1
|
Megli CJ, Carlin SM, Giacobe EJ, Hillebrand GH, Hooven TA. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025; 16:2451173. [PMID: 39844743 PMCID: PMC11758947 DOI: 10.1080/21505594.2025.2451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
This review summarizes key virulence factors associated with group B Streptococcus (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion. The paper also examines the molecular structures and functions of key GBS surface proteins, such as pili, serine-rich repeat proteins, and fibrinogen-binding proteins, which facilitate colonization and disease. Additionally, the review discusses the significance of environmental sensing and response systems, like the two-component systems, in adapting GBS to different host environments. We conclude by addressing current efforts in vaccine development, underscoring the need for effective prevention strategies against this pervasive pathogen.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, UPMC Medical Center, Pittsburgh, USA
| | - Sophia M. Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elizabeth J. Giacobe
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gideon H. Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Imperi M, Gherardi G, Alfarone G, Creti R. Group B Streptococcus Infections in Non-Pregnant Adults, Italy, 2015-2019. Pathogens 2024; 13:807. [PMID: 39338998 PMCID: PMC11434888 DOI: 10.3390/pathogens13090807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Group B Streptococcus (GBS, Streptococcus agalactiae) is a pathogen of increasing importance in adults. Severe and invasive cases in non-pregnant adults were collected during the period 2015-2019 by voluntary-based surveillance. In total, 108 GBS strains were phenotypically and genotypically characterized for the serotype, antimicrobial resistance, pili, surface protein genes, and the hyper-virulent adhesin hvgA. Patients were divided into two age groups: adults (18-64 years; n = 32) and older adults (≥65 years; n = 72). The average age was 70.8 years, with a male/female ratio of 1.7. Most isolates were recovered from cases of bacteremia (blood, n = 93), and a higher frequency of invasive GBS infections (iGBS) was found among older adults (66.7%). Serotype III was the most frequent (n = 41, 38%), followed by type Ia and type V (n = 20 each, 18.5%). Serotypes Ia, Ib, II, III, IV, and V accounted for all but one isolates (99.1%). The iGBS isolates were universally susceptible to penicillin, while the prevalence of resistance to clindamycin, erythromycin, tetracycline, and high-level gentamicin resistance was 26.8%, 24.1%, 85.2%, and 5.5%, respectively, with the predominance of the erm(B) gene for macrolide resistance and the tet(M) gene for tetracycline resistance. The associations between the serotypes/antimicrobial resistance/virulence traits underlined the increasing importance of serotype III and its contribution to antimicrobial resistance as well as the steady increase over time of serotype IV. This nationwide study confirmed the need for monitoring the GBS epidemiology in non-pregnant adults through continuous surveillance of GBS infections.
Collapse
Affiliation(s)
| | | | | | - Roberta Creti
- Department of Infectious Diseases, Antibiotic Resistance and Special Pathogens Unit, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (G.G.); (G.A.)
| |
Collapse
|
3
|
Creti R, Imperi M, Khan UB, Berardi A, Recchia S, Alfarone G, Gherardi G. Emergence of High-Level Gentamicin Resistance in Streptococcus agalactiae Hypervirulent Serotype IV ST1010 (CC452) Strains by Acquisition of a Novel Integrative and Conjugative Element. Antibiotics (Basel) 2024; 13:491. [PMID: 38927158 PMCID: PMC11201010 DOI: 10.3390/antibiotics13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Streptococcus agalactiae (group B streptococci, GBS) is responsible for severe infections in both neonates and adults. Currently, empiric antimicrobial therapy for sepsis and meningitis is the combined use of penicillin and gentamicin due to the enhanced bactericidal activity. However, high-level gentamicin resistance (HLGR) abrogates the synergism. The rate of HLGR was investigated within a dataset of 433 GBS strains collected from cases of invasive disease in both adults and neonates as well as from pregnant carriers. GBS isolates (n = 20, 4.6%) presented with HLGR (gentamicin MIC breakpoint >1024 mg/L) that was differently diffused between strains from adults or neonates (5.2% vs. 2.8%). Notably, 70% of HLGR GBS strains (14 isolates) were serotype IV. Serotype IV HLGR-GBS isolates were susceptible to all antibiotics tested, exhibited the alpha-C/HvgA/PI-2b virulence string, and belonged to sequence type 1010 (clonal complex (CC) 452). The mobile element that harbored the HLGR aac(6')-aph(2)″ gene is a novel integrative and conjugative element (ICE) about 45 kb long, derived from GBS 515 ICE tRNALys. The clonal expansion of this HLGR hypervirulent serotype IV GBS CC452 sublineage may pose a threat to the management of infections caused by this strain type.
Collapse
Affiliation(s)
- Roberta Creti
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Monica Imperi
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Uzma Basit Khan
- Parasites and Microbes Programme, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - Alberto Berardi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Simona Recchia
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Giovanna Alfarone
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
| | - Giovanni Gherardi
- Dipartimento di Malattie Infettive, Reparto di Antibiotico-Resistenza e Patogeni Speciali, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.I.); (S.R.); (G.A.); (G.G.)
- Unità di Ricerca di Scienze Batteriologiche Applicate, Facoltà Dipartimentale di Medicina e Chirurgia, Università Campus Bio-Medico, 00128 Rome, Italy
| |
Collapse
|
4
|
Goh KGK, Desai D, Thapa R, Prince D, Acharya D, Sullivan MJ, Ulett GC. An opportunistic pathogen under stress: how Group B Streptococcus responds to cytotoxic reactive species and conditions of metal ion imbalance to survive. FEMS Microbiol Rev 2024; 48:fuae009. [PMID: 38678005 PMCID: PMC11098048 DOI: 10.1093/femsre/fuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/26/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Group B Streptococcus (GBS; also known as Streptococcus agalactiae) is an opportunistic bacterial pathogen that causes sepsis, meningitis, pneumonia, and skin and soft tissue infections in neonates and healthy or immunocompromised adults. GBS is well-adapted to survive in humans due to a plethora of virulence mechanisms that afford responses to support bacterial survival in dynamic host environments. These mechanisms and responses include counteraction of cell death from exposure to excess metal ions that can cause mismetallation and cytotoxicity, and strategies to combat molecules such as reactive oxygen and nitrogen species that are generated as part of innate host defence. Cytotoxicity from reactive molecules can stem from damage to proteins, DNA, and membrane lipids, potentially leading to bacterial cell death inside phagocytic cells or within extracellular spaces within the host. Deciphering the ways in which GBS responds to the stress of cytotoxic reactive molecules within the host will benefit the development of novel therapeutic and preventative strategies to manage the burden of GBS disease. This review summarizes knowledge of GBS carriage in humans and the mechanisms used by the bacteria to circumvent killing by these important elements of host immune defence: oxidative stress, nitrosative stress, and stress from metal ion intoxication/mismetallation.
Collapse
Affiliation(s)
- Kelvin G K Goh
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Ruby Thapa
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Darren Prince
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J Sullivan
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, United Kingdom
| | - Glen C Ulett
- School of Pharmacy and Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands Drive, Southport, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
5
|
Alzayer M, Alkhulaifi MM, Alyami A, Aldosary M, Alageel A, Garaween G, Shibl A, Al-Hamad AM, Doumith M. Genomic insights into the diversity, virulence, and antimicrobial resistance of group B Streptococcus clinical isolates from Saudi Arabia. Front Cell Infect Microbiol 2024; 14:1377993. [PMID: 38711928 PMCID: PMC11070470 DOI: 10.3389/fcimb.2024.1377993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction Detailed assessment of the population structure of group B Streptococcus (GBS) among adults is still lacking in Saudi Arabia. Here we characterized a representative collection of isolates from colonized and infected adults. Methods GBS isolates (n=89) were sequenced by Illumina and screened for virulence and antimicrobial resistance determinants. Genetic diversity was assessed by single nucleotide polymorphisms and core-genome MLST analyses. Results Genome sequences revealed 28 sequence types (STs) and nine distinct serotypes, including uncommon serotypes VII and VIII. Majority of these STs (n=76) belonged to the human-associated clonal complexes (CCs) CC1 (33.71%), CC19 (25.84%), CC17 (11.24%), CC10/CC12 (7.87%), and CC452 (6.74%). Major CCs exhibited intra-lineage serotype diversity, except for the hypervirulent CC17, which exclusively expressed serotype III. Virulence profiling revealed that nearly all isolates (94.38%) carried at least one of the four alpha family protein genes (i.e., alphaC, alp1, alp2/3, and rib), and 92.13% expressed one of the two serine-rich repeat surface proteins Srr1 or Srr2. In addition, most isolates harbored the pilus island (PI)-2a alone (15.73%) or in combination with PI-1 (62.92%), and those carrying PI-2b alone (10.11%) belonged to CC17. Phylogenetic analysis grouped the sequenced isolates according to CCs and further subdivided them along with their serotypes. Overall, isolates across all CC1 phylogenetic clusters expressed Srr1 and carried the PI-1 and PI-2a loci, but differed in genes encoding the alpha-like proteins. CC19 clusters were dominated by the III/rib/srr1/PI-1+PI-2a (43.48%, 10/23) and V/alp1/srr1/PI-1+PI-2a (34.78%, 8/23) lineages, whereas most CC17 isolates (90%, 9/10) had the same III/rib/srr2/P1-2b genetic background. Interestingly, genes encoding the CC17-specific adhesins HvgA and Srr2 were detected in phylogenetically distant isolates belonging to ST1212, suggesting that other highly virulent strains might be circulating within the species. Resistance to macrolides and/or lincosamides across all major CCs (n=48) was associated with the acquisition of erm(B) (62.5%, 30/48), erm(A) (27.1%, 13/48), lsa(C) (8.3%, 4/48), and mef(A) (2.1%, 1/48) genes, whereas resistance to tetracycline was mainly mediated by presence of tet(M) (64.18%, 43/67) and tet(O) (20.9%, 14/67) alone or in combination (13.43%, 9/67). Discussion These findings underscore the necessity for more rigorous characterization of GBS isolates causing infections.
Collapse
Affiliation(s)
- Maha Alzayer
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Manal M. Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alyami
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Aldosary
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Alageel
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghada Garaween
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Atef Shibl
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arif M. Al-Hamad
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Alzayer M, Alkhulaifi MM, Alyami A, Aldosary M, Alageel A, Garaween G, Shibl A, Al-Hamad AM, Doumith M. Molecular typing and antimicrobial resistance of group B Streptococcus clinical isolates in Saudi Arabia. J Glob Antimicrob Resist 2023; 35:244-251. [PMID: 37844802 DOI: 10.1016/j.jgar.2023.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVES Group B Streptococcus (GBS) has emerged as an important cause of severe infections in adults. However, limited data are available regarding the epidemiology of GBS in Saudi Arabia. METHODS Isolates were collected over a period of eight months from colonized (n = 104) and infected adults (n = 95). Serotypes and virulence determinants were detected by polymerase chain reactions (PCRs). Genetic relatedness was assessed using Multiple Locus Variable Number Tandem Repeat Analysis (MLVA). Antimicrobial susceptibilities were determined by disk diffusion. RESULTS Serotypes III and V (25% each) were the most prevalent, followed by serotypes II (16.18%), Ia (13.24%), VI (9.31%), and Ib (8.82%), while five isolates remained non-typeable (2.45%). Hypervirulent serotype III/CC17 clone (n = 21) accounted for 41.18% of the serotype III isolates. Most isolates (53.92%) harboured pilus island (PI) 1 and 2a types, while PI-2b was predominantly detected in the hypervirulent clone. Isolates were variably resistant to tetracycline (76.47%), erythromycin (36.76%), clindamycin (25.49%), and levofloxacin (6.37%), but remained susceptible to penicillin. Macrolide resistant isolates exhibited constitutive (55.42%) and inducible macrolide-lincosamide-streptogramin B resistance phenotypes (33.74%), while a few had L (9.64%) or M (1.2%) phenotypes. MLVA patterns of dominant serotypes III and V revealed 40 different types divided into 12 clusters and 28 singletons. Interestingly, macrolide resistance was significantly associated with two major MLVA types. CONCLUSIONS GBS isolates belonged predominantly to serotypes III and V, but there were no clear associations between serotypes and patient groups. The studied isolates exhibited high levels of resistance to erythromycin and clindamycin that need further surveillance.
Collapse
Affiliation(s)
- Maha Alzayer
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Alyami
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Mohammed Aldosary
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdulaziz Alageel
- Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ghada Garaween
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Atef Shibl
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Arif M Al-Hamad
- Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia
| | - Michel Doumith
- Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Virulence Profiles and Antimicrobial Resistance of Streptococcus agalactiae Infective and Colonizing Strains from Argentina. Curr Microbiol 2022; 79:392. [DOI: 10.1007/s00284-022-03050-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
|
8
|
Tsai IA, Su Y, Wang YH, Chu C. Alterations in Genes rib, scpB and Pilus Island Decrease the Prevalence of Predominant Serotype V, Not III and VI, of Streptococcus agalactiae from 2008 to 2012. Pathogens 2022; 11:pathogens11101145. [PMID: 36297202 PMCID: PMC9611264 DOI: 10.3390/pathogens11101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Streptococcus agalactiae (GBS) can infect newborns, pregnant women and immunocompromised or elderly people. This study aimed to investigate differences in three pilus genes and virulence genes pavA, cfb, rib and scpB and changes in predominant serotypes III, V and VI from 2008 to 2012. The susceptibilities to penicillin, ceftriaxone, azithromycin, erythromycin, clindamycin, levofloxacin and moxifloxacin of 145 GBS strains of serotype III, V and VI strains from 2008 and 2012 were determined using disc diffusion method. PCR identification of ST-17, the pilus genes and virulence genes; multilocus sequence typing (MLST); and conserved domain and phylogenetic analysis of scpB-1 and scpB-2 proteins were performed. A dramatic number reduction was observed in serotype V, not III and V, from 2008 to 2012. The rate of resistance to azithromycin, clindamycin and erythromycin was the highest in serotype V. ST-17 was only found in serotype III with pilus genes PI-1+PI-2b. The major pilus genotype was PI-1+PI-2a. Serotype V without the rib gene was reduced in number between two studied years. Compared to scpB-1, scpB-2 had a 128-bp deletion in a PA C5a-like peptidase domain and putative integrin-binding motif RGD. In conclusion, reduction in serotype V may be due to presence of scpB-2 or lack of genes scpB and rib.
Collapse
Affiliation(s)
- I-An Tsai
- Ph.D. Program of Agriculture Science, College of Agriculture, National Chiayi University, Chiayi City 600, Taiwan
| | - Yaochi Su
- Ph.D. Program of Agriculture Science, College of Agriculture, National Chiayi University, Chiayi City 600, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chiayi University, Chiayi City 600, Taiwan
| | - Ying-Hsiang Wang
- Department of Pediatrics, Chang Gung Memorial Hospital, Puzi City 613, Taiwan
| | - Chishih Chu
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City 600, Taiwan
- Correspondence: ; Tel.: +886-5-2717898
| |
Collapse
|
9
|
How GBS Got Its Hump: Genomic Analysis of Group B Streptococcus from Camels Identifies Host Restriction as well as Mobile Genetic Elements Shared across Hosts and Pathogens. Pathogens 2022; 11:pathogens11091025. [PMID: 36145457 PMCID: PMC9504112 DOI: 10.3390/pathogens11091025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Group B Streptococcus (GBS) literature largely focuses on humans and neonatal disease, but GBS also affects numerous animals, with significant impacts on health and productivity. Spill-over events occur between humans and animals and may be followed by amplification and evolutionary adaptation in the new niche, including changes in the core or accessory genome content. Here, we describe GBS from one-humped camels (Camelus dromedarius), a relatively poorly studied GBS host of increasing importance for food security in arid regions. Genomic analysis shows that virtually all GBS from camels in East Africa belong to a monophyletic clade, sublineage (SL)609. Capsular types IV and VI, including a new variant of type IV, were over-represented compared to other host species. Two genomic islands with signatures of mobile elements contained most camel-associated genes, including genes for metal and carbohydrate utilisation. Lactose fermentation genes were associated with milk isolates, albeit at lower prevalence in camel than bovine GBS. The presence of a phage with high identity to Streptococcus pneumoniae and Streptococcus suis suggests lateral gene transfer between GBS and bacterial species that have not been described in camels. The evolution of camel GBS appears to combine host restriction with the sharing of accessory genome content across pathogen and host species.
Collapse
|
10
|
Characteristics of Streptococcus agalactiae Colonizing Nonpregnant Adults Support the Opportunistic Nature of Invasive Infections. Microbiol Spectr 2022; 10:e0108222. [PMID: 35604173 PMCID: PMC9241740 DOI: 10.1128/spectrum.01082-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The prevalence and lineages of Streptococcus agalactiae (group B streptococci [GBS]) colonizing pregnant women are well studied, but less is known about colonization of nonpregnant adults. We characterized GBS colonization in adults as a potential reservoir for infections and tested for the presence of clones with a potentially higher invasive disease potential. We evaluated GBS gastrointestinal, genitourinary, and oral colonization among 336 nonpregnant adults in the community. We characterized the isolates by serotyping, multilocus sequence typing, profiling of surface protein genes and pili, and antimicrobial susceptibility and compared them with contemporary invasive isolates. The colonization rate (n = 107, 32%) among nonpregnant adults was like that of pregnant women. Colonization increased with age (~25% in the 18 to 29 and 30 to 44 years old groups and >42% in the ≥60 years old group), potentially explaining the higher incidence of disease with older age. Participants who were colonized at multiple sites (73%) were frequently carrying indistinguishable strains (93%), consistent with the existence of a single reservoir of colonization and transfer of GBS between sites within the same individual. The most frequent lineages found were serotype Ib/CC1 (n = 27), serotype V/CC1 (n = 19), serotype Ia/CC23 (n = 13), serotype III/ST17 (n = 13), and serotype Ib/CC10 (n = 11). Comparison with contemporary isolates causing invasive infections in Portugal did not reveal any lineage associated with either asymptomatic carriage or invasive disease. Asymptomatic colonization of nonpregnant adults is significant and could act as a reservoir for invasive disease, but in contrast to infant disease, we found no GBS lineages with an enhanced potential for causing invasive disease in adults. IMPORTANCE The increasing incidence of Streptococcus agalactiae (group B streptococci [GBS]) infections in adults and the inability of antimicrobial prophylaxis peripartum to control late-onset infections in infants motivate the study of the asymptomatic carrier state in nonpregnant adults. We found an overall carriage rate like that of pregnant women, increasing with age, potentially contributing to the higher incidence of GBS infections with age. Colonization of diabetic participants was not higher despite the higher number of infections in this group. Comparison between contemporary genetic lineages causing infections and found in asymptomatic carriers did not identify particularly virulent lineages. This means that any prophylactic approaches targeting colonization by particular lineages are expected to have a limited impact on GBS disease in adults.
Collapse
|
11
|
Zhu Y, Dong W, Ma J, Zhang Y, Zhong X, Pan Z, Liu G, Wu Z, Yao H. Comparative genetic analyses provide clues about capsule switching in Streptococcus suis 2 strains with different virulence levels and genetic backgrounds. Microbiol Res 2021; 250:126814. [PMID: 34256310 DOI: 10.1016/j.micres.2021.126814] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/22/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
Streptococcus suis (S. suis) is a major bacterial pathogen in the swine industry and an emerging zoonotic agent. S. suis produces an important extracellular component, capsular polysaccharide (CPS), based on which dozens of serotypes have been identified. Through virulence genotyping, we revealed the relatedness between subpopulations of S. suis serotype 2 (SS2), S. suis serotype 3 (SS3) and S. suis serotype 7 (SS7) strains despite their serotype differences. Multilocus sequence typing (MLST) was used to characterize the whole S. suis population and revealed capsule switching between S. suis strains. Importantly, capsule switching occurred in the SS2, SS3 and SS7 strains belonging to CC28 and CC29, which are phylogenetically distinct from the main CC1 SS2 lineage. To further explore capsule switching in S. suis, comparative genomic analyses were performed using available complete S. suis genomes. Phylogenetic analyses suggested that the SS2 strains could be divided into two clades (1 and 2), and those classified into clade 2 colocalized with SS3 and SS7 strains, in accordance with the above virulence genotyping and MLST analyses. Clade 2 SS2 strains presented high genetic similarity to SS3 and SS7 and shared common competence and defensive elements with them but were significantly different from Clade 1 SS2 strains. Notably, although the cps loci shared by Clade 1 and 2 SS2 strains were almost identical, a specific region of the cps locus of strain NSUI002 (Clade 2 SS2) could be found in the SS3 cps locus but not in the Clade 1 SS2 strain. These data indicated that the SS2 strains in CC28 and CC29 might have acquired the cps locus through capsule switching, which could explain the distinct genetic lineages within the SS2 population.
Collapse
Affiliation(s)
- Yinchu Zhu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China; Beijing Advanced Innovation Center for Genomics (ICG) & Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Yue Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaojun Zhong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Zongfu Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, 210095, China; OIE Reference Lab for Swine Streptococcosis, Nanjing, 210095, China.
| |
Collapse
|
12
|
Carra E, Russo S, Micheli A, Garbarino C, Ricchi M, Bergamini F, Bassi P, Prosperi A, Piva S, Cricca M, Schiavo R, Merialdi G, Serraino A, Arrigoni N. Evidence of Common Isolates of Streptococcus agalactiae in Bovines and Humans in Emilia Romagna Region (Northern Italy). Front Microbiol 2021; 12:673126. [PMID: 34177854 PMCID: PMC8226232 DOI: 10.3389/fmicb.2021.673126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) is one of the most important agents of bovine mastitis and causes remarkable direct and indirect economic losses to the livestock sector. Moreover, this species can cause severe human diseases in susceptible individuals. To investigate the zoonotic potential of S. agalactiae, 203 sympatric isolates from both humans and cattle, isolated in the same time frame (2018) and in the same geographic area (Emilia Romagna region, Northern Italy), were characterized by molecular capsular typing (MCT), pilus island typing (PI), and multi-locus sequence typing (MLST). In addition, antibiotic-resistant phenotypes were investigated. The distribution of the allelic profiles obtained by combining the three genotyping methods (MCT-PI-MLST) resulted in 64 possible genotypes, with greater genetic variability among the human compared to the bovine isolates. Although the combined methods had a high discriminatory power (>96,2%), five genotypes were observed in both species (20,9% of the total isolates). Furthermore, some of these strains shared the same antibiotic resistance profiles. The finding of human and bovine isolates with common genotypes and antibiotic resistance profiles supports the hypothesis of interspecies transmission of S. agalactiae between bovines and humans.
Collapse
Affiliation(s)
- Elena Carra
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Simone Russo
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Alessia Micheli
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Chiara Garbarino
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Matteo Ricchi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Federica Bergamini
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Patrizia Bassi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Alice Prosperi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Cricca
- Microbiology, DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Center for Applied Biomedical Research, St. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Roberta Schiavo
- Microbiology, Department of Clinical Pathology, "Guglielmo da Saliceto" Hospital, Piacenza, Italy
| | - Giuseppe Merialdi
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Norma Arrigoni
- Experimental Zooprophylactic Institute in Lombardy and Emilia Romagna, Brescia, Italy
| |
Collapse
|
13
|
Motallebirad T, Fazeli H, Ghahiri A, Shokri D, Jalalifar S, Moghim S, Esfahani BN. Prevalence, population structure, distribution of serotypes, pilus islands and resistance genes among erythromycin-resistant colonizing and invasive Streptococcus agalactiae isolates recovered from pregnant and non-pregnant women in Isfahan, Iran. BMC Microbiol 2021; 21:139. [PMID: 33947330 PMCID: PMC8096152 DOI: 10.1186/s12866-021-02186-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 01/31/2023] Open
Abstract
Background The information on antibiotic resistance and molecular features of Group B Streptococcus (GBS) are essential for epidemiological purposes as well as vaccine development. Therefore, we aimed to assess the antimicrobial resistance profiles and molecular characteristics of GBS isolates in Isfahan, Iran. A total number of 72 colonizing and invasive GBS were collected from pregnant and non-pregnant women. The GBS isolates were analyzed for resistance profiles, capsular genotyping, and detection of PI-1, PI-2a, PI-2b, hvgA, ermB, ermTR, lnuB and, mefA genes. Besides, erythromycin-resistant strains were subjected to multilocus sequence typing (MLST). Results The prevalence of colonizing and invasive GBS were 11 and 0.05%, respectively. The frequency of capsular serotypes was as follows: III (26.3%), Ia (20.83%), Ib and V (each 15.2%), IV (9.7%), II (8.3%), VII (2.7%), and VI (1.3%). Overall frequencies of PIs were as follows: PI-1, 37.5%, PI-1 + PI-2a, 30.5%, PI-1 + PI-2b, 29.1% and PI-2b, 2.7%. Two maternal colonizing GBS (2.6%) were hvgA positive and were belonged to ST-17/CPS-III/PI-1 + PI-2b lineage. Among 30(41.6%) erythromycin resistant GBS, 21 isolates (70%) harbored ermB gene, followed by ermTR (23.3%) and mefA (10%). One clindamycin-resistant isolate harbored the lnuB gene. MLST analysis revealed the following five clonal complexes (CCs) and nine STs: (CC-19/ST-335, ST-19, and ST-197), (CC-12/ST-43, ST-12), (CC-23/ST-163, ST-23), (CC-17/ST-17) and (CC-4/ST-16). Conclusion The study shows an alarmingly high prevalence of erythromycin-resistant GBS in Iran. In addition, we report dissemination of ST-335/CPS-III clone associated with tetracycline and erythromycin resistance in our region. The distribution of capsular and pilus genotypes varies between invasive and colonizing GBS that could be helpful for vaccine development.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Hossein Fazeli
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Gynecology and Obstetrics, Al-Zahra university Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Shokri
- Infectious disease and tropical medicine research center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Sharareh Moghim
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Hezar-Jerib Street, Isfahan, Iran.
| |
Collapse
|
14
|
Hernandez L, Bottini E, Cadona J, Cacciato C, Monteavaro C, Bustamante A, Sanso AM. Multidrug Resistance and Molecular Characterization of Streptococcus agalactiae Isolates From Dairy Cattle With Mastitis. Front Cell Infect Microbiol 2021; 11:647324. [PMID: 33996629 PMCID: PMC8120232 DOI: 10.3389/fcimb.2021.647324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Streptococcus agalactiae is a pathogen-associated to bovine mastitis, a health disorder responsible for significant economic losses in the dairy industry. Antimicrobial therapy remains the main strategy for the control of this bacterium in dairy herds and human In order to get insight on molecular characteristics of S. agalactiae strains circulating among Argentinean cattle with mastitis, we received 1500 samples from 56 dairy farms between 2016 and 2019. We recovered 56 S. agalactiae isolates and characterized them in relation to serotypes, virulence genes, and antimicrobial susceptibility. Serotypes III and II were the most prevalent ones (46% and 41%, respectively), followed by Ia (7%). In relation to the 13 virulence genes screened in this study, the genes spb1, hylB, cylE, and PI-2b were present in all the isolates, meanwhile, bca, cpsA, and rib were detected in different frequencies, 36%, 96%, and 59%, respectively. On the other hand, bac, hvgA, lmb, PI-1, PI-2a, and scpB genes could not be detected in any of the isolates. Disk diffusion method against a panel of eight antimicrobial agents showed an important number of strains resistant simultaneously to five antibiotics. We also detected several resistance-encoding genes, tet(M), tet(O), ermB, aphA3, and lnu(B) (9%, 50%, 32%, 32%, and 5%, respectively). The results here presented are the first molecular data on S. agalactiae isolates causing bovine mastitis in Argentina and provide a foundation for the development of diagnostic, prophylactic, and therapeutic methods, including the perspective of a vaccine.
Collapse
Affiliation(s)
- Luciana Hernandez
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Enriqueta Bottini
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Jimena Cadona
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Claudio Cacciato
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Cristina Monteavaro
- Laboratorio de Microbiología Clínica y Experimental, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Ana Bustamante
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| | - Andrea Mariel Sanso
- Laboratorio de Inmunoquímica y Biotecnología, CIVETAN (CONICET), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina
| |
Collapse
|
15
|
Motallebirad T, Fazeli H, Jalalifar S, Shokri D, Moghim S, Nasr Esfahani B. Molecular Characterization of Hospital- and Community-Acquired Streptococcus agalactiae Isolates among Nonpregnant Adults in Isfahan, Iran. Adv Biomed Res 2021; 9:44. [PMID: 33457327 PMCID: PMC7792884 DOI: 10.4103/abr.abr_25_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/30/2020] [Accepted: 06/28/2020] [Indexed: 11/14/2022] Open
Abstract
Background: The increasing incidence of Group B Streptococcus (GBS) infection among nonpregnant adults has become of growing clinical and public health concern. The current study investigated the distribution of important virulence determinants and antibiotic susceptibility of GBS isolates causing community acquired (CA) and hospital acquired (HA) infections among nonpregnant adults. Materials and Methods: A total of 62 GBS, including 31 CA GBS and 31 HA GBS, were collected from a teaching hospital in Isfahan, Iran. Capsular polysaccharide genotypes (CPS), PI 1, PI 2a, PI 2b, and hypervirulent GBS adhesin (hvgA) virulence genes and antibiotic resistance profiling were determined. Results: There were 19 (30.6%) cases of underlying disease that diabetes mellitus (20.9%) was most common. The rate of multidrug resistant GBS strains was accounted for 29%. Distribution of macrolide resistant phenotypes was as follows: constitutive macrolides, lincosamides, and streptogramin B (MLSB) (15 isolates); inducible resistance to MLSB; and L phenotype (each 5 isolates) and M phenotype (1 isolate). V and Ia serotypes were the most predominant capsular type in HA GBS and CA GBS isolates, respectively. The most frequent pilus types were PI 1, PI 1+PI 2a, PI 1+PI 2b, and PI 2a. PI 1 and PI 1+PI 2a had significantly different distributions between CA and HA GBS isolates. Three CA GBS isolates (9.6%) were positive for hvgA gene that belonged to clonal complex 17/sequence type 17/CPS III/PI 1+PI 2b lineage. Conclusion: There was a significant difference in the distribution of PIs among CA GBS and HA GBS isolates in our region.
Collapse
Affiliation(s)
- Tahereh Motallebirad
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Fazeli
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saba Jalalifar
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Darioush Shokri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran
| | - Sharareh Moghim
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Nasr Esfahani
- Department of Bacteriology and Virology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Lohrmann F, Berg A, Wicker E, Imm A, Krause G, Zürn K, Berner R, Hufnagel M, Lander F. Prevalence of Capsular Serotype, Pilus Island Distribution, and Antibiotic Resistance in Pediatric and Adult Invasive Group B Streptococcus Isolates: Data From a Nationwide Prospective Surveillance Study in Germany. Pediatr Infect Dis J 2021; 40:76-82. [PMID: 33201062 DOI: 10.1097/inf.0000000000002943] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
For neonates, group B Streptococcus is life threatening. Current prevention strategies remain insufficient, especially for cases of late-onset sepsis, where intrapartum antibiotic prophylaxis has demonstrated no benefit. One promising approach is the vaccination of pregnant women, which offers protective immunity via transplacental transmission of neutralizing antibodies. Our nationwide, prospective surveillance study aimed to characterize the prevalence of pilus antigen, capsular polysaccharide serotypes, and antibiotic resistance from invasive GBS infections in neonates and compare these results with those from children and adults in Germany. Our study includes 173 neonatal isolates of a total of 450 reported cases during the study period (incidence: 0.34/1000 live births), in addition to 2 pediatric and 803 adult isolates. The comparison between neonatal and adult isolates reveals age-dependent differences in capsular serotype and pilus type distribution and differences in antibiotic resistance patterns.
Collapse
Affiliation(s)
- Florens Lohrmann
- From the Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Biology
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, Freiburg, Germany
| | - Angela Berg
- From the Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty
- Department for Gynecology and Obstetrics, DRK Hospital Westend, Berlin, Germany
| | - Esther Wicker
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anita Imm
- From the Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty
| | - Gérard Krause
- Epidemiology Department, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectious Disease Epidemiology, TWINCORE, Hannover, Germany
- Translational Infrastructure Epidemiology, German Centre for Infection Research (DZIF), Braunschweig, Germany
| | - Katharina Zürn
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Reinhard Berner
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Markus Hufnagel
- From the Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty
| | - Fabian Lander
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
17
|
Nabavinia M, Khalili MB, Sadeh M, Eslami G, Vakili M, Azartoos N, Mojibiyan M. Distribution of Pilus island and antibiotic resistance genes in Streptococcus agalactiae obtained from vagina of pregnant women in Yazd, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:411-416. [PMID: 33603995 PMCID: PMC7867704 DOI: 10.18502/ijm.v12i5.4601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background and Objectives: Due to the important role of Streptococcus agalactiae, Group B streptococci (GBS), in production of invasive disease in neonates, investigation regarding the pathogenicity and antibiotic resistance factors is necessary in selecting the appropriate therapeutic agents. Beside capsule, the pilus has been currently recognized as an important factor in enhancing the pathogenicity of GBS. Resistance of GBS to selected antibiotics is noticeably increasing which is mainly due to the anomalous use of these drugs for treatment. The aim of this study was to determine the prevalence of pili genes followed by antibiotic susceptibility of GBS, previously serotyped, isolated from pregnant women in the city of Yazd, Iran. Materials and Methods: Fifty seven GBS from pregnant women were subjected to multiplex PCR for determination of PI-1, PI-2a and PI-2b pilus-islands and simultaneously, the phenotype of antibiotic resistance to penicillin, tetracycline, erythromycin, clindamycin, gentamycin and levofloxacin was determined. Antibiotic resistance genes (ermA, ermB, mefA, tetM, int-Tn) were further diagnosed using PCR and multiplex PCR. Results: PI-1+PI-2a with 71.9%; followed by PI-2a (21.1%) and PI-2b (7%) were observed. PI-1+PI-2a in serotype III was (73.2%), serotype II, Ia, Ib and V were 12.2%, 9.8%, 2.4% and 2.4% respectively. GBS penicillin sensitive was 89.5% and 96.5% resistance to tetracycline. The frequency of resistance genes were as follows: tetM (93%), ermA (33.3%), ermB (8.8%), int-Tn (80.7%) and mefA (0). Conclusion: Majority of GBS contained PI-1+PI-2a. Hence presence of this pilus stabilizes the colonization, therefore designing a program for diagnosing and treatment of infected pregnant women seems to be necessary.
Collapse
Affiliation(s)
- Mahdieh Nabavinia
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Bagher Khalili
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Sadeh
- Department of Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Department of Parasitology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Vakili
- Department of Public Medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nastaran Azartoos
- Department of Microbiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdiye Mojibiyan
- Department of Obstetrics and Gynecology, Mojibiyan Hospital, Yazd, Iran
| |
Collapse
|
18
|
Phylogeny, recombination, and invasiveness of group B Streptococcus revealed by genomic comparisons of its global strains. Eur J Clin Microbiol Infect Dis 2020; 40:581-590. [PMID: 33067737 PMCID: PMC7567417 DOI: 10.1007/s10096-020-04067-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
Capsular polysaccharide (CPS) genes and pilus islands encode important virulence factors for group B Streptococcus (GBS) genomes. This study aims to detect phylogenetic inconsistency in CPS genes and pilus islands in GBSs and to explore its relationship with invasiveness. A total of 1016 GBS genomes were downloaded from the NCBI public database. The multi-locus sequence typing (MLST) and Bayesian analysis of Population Structure (BAPS) analyses were both conducted for phylogeny construction. Serotyping and pilus typing were determined in silico using the genomic sequences. The CPS and pilus typing results were generally consistent with MLST and BAPS clustering. GBS isolates of serotype II and of the PI-1 + PI-2b and PI-2a types were more prone to phylogenetic inconsistency than the others. Isolates of serotype Ib and of PI-1 + PI-2a were more likely to appear as colonizing strains, whereas PI-2b was more likely to appear in invasive strains. For serotype V, phylogenetic inconsistency occurred more commonly in colonizing isolates, while for serotype III, the opposite occurred. The present study profiles for the first time the phylogenetic inconsistency of CPS genes and pilus islands in global GBS isolates, which is helpful for infection control and the development of new vaccines for the prevention of GBS occurrence.
Collapse
|
19
|
Crestani C, Forde TL, Zadoks RN. Development and Application of a Prophage Integrase Typing Scheme for Group B Streptococcus. Front Microbiol 2020; 11:1993. [PMID: 32983017 PMCID: PMC7487436 DOI: 10.3389/fmicb.2020.01993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/28/2020] [Indexed: 01/18/2023] Open
Abstract
Group B Streptococcus (GBS) is a gram-positive pathogen mainly affecting humans, cattle, and fishes. Mobile genetic elements play an important role in the evolution of GBS, its adaptation to host species and niches, and its pathogenicity. In particular, lysogenic prophages have been associated with a high virulence of certain strains and with their ability to cause invasive infections in humans. It is therefore important to be able to accurately detect and classify prophages in GBS genomes. Several bioinformatic tools for the identification of prophages in bacterial genomes are available on-line. However, genome searches for most of these programs are affected by the composition of their reference database. Lack of databases specific to GBS results in failure to recognize all prophages in the species. Additionally, performance of these programs is affected by genome fragmentation in the case of draft genomes, leading to underestimation of the number of phages. They also prove impractical when dealing with large genome datasets and they do not offer a quick way of classifying bacteriophages. We developed a GBS-specific method to screen genome assemblies for the presence of prophages and to classify them based on a reproducible typing scheme. This was achieved through an extensive search of a vast number of high-quality GBS sequences (n = 572) originating from different host species and countries in order to build a database of phage integrase types, on which the scheme is based. The proposed typing scheme comprises 12 integration sites and sixteen prophage integrase types, including multiple subtypes per integration site and integrase genes that were not site-specific. Two putative phage-inducible chromosomal islands (PICI) and their insertion sites were also identified during the course of these analyses. Phages were common and diverse in all major clonal complexes associated with human disease and detected in isolates from every animal species and continent included in the study. This database will facilitate further work on the prevalence and role of prophages in GBS evolution, and identifies the roles of PICIs in GBS and of prophage in hypervirulent ST283 as areas for further research.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Taya L Forde
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Ruth N Zadoks
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom.,Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
20
|
Gizachew M, Tiruneh M, Moges F, Adefris M, Tigabu Z, Tessema B. Molecular characterization of Streptococcus agalactiae isolated from pregnant women and newborns at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC Infect Dis 2020; 20:35. [PMID: 31931732 PMCID: PMC6958622 DOI: 10.1186/s12879-020-4776-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
Background Streptococcus agalctiae (Group B Streptococcus, GBS) is a perinatal pathogen and a leading cause of neonatal infections worldwide. Serotype, sequence type, clonality, antibiotic resistance genes and surface protein profiles of GBS are scarce in Ethiopia, a reason that this study was planned to investigate. . Methods Sixteen colonizing GBS isolates obtained from recto-vaginal swabs of pregnant women and body surfaces of newborns were further analyzed. Minimum inhibitory concentration (MIC) test, and whole genome sequence (WGS) methods were done for antibiotic susceptibility test, and molecular characterization of the isolates. Results All the GBS isolates analyzed were belonged to four capsular serotypes: II, 11/16(68.8%), V, 3/16(18.8%), Ia and VI each with 1/16(6.3%) and five sequence type (ST-2, ST-10, ST-14, ST-569 and ST-933). Sequence type-10 was the most predominant ST followed by ST-569. The five STs were grouped into the four clonal complexes (CC - 1, CC-10, CC-19, and CC-23). Different surface proteins and pili families such as ALP1, ALPHA, ALP23, PI-1 / PI-2A1, PI-1 / PI-2B, and Srr1 were detected from WGS data. All isolates were found to be susceptible to the tested antibiotics except for tetracycline in MIC and WGS test methods used. Tetracycline resistant determinant genes such as TETM and TETL / TETM combination were identified. Conclusion Further studies on serotype and molecular epidemiology will provide a comprehensive data of the GBS capsular serotype and clones available in Ethiopia.
Collapse
Affiliation(s)
- Mucheye Gizachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia.
| | - Moges Tiruneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Mulat Adefris
- Department of Gynecology and Obstetrics, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Zemene Tigabu
- Department of Pediatrics, School of Medicine, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Belay Tessema
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| |
Collapse
|
21
|
Richards VP, Velsko IM, Alam MT, Zadoks RN, Manning SD, Pavinski Bitar PD, Hassler HB, Crestani C, Springer GH, Probert BM, Town CD, Stanhope MJ. Population Gene Introgression and High Genome Plasticity for the Zoonotic Pathogen Streptococcus agalactiae. Mol Biol Evol 2019; 36:2572-2590. [PMID: 31350563 PMCID: PMC6805230 DOI: 10.1093/molbev/msz169] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/04/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023] Open
Abstract
The influence that bacterial adaptation (or niche partitioning) within species has on gene spillover and transmission among bacterial populations occupying different niches is not well understood. Streptococcus agalactiae is an important bacterial pathogen that has a taxonomically diverse host range making it an excellent model system to study these processes. Here, we analyze a global set of 901 genome sequences from nine diverse host species to advance our understanding of these processes. Bayesian clustering analysis delineated 12 major populations that closely aligned with niches. Comparative genomics revealed extensive gene gain/loss among populations and a large pan genome of 9,527 genes, which remained open and was strongly partitioned among niches. As a result, the biochemical characteristics of 11 populations were highly distinctive (significantly enriched). Positive selection was detected and biochemical characteristics of the dispensable genes under selection were enriched in ten populations. Despite the strong gene partitioning, phylogenomics detected gene spillover. In particular, tetracycline resistance (which likely evolved in the human-associated population) from humans to bovine, canines, seals, and fish, demonstrating how a gene selected in one host can ultimately be transmitted into another, and biased transmission from humans to bovines was confirmed with a Bayesian migration analysis. Our findings show high bacterial genome plasticity acting in balance with selection pressure from distinct functional requirements of niches that is associated with an extensive and highly partitioned dispensable genome, likely facilitating continued and expansive adaptation.
Collapse
Affiliation(s)
- Vincent P Richards
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Irina M Velsko
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Md Tauqeer Alam
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL
| | - Ruth N Zadoks
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
- Institute for Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI
| | - Paulina D Pavinski Bitar
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Hayley B Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Chiara Crestani
- Pentlands Science Park, Moredun Research Institute, Penicuik, United Kingdom
| | - Garrett H Springer
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | - Brett M Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC
| | | | - Michael J Stanhope
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
22
|
Furfaro LL, Chang BJ, Kahler CM, Payne MS. Genomic characterisation of perinatal Western Australian Streptococcus agalactiae isolates. PLoS One 2019; 14:e0223256. [PMID: 31577825 PMCID: PMC6774530 DOI: 10.1371/journal.pone.0223256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/17/2019] [Indexed: 11/18/2022] Open
Abstract
As a leading cause of neonatal sepsis, Streptococcus agalactiae, commonly known as Group B Streptococcus, is a major neonatal pathogen. Current global screening practices employ risk- or culture-based protocols for detection of these organisms. In Western Australia (WA), universal culture-based screening is provided, with subsequent intrapartum antibiotic prophylaxis for all S. agalactiae-positive women during labour. Widespread antibiotic exposure is not ideal and this is one of the factors driving development of vaccines against S. agalactiae. Vaccine candidates have focused on the capsule, surface proteins and pilus types, however, capsule serotypes are known to vary geographically. The aim of this study was to use genome sequencing to gain an understanding of the circulating genotypes in WA, and to assess variations in the associated gene pools. We sequenced 141 antenatal carriage (vaginal/rectal) isolates and 10 neonatal invasive disease isolates from WA. Based on the global PubMLST database, the 151 strains were characterised into 30 sequence types, with clustering of these mainly into clonal complexes 1, 12, 17, 19 and 23. Of the genes encoding eleven surface proteins that were analysed, the most prevalent were fbp, lmb and scpB which were present in ≥ 98% of isolates. A cluster of non-haemolytic isolates, one of which was a neonatal invasive disease isolate, appeared to lack the entire cyl locus. Admixture analysis of population structure revealed evidence of genetic transfer among the WA isolates across structural groups. When compared against the PubMLST S. agalactiae data, WA isolates showed high levels of strain diversity with minimal apparent clustering. This is the first whole genome sequence study of WA S. agalactiae isolates and also represents the first addition of Australian isolate data to PubMLST. This report provides insight into the distribution and diversity of vaccine targets of S. agalactiae within Western Australia, indicating that the most appropriate capsular vaccine for this population would be the proposed pentavalent (Cps Ia, Ib, II, III and V) preparation, whilst vaccines targeting surface proteins should ideally utilise Fbp, Lmb and/or ScpB.
Collapse
Affiliation(s)
- Lucy L. Furfaro
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
- * E-mail:
| | - Barbara J. Chang
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Charlene M. Kahler
- The School of Biomedical Sciences, The Marshall Centre for Infectious Diseases Research and Training, The University of Western Australia, Perth, Western Australia, Australia
| | - Matthew S. Payne
- The School of Medicine, Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
23
|
Lopes E, Fernandes T, Machado MP, Carriço JA, Melo-Cristino J, Ramirez M, Martins ER. Increasing macrolide resistance among Streptococcus agalactiae causing invasive disease in non-pregnant adults was driven by a single capsular-transformed lineage, Portugal, 2009 to 2015. ACTA ACUST UNITED AC 2019; 23. [PMID: 29845930 PMCID: PMC6152215 DOI: 10.2807/1560-7917.es.2018.23.21.1700473] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We characterised Lancefield group B streptococcal (GBS) isolates causing invasive disease among non-pregnant adults in Portugal between 2009 and 2015. All isolates (n = 555) were serotyped, assigned to clonal complexes (CCs) by multilocus sequence typing and characterised by surface protein and pilus island gene profiling. Antimicrobial susceptibility was tested by disk diffusion and resistance genotypes identified by PCR. Overall, serotype Ia was most frequent in the population (31%), followed by serotypes Ib (24%) and V (18%). Serotype Ib increased significantly throughout the study period (p < 0.001) to become the most frequent serotype after 2013. More than 40% of isolates clustered in the CC1/alp3/PI-1+PI-2a genetic lineage, including most isolates of serotypes Ib (n = 110) and V (n = 65). Erythromycin and clindamycin resistance rates were 35% and 34%, respectively, both increasing from 2009 to 2015 (p < 0.010) and associated with CC1 and serotype Ib (p < 0.001). The Ib/CC1 lineage probably resulted from acquisition of the type Ib capsular operon in a single recombination event by a representative of the V/CC1 macrolide-resistant lineage. Expansion of the new serotype Ib/CC1 lineage resulted in increased macrolide resistance in GBS, causing invasive disease among adults in Portugal. The presence of this clone elsewhere may predict more widespread increase in resistance.
Collapse
Affiliation(s)
- Elísia Lopes
- These authors contributed equally to this work.,Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Tânia Fernandes
- These authors contributed equally to this work.,Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Miguel P Machado
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - João André Carriço
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - José Melo-Cristino
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mário Ramirez
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Elisabete R Martins
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | -
- The members of group are listed at the end of the article
| |
Collapse
|
24
|
Bonsaglia ECR, Latosinski GS, Rossi RS, Rossi BF, Possebon FS, Pantoja JCF, Fernandes Júnior A, Rall VLM. Biofilm production under different atmospheres and growth media by Streptococcus agalactiae isolated from milk of cows with subclinical mastitis. Arch Microbiol 2019; 202:209-212. [PMID: 31482327 DOI: 10.1007/s00203-019-01727-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Different methods to analyze Streptococcus agalactiae biofilm formation have been investigated, but standardized protocols have not been developed. We compared S. agalactiae biofilm production among different atmospheres and growth media. Biofilm formation was studied in 32 isolates from bovine mastitis cases grown in Tryptone Soy Broth (TSB), Todd Hewitt Broth (THB), Luria Bertani Broth (LB) and Brain Heart Infusion (BHI), under two atmospheres, aerobic and 5% CO2. Regardless of the culture medium, growth under 5% CO2 resulted in a greater proportion of biofilm formation (65.63%), as compared with aerobic conditions (39.84%). Regardless of the atmosphere, the chances of biofilm formation were greater for isolates grown in TSB, as compared with THB [Odds ratio (OR) = 3.02], BHI (OR = 4.57), or LB (OR = 10.20). Thus, we suggest the use of 5% CO2 atmosphere and TSB in biofilm formation assays by Group-B streptococci (GBS) isolated from intramammary infections.
Collapse
Affiliation(s)
- Erika C R Bonsaglia
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil.
| | - Giulia S Latosinski
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Rodolfo S Rossi
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Bruna F Rossi
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil
| | - Fábio S Possebon
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - José Carlos F Pantoja
- Department of Veterinary Hygiene and Public Health, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Ary Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil
| | - Vera L M Rall
- Department of Microbiology and Immunology, Institute of Biosciences, Sao Paulo State University (UNESP), Postal Office Box 510, Botucatu, SP, 18618-970, Brazil.
| |
Collapse
|
25
|
Vásquez-Machado G, Barato-Gómez P, Iregui-Castro C. Morphological characterization of the adherence and invasion of Streptococcus agalactiae to the intestinal mucosa of tilapia Oreochromis sp.: An in vitro model. JOURNAL OF FISH DISEASES 2019; 42:1223-1231. [PMID: 31184378 DOI: 10.1111/jfd.13042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Streptococcosis in tilapia Oreochromis sp. is possibly the most important bacterial disease for fish production worldwide. In Colombia, streptococcosis is caused by Streptococcus agalactiae (GBS), but in other countries, Streptococcus iniae is also involved. Prevention of streptococcosis is required and must be addressed for economic, social, international trade and public health reasons. This research used an in vitro culture of tilapia intestine to detail the intestinal mucosal response once the pathogen contacts the epithelium. We show that S. agalactiae sheds off its capsule to adhere to the epithelium. The bacterium adheres as a single individuum, in groups or in chains and is able to divide on the apical border of enterocytes. GBS adheres at and invades exclusively through the apical portion of the intestinal folds, using the transepithelial route. Once within the cytoplasm of enterocytes, the bacteria continue to divide. On the basolateral side of the epithelium, the microorganisms leave the cells to reach the propria and travel through the microcirculation. No evidence of an immuno-inflammatory reaction or goblet cell response in the epithelium or the lamina propria was seen during the process of adherence and invasion of the pathogen.
Collapse
Affiliation(s)
- Gersson Vásquez-Machado
- Veterinary Pathobiology Group, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Bogotá DC, Colombia
- HISTOLAB Diagnóstico Veterinario, Bogotá DC, Colombia
- Instituto Colombiano Agropecuario ICA, Bogotá DC, Colombia
| | - Paola Barato-Gómez
- Veterinary Pathobiology Group, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Bogotá DC, Colombia
- Corporación Patología Veterinaria-CORPAVET, Bogotá DC, Colombia
| | - Carlos Iregui-Castro
- Veterinary Pathobiology Group, Faculty of Veterinary Medicine and Zootechnics, Universidad Nacional de Colombia, Bogotá DC, Colombia
| |
Collapse
|
26
|
Chen SL. Genomic Insights Into the Distribution and Evolution of Group B Streptococcus. Front Microbiol 2019; 10:1447. [PMID: 31316488 PMCID: PMC6611187 DOI: 10.3389/fmicb.2019.01447] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 06/11/2019] [Indexed: 01/31/2023] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus (GBS), is a bacteria with truly protean biology. It infects a variety of hosts, among which the most commonly studied are humans, cattle, and fish. GBS holds a singular position in the history of bacterial genomics, as it was the substrate used to describe one of the first major conceptual advances of comparative genomics, the idea of the pan-genome. In this review, I describe a brief history of GBS and the major contributions of genomics to understanding its genome plasticity and evolution as well as its molecular epidemiology, focusing on the three hosts mentioned above. I also discuss one of the major recent paradigm shifts in our understanding of GBS evolution and disease burden: foodborne GBS can cause invasive infections in humans.
Collapse
Affiliation(s)
- Swaine L Chen
- Division of Infectious Diseases, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Infectious Diseases Group, Genome Institute of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Abstract
BACKGROUND Despite a risk-based peripartum chemoprophylaxis approach in Iceland since 1996, Streptococcus agalactiae [group B streptococci (GBS)] remains an important cause of early-onset [<7 days, early-onset disease (EOD)] and late-onset disease (LOD; 7 days to 3 months). METHODS We studied GBS invasive disease in children <1 year in Iceland in 1976-2015. Bacteria (n = 98) were characterized by susceptibility to a panel of antimicrobials, capsular serotyping, resistance genes, surface protein and pilus-locus profiling and multilocus sequence typing. RESULTS Both EOD and LOD increased during the early years, but while EOD subsequently decreased from 0.7/1000 live births in 1991-1995 to 0.2/1000 in 2011-2015, LOD showed a nonsignificant decrease from its peak value of 0.6/1000 in 2001-2005 to 0.4/1000 in 2006-2015. Serotype III was the most frequently found (n = 48), represented mostly by the hypervirulent lineage CC17/III/rib/PI-1+PI-2b (62%), but also by CC19/III/rib/PI-1+PI-2a (35%) frequently associated with colonization. Serotype Ia (n = 22) was represented by CC23/Ia/eps/PI-2a (68%) and CC7/Ia/bca/PI-1+PI-2b (23%) of possible zoonotic origin. Resistance to erythromycin and clindamycin was increasingly detected in the last years of the study (5 of the 9 cases were isolated after 2013), including representatives of a multiresistant CC17/III/rib/PI-2b sublineage described recently in other countries and expressing resistance to erythromycin, clindamycin and streptomycin. CONCLUSIONS The risk-based chemoprophylaxis adopted in Iceland possibly contributed to the decline of EOD but has had limited effect on LOD. GBS causing neonatal and early infancy invasive infections in Iceland are genetically diverse, and the recent emergence of antimicrobial resistant lineages may reduce the choices for prophylaxis and therapy of these infections.
Collapse
|
28
|
Lin SM, Jang AY, Zhi Y, Gao S, Lim S, Lim JH, Song JY, Sullam PM, Rhee JH, Seo HS. Vaccination With a Latch Peptide Provides Serotype-Independent Protection Against Group B Streptococcus Infection in Mice. J Infect Dis 2019; 217:93-102. [PMID: 29106586 DOI: 10.1093/infdis/jix565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/24/2017] [Indexed: 11/14/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) is a leading cause of invasive diseases in neonates and severe infections in elderly individuals. GBS serine-rich repeat glycoprotein 1 (Srr1) acts as a critical virulence factor by facilitating GBS invasion into the central nervous system through interaction with the fibrinogen Aα chain. This study revealed that srr1 is highly conserved, with 86.7% of GBS clinical isolates expressing the protein. Vaccination of mice with different Srr1 truncated peptides revealed that only Srr1 truncates containing the latch domain protected against GBS meningitis. Furthermore, the latch peptide alone was immunogenic and elicited protective antibodies, which efficiently enhanced antibody-mediated opsonophagocytic killing of GBS by HL60 cells and provided heterogeneous protection against 4 different GBS serogroups. Taken together, these findings indicated that the latch domain of Srr1 may constitute an effective peptide vaccine candidate for GBS.
Collapse
Affiliation(s)
- Shun-Mei Lin
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Brain Korea 21 Program for Leading Universities and Students, Department of Molecular Medicine, Chonnam National University Medical School, Gwangju
| | - A-Yeung Jang
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Department of Biological Sciences, Chonbuk National University, Jeonju
| | - Yong Zhi
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon
| | - Shuang Gao
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Brain Korea 21 Program for Leading Universities and Students, Department of Molecular Medicine, Chonnam National University Medical School, Gwangju
| | - Sangyong Lim
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon
| | - Jae Hyang Lim
- Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon
| | - Joon Young Song
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Paul M Sullam
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.,Division of Infectious Diseases, Veterans Affairs Medical Center, University of California-San Francisco, San Francisco, California.,Department of Medicine, University of California-San Francisco, San Francisco, California.,Northern California Institute for Research and Education, San Francisco, California
| | - Joon Haeng Rhee
- Brain Korea 21 Program for Leading Universities and Students, Department of Molecular Medicine, Chonnam National University Medical School, Gwangju.,Department of Microbiology, Chonnam National University Medical School, Gwangju.,Clinical Vaccine Research and Development Center, Chonnam National University Medical School, Gwangju
| | - Ho Seong Seo
- Biotechnology Division, Korea Atomic Energy Research Institute, Jeongeup.,Department of Radiation Biotechnology and Applied Radioisotope Science, University of Science and Technology, Daejeon
| |
Collapse
|
29
|
Wang R, Li L, Huang T, Huang W, Lei A, Chen M. Capsular Switching and ICE Transformation Occurred in Human Streptococcus agalactiae ST19 With High Pathogenicity to Fish. Front Vet Sci 2018; 5:281. [PMID: 30483518 PMCID: PMC6242859 DOI: 10.3389/fvets.2018.00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Although Streptococcus agalactiae (GBS) cross-infection between human and fish has been confirmed in experimental and clinical studies, the mechanisms underlying GBS cross-species infection remain largely unclear. We have found different human GBS ST19 strains exhibiting strong or weak pathogenic to fish (sGBS and wGBS). In this study, our objective was to identify the genetic elements responsible for GBS cross species infection based on genome sequence data and comparative genomics. The genomes of 11 sGBS strains and 11 wGBS strains were sequenced, and the genomic analysis was performed base on pan-genome, CRISPRs, phylogenetic reconstruction and genome comparison. The results from the pan-genome, CRISPRs analysis and phylogenetic reconstruction indicated that genomes between sGBS were more conservative than that of wGBS. The genomic differences between sGBS and wGBS were primarily in the Cps region (about 111 kb) and its adjacent ICE region (about 106 kb). The Cps region included the entire cps operon, and all sGBS were capsular polysaccharide (CPS) type V, while all wGBS were CPS type III. The ICE region of sGBS contained integrative and conjugative elements (ICE) with IQ element and erm(TR), and was very conserved, whereas the ICE region of wGBS contained ICE with mega elements and the variation was large. The capsular switching (III–V) and transformation of ICE adjacent to the Cps region occurred in human GBS ST19 with different pathogenicity to fish, which may be related to the capability of GBS cross-infection.
Collapse
Affiliation(s)
- Rui Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China.,Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Liping Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Weiyi Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, China
| | - Aiying Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Ming Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| |
Collapse
|
30
|
Gajic I, Plainvert C, Kekic D, Dmytruk N, Mijac V, Tazi A, Glaser P, Ranin L, Poyart C, Opavski N. Molecular epidemiology of invasive and non-invasive group B Streptococcus circulating in Serbia. Int J Med Microbiol 2018; 309:19-25. [PMID: 30389335 DOI: 10.1016/j.ijmm.2018.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/19/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
Streptococcus agalactiae (group B Streptococcus, GBS) remains the leading cause of invasive diseases in neonates and an important cause of infections in the elderly. The aim of this study was to access the prevalence of GBS genito-rectal colonisation of pregnant women and to evaluate the genetic characteristics of invasive and non-invasive GBS isolates recovered throughout Serbia. A total of 432 GBS isolates were tested for antimicrobial susceptibility, capsular polysaccharide (CPS) types and the presence of the hvgA gene. One hundred one randomly selected isolates were further characterized by clustered regularly interspaced short palindromic repeats (CRISPRs) analysis and/or multilocus sequence typing (MLST). The prevalence of GBS colonization in pregnant women was 15%. Overall, six capsular types (Ia, Ib, II to V) were identified, the most common being III (32.2%) and V (25.2%). The hiper-virulent clone type III/ST17 was present in 43.1% and 6.3% (p < 0.05) of paediatric and adults isolates, respectively. Comparative sequence analysis of the CRISPR1 spacers content indicated that a few clones comprised the vast majority of the tested GBS isolates. Thus, it was estimated that dominant clones recovered from infants were CPS III/ST17 in late-onset infections (19/23; 82.6%), and Ia/ST23 in early-onset disease (44.4%). Conversely, genotype CPS V/ST1 was the most prevalent in adults (4/9; 25.4%). All isolates were susceptible to penicillin. Macrolide resistance (23.1%) was strongly associated with the ermB gene and constitutive resistance to clindamycin (63.9%). The majority of strains was resistant to tetracycline (86.6%), mostly mediated by the tetM gene (87.7%). GBS isolates of CPS V/ST1 and CPS III/ST23 were significantly associated with macrolide and tetracycline resistance, respectively. In conclusion, hyper-virulent CPS III/ST17 and V/ST1 were recognized as dominant GBS clones in this study.
Collapse
Affiliation(s)
- Ina Gajic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia; National Reference Laboratory for Streptococci, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Celine Plainvert
- Service de Bactériologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre Site Cochin, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Centre National de Référence des Streptocoques, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; DHU Risques et Grossesse, Assistance Publique-Hôpitaux de Paris, 3 Avenue Victoria, 75004, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France; INSERM U 1016, Institut Cochin, Team 'Barriers and Pathogens', 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; CNRS UMR 8104, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL3526, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Dusan Kekic
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia; National Reference Laboratory for Streptococci, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Nicolas Dmytruk
- Service de Bactériologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre Site Cochin, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Centre National de Référence des Streptocoques, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; DHU Risques et Grossesse, Assistance Publique-Hôpitaux de Paris, 3 Avenue Victoria, 75004, Paris, France
| | - Vera Mijac
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia; National Reference Laboratory for Streptococci, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Asmaa Tazi
- Centre National de Référence des Streptocoques, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; DHU Risques et Grossesse, Assistance Publique-Hôpitaux de Paris, 3 Avenue Victoria, 75004, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France; INSERM U 1016, Institut Cochin, Team 'Barriers and Pathogens', 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; CNRS UMR 8104, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL3526, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Philippe Glaser
- Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram Positif, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Lazar Ranin
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia; National Reference Laboratory for Streptococci, Dr Subotica 1, 11000, Belgrade, Serbia
| | - Claire Poyart
- Service de Bactériologie, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre Site Cochin, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Centre National de Référence des Streptocoques, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; DHU Risques et Grossesse, Assistance Publique-Hôpitaux de Paris, 3 Avenue Victoria, 75004, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 12 Rue de l'École de Médecine, 75006, Paris, France; INSERM U 1016, Institut Cochin, Team 'Barriers and Pathogens', 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; CNRS UMR 8104, 27, rue du Faubourg-Saint-Jacques, 75014, Paris, France; Unité de Biologie des Bactéries Pathogènes à Gram-positif, CNRS ERL3526, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Natasa Opavski
- Institute of Microbiology and Immunology, Medical Faculty, University of Belgrade, Dr Subotica 1, 11000, Belgrade, Serbia; National Reference Laboratory for Streptococci, Dr Subotica 1, 11000, Belgrade, Serbia.
| |
Collapse
|
31
|
Perinatal Streptococcus agalactiae Epidemiology and Surveillance Targets. Clin Microbiol Rev 2018; 31:31/4/e00049-18. [PMID: 30111577 DOI: 10.1128/cmr.00049-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae, or group B streptococcus (GBS), is a major neonatal pathogen. Recent data have elucidated the global prevalence of maternal and neonatal colonization, but gaps still remain in the epidemiology of this species. A number of phenotypic and genotypic classifications can be used to identify the diversity of GBS strains, and some are more discriminatory than others. This review explores the main schemes used for GBS epidemiology and further details the targets for epidemiological surveillance. Current screening practices across the world provide a unique opportunity to gain detailed information on maternal colonizing strains and neonatal disease-causing strains, which is vital for monitoring and therapeutics, if sufficient detail can be extracted. Deciphering which isolates are circulating within specific populations and recording targets within invasive strains are crucial steps in monitoring the implementation of therapeutics, such as vaccines, as well as developing novel therapies against prevalent GBS strains. Having a detailed understanding of global GBS epidemiology will prove invaluable for understanding the pathogenesis of this organism and equipping future prevention strategies for success.
Collapse
|
32
|
Group B Streptococci and Trichomonas vaginalis infections in pregnant women and those with spontaneous abortion at Sanandaj, Iran. IRANIAN JOURNAL OF MICROBIOLOGY 2018; 10:166-170. [PMID: 30112154 PMCID: PMC6087698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVES Group B Streptococcali (GBS) is an important factor in newborn deaths in developed and developing countries. Trichomoniasis is one of the most prevalent sexually transmitted diseases (STDs) in the world, which is caused by protozoan Trichomonas vaginalis (T. vaginalis). The present study compares the frequency of GBS and T. vaginalis genital infections in pregnant women, women with spontaneous abortion, as well as its role in spontaneous abortion. MATERIALS AND METHODS In this case-control study, 109 women were included with spontaneous abortion with gestational ages between 11-20 weeks and 109 pregnant women with gestational ages between 35-37 weeks in Sanandaj, Iran. DNA was extracted by endocervical swabs and subjected to PCR assays. The independent t-test was used; and for comparing other qualitative variables in each group, the Chi-Square Test was used. RESULTS The age of the women ranged from 19-43 years (29.6 ± 5.9) and in the control group the age range was from 19-42 years (27.8 ± 4.87). The rate of prevalence of Group B Streptococcal infection in the control group was 3.6%; and in the patient group there were 7.2% with the rate of prevalence of T. vaginalis in both groups as zero. CONCLUSION The present study showed that there is no relationship between GBS infections (P-value = 0.235) and T. vaginalis.
Collapse
|
33
|
Molecular characteristics of Streptococcus agalactiae in a mother-baby prospective cohort study: Implication for vaccine development and insights into vertical transmission. Vaccine 2018. [PMID: 29519594 DOI: 10.1016/j.vaccine.2018.02.109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Streptococcus agalactiae (GBS) is a leading cause of neonatal sepsis and meningitis in many countries. This study aimed to determine the molecular characteristics of GBS colonized in mothers and their infants so as to provide implication for vaccine strategies and confirm vertical transmission. METHODS A prospective cohort study was conducted to recruit 1815 mother-neonate pairs. All GBS isolates from pregnant women and her infants were tested for serotypes, multilocus sequence types and virulence genes. The relationship between multiple molecular characteristics of GBS isolates was tested by the correspondence analysis, and the agreement between mother-neonate paired data in molecular characteristics was analyzed using Kappa tests. RESULTS The predominant serotypes were III, Ia and V, and the most prevalent sequence types (STs) were ST19, ST17, ST10, and ST12. All isolates carried at least one pilus island (PI). The most common combination of PIs was PI-2b alone, followed by PI-1+PI-2a and PI-2a alone, and the most prevalent alpha-like protein (alp) genes were rib, epsilon and alphaC. Moreover, a strong relationship was noted between STs, serotypes, alp genes and PIs, including ST17 associated with serotype-III/rib/PI-2b, ST19 with serotype-III/rib/PI-1+PI-2a, and ST485 with serotype-Ia/epsilon/PI-2b. The rate of GBS vertical transmission was 14.1%, and the kappa test revealed good agreement in multiple molecular characteristics among GBS-positive mother-neonate pairs. Notably, the switching of molecular characteristics was found during vertical transmission. CONCLUSIONS Our findings underscore the value of monitoring multiple molecular characteristics so as to provide implication for multivalent strategies and gain insights into GBS vertical transmission and vertical characteristic switching.
Collapse
|
34
|
Teatero S, Neemuchwala A, Yang K, Gomes J, Athey TBT, Martin I, Demczuk W, McGeer A, Fittipaldi N. Genetic evidence for a novel variant of the pilus island 1 backbone protein in group B Streptococcus. J Med Microbiol 2017; 66:1409-1415. [PMID: 28923133 DOI: 10.1099/jmm.0.000588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Pili contribute significantly to the pathogenesis of infection of group B Streptococcus (GBS) by facilitating adhesion and invasion of host cells. GBS pilin subunits (the backbone pilin protein, BP, and the ancillary pilin proteins, AP) as well as the specific enzymes required for pilus assembly are encoded by genes located in two separate genomic regions, known as pilus island 1 (PI-1) and PI-2. Our aim was to characterize the pilus profile of a collection of GBS isolates from metropolitan Toronto, Canada. METHODOLOGY The pilus profile of 1332 invasive and colonizing GBS isolates was determined by PCR and, in selected cases, by whole genome sequencing. RESULTS While investigating the pilus profile of a collection of GBS organisms, we discovered that 51 isolates possessed a novel variant of the PI-1 BP, which we named BP-1b. The predicted translated sequences of archetypical GBS BP-1 and novel BP-1b variants shared only 63 % amino acid sequence homology. The novel BP-1b variant was most common among strains of serotype Ib and VI, but was also found among strains of serotypes Ia, II, III and VIII. CONCLUSION We describe a relatively frequent occurrence of a novel PI-1 BP that cannot be detected by a commonly used multiplex PCR scheme, which could lead to strains being mistyped as PI-1 negative. We present PCR primers that can easily be incorporated into the multiplex PCR assay to identify strains with novel BP-1b variant.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Martin
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Walter Demczuk
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Allison McGeer
- Sinai Health System, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nahuel Fittipaldi
- Public Health Ontario, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Carvalho-Castro GA, Silva JR, Paiva LV, Custódio DAC, Moreira RO, Mian GF, Prado IA, Chalfun-Junior A, Costa GM. Molecular epidemiology of Streptococcus agalactiae isolated from mastitis in Brazilian dairy herds. Braz J Microbiol 2017; 48:551-559. [PMID: 28256391 PMCID: PMC5498452 DOI: 10.1016/j.bjm.2017.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/17/2016] [Indexed: 11/28/2022] Open
Abstract
Streptococcus agalactiae is one of the most common pathogens leading to mastitis in dairy herds worldwide; consequently, the pathogen causes major economic losses for affected farmers. In this study, multilocus sequence typing (MLST), genotypic capsular typing by multiplex polymerase chain reaction (PCR), and virulence gene detection were performed to address the molecular epidemiology of 59 bovine (mastitis) S. agalactiae isolates from 36 dairy farms located in the largest milk-producing mesoregions in Brazil (Minas Gerais, São Paulo, Paraná, and Pernambuco). We screened for the virulence genes bac, bca, bibA, cfb, hylB, fbsA, fbsB, PI-1, PI-2a, and PI-2b, which are associated with adhesion, invasion, tissue damage, and/or immune evasion. Furthermore, five capsular types were identified (Ia, Ib, II, III, and IV), and a few isolates were classified as non-typeable (NT). MLST revealed the following eight sequence types (STs): ST-61, ST-67, ST-103, ST-146, ST-226, ST-314, and ST-570, which were clustered in five clonal complexes (CC64, CC67, CC103, CC17, and CC314), and one singleton, ST-91. Among the virulence genes screened in this study, PI-2b, fbsB, cfb, and hylB appear to be the most important during mastitis development in cattle. Collectively, these results establish the molecular epidemiology of S. agalactiae isolated from cows in Brazilian herds. We believe that the data presented here provide a foundation for future research aimed at developing and implementing new preventative and treatment options for mastitis caused by S. agalactiae.
Collapse
Affiliation(s)
| | - Juliana R Silva
- Federal University of Lavras, Laboratory of Bacteriology, Lavras, Brazil
| | - Luciano V Paiva
- Federal University of Lavras, Central Laboratory of Molecular Biology, Lavras, Brazil
| | | | - Rafael O Moreira
- Federal University of Lavras, Central Laboratory of Molecular Biology, Lavras, Brazil
| | - Glaucia F Mian
- Federal University of Lavras, Laboratory of Bacteriology, Lavras, Brazil
| | - Ingrid A Prado
- Federal University of Lavras, Laboratory of Bacteriology, Lavras, Brazil
| | | | - Geraldo M Costa
- Federal University of Lavras, Laboratory of Bacteriology, Lavras, Brazil.
| |
Collapse
|
36
|
Martins ER, Pedroso-Roussado C, Melo-Cristino J, Ramirez M. Streptococcus agalactiae Causing Neonatal Infections in Portugal (2005-2015): Diversification and Emergence of a CC17/PI-2b Multidrug Resistant Sublineage. Front Microbiol 2017; 8:499. [PMID: 28400757 PMCID: PMC5368217 DOI: 10.3389/fmicb.2017.00499] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/10/2017] [Indexed: 12/04/2022] Open
Abstract
The molecular characterization of 218 GBS isolates recovered from neonatal invasive infections in Portugal in 2005–2015 revealed the existence of a small number of genetically distinct lineages that were present over a significant time-span. Serotypes III and Ia were dominant in the population, together accounting for >80% of the isolates. Clonal complex 17 included 50% of all isolates, highlighting the importance of the hypervirulent genetic lineage represented by serotype III ST17/rib/PI-1+PI-2b. Serotype Ia was represented mainly by ST23, previously reported as dominant among invasive disease in non-pregnant adults in Portugal, but also by ST24, showing an increased frequency among late-onset disease. Overall erythromycin resistance was 16%, increasing during the study period (p < 0.001). Macrolide resistance was overrepresented among CC1 and CC19 isolates (p < 0.001 and p = 0.008, respectively). While representatives of the hypervirulent CC17 lineage were mostly susceptible to macrolides, we identified for the first time in Europe a recently emerging sublineage characterized by the loss of PI-1 (CC17/PI-2b), simultaneously resistant to macrolides, lincosamides, and tetracycline, also exhibiting high-level resistance to streptomycin and kanamycin. The stability and dominance of CC17 among neonatal invasive infections in the past decades indicates that it is extremely well adapted to its niche; however emerging resistance in this genetic background may have significant implications for the prevention and management of GBS disease.
Collapse
Affiliation(s)
- Elisabete R Martins
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa Lisbon, Portugal
| | - Cristiano Pedroso-Roussado
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa Lisbon, Portugal
| | - José Melo-Cristino
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa Lisbon, Portugal
| | - Mário Ramirez
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa Lisbon, Portugal
| | | |
Collapse
|
37
|
Breeding KM, Ragipani B, Lee KUD, Malik M, Randis TM, Ratner AJ. Real-time PCR-based serotyping of Streptococcus agalactiae. Sci Rep 2016; 6:38523. [PMID: 27910939 PMCID: PMC5133537 DOI: 10.1038/srep38523] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/10/2016] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS) is an encapsulated, gram-positive pathogen that is an important cause of neonatal invasive infections, including sepsis and meningitis. There are ten known GBS serotypes based on distinct capsule compositions (Ia, Ib, II-IX), and current candidate capsular polysaccharide conjugate vaccines target only a subset of these. Serotyping of GBS isolates is important for understanding local epidemiology and for monitoring for serotype replacement or capsular switching. However, serotyping generally requires either latex agglutination, multiplex PCR with analysis of band sizes, or analysis of whole genome sequences–all techniques that are either expensive or not widely available. Here we report the development of a robust real-time PCR assay for determining GBS serotypes. Using both a diverse reference set of strains encompassing all ten serotypes and a collection of clinical isolates, we demonstrate concordance between real-time PCR serotyping and latex agglutination. We propose that real-time PCR serotyping represents an attractive alternative to current serotyping methods and may allow for improved acquisition of GBS serotype data.
Collapse
Affiliation(s)
| | - Bhavana Ragipani
- Department of Pediatrics, New York University School of Medicine, New York, NY USA
| | - Kun-Uk David Lee
- Department of Pediatrics, New York University School of Medicine, New York, NY USA
| | - Martin Malik
- Department of Pediatrics, New York University School of Medicine, New York, NY USA
| | - Tara M Randis
- Department of Pediatrics, New York University School of Medicine, New York, NY USA
| | - Adam J Ratner
- Department of Pediatrics, New York University School of Medicine, New York, NY USA.,Department of Microbiology, New York University School of Medicine, New York, NY USA
| |
Collapse
|
38
|
Serotype Distribution, Population Structure, and Antimicrobial Resistance of Group B Streptococcus Strains Recovered from Colonized Pregnant Women. J Clin Microbiol 2016; 55:412-422. [PMID: 27852675 DOI: 10.1128/jcm.01615-16] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/12/2016] [Indexed: 11/20/2022] Open
Abstract
Using serotyping, multilocus sequence typing, and whole-genome sequencing (WGS) of selected strains, we studied the population structure of 102 group B Streptococcus (GBS) isolates prospectively sampled in 2014 from vaginal/rectal swabs of healthy pregnant women in metropolitan Toronto, Canada. We also determined the susceptibilities of each of the colonizing isolates to penicillin, erythromycin, clindamycin, tetracycline, and other antimicrobial agents. Overall, we observed a high rate of tetracycline resistance (89%) among colonizing GBS isolates. We found resistance to erythromycin in 36% of the strains, and 33% were constitutively or inducibly resistant to clindamycin. The most frequently identified serotypes were III (25%), Ia (23%), and V (19%). Serotype IV accounted for 6% of the colonizing isolates, a rate consistent with that observed among patients with invasive GBS infections in metropolitan Toronto. The majority of serotype IV isolates belonged to sequence type (ST)459, a tetracycline-, erythromycin-, and clindamycin-resistant ST first identified in Minnesota, which is considered to be the main driver of serotype IV GBS expansion in North America. WGS revealed that ST459 isolates from Canada are clonally related to colonizing and invasive ST459 organisms circulating in regions of the United States. We also used WGS to study recombination in selected colonizing strains from metropolitan Toronto, which revealed multiple episodes of capsular switching. Present and future circulating GBS organisms and their genetic diversity may influence GBS vaccine development.
Collapse
|
39
|
Campisi E, Rinaudo CD, Donati C, Barucco M, Torricelli G, Edwards MS, Baker CJ, Margarit I, Rosini R. Serotype IV Streptococcus agalactiae ST-452 has arisen from large genomic recombination events between CC23 and the hypervirulent CC17 lineages. Sci Rep 2016; 6:29799. [PMID: 27411639 PMCID: PMC4944191 DOI: 10.1038/srep29799] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 06/21/2016] [Indexed: 11/10/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) causes life-threatening infections in newborns and adults with chronic medical conditions. Serotype IV strains are emerging both among carriers and as cause of invasive disease and recent studies revealed two main Sequence Types (STs), ST-452 and ST-459 assigned to Clonal Complexes CC23 and CC1, respectively. Whole genome sequencing of 70 type IV GBS and subsequent phylogenetic analysis elucidated the localization of type IV isolates in a SNP-based phylogenetic tree and suggested that ST-452 could have originated through genetic recombination. SNPs density analysis of the core genome confirmed that the founder strain of this lineage originated from a single large horizontal gene transfer event between CC23 and the hypervirulent CC17. Indeed, ST-452 genomes are composed by two parts that are nearly identical to corresponding regions in ST-24 (CC23) and ST-291 (CC17). Chromosome mapping of the major GBS virulence factors showed that ST-452 strains have an intermediate yet unique profile among CC23 and CC17 strains. We described unreported large recombination events, involving the cps IV operon and resulting in the expansion of serotype IV to CC23. This work sheds further light on the evolution of GBS providing new insights on the recent emergence of serotype IV.
Collapse
Affiliation(s)
- Edmondo Campisi
- GSK Vaccines s.r.l., Siena, Italy.,Sapienza, Università di Roma, Rome, Italy
| | | | - Claudio Donati
- Department of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Mara Barucco
- GSK Vaccines s.r.l., Siena, Italy.,Department of physics "Enrico Fermi", University of Pisa, Pisa, Italy
| | | | - Morven S Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Carol J Baker
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | | | | |
Collapse
|
40
|
Sadeh M, Firouzi R, Derakhshandeh A, Bagher Khalili M, Kong F, Kudinha T. Molecular Characterization of Streptococcus agalactiae Isolates From Pregnant and Non-Pregnant Women at Yazd University Hospital, Iran. Jundishapur J Microbiol 2016; 9:e30412. [PMID: 27127592 PMCID: PMC4842249 DOI: 10.5812/jjm.30412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/28/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Background: Streptococcus agalactiae (Group B streptococcus, GBS) that colonize the vaginas of pregnant women may occasionally cause neonatal infections. It is one of the most common causes of sepsis and meningitis in neonates and of invasive diseases in pregnant women. It can also cause infectious disease among immunocompromised individuals. The distribution of capsular serotypes and genotypes varies over time and by geographic era. The serotyping and genotyping data of GBS in Iranian pregnant and non-pregnant women seems very limited. Objectives: The aim of this study was to investigate the GBS molecular capsular serotype and genotype distribution of pregnant and non-pregnant carrier women at Yazd university hospital, in Iran. Patients and Methods: In this cross-sectional study, a total of 100 GBS strains isolated from 237 pregnant and 413 non-pregnant women were investigated for molecular capsular serotypes and surface protein genes using the multiplex PCR assay. The Chi-square method was used for statistical analysis. Results: Out of 650 samples, 100 (15.4%) were identified as GBS, with a predominance of capsular serotypes III (50%) [III-1 (49), III-3 (1)], followed by II (25%), Ia (12%), V (11%), and Ib (2%), which was similar with another study conducted in Tehran, Iran, but they had no serotype Ia in their report. The surface protein antigen genes distribution was rib (53%), epsilon (38%), alp2/3 (6%), and alpha-c (3%). Conclusions: The determination of serotype and surface proteins of GBS strains distribution would be relevant for the future possible formulation of a GBS vaccine.
Collapse
Affiliation(s)
- Maryam Sadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
- Corresponding author: Abdollah Derakhshandeh, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran. Tel: +98-7136138666, Fax: +98-7132286940, E-mail:
| | | | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney, New South Wales 2145, Australia
| | | |
Collapse
|
41
|
Björnsdóttir ES, Martins ER, Erlendsdóttir H, Haraldsson G, Melo-Cristino J, Kristinsson KG, Ramirez M. Changing epidemiology of group B streptococcal infections among adults in Iceland: 1975-2014. Clin Microbiol Infect 2015; 22:379.e9-379.e16. [PMID: 26691681 DOI: 10.1016/j.cmi.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/19/2015] [Accepted: 11/27/2015] [Indexed: 11/29/2022]
Abstract
We studied the bacterial characteristics and incidence of invasive infections caused by group B streptococci (GBS) in adults in Iceland in 1975-2014. A total of 145 isolates were characterized by serotyping, antimicrobial susceptibility, multilocus sequence typing and surface protein gene profiling. Disease incidence increased during the studied period (p <0.001), reaching 2.17 cases/100 000 person-years in 2013-14. Overall, serotype Ia was the most frequently found (23%), but serotypes Ib, II, III and V showed similar prevalence (14%-17%). Although there were notable changes in the proportion of most serotypes during the study period, only the decline of serotype III was statistically supported (p = 0.003) and was reflected in a decrease of clonal complexes CC17 and CC19 that included most serotype III isolates (p <0.04). On the other hand, the increase in frequency of CC1 was caused by two lineages expressing distinct serotypes: ST1/V/alp3 and ST196/IV/eps. Underlying the relative stability of serotype Ia were major changes in the lineages expressing this serotype, with an increase in the relative importance of CC23, including both ST23/Ia/eps and ST24/Ia/bca lineages, and a decrease in CC7. Nine cases of invasive GBS disease were caused by ST7, of possible zoonotic origin. All isolates were susceptible to penicillin. Rates of erythromycin and clindamycin resistance were 8.3% and 9.7%, respectively. An over-representation of resistance solely to clindamycin was associated with the unusual lsaC gene and serotype III ST19/rib lineage (p <0.001).
Collapse
Affiliation(s)
- E S Björnsdóttir
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - E R Martins
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - H Erlendsdóttir
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - G Haraldsson
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - J Melo-Cristino
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - K G Kristinsson
- Department of Clinical Microbiology, Landspítali University Hospital, Reykjavik, Iceland; University of Iceland, Faculty of Medicine, Reykjavik, Iceland
| | - M Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
42
|
Teatero S, McGeer A, Li A, Gomes J, Seah C, Demczuk W, Martin I, Wasserscheid J, Dewar K, Melano RG, Fittipaldi N. Population structure and antimicrobial resistance of invasive serotype IV group B Streptococcus, Toronto, Ontario, Canada. Emerg Infect Dis 2015; 21:585-91. [PMID: 25811284 PMCID: PMC4378482 DOI: 10.3201/eid2014.140759] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Conjugate vaccines should include polysaccharide or virulence proteins of this serotype to provide complete protection. We recently showed that 37/600 (6.2%) invasive infections with group B Streptococcus (GBS) in Toronto, Ontario, Canada, were caused by serotype IV strains. We report a relatively high level of genetic diversity in 37 invasive strains of this emerging GBS serotype. Multilocus sequence typing identified 6 sequence types (STs) that belonged to 3 clonal complexes. Most isolates were ST-459 (19/37, 51%) and ST-452 (11/37, 30%), but we also identified ST-291, ST-3, ST-196, and a novel ST-682. We detected further diversity by performing whole-genome single-nucleotide polymorphism analysis and found evidence of recombination events contributing to variation in some serotype IV GBS strains. We also evaluated antimicrobial drug resistance and found that ST-459 strains were resistant to clindamycin and erythromycin, whereas strains of other STs were, for the most part, susceptible to these antimicrobial drugs.
Collapse
|
43
|
Barato P, Martins ER, Melo-Cristino J, Iregui CA, Ramirez M. Persistence of a single clone of Streptococcus agalactiae causing disease in tilapia (Oreochromis sp.) cultured in Colombia over 8 years. JOURNAL OF FISH DISEASES 2015; 38:1083-1087. [PMID: 25643734 DOI: 10.1111/jfd.12337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/11/2014] [Indexed: 06/04/2023]
Affiliation(s)
- P Barato
- Veterinary Pathobiology Research Group, Laboratory of Veterinary Pathology, Institute of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - E R Martins
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - J Melo-Cristino
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - C A Iregui
- Veterinary Pathobiology Research Group, Laboratory of Veterinary Pathology, Institute of Biotechnology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - M Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
44
|
Lin HC, Chen CJ, Chiang KH, Yen TY, Ho CM, Hwang KP, Su BH, Lin HC, Li TC, Lu JJ. Clonal dissemination of invasive and colonizing clonal complex 1 of serotype VI group B Streptococcus in central Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2014; 49:902-909. [PMID: 25560254 DOI: 10.1016/j.jmii.2014.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/14/2014] [Accepted: 11/05/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND/PURPOSE The aim of this study was to investigate clinical presentation, serotype distribution and genetic correlation of group B streptococcus (GBS) diseases. Since serotype VI prevalence far exceeded that reported in prior studies, genetic relationship of isolates was further analyzed. METHODS GBS isolates obtaining from patients with invasive diseases and pregnant women with colonization between June 2007 and December 2010 were analyzed. All isolates were tested for serotypes by multiplex PCR assay and pulsed-field gel electrophoresis (PFGE). Serotype VI isolates were further analyzed by multilocus sequence typing (MLST). RESULTS A total of 134 GBS isolates were recovered from blood of 126 patients with invasive disease (94.0%) and anogenital swabs of 8 pregnant women (6.0%). Most common serotype was Ib (21.6%), followed by V (20.1%), VI (18.7%), III (15.7%), II (11.9 %), Ia (11.2%), and IX (0.7%). Serotype VI was also the leading type in infants with early onset disease (EOD; 3/8, 37.5%) and colonizing pregnant women (3/8, 37.5%). PFGE distinguished 33 pulsotypes, reflecting genetic diversity among GBS isolates. Among 25 serotype VI isolates tested, 14 were ST-1, seven were ST-679, three were ST-678, one was ST-681, and distributed into four PFGE pulsotypes. ST-678, ST-679, and ST-681 were novel sequence types; ST-678 and ST-679 are single-locus variants of ST-1 that belongs to clonal complex (CC) 1. CONCLUSION CC1 dissemination of serotype VI GBS thus emerges as an important invasive pathogen in infants and nonpregnant adults in central Taiwan. Serotype prevalence of GBS must be continuously monitored geographically to guide prevention strategy of GBS vaccines.
Collapse
Affiliation(s)
- Hsiao-Chuan Lin
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Pediatrics, College of Medicine, China Medical University, Taichung, Taiwan; Department of Infectious Diseases, Children's Hospital, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Kai-Hung Chiang
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Yu Yen
- Department of Infectious Diseases, Children's Hospital, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Mao Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Kao-Pin Hwang
- Department of Pediatrics, College of Medicine, China Medical University, Taichung, Taiwan; Department of Infectious Diseases, Children's Hospital, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bai-Horng Su
- Department of Pediatrics, College of Medicine, China Medical University, Taichung, Taiwan; Department of Neonatology, Children's Hospital, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hung-Chih Lin
- Department of Neonatology, Children's Hospital, China Medical University Hospital, China Medical University, Taichung, Taiwan; School of Chinese Medicine and Department of Pediatrics, Children's Hospital, China Medical University, Taichung, Taiwan
| | - Tsai-Chung Li
- Graduate Institute of Biostatistics, College of Management, China Medical University, Taichung, Taiwan; Department of Healthcare Administration, College of Health Science, Asia University, Taichung, Taiwan
| | - Jang-Jih Lu
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan; Department of Laboratory Medicine, Linkou Chang-Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Kwei-Shan, Taoyuan, Taiwan.
| |
Collapse
|
45
|
Springman AC, Lacher DW, Waymire EA, Wengert SL, Singh P, Zadoks RN, Davies HD, Manning SD. Pilus distribution among lineages of group b streptococcus: an evolutionary and clinical perspective. BMC Microbiol 2014; 14:159. [PMID: 24943359 PMCID: PMC4074840 DOI: 10.1186/1471-2180-14-159] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/13/2014] [Indexed: 12/19/2022] Open
Abstract
Background Group B Streptococcus (GBS) is an opportunistic pathogen in both humans and bovines. Epidemiological and phylogenetic analyses have found strains belonging to certain phylogenetic lineages to be more frequently associated with invasive newborn disease, asymptomatic maternal colonization, and subclinical bovine mastitis. Pilus structures in GBS facilitate colonization and invasion of host tissues and play a role in biofilm formation, though few large-scale studies have estimated the frequency and diversity of the three pilus islands (PIs) across diverse genotypes. Here, we examined the distribution of pilus islands (PI) 1, 2a and 2b among 295 GBS strains representing 73 multilocus sequence types (STs) belonging to eight clonal complexes. PCR-based RFLP was also used to evaluate variation in the genes encoding pilus backbone proteins of PI-2a and PI-2b. Results All 295 strains harbored one of the PI-2 variants and most human-derived strains contained PI-1. Bovine-derived strains lacked PI-1 and possessed a unique PI-2b backbone protein allele. Neonatal strains more frequently had PI-1 and a PI-2 variant than maternal colonizing strains, and most CC-17 strains had PI-1 and PI-2b with a distinct backbone protein allele. Furthermore, we present evidence for the frequent gain and loss of genes encoding certain pilus types. Conclusions These data suggest that pilus combinations impact host specificity and disease presentation and that diversification often involves the loss or acquisition of PIs. Such findings have implications for the development of GBS vaccines that target the three pilus islands.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
46
|
Emaneini M, Mirsalehian A, Beigvierdi R, Fooladi AAI, Asadi F, Jabalameli F, Taherikalani M. High Incidence of Macrolide and Tetracycline Resistance among Streptococcus Agalactiae Strains Isolated from Clinical Samples in Tehran, Iran. MAEDICA 2014; 9:157-161. [PMID: 25705271 PMCID: PMC4296758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/19/2013] [Indexed: 06/04/2023]
Abstract
BACKGROUND Streptococcus agalactiae or Group B Streptococci (GBS) is an important bacterial pathogen that causes a wide range of infections including neonatal sepsis, meningitis, pneumonia and soft tissue or urinary tract infections. MATERIAL AND METHODS One hundred and fifteen isolates of Streptococcus agalactiae collected from urine specimens of patients attending a hospital in Tehran. All isolates were screened for their capsular types and genes encoding resistance to the macrolide and tetracycline antibiotics by PCR and multiplex PCR-based methods. RESULTS Most of isolates belonged to capsular types III (49%), V (19%), II (16%), and Ib (6%). Twelve isolates (10%) were nontypable. All isolates were susceptible to penicillin and Quinupristin-dalfopristin, but were resistant to clindamycin (35%), chloramphenicol (45%), erythromycin (35%), linezolid (1%) and tetracycline (96%). The most prevalent antimicrobial resistance gene was tetM found in 93% of the isolates followed by ermTR, ermB, and tetK, found in 23%, 16%, and 16% of isolates, respectively. The genes, tetL, tetO, ermA, ermC and mefA were not detected in any of the S. agalactiae isolates. Of the 110 tetracycline resistant S. agalactiae, 89 isolates harbored the tetM gene alone and eighteen isolates carried the tetM gene with the tetK gene. All erythromycin-resistant isolates exhibited cMLSB resistance phenotype, 22 isolates harbored the ermTR gene alone and five isolates carried the ermTR gene with the ermB gene. The rate of coexistence of genes encoding the erythromycin and tetracycline resistance determinants was 34%. CONCLUSION The present study demonstrated that S. agalactiae isolates obtained from urine samples showed a high rate of resistance to tetracycline, chloramphenicol and macrolide antibiotics and were commonly associated with the resistance genes temM, ermTR or ermB.
Collapse
Affiliation(s)
- Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akbar Mirsalehian
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Beigvierdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Asadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morovat Taherikalani
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
47
|
Meehan M, Cunney R, Cafferkey M. Molecular epidemiology of group B streptococci in Ireland reveals a diverse population with evidence of capsular switching. Eur J Clin Microbiol Infect Dis 2014; 33:1155-62. [PMID: 24469423 DOI: 10.1007/s10096-014-2055-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/07/2014] [Indexed: 12/11/2022]
Abstract
The molecular epidemiology of group B Streptococcus (GBS) in Ireland was investigated. Invasive (n = 132) and non-invasive (n = 45) isolates, collected in 2007-2011, were analysed by multilocus locus sequence typing, capsular polysaccharide (CPS) serotyping, profiling of surface proteins, pilus islands (PI), and antimicrobial susceptibility. Isolates grouped into 45 sequence types and five main clonal complexes (CC). CC1, CC17 and CC23 represented 67.2 % of isolates and the most prevalent serotypes Ia, III and V. Serotype and surface protein genes were largely predictive of CC. Accordingly, CPS V/alp3, CPS Ib/CPS II/bca + bac, and CPS Ia/eps predominated in CC1, CC12 and CC23, respectively, and CPS III/rib in CC17 and CC19. Supporting their vaccine potential, all isolates harboured at least one PI, of which the PI-1 + PI-2a combination was most prevalent. Macrolide resistance was found in 18.6 % of isolates. erm(B) and the globally disseminated CC1/CPS V were the most common resistance mechanism and CC/CPS type, respectively. CC17, significantly associated with neonatal disease, was also prevalent in pregnant adults, but was underrepresented among non-pregnant adults. Two of 46 CC17 isolates (typically CPS III) were CPS IV. Sequence analysis confirmed capsular switching and their relatedness to CC17/CPS IV strains recently characterized in France. CPS IV, detected only in invasive isolates (6.8 %), was most prevalent in adults (12 %) and showed an increase in prevalence to that reported (1.4 %) for invasive isolates in Ireland 1997-1999. Increases in serotype IV and evidence of capsular switching in CC17 highlights the importance of ongoing surveillance of GBS and may have implications for vaccine development strategies.
Collapse
Affiliation(s)
- Mary Meehan
- Epidemiology and Molecular Biology Unit and Irish Meningococcal and Meningitis Reference Laboratory, Temple Street Children's University Hospital, Dublin 1, Ireland,
| | | | | |
Collapse
|
48
|
Distribution of pilus islands in Streptococcus agalactiae that cause human infections: insights into evolution and implication for vaccine development. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:313-6. [PMID: 23269415 DOI: 10.1128/cvi.00529-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At least one pilus island, PI-1 (70%), PI-2a (79%), or PI-2b (21%), was found among 898 Streptococcus agalactiae (group B streptococcus [GBS]) isolates recovered from humans, supporting the use of pilus proteins in vaccines. The stability and dominance of PI-1 and PI-2a in multiple serotypes and founder multilocus sequence types disseminated worldwide suggest it could be the PI combination present in ancestral GBS human pathogens.
Collapse
|
49
|
Madzivhandila M, Adrian PV, Cutland CL, Kuwanda L, Madhi SA. Distribution of pilus islands of group B streptococcus associated with maternal colonization and invasive disease in South Africa. J Med Microbiol 2012; 62:249-253. [PMID: 23065545 DOI: 10.1099/jmm.0.052951-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Group B streptococcus (GBS) is a leading cause of neonatal sepsis. Sortase-dependent pilus-like structures have been identified on the surface of GBS, and have been found to be important in the adhesion and attachment of GBS to host cells. Three pilus island alleles, PI-1, PI-2a and PI-2b, have been described, and their proteins are being explored as vaccine candidates. The pilus islands from 541 colonization isolates and 284 invasive isolates were characterized by PCR. All isolates carried at least one pilus island, and they were identified alone or in combinations at the following overall frequencies: PI-2a, 29.8 %; PI-2b, 0.2 %; PI-1+PI-2a, 24.8 %; and PI-1+PI-2b, 45.1 %. A combination of PI-1+PI-2a (28.7 vs 17.6 %) was more common among colonizing compared with invasive isolates. Conversely, a combination of PI-1+PI-2b (37.2 vs 60.2 %) was more frequently associated with invasive disease compared to colonization. There was a strong association between pilus islands when adjusted for serotype distribution, PI-2a was identified in 92.6 % of colonizing and 90.0 % of invasive serotype Ia isolates, whereas serotype III was associated with co-expression of a PI-1 and PI-2b among 84.6 % of colonizing and 96.5 % of invasive isolates. Based on this homogeneity of pilus island distribution, a pilus-based vaccine developed for Europe and the USA will have similar coverage in South Africa.
Collapse
Affiliation(s)
- Mashudu Madzivhandila
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter V Adrian
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Locadiah Kuwanda
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- National Institute for Communicable Diseases, Johannesburg, South Africa
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
Evolution of the capsular operon of Streptococcus iniae in response to vaccination. Appl Environ Microbiol 2012; 78:8219-26. [PMID: 23001668 DOI: 10.1128/aem.02216-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus iniae causes severe septicemia and meningitis in farmed fish and is also occasionally zoonotic. Vaccination against S. iniae is problematic, with frequent breakdown of protection in vaccinated fish. The major protective antigens in S. iniae are the polysaccharides of the capsule, which are essential for virulence. Capsular biosynthesis is driven and regulated by a 21-kb operon comprising up to 20 genes. In a long-term study, we have sequenced the capsular operon of strains that have been used in autogenous vaccines across Australia and compared it with the capsular operon sequences of strains subsequently isolated from infected vaccinated fish. Intriguingly, strains isolated from vaccinated fish that subsequently become infected have coding mutations that are confined to a limited number of genes in the cps operon, with the remainder of the genes in the operon remaining stable. Mutations in strains in diseased vaccinated fish occur in key genes in the capsular operon that are associated with polysaccharide configuration (cpsG) and with regulation of biosynthesis (cpsD and cpsE). This, along with high ratios of nonsynonymous to synonymous mutations within the cps genes, suggests that immune response directed predominantly against capsular polysaccharide may be driving evolution in a very specific set of genes in the operon. From these data, it may be possible to design a simple polyvalent vaccine with a greater operational life span than the current monovalent killed bacterins.
Collapse
|