress adaptation or intracellular survival, metal ion, and nutrient transport, as well as those encoding outer membrane proteins. Genes identified in this study are potentially important for virulence during host–pathogen interactions and may be associated with survival and adaptation to the host environment during chronic lung infections.
Collapse
Affiliation(s)
- Eoin P O'Grady
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
29
|
Drozd M, Gangaiah D, Liu Z, Rajashekara G. Contribution of TAT system translocated PhoX to Campylobacter jejuni phosphate metabolism and resilience to environmental stresses. PLoS One 2011; 6:e26336. [PMID: 22028859 PMCID: PMC3197622 DOI: 10.1371/journal.pone.0026336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 09/25/2011] [Indexed: 12/12/2022] Open
Abstract
Campylobacter jejuni is a common gastrointestinal pathogen that colonizes food animals; it is transmitted via fecal contamination of food, and infections in immune-compromised people are more likely to result in serious long-term illness. Environmental phosphate is likely an important sensor of environmental fitness and the ability to obtain extracellular phosphate is central to the bacteria's core metabolic responses. PhoX is the sole alkaline phosphatase in C. jejuni, a substrate of the TAT transport system. Alkaline phosphatases mediate the hydrolytic removal of inorganic phosphate (Pi) from phospho-organic compounds and thereby contribute significantly to the polyphosphate kinase 1 (ppk1) mediated formation of poly P, a molecule that regulates bacterial response to stresses and virulence. Similarly, deletion of the tatC gene, a key component of the TAT system, results in diverse phenotypes in C. jejuni including reduced stress tolerance and in vivo colonization. Therefore, here we investigated the contribution of phoX in poly P synthesis and in TAT-system mediated responses. The phoX deletion mutant showed significant decrease (P<0.05) in poly P accumulation in stationary phase compared to the wild-type, suggesting that PhoX is a major contributor to the inorganic phosphate pool in the cell which is essential for poly P synthesis. The phoX deletion is sufficient for a nutrient stress defect similar to the defect previously described for the ΔtatC mutant. Additionally, the phoX deletion mutant has increased resistance to certain antimicrobials. The ΔphoX mutant was also moderately defective in invasion and intracellular survival within human intestinal epithelial cells as well as in chicken colonization. Further, the ΔphoX mutant produced increased biofilm that can be rescued with 1 mM inorganic phosphate. The qRT-PCR of the ΔphoX mutant revealed transcriptional changes that suggest potential mechanisms for the increased biofilm phenotype.
Collapse
Affiliation(s)
- Mary Drozd
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Dharanesh Gangaiah
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Zhe Liu
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| |
Collapse
|
30
|
Hwang S, Kim M, Ryu S, Jeon B. Regulation of oxidative stress response by CosR, an essential response regulator in Campylobacter jejuni. PLoS One 2011; 6:e22300. [PMID: 21811584 PMCID: PMC3139631 DOI: 10.1371/journal.pone.0022300] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/18/2011] [Indexed: 11/20/2022] Open
Abstract
CosR (Campylobacter oxidative stress regulator; Cj0355c) is an OmpR-type response regulator essential for the viability of Campylobacter jejuni, a leading foodborne pathogen causing human gastroenteritis worldwide. Despite importance, the function of CosR remains completely unknown mainly because of cell death caused by its knockout mutation. To overcome this technical limitation, in this study, antisense technology was used to investigate the regulatory function of CosR by modulating the level of CosR expression. Two-dimensional gel electrophoresis (2DGE) was performed to identify the CosR regulon either by suppressing CosR expression with antisense peptide nucleic acid (PNA) or by overexpressing CosR in C. jejuni. According to the results of 2DGE, CosR regulated 32 proteins involved in various cellular processes. Notably, CosR negatively regulated a few key proteins of the oxidative stress response of C. jejuni, such as SodB, Dps, Rrc and LuxS, whereas CosR positively controlled AhpC. Electrophoretic mobility shift assay showed that CosR directly bound to the promoter region of the oxidative stress genes. DNase I footprinting assays identified 21-bp CosR binding sequences in the sodB and ahpC promoters, suggesting CosR specifically recognizes and binds to the regulated genes. Interestingly, the level of CosR protein was significantly reduced by paraquat (a superoxide generator) but not by hydrogen peroxide. Consistent with the overall negative regulation of oxidative stress defense proteins by CosR, the CosR knockdown by antisense rendered C. jejuni more resistant to oxidative stress compared to the wild type. Overall, this study reveals the important role played by the essential response regulator CosR in the oxidative stress defense of C. jejuni.
Collapse
Affiliation(s)
- Sunyoung Hwang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Minkyeong Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Byeonghwa Jeon
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
31
|
Hitchcock A, Hall SJ, Myers JD, Mulholland F, Jones MA, Kelly DJ. Roles of the twin-arginine translocase and associated chaperones in the biogenesis of the electron transport chains of the human pathogen Campylobacter jejuni. MICROBIOLOGY-SGM 2010; 156:2994-3010. [PMID: 20688826 DOI: 10.1099/mic.0.042788-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The zoonotic pathogen Campylobacter jejuni NCTC 11168 uses a complex set of electron transport chains to ensure growth with a variety of electron donors and alternative electron acceptors, some of which are known to be important for host colonization. Many of the key redox proteins essential for electron transfer in this bacterium have N-terminal twin-arginine translocase (TAT) signal sequences that ensure their transport across the cytoplasmic membrane in a folded state. By comparisons of 2D gels of periplasmic extracts, gene fusions and specific enzyme assays in wild-type, tatC mutant and complemented strains, we experimentally verified the TAT dependence of 10 proteins with an N-terminal twin-arginine motif. NrfH, which has a TAT-like motif (LRRKILK), was functional in nitrite reduction in a tatC mutant, and was correctly rejected as a TAT substrate by the tatfind and TatP prediction programs. However, the hydrogenase subunit HydA is also rejected by tatfind, but was shown to be TAT-dependent experimentally. The YedY homologue Cj0379 is the only TAT translocated molybdoenzyme of unknown function in C. jejuni; we show that a cj0379c mutant is deficient in chicken colonization and has a nitrosative stress phenotype, suggestive of a possible role for Cj0379 in the reduction of reactive nitrogen species in the periplasm. Only two potential TAT chaperones, NapD and Cj1514, are encoded in the genome. Surprisingly, despite homology to TorD, Cj1514 was shown to be specifically required for the activity of formate dehydrogenase, not trimethylamine N-oxide reductase, and was designated FdhM.
Collapse
Affiliation(s)
- Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Stephen J Hall
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Jonathan D Myers
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, UK
| | - Michael A Jones
- School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonnington, Loughborough LE12 2RD, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
32
|
Chan ACK, Doukov TI, Scofield M, Tom-Yew SAL, Ramin AB, Mackichan JK, Gaynor EC, Murphy MEP. Structure and function of P19, a high-affinity iron transporter of the human pathogen Campylobacter jejuni. J Mol Biol 2010; 401:590-604. [PMID: 20600116 DOI: 10.1016/j.jmb.2010.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/18/2010] [Accepted: 06/18/2010] [Indexed: 10/19/2022]
Abstract
Campylobacter jejuni, a major cause of acute bacterial diarrhea in humans, expresses numerous proteins to import diverse forms of essential iron. The expression of p19 and an adjacent iron transporter homologue (ftr1) is strongly induced upon iron limitation, suggesting a function in iron acquisition. Here, we show that the loss of P19 alone is detrimental to growth on iron-restricted media. Furthermore, metal binding analysis demonstrates that recombinant P19 has distinct copper and iron binding sites. Crystal structures of P19 have been solved to 1.41 A resolution, revealing an immunoglobulin-like fold. A P19 homodimer in which both monomers contribute ligands to two equivalent copper sites located adjacent to methionine-rich patches is observed. Copper coordination occurs via three histidine residues (His42, His95, and His132) and Met88. A solvent channel lined with conserved acidic residues leads to the copper site. Soaking crystals with a solution of manganese as iron analog reveals a second metal binding site in this solvent channel (metal-metal distance, 7.7 A). Glu44 lies between the metal sites and displays multiple conformations in the crystal structures, suggesting a role in regulating metal-metal interaction. Dimerization is shown to be metal dependent in vitro and is detected in vivo by cross-linking.
Collapse
Affiliation(s)
- Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, 2350 Health Sciences Mall, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO. The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity. FEBS J 2010; 277:3176-89. [DOI: 10.1111/j.1742-4658.2010.07725.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Kosman DJ. Multicopper oxidases: a workshop on copper coordination chemistry, electron transfer, and metallophysiology. J Biol Inorg Chem 2009; 15:15-28. [PMID: 19816718 DOI: 10.1007/s00775-009-0590-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 09/15/2009] [Indexed: 01/01/2023]
Abstract
Multicopper oxidases (MCOs) are unique among copper proteins in that they contain at least one each of the three types of biologic copper sites, type 1, type 2, and the binuclear type 3. MCOs are descended from the family of small blue copper proteins (cupredoxins) that likely arose as a complement to the heme-iron-based cytochromes involved in electron transport; this event corresponded to the aerobiosis of the biosphere that resulted in the conversion of Fe(II) to Fe(III) as the predominant redox state of this essential metal and the solubilization of copper from Cu(2)S to Cu(H(2)O)( n ) (2+). MCOs are encoded in genomes in all three kingdoms and play essential roles in the physiology of essentially all aerobes. With four redox-active copper centers, MCOs share with terminal copper-heme oxidases the ability to catalyze the four-electron reduction of O(2) to two molecules of water. The electron transfers associated with this reaction are both outer and inner sphere in nature and their mechanisms have been fairly well established. A subset of MCO proteins exhibit specificity for Fe(2+), Cu(+), and/or Mn(2+) as reducing substrates and have been designated as metallooxidases. These enzymes, in particular the ferroxidases found in all fungi and metazoans, play critical roles in the metal metabolism of the expressing organism.
Collapse
Affiliation(s)
- Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, NY 14214, USA.
| |
Collapse
|
35
|
Functional and expression analyses of the cop operon, required for copper resistance in Agrobacterium tumefaciens. J Bacteriol 2009; 191:5159-68. [PMID: 19502402 DOI: 10.1128/jb.00384-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The copper resistance determinant copARZ, which encodes a CPx-type copper ATPase efflux protein, a transcriptional regulator, and a putative intracellular copper chaperone, was functionally characterized for the phytopathogenic bacterium Agrobacterium tumefaciens. These genes are transcribed as an operon, and their expression is induced in response to increasing copper and silver ion concentrations in a copR-dependent fashion. Analysis of the copARZ promoter revealed a putative CopR binding box located within the spacer of the -35 and -10 promoter motifs. In vitro, purified CopR could specifically bind to the box. The inactivation of the copARZ operon or copZ reduces the level of resistance to copper but not to other metal ions. Also, the copARZ operon mutant shows increased sensitivity to the superoxide generators menadione and plumbagin. In addition, the loss of functional copZ does not affect the ability of copper ions to induce the copARZ promoter, indicating that CopZ is not involved in the copper-sensing mechanism of CopR. Altogether, the results demonstrate a crucial role for the copARZ operon as a component of the copper resistance machinery in A. tumefaciens.
Collapse
|