1
|
Uzzal Hossain M, Khan Tanvir N, Naimur Rahman ABZ, Mahmud Chowdhury Z, Shahadat Hossain M, Dey S, Bhattacharjee A, Ahammad I, Salma Zohora U, Hashem A, Chandra Das K, Ara Keya C, Salimullah M. From sequence to significance: A thorough investigation of the distinctive genome features uncovered in C. Werkmanii strain NIB003. Gene 2025; 933:148965. [PMID: 39332601 DOI: 10.1016/j.gene.2024.148965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Citrobacter werkmanii (C. werkmanii), an opportunistic urinary bacterium that causes diarrhea, is poorly understood. Our research focuses on genetic features that are crucial to disease development, such as pathogenic interactions, antibiotic resistance, virulence genes and genetic variation. Following its morphological, biochemical, and molecular identification, the whole genome of C. werkmanii strain NIB003 was sequenced in Bangladesh for the first time. Despite having around 80% whole genome conservation, the research shows that the Bangladeshi strain forms a separate phylogenetic cluster. This emphasises the genetic variability within C. werkmanii, resulting in particular modifications at the strain level and changes in its ability to cause disease. The results of the genetic diversity analysis indicate that the Bangladeshi sequenced genome is more diverse than the other strains due to the existence of unique features, such as the presence of t-RNA binding domain and N-6 adenine-specific DNA methylases.
Collapse
Affiliation(s)
- Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Neyamat Khan Tanvir
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - A B Z Naimur Rahman
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Zeshan Mahmud Chowdhury
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Md Shahadat Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Shajib Dey
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Dept. of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh
| | - Arittra Bhattacharjee
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Umme Salma Zohora
- Dept. of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Abu Hashem
- Microbial Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Keshob Chandra Das
- Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Bashundhara, Dhaka-1229, Bangladesh
| | - Md Salimullah
- Bioinformatics Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh; Molecular Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka-1349, Bangladesh.
| |
Collapse
|
2
|
Jabbar M, Baboo I, Majeed H, Farooq Z, Palangi V, Lackner M. Preparation and Characterization of Cumin Essential Oil Nanoemulsion (CEONE) as an Antibacterial Agent and Growth Promoter in Broilers: A Study on Efficacy, Safety, and Health Impact. Animals (Basel) 2024; 14:2860. [PMID: 39409810 PMCID: PMC11475229 DOI: 10.3390/ani14192860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
This research characterized and explored the effect of cumin essential oil nanoemulsion (CEONE) on broiler growth performance, serum biochemistry, hematological parameters, and cecal microbial count. Day-old (n = 96) broilers (Ross 308) were randomly assigned to six treatments with five replicates of three broilers each. The dietary treatments consisted of negative control (only basal diet), positive control (basal diet + 200 µL of enrofloxacin), 25 µL (basal diet + 25 µL of CEONE), 50 µL (basal diet + 50 µL of CEONE), 75 µL (basal diet + 75 µL of CEONE), and 100 µL (basal diet + 100 µL of CEONE). The broiler's body weight gain (BWG) after 42 days of treatment exhibited increased weight in the CEONE group (976.47 ± 11.82-1116.22 ± 29.04). The gain in weight was further evidenced by the beneficial microbe load (107 log) compared to the pathogenic strain. All the biochemical parameters were observed in the normal range, except for a higher level of HDL and a lower LDL value. This safety has been validated by pKCSM toxicity analysis showing a safe and highly tolerable dose of cuminaldehyde. In conclusion, this research observed the potential of CEONE as a multifunctional agent. It is a valuable candidate for further application in combating bacterial infections and enhancing animal health and growth.
Collapse
Affiliation(s)
- Muhammad Jabbar
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Irfan Baboo
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Hamid Majeed
- Department of Food Science and Technology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan;
| | - Zahid Farooq
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences (CUVAS), Bahawalpur 63100, Pakistan; (M.J.); (Z.F.)
| | - Valiollah Palangi
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Izmir, Türkiye;
| | - Maximilian Lackner
- Department of Industrial Engineering, University of Applied Sciences Technikum Wien, 17 Hoechstaedtplatz 6, 1200 Vienna, Austria
| |
Collapse
|
3
|
Suwanthada P, Kongsoi S, Jayaweera S, Akapelwa ML, Thapa J, Nakajima C, Suzuki Y. Interplay between Amino Acid Substitution in GyrA and QnrB19: Elevating Fluoroquinolone Resistance in Salmonella Typhimurium. ACS Infect Dis 2024; 10:2785-2794. [PMID: 38898378 DOI: 10.1021/acsinfecdis.4c00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Globally, there have been increasing reports of antimicrobial resistance in nontyphoidal Salmonella (NTS), which can develop into severe and potentially life-threatening diarrhea. This study focuses on the synergistic effects of DNA gyrase mutations and plasmid-mediated quinolone resistance (PMQR) genes, specifically qnrB19, on fluoroquinolone (FQ) resistance in Salmonella Typhimurium. By utilizing recombinant mutants, GyrAS83F and GyrAD87N, and QnrB19's, we discovered a significant increase in fluoroquinolones resistance when QnrB19 is present. Specifically, ciprofloxacin and moxifloxacin's inhibitory concentrations rose 10- and 8-fold, respectively. QnrB19 was found to enhance the resistance capacity of mutant DNA gyrases, leading to high-level FQ resistance. Additionally, we observed that the ratio of QnrB19 to DNA gyrase played a critical role in determining whether QnrB19 could protect DNA gyrase against FQ inhibition. Our findings underscore the critical need to understand these resistance mechanisms, as their coexistence enables bacteria to withstand therapeutic FQ levels, posing a significant challenge to treatment efficacy.
Collapse
Affiliation(s)
- Pondpan Suwanthada
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Siriporn Kongsoi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 73140, Thailand
| | - Sasini Jayaweera
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Mwangala Lonah Akapelwa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Jeewan Thapa
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Hokkaido University Institute for Vaccine Research & Development, Hokkaido University, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
| |
Collapse
|
4
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sato S, Fan PH, Yeh YC, Liu HW. Complete In Vitro Reconstitution of the Apramycin Biosynthetic Pathway Demonstrates the Unusual Incorporation of a β-d-Sugar Nucleotide in the Final Glycosylation Step. J Am Chem Soc 2024; 146:10103-10114. [PMID: 38546392 PMCID: PMC11317085 DOI: 10.1021/jacs.4c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Apramycin is a widely used aminoglycoside antibiotic with applications in veterinary medicine. It is composed of a 4-amino-4-deoxy-d-glucose moiety and the pseudodisaccharide aprosamine, which is an adduct of 2-deoxystreptamine and an unusual eight-carbon bicyclic dialdose. Despite its extensive study and relevance to medical practice, the biosynthetic pathway of this complex aminoglycoside nevertheless remains incomplete. Herein, the remaining unknown steps of apramycin biosynthesis are reconstituted in vitro, thereby leading to a comprehensive picture of its biological assembly. In particular, phosphomutase AprJ and nucleotide transferase AprK are found to catalyze the conversion of glucose 6-phosphate to NDP-β-d-glucose as a critical biosynthetic intermediate. Moreover, the dehydrogenase AprD5 and transaminase AprL are identified as modifying this intermediate via introduction of an amino group at the 4″ position without requiring prior 6″-deoxygenation as is typically encountered in aminosugar biosynthesis. Finally, the glycoside hydrolase family 65 protein AprO is shown to utilize NDP-β-d-glucose or NDP-4"-amino-4"-deoxy-β-d-glucose to form the 8',1″-O-glycosidic linkage of saccharocin or apramycin, respectively. As the activated sugar nucleotides in all known natural glycosylation reactions involve either NDP-α-d-hexoses or NDP-β-l-hexoses, the reported chemistry expands the scope of known biological glycosylation reactions to NDP-β-d-hexoses, with important implications for the understanding and repurposing of aminoglycoside biosynthesis.
Collapse
|
6
|
Ruan S, Tu CH, Bourne CR. Friend or Foe: Protein Inhibitors of DNA Gyrase. BIOLOGY 2024; 13:84. [PMID: 38392303 PMCID: PMC10886550 DOI: 10.3390/biology13020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/20/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
DNA gyrase is essential for the successful replication of circular chromosomes, such as those found in most bacterial species, by relieving topological stressors associated with unwinding the double-stranded genetic material. This critical central role makes gyrase a valued target for antibacterial approaches, as exemplified by the highly successful fluoroquinolone class of antibiotics. It is reasonable that the activity of gyrase could be intrinsically regulated within cells, thereby helping to coordinate DNA replication with doubling times. Numerous proteins have been identified to exert inhibitory effects on DNA gyrase, although at lower doses, it can appear readily reversible and therefore may have regulatory value. Some of these, such as the small protein toxins found in plasmid-borne addiction modules, can promote cell death by inducing damage to DNA, resulting in an analogous outcome as quinolone antibiotics. Others, however, appear to transiently impact gyrase in a readily reversible and non-damaging mechanism, such as the plasmid-derived Qnr family of DNA-mimetic proteins. The current review examines the origins and known activities of protein inhibitors of gyrase and highlights opportunities to further exert control over bacterial growth by targeting this validated antibacterial target with novel molecular mechanisms. Furthermore, we are gaining new insights into fundamental regulatory strategies of gyrase that may prove important for understanding diverse growth strategies among different bacteria.
Collapse
Affiliation(s)
- Shengfeng Ruan
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Chih-Han Tu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
7
|
Branck T, Hu Z, Nickols WA, Walsh AM, Bhosle A, Short MI, Nearing JT, Asnicar F, McIver LJ, Maharjan S, Rahnavard A, Louyakis AS, Badri DV, Brockel C, Thompson KN, Huttenhower C. Comprehensive profile of the companion animal gut microbiome integrating reference-based and reference-free methods. THE ISME JOURNAL 2024; 18:wrae201. [PMID: 39394961 PMCID: PMC11523182 DOI: 10.1093/ismejo/wrae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/19/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
The gut microbiome of companion animals is relatively underexplored, despite its relevance to animal health, pet owner health, and basic microbial community biology. Here, we provide the most comprehensive analysis of the canine and feline gut microbiomes to date, incorporating 2639 stool shotgun metagenomes (2272 dog and 367 cat) spanning 14 publicly available datasets (n = 730) and 8 new study populations (n = 1909). These are compared with 238 and 112 baseline human gut metagenomes from the Human Microbiome Project 1-II and a traditionally living Malagasy cohort, respectively, processed in a manner identical to the animal metagenomes. All microbiomes were characterized using reference-based taxonomic and functional profiling, as well as de novo assembly yielding metagenomic assembled genomes clustered into species-level genome bins. Companion animals shared 184 species-level genome bins not found in humans, whereas 198 were found in all three hosts. We applied novel methodology to distinguish strains of these shared organisms either transferred or unique to host species, with phylogenetic patterns suggesting host-specific adaptation of microbial lineages. This corresponded with functional divergence of these lineages by host (e.g. differences in metabolic and antibiotic resistance genes) likely important to companion animal health. This study provides the largest resource to date of companion animal gut metagenomes and greatly contributes to our understanding of the "One Health" concept of a shared microbial environment among humans and companion animals, affecting infectious diseases, immune response, and specific genetic elements.
Collapse
Affiliation(s)
- Tobyn Branck
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Zhiji Hu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - William A Nickols
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Aaron M Walsh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Amrisha Bhosle
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Meghan I Short
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Jacob T Nearing
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | | | - Lauren J McIver
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Sagun Maharjan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States
| | - Artemis S Louyakis
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Dayakar V Badri
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Christoph Brockel
- Science and Technology Center, Hill’s Pet Nutrition, Inc., Topeka, KS, United States
| | - Kelsey N Thompson
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
8
|
Kusampally U, Pagadala R, Damera T, Puligundla SK. Ce-ZSM-5: A Highly Capable Catalyst for the Construction of Acridines in Water and Their Computational Study against DNA Gyrase Protein. Chem Biodivers 2023; 20:e202300413. [PMID: 37387647 DOI: 10.1002/cbdv.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Cerium doped ZSM-5 (Ce-ZSM-5) as an environmentally benign and reusable catalyst for the construction of acridines in aqueous medium. This method produced corresponding acridines with good yields and shorter reaction times. Also avoids the use of hazardous solvents and involves a simple work-up process. The solid catalyst was prepared by doping Ce ions with ZSM-5 (Zeolite Socony Mobil-5) and confirmed by XRD, BET SA-PSD and SEM. The synthesised acridine derivatives were confirmed by 1 H-NMR, 13 C-NMR and FT-IR spectroscopic data. The docking studies of the synthesised compounds are performed by the PyRx auto dock tool against DNA gyrase protein. The products 5a and 6d are found to be the best fit ligands against DNA gyrase protein.
Collapse
Affiliation(s)
| | - Ramakanth Pagadala
- Chemistry Division, Department of H&S, CVR College of Engineering Mangalpally, Ibrahimpatnam, Hyderabad, Telangana, India
| | - Thirupathi Damera
- Chemistry Division, Department of H&S, CVR College of Engineering Mangalpally, Ibrahimpatnam, Hyderabad, Telangana, India
| | | |
Collapse
|
9
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Molecular Factors and Mechanisms Driving Multidrug Resistance in Uropathogenic Escherichia coli-An Update. Genes (Basel) 2022; 13:genes13081397. [PMID: 36011308 PMCID: PMC9407594 DOI: 10.3390/genes13081397] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
The rapid emergence of multidrug-resistant (MDR) bacteria indisputably constitutes a major global health problem. Pathogenic Escherichia coli are listed among the most critical group of bacteria that require fast development of new antibiotics and innovative treatment strategies. Among harmful extraintestinal Enterobacteriaceae strains, uropathogenic E. coli (UPEC) pose a significant health threat. UPEC are considered the major causative factor of urinary tract infection (UTI), the second-most commonly diagnosed infectious disease in humans worldwide. UTI treatment places a substantial financial burden on healthcare systems. Most importantly, the misuse of antibiotics during treatment has caused selection of strains with the ability to acquire MDR via miscellaneous mechanisms resulting in gaining resistance against many commonly prescribed antibiotics like ampicillin, gentamicin, cotrimoxazole and quinolones. Mobile genetic elements (MGEs) such as transposons, integrons and conjugative plasmids are the major drivers in spreading resistance genes in UPEC. The co-occurrence of various bacterial evasion strategies involving MGEs and the SOS stress response system requires further research and can potentially lead to the discovery of new, much-awaited therapeutic targets. Here, we analyzed and summarized recent discoveries regarding the role, mechanisms, and perspectives of MDR in the pathogenicity of UPEC.
Collapse
|
11
|
Escherichia coli GyrA Tower Domain Interacts with QnrB1 Loop B and Plays an Important Role in QnrB1 Protection from Quinolone Inhibition. Antimicrob Agents Chemother 2021; 65:e0040221. [PMID: 33846132 DOI: 10.1128/aac.00402-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Qnr pentapeptide repeat proteins interact with DNA gyrase and protect it from quinolone inhibition. The two external loops, particularly the larger loop B, of Qnr proteins are essential for quinolone protection of DNA gyrase. The specific QnrB1 interaction sites on DNA gyrase are not known. In this study, we investigated the interaction between GyrA and QnrB1 using site-specific photo-cross-linking of QnrB1 loop B combined with mass spectrometry. We found that amino acid residues 286 to 298 on the tower domain of GyrA interact with QnrB1 and play a key role in QnrB1 protection of gyrase from quinolone inhibition. Alanine replacement of arginine at residue 293 and a small deletion of amino acids 286 to 289 of GyrA resulted in a decrease in the QnrB1-mediated increase in quinolone MICs and also abolished the QnrB1 protection of purified DNA gyrase from ciprofloxacin inhibition.
Collapse
|
12
|
Falco A, Aranaga C, Ocampo I, Takiff H. Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Int J Microbiol 2021; 2021:6689186. [PMID: 33824663 PMCID: PMC8007378 DOI: 10.1155/2021/6689186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/05/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Fluoroquinolones (FQs) are antibiotics useful in the treatment of drug-resistant tuberculosis, but FQ-resistant mutants can be selected rapidly. Although mutations in the DNA gyrase are the principal cause of this resistance, pentapeptide proteins have been found to confer low-level FQ resistance in Gram-negative bacteria. MfpA is a pentapeptide repeat protein conserved in mycobacterial chromosomes, where it is adjacent to a group of four highly conserved genes termed a conservon. We wished to characterize the transcriptional regulation of the mfpA gene and relate its expression to ciprofloxacin resistance in M. smegmatis. Reverse transcription PCR showed that mfpA gene is part of an operon containing the conservon genes. Using a transcriptional fusion, we showed that a promoter was located 5' to the mfpEA operon. We determined the promoter activity under different growth conditions and found that the expression of the operon increases slightly in late growth phases in basic pH and in subinhibitory concentrations of ciprofloxacin. Finally, by cloning the mfpA gene in an inducible vector, we showed that induced expression of mfpA increases the ciprofloxacin Minimal Inhibitory Concentration. These results confirm that increased expression of the mfpA gene, which is part of the mfpEA operon, increases ciprofloxacin resistance in M. smegmatis.
Collapse
Affiliation(s)
- Aura Falco
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
- Laboratorio de Genética Molecular, Centro de Microbiología y Biología Celular, Instituto Venezolano de Investigaciones Científicas, Km. 11, Carretera Panamericana, Caracas, Venezuela
| | - Carlos Aranaga
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Ivan Ocampo
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
| | - Howard Takiff
- Grupo de Investigación en Microbiología, Industria y Ambiente (GIMIA), Facultad de Ciencias Básicas, Universidad Santiago de Cali, Cali, Colombia
- Integrated Mycobacterial Pathogenomics, Institut Pasteur, Paris, France
- Department of Tuberculosis Control and Prevention, Shenzhen Nanshan Centre for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
13
|
The pentapeptide-repeat protein, MfpA, interacts with mycobacterial DNA gyrase as a DNA T-segment mimic. Proc Natl Acad Sci U S A 2021; 118:2016705118. [PMID: 33836580 PMCID: PMC7980463 DOI: 10.1073/pnas.2016705118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA gyrase, a type II topoisomerase, introduces negative supercoils into DNA using ATP hydrolysis. The highly effective gyrase-targeted drugs, fluoroquinolones (FQs), interrupt gyrase by stabilizing a DNA-cleavage complex, a transient intermediate in the supercoiling cycle, leading to double-stranded DNA breaks. MfpA, a pentapeptide-repeat protein in mycobacteria, protects gyrase from FQs, but its molecular mechanism remains unknown. Here, we show that Mycobacterium smegmatis MfpA (MsMfpA) inhibits negative supercoiling by M. smegmatis gyrase (Msgyrase) in the absence of FQs, while in their presence, MsMfpA decreases FQ-induced DNA cleavage, protecting the enzyme from these drugs. MsMfpA stimulates the ATPase activity of Msgyrase by directly interacting with the ATPase domain (MsGyrB47), which was confirmed through X-ray crystallography of the MsMfpA-MsGyrB47 complex, and mutational analysis, demonstrating that MsMfpA mimics a T (transported) DNA segment. These data reveal the molecular mechanism whereby MfpA modulates the activity of gyrase and may provide a general molecular basis for the action of other pentapeptide-repeat proteins.
Collapse
|
14
|
Mazurek Ł, Ghilarov D, Michalczyk E, Pakosz Z, Metelev M, Czyszczoń W, Wawro K, Behroz I, Dubiley S, Süssmuth RD, Heddle JG. Pentapeptide repeat protein QnrB1 requires ATP hydrolysis to rejuvenate poisoned gyrase complexes. Nucleic Acids Res 2021; 49:1581-1596. [PMID: 33434265 PMCID: PMC7897471 DOI: 10.1093/nar/gkaa1266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/16/2020] [Accepted: 01/06/2021] [Indexed: 11/14/2022] Open
Abstract
DNA gyrase, a type II topoisomerase found predominantly in bacteria, is the target for a variety of 'poisons', namely natural product toxins (e.g. albicidin, microcin B17) and clinically important synthetic molecules (e.g. fluoroquinolones). Resistance to both groups can be mediated by pentapeptide repeat proteins (PRPs). Despite long-term studies, the mechanism of action of these protective PRPs is not known. We show that a PRP, QnrB1 provides specific protection against fluoroquinolones, which strictly requires ATP hydrolysis by gyrase. QnrB1 binds to the GyrB protein and stimulates ATPase activity of the isolated N-terminal ATPase domain of GyrB (GyrB43). We probed the QnrB1 binding site using site-specific incorporation of a photoreactive amino acid and mapped the crosslinks to the GyrB43 protein. We propose a model in which QnrB1 binding allosterically promotes dissociation of the fluoroquinolone molecule from the cleavage complex.
Collapse
Affiliation(s)
- Łukasz Mazurek
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | - Dmitry Ghilarov
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | | | - Zuzanna Pakosz
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.,Postgraduate School of Molecular Medicine, Warsaw, Poland
| | | | - Wojciech Czyszczoń
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Wawro
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Iraj Behroz
- Institute of Biological Chemistry, Technische Universität Berlin, Berlin, Germany
| | | | - Roderich D Süssmuth
- Institute of Biological Chemistry, Technische Universität Berlin, Berlin, Germany
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
Pachanon R, Koide K, Kongsoi S, Nakajima C, Kapalamula TF, Suthienkul O, Suzuki Y. Interaction of the plasmid-encoded quinolone resistance protein QnrB19 with Salmonella Typhimurium DNA gyrase. J Infect Chemother 2020; 26:1139-1145. [PMID: 32669211 DOI: 10.1016/j.jiac.2020.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Plasmid-encoded quinolone resistance protein Qnr is an important factor in bacterial resistance to quinolones. Qnr interacts with DNA gyrase and reduces susceptibility to quinolones. The gene qnr likely spreads rapidly among Enterobacteriaceae via horizontal gene transfer. Though the vast amounts of epidemiological data are available, molecular details of the contribution of QnrB19, the predominant Qnr in Salmonella spp., to the acquisition of quinolone resistance has not yet been understood well. OBJECTIVE We aimed to examine the role of QnrB19 in quinolone resistance acquisition using recombinant Salmonella Typhimurium DNA gyrases and QnrB19. MATERIALS AND METHODS Recombinant QnrB19 was expressed in E. coli and purified by Ni-NTA agarose column chromatography. DNA supercoiling activities of recombinant Salmonella Typhimurium DNA gyrase were assessed with or without QnrB19 under the existence of three quinolones to measure IC50s, the concentration of each quinolone required for 50% inhibition in vitro. RESULTS The IC50s of norfloxacin, ciprofloxacin and nalidixic acid against DNA gyrases were measured to be 0.30, 0.16 and 17.7 μg/mL, respectively. The addition of QnrB19 increased the IC50s of norfloxacin and ciprofloxacin to be 0.81 and 0.48 μg/mL, respectively, where no effect of QnrB19 was observed on the IC50 of nalidixic acid. CONCLUSION QnrB19 was shown for the first time in vitro to have ability to grant non-classical quinolone resistance to S. Typhimurium DNA gyrase. Structural insight on quinolones in this study may contribute to investigate drugs useful for preventing the spread of plasmid carrying PMQR along with other factors associating with antimicrobial resistance in S. Typhimurium and other bacteria.
Collapse
Affiliation(s)
- Ruttana Pachanon
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Kentaro Koide
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Japan
| | | | - Chie Nakajima
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Japan; Global Station for Zoonosis Control, Hokkaido University, Japan
| | - Thoko Flav Kapalamula
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Japan
| | - Orasa Suthienkul
- Center of Education and Research in EcoHealth and OneHealth, Faculty of Public Health, Thammasat University, Thailand; Center of Excellence in Global Health, Faculty of Public Health, Thammasat University, Thailand
| | - Yasuhiko Suzuki
- Division of Bioresources, Research Center for Zoonosis Control, Hokkaido University, Japan; Global Station for Zoonosis Control, Hokkaido University, Japan.
| |
Collapse
|
16
|
Mancino W, Lugli GA, van Sinderen D, Ventura M, Turroni F. Mobilome and Resistome Reconstruction from Genomes Belonging to Members of the Bifidobacterium Genus. Microorganisms 2019; 7:microorganisms7120638. [PMID: 31810287 PMCID: PMC6956390 DOI: 10.3390/microorganisms7120638] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023] Open
Abstract
Specific members of the genus Bifidobacterium are among the first colonizers of the human/animal gut, where they act as important intestinal commensals associated with host health. As part of the gut microbiota, bifidobacteria may be exposed to antibiotics, used in particular for intrapartum prophylaxis, especially to prevent Streptococcus infections, or in the very early stages of life after the birth. In the current study, we reconstructed the in silico resistome of the Bifidobacterium genus, analyzing a database composed of 625 bifidobacterial genomes, including partial assembled strains with less than 100 genomic sequences. Furthermore, we screened bifidobacterial genomes for mobile genetic elements, such as transposases and prophage-like elements, in order to investigate the correlation between the bifido-mobilome and the bifido-resistome, also identifying genetic insertion hotspots that appear to be prone to horizontal gene transfer (HGT) events. These insertion hotspots were shown to be widely distributed among analyzed bifidobacterial genomes, and suggest the acquisition of antibiotic resistance genes through HGT events. These data were further corroborated by growth experiments directed to evaluate bacitracin A resistance in Bifidobacterium spp., a property that was predicted by in silico analyses to be part of the HGT-acquired resistome.
Collapse
Affiliation(s)
- Walter Mancino
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (W.M.); (G.A.L.); (M.V.)
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (W.M.); (G.A.L.); (M.V.)
| | - Douwe van Sinderen
- School of Microbiology, APC Microbiome Institute, University College Cork, Cork T12 K8AF, Ireland;
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (W.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (W.M.); (G.A.L.); (M.V.)
- Microbiome Research Hub, University of Parma, 43124 Parma, Italy
- Correspondence: ; Tel.: +39-521-905666; Fax: +39-521-905604
| |
Collapse
|
17
|
Collin F, Maxwell A. The Microbial Toxin Microcin B17: Prospects for the Development of New Antibacterial Agents. J Mol Biol 2019; 431:3400-3426. [PMID: 31181289 PMCID: PMC6722960 DOI: 10.1016/j.jmb.2019.05.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Microcin B17 (MccB17) is an antibacterial peptide produced by strains of Escherichia coli harboring the plasmid-borne mccB17 operon. MccB17 possesses many notable features. It is able to stabilize the transient DNA gyrase-DNA cleavage complex, a very efficient mode of action shared with the highly successful fluoroquinolone drugs. MccB17 stabilizes this complex by a distinct mechanism making it potentially valuable in the fight against bacterial antibiotic resistance. MccB17 was the first compound discovered from the thiazole/oxazole-modified microcins family and the linear azole-containing peptides; these ribosomal peptides are post-translationally modified to convert serine and cysteine residues into oxazole and thiazole rings. These chemical moieties are found in many other bioactive compounds like the vitamin thiamine, the anti-cancer drug bleomycin, the antibacterial sulfathiazole and the antiviral nitazoxanide. Therefore, the biosynthetic machinery that produces these azole rings is noteworthy as a general method to create bioactive compounds. Our knowledge of MccB17 now extends to many aspects of antibacterial-bacteria interactions: production, transport, interaction with its target, and resistance mechanisms; this knowledge has wide potential applicability. After a long time with limited progress on MccB17, recent publications have addressed critical aspects of MccB17 biosynthesis as well as an explosion in the discovery of new related compounds in the thiazole/oxazole-modified microcins/linear azole-containing peptides family. It is therefore timely to summarize the evidence gathered over more than 40 years about this still enigmatic molecule and place it in the wider context of antibacterials.
Collapse
Affiliation(s)
- Frederic Collin
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anthony Maxwell
- Department Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
18
|
Zhang X, Wang P, Chen T, Yan W, Guan X, Shen G, Luo X, Wan X, Ning Q. Kctd9 Deficiency Impairs Natural Killer Cell Development and Effector Function. Front Immunol 2019; 10:744. [PMID: 31024568 PMCID: PMC6467973 DOI: 10.3389/fimmu.2019.00744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
We previously showed that potassium channel tetramerization domain containing 9 (KCTD9) is aberrantly expressed in natural killer (NK) cells in patients with hepatitis B virus-associated acute-on-chronic liver failure and mice with experimental fulminant hepatitis. However, the mechanism underlying the regulation of NK cell function and fulminant hepatitis progression by KCTD9 is unknown. Here, we investigated the role of Kctd9 in regulation of early development, maturation, and function of NK cells using Kctd9-knockout mice. Compared to wild-type mice, Kctd9-deficient mice exhibited impaired NK cell lineage commitment, as evidenced by selective reduction in the refined NK progenitors, and incomplete NK cell maturation, as manifested by a higher proportion of CD11b- NK cells and a lower percentage of CD11b+ NK cells with high proliferative potential. Moreover, Kctd9-depleted NK cells displayed insufficient IFN-γ production, degranulation, and granzyme B production in response to cytokine stimulation, and attenuated cytotoxicity to tumor cells in vitro. The defect in NK cells was further supported by ameliorated liver damage and improved survival in Kctd9-deficient mice following murine hepatitis virus strain-3 (MHV-3) infection, which otherwise leads to immune-mediated fulminant hepatitis, a phenotype homologous to that caused by NK cell depletion in wild-type mice. Further investigation to identify the underlying mechanism revealed that Kctd9 deficiency hindered the expression of transcription factors, including Ets1, Nfil3, Eomes, and Id2 in NK cells. Collectively, our data reveal that Kctd9 acts as a novel regulator for NK cell commitment, maturation, and effector function.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Wang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxu Guan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Shen
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Luo
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Li X, Zhang Y, Zhou X, Hu X, Zhou Y, Liu D, Maxwell A, Mi K. The plasmid-borne quinolone resistance protein QnrB, a novel DnaA-binding protein, increases the bacterial mutation rate by triggering DNA replication stress. Mol Microbiol 2019; 111:1529-1543. [PMID: 30838726 PMCID: PMC6617969 DOI: 10.1111/mmi.14235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2019] [Indexed: 02/02/2023]
Abstract
Bacterial antibiotic resistance, a global health threat, is caused by plasmid transfer or genetic mutations. Quinolones are important antibiotics, partially because they are fully synthetic and resistance genes are unlikely to exist in nature; nonetheless, quinolone resistance proteins have been identified. The mechanism by which plasmid-borne quinolone resistance proteins promotes the selection of quinolone-resistant mutants is unclear. Here, we show that QnrB increases the bacterial mutation rate. Transcriptomic and genome sequencing analyses showed that QnrB promoted gene abundance near the origin of replication (oriC). In addition, the QnrB expression level correlated with the replication origin to terminus (oriC/ter) ratio, indicating QnrB-induced DNA replication stress. Our results also show that QnrB is a DnaA-binding protein that may act as an activator of DNA replication initiation. Interaction of QnrB with DnaA promoted the formation of the DnaA-oriC open complex, which leads to DNA replication over-initiation. Our data indicate that plasmid-borne QnrB increases bacterial mutation rates and that genetic changes can alleviate the fitness cost imposed by transmitted plasmids. Derivative mutations may impair antibiotic efficacy and threaten the value of antibiotic treatments. Enhanced understanding of how bacteria adapt to the antibiotic environment will lead to new therapeutic strategies for antibiotic-resistant infections.
Collapse
Affiliation(s)
- Xiaojing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yujiao Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Xintong Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinling Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yixuan Zhou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Di Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 101408, China
| |
Collapse
|
20
|
Zhang X, Zhu L, Zhou Y, Shi A, Wang H, Han M, Wan X, Kilonzo SB, Luo X, Chen T, Ning Q. Interference with KCTD9 inhibits NK cell activation and ameliorates fulminant liver failure in mice. BMC Immunol 2018; 19:20. [PMID: 29940856 PMCID: PMC6019787 DOI: 10.1186/s12865-018-0256-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background Potassium channel tetramerisation domain containing 9 (KCTD9), a member of KCTD family with a DNA-like pentapeptide repeat domain, was found to be increased particularly in NK cells of patients with HBV-induced acute-on-chronic liver failure (HBV-ACLF) and experimental viral fulminant hepatitis. Knockdown of KCTD9 in immortalized NK cells inhibits cytokines production and cytotoxicity. As NK cell activation was shown to exacerbate liver damage in viral fulminant hepatitis, we propose that target inhibition of KCTD9 may prohibit NK cells activity and thus ameliorate liver damage in viral fulminant hepatitis. Result Hydrodynamic delivery of plasmid expressing short-hairpin RNA against KCTD9 resulted in impaired NK cells function as demonstrated by reduced cytokine production and cytotoxicity, and ameliorated liver injury as manifested by improved liver histology and survival rate. In contrast, delivery of plasmid expressing KCTD9 led to deteriorated disease progression. Conclusion Interference with KCTD9 expression exert beneficial effect in viral fulminant hepatitis therapy. Such effect may be mediated by impairment of NK cell activation. Electronic supplementary material The online version of this article (10.1186/s12865-018-0256-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Lin Zhu
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoyong Zhou
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Aichao Shi
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Hongwu Wang
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meifang Han
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wan
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Semvua Bukheti Kilonzo
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Xiaoping Luo
- Department of Pediatric Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Chen
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Qin Ning
- Institute of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, # 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China. .,Department of Infectious Disease, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Lohrasbi V, Talebi M, Bialvaei AZ, Fattorini L, Drancourt M, Heidary M, Darban-Sarokhalil D. Trends in the discovery of new drugs for Mycobacterium tuberculosis therapy with a glance at resistance. Tuberculosis (Edinb) 2017; 109:17-27. [PMID: 29559117 DOI: 10.1016/j.tube.2017.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/23/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Despite the low expensive and effective four-drug treatment regimen (isoniazid, rifampicin, pyrazinamide and ethambutol) was introduced 40 years ago, TB continues to cause considerable morbidity and mortality worldwide. In 2015, the WHO estimated a total of 10.4 million new tuberculosis (TB) cases worldwide. Currently, the increased number of multidrug-resistant (MDR-TB), extensively-drug resistant (XDR-TB) and in some recent reports, totally drug-resistant TB (TDR-TB) cases raises concerns about this disease. MDR-TB and XDR-TB have lower cure rates and higher mortality levels due to treatment problems. Novel drugs and regimens for all forms of TB have emerged in recent years. Moreover, scientific interest has recently increased in the field of host-directed therapies (HDTs) in order to identify new treatments for MDR-TB. In this review, we offer an update on the discovery of new drugs for TB therapy with a glance at molecular mechanisms leading to drug resistance in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Vahid Lohrasbi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abed Zahedi Bialvaei
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Lanfranco Fattorini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michel Drancourt
- Institut Hospital-Universitaire (IHU) Mediterranée Infection, AP-HM, Marseille, France; Aix-Marseille Université, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Mohsen Heidary
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Abstract
Faithful replication and maintenance of the genome are essential to the ability of any organism to survive and propagate. For an obligate pathogen such as Mycobacterium tuberculosis that has to complete successive cycles of transmission, infection, and disease in order to retain a foothold in the human population, this requires that genome replication and maintenance must be accomplished under the metabolic, immune, and antibiotic stresses encountered during passage through variable host environments. Comparative genomic analyses have established that chromosomal mutations enable M. tuberculosis to adapt to these stresses: the emergence of drug-resistant isolates provides direct evidence of this capacity, so too the well-documented genetic diversity among M. tuberculosis lineages across geographic loci, as well as the microvariation within individual patients that is increasingly observed as whole-genome sequencing methodologies are applied to clinical samples and tuberculosis (TB) disease models. However, the precise mutagenic mechanisms responsible for M. tuberculosis evolution and adaptation are poorly understood. Here, we summarize current knowledge of the machinery responsible for DNA replication in M. tuberculosis, and discuss the potential contribution of the expanded complement of mycobacterial DNA polymerases to mutagenesis. We also consider briefly the possible role of DNA replication-in particular, its regulation and coordination with cell division-in the ability of M. tuberculosis to withstand antibacterial stresses, including host immune effectors and antibiotics, through the generation at the population level of a tolerant state, or through the formation of a subpopulation of persister bacilli-both of which might be relevant to the emergence and fixation of genetic drug resistance.
Collapse
|
23
|
Machuca J, Diaz de Alba P, Recacha E, Pascual Á, Rodriguez-Martinez JM. Cytotoxic Effect Associated with Overexpression of QNR Proteins in Escherichia coli. Microb Drug Resist 2017; 23:822-825. [PMID: 28287903 DOI: 10.1089/mdr.2016.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The objective was to evaluate the cytotoxic effect associated with overexpression of multiple Qnr-like plasmid-mediated quinolone resistance (PMQR) mechanisms in Escherichia coli. METHODS Coding regions of different PMQR genes (qnrA1, qnrB1, qnrC, qnrD1, qnrS1, and qepA2) and efsqnr were cloned into pET29a(+) vector and overexpressed in E. coli BL21. E. coli BL21 with and without an empty pET29a(+) vector were used as controls. The cytotoxic effect associated with PMQR mechanism overexpression was determined by transmission electron microscopy and viability assays. RESULTS Overexpressed qnr genes produced loss of bacterial viability in the range of 77-97% compared with the controls, comparable with loss of viability associated with EfsQnr overexpression (97%). No loss of viability was observed in E. coli overexpressing QepA2. In transmission electron microscopy assays, signs of cytotoxicity were observed in E. coli cells overexpressing EfsQnr and Qnr proteins (30-45% of the bacterial population showed morphological changes). Morphological changes were observed in less than 5% of bacterial populations from the control strains and E. coli overexpressing QepA2. CONCLUSIONS Overexpression of qnr genes produces a cytotoxic cellular and structural effect in E. coli, the magnitude of which varies depending on the family of Qnr proteins.
Collapse
Affiliation(s)
- Jesús Machuca
- 1 Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena , Seville, Spain
- 2 Institute of Biomedicine of Seville (IBiS) , Seville, Spain
| | - Paula Diaz de Alba
- 1 Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena , Seville, Spain
| | - Esther Recacha
- 1 Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena , Seville, Spain
| | - Álvaro Pascual
- 1 Unidad Intercentros de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena , Seville, Spain
- 2 Institute of Biomedicine of Seville (IBiS) , Seville, Spain
- 3 Department of Microbiology, University of Seville , Seville, Spain
| | - José Manuel Rodriguez-Martinez
- 2 Institute of Biomedicine of Seville (IBiS) , Seville, Spain
- 3 Department of Microbiology, University of Seville , Seville, Spain
| |
Collapse
|
24
|
Plasmid-mediated quinolone resistance: Two decades on. Drug Resist Updat 2016; 29:13-29. [PMID: 27912841 DOI: 10.1016/j.drup.2016.09.001] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
After two decades of the discovery of plasmid-mediated quinolone resistance (PMQR), three different mechanisms have been associated to this phenomenon: target protection (Qnr proteins, including several families with multiple alleles), active efflux pumps (mainly QepA and OqxAB pumps) and drug modification [AAC(6')-Ib-cr acetyltransferase]. PMQR genes are usually associated with mobile or transposable elements on plasmids, and, in the case of qnr genes, are often incorporated into sul1-type integrons. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. Although the three PMQR mechanisms alone cause only low-level resistance to quinolones, they can complement other mechanisms of chromosomal resistance to reach clinical resistance level and facilitate the selection of higher-level resistance, raising a threat to the treatment of infections by microorganisms that host these mechanisms.
Collapse
|
25
|
Peymani A, Farivar TN, Najafipour R, Mansouri S. High prevalence of plasmid-mediated quinolone resistance determinants in Enterobacter cloacae isolated from hospitals of the Qazvin, Alborz, and Tehran provinces, Iran. Rev Soc Bras Med Trop 2016; 49:286-91. [DOI: 10.1590/0037-8682-0454-2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022] Open
|
26
|
Abstract
Three mechanisms for plasmid-mediated quinolone resistance (PMQR) have been discovered since 1998. Plasmid genes qnrA, qnrB, qnrC, qnrD, qnrS, and qnrVC code for proteins of the pentapeptide repeat family that protects DNA gyrase and topoisomerase IV from quinolone inhibition. The qnr genes appear to have been acquired from chromosomal genes in aquatic bacteria, are usually associated with mobilizing or transposable elements on plasmids, and are often incorporated into sul1-type integrons. The second plasmid-mediated mechanism involves acetylation of quinolones with an appropriate amino nitrogen target by a variant of the common aminoglycoside acetyltransferase AAC(6')-Ib. The third mechanism is enhanced efflux produced by plasmid genes for pumps QepAB and OqxAB. PMQR has been found in clinical and environmental isolates around the world and appears to be spreading. The plasmid-mediated mechanisms provide only low-level resistance that by itself does not exceed the clinical breakpoint for susceptibility but nonetheless facilitates selection of higher-level resistance and makes infection by pathogens containing PMQR harder to treat.
Collapse
|
27
|
Jayol A, Janvier F, Guillard T, Chau F, Mérens A, Robert J, Fantin B, Berçot B, Cambau E. qnrA6genetic environment and quinolone resistance conferred onProteus mirabilis. J Antimicrob Chemother 2016; 71:903-8. [DOI: 10.1093/jac/dkv431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/12/2015] [Indexed: 11/13/2022] Open
|
28
|
Guo Q, Spychala CN, McElheny CL, Doi Y. Comparative analysis of an IncR plasmid carrying armA, blaDHA-1 and qnrB4 from Klebsiella pneumoniae ST37 isolates. J Antimicrob Chemother 2016; 71:882-6. [PMID: 26747096 DOI: 10.1093/jac/dkv444] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 11/19/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The objective of this study was to conduct a comparative analysis with reported IncR plasmids of a Klebsiella pneumoniae IncR plasmid carrying an MDR region. METHODS MDR K. pneumoniae isolates were serially identified from two inpatients at a hospital in the USA in 2014. MDR plasmid pYDC676 was fully sequenced, annotated and compared with related plasmids. Antimicrobial susceptibility testing, PFGE and MLST were also conducted. RESULTS The K. pneumoniae isolates were identical by PFGE, belonged to ST37 and harboured an identical ∼50 kb IncR plasmid (pYDC676). pYDC676 possessed the backbone and multi-IS loci closely related to IncR plasmids reported from aquatic bacteria, as well as animal and human K. pneumoniae strains, and carried an MDR region consisting of armA, blaDHA-1 and qnrB4, a combination that has been reported in IncR plasmids from K. pneumoniae ST11 strains in Europe and Asia. A plasmid with the identical IncR backbone and a similar MDR region containing blaDHA-1 and qnrB4 has also been reported in ST37 strains from Europe, suggesting potential dissemination of this lineage of IncR plasmids in K. pneumoniae ST37. CONCLUSIONS K. pneumoniae ST37 strains with an MDR IncR plasmid carrying armA, blaDHA-1 and qnrB4 were identified in a hospital in the USA, where these resistance genes remain rare. The IncR backbone may play a role in the global dissemination of these resistance genes.
Collapse
Affiliation(s)
- Qinglan Guo
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Caressa Nicole Spychala
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christi Lee McElheny
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yohei Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother 2015; 59:6689-95. [PMID: 26239981 DOI: 10.1128/aac.01292-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022] Open
Abstract
Qnr is a plasmid-encoded and chromosomally determined protein that protects DNA gyrase and topoisomerase IV from inhibition by quinolones. Despite its prevalence worldwide and existence prior to the discovery of quinolones, its native function is not known. Other synthetic compounds and natural products also target bacterial topoisomerases. A number were studied as molecular probes to gain insight into how Qnr acts. Qnr blocked inhibition by synthetic compounds with somewhat quinolone-like structure that target the GyrA subunit, such as the 2-pyridone ABT-719, the quinazoline-2,4-dione PD 0305970, and the spiropyrimidinetrione pyrazinyl-alkynyl-tetrahydroquinoline (PAT), indicating that Qnr is not strictly quinolone specific, but Qnr did not protect against GyrA-targeting simocyclinone D8 despite evidence that both simocyclinone D8 and Qnr affect DNA binding to gyrase. Qnr did not affect the activity of tricyclic pyrimidoindole or pyrazolopyridones, synthetic inhibitors of the GyrB subunit, or nonsynthetic GyrB inhibitors, such as coumermycin A1, novobiocin, gyramide A, or microcin B17.Thus, in this set of compounds the protective activity of Qnr was confined to those that, like quinolones, trap gyrase on DNA in cleaved complexes.
Collapse
|
30
|
Abstract
Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance-conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme-DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low-level resistance that promotes the selection of mutational high-level resistance. Plasmid-encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside-modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.
Collapse
Affiliation(s)
- David C Hooper
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - George A Jacoby
- Lahey Hospital and Medical Center, Burlington, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Interactions between QnrB, QnrB mutants, and DNA gyrase. Antimicrob Agents Chemother 2015; 59:5413-9. [PMID: 26100716 DOI: 10.1128/aac.00771-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Plasmid-encoded protein QnrB1 protects DNA gyrase from ciprofloxacin inhibition. Using a bacterial two-hybrid system, we evaluated the physical interactions between wild-type and mutant QnrB1, the GyrA and GyrB gyrase subunits, and a GyrBA fusion protein. The interaction of QnrB1 with GyrB and GyrBA was approximately 10-fold higher than that with GyrA, suggesting that domains of GyrB are important for stabilizing QnrB1 interaction with the holoenzyme. Sub-MICs of ciprofloxacin or nalidixic acid reduced the interactions between QnrB1 and GyrA or GyrBA but produced no reduction in the interaction with GyrB or a quinolone-resistant GyrA:S83L (GyrA with S83L substitution) mutant, suggesting that quinolones and QnrB1 compete for binding to gyrase. Of QnrB1 mutants that reduced quinolone resistance, deletions in the C or N terminus of QnrB1 resulted in a marked decrease in interactions with GyrA but limited or no effect on interactions with GyrB and an intermediate effect on interactions with GyrBA. While deletion of loop B and both loops moderately reduced the interaction signal with GyrA, deletion of loop A resulted in only a small reduction in the interaction with GyrB. The loop A deletion also caused a substantial reduction in interaction with GyrBA, with little effect of loop B and dual-loop deletions. Single-amino-acid loop mutations had little effect on physical interactions except for a Δ105I mutant. Therefore, loops A and B may play key roles in the proper positioning of QnrB1 rather than as determinants of the physical interaction of QnrB1 with gyrase.
Collapse
|
32
|
Miotto P, Cirillo DM, Migliori GB. Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 2015; 147:1135-1143. [PMID: 25846529 DOI: 10.1378/chest.14-1286] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Physicians are more and more often challenged by difficult-to-treat cases of TB. They include patients infected by strains of Mycobacterium tuberculosis that are resistant to at least isoniazid and rifampicin (multidrug-resistant TB) or to at least one fluoroquinolone (FQ) and one injectable, second-line anti-TB drug in addition to isoniazid and rifampicin (extensively drug-resistant TB). The drug treatment of these cases is very long, toxic, and expensive, and, unfortunately, the proportion of unsatisfactory outcomes is still considerably high. Although FQs and pyrazinamide (PZA) are backbone drugs in the available anti-TB regimens, several uncertainties remain about their mechanisms of action and even more remain about the mechanisms leading to drug resistance. From a clinical point of view, a better understanding of the genetic basis of drug resistance will aid (1) clinicians to provide quality clinical management to both drug-susceptible and drug-resistant TB cases (while preventing emergence of further resistance), and (2) developers of new molecular-based diagnostic assays to better direct their research efforts toward a new generation of sensitive, specific, cheap, and easy-to-use point-of-care diagnostics. In this review we provide an update on the molecular mechanisms leading to FQ- and PZA-resistance in M tuberculosis.
Collapse
Affiliation(s)
- Paolo Miotto
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela M Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Battista Migliori
- WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy.
| |
Collapse
|
33
|
Shah S, Heddle JG. Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotechnol 2014; 98:9545-60. [PMID: 25343976 DOI: 10.1007/s00253-014-6151-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 02/01/2023]
Abstract
Pentapeptide repeats are a class of proteins characterized by the presence of multiple repeating sequences five amino acids in length. The sequences fold into a right-handed β-helix with a roughly square-shaped cross section. Pentapeptide repeat proteins include a number of examples which are thought to function as structural mimics of DNA and act to competitively bind to the type II topoisomerase DNA gyrase, an important antibacterial target. DNA gyrase-targeting pentapeptide repeat proteins can both inhibit DNA gyrase-a potentially useful therapeutic property-and contribute to resistance to quinolone antibacterials (by acting to prevent them forming a lethal complex with the DNA and enzyme). Pentapeptide repeat proteins are therefore of wide interest not only because of their unusual structure, function, and potential as an antibacterial target, but also because knowledge of their mechanism of action may lead to both a greater understanding of the details of DNA gyrase function as well as being a useful template for the design of new DNA gyrase inhibitors. However, many puzzling aspects as to how these DNA mimics function and indeed even their ability to act as DNA mimics itself remains open to question. This review summarizes the current state of knowledge regarding pentapeptide repeat proteins, focusing on those that are thought to mimic DNA, and speculates on potential structure-function relationships which may account for their differing specificities.
Collapse
Affiliation(s)
- Shama Shah
- Heddle Initiative Research Unit, RIKEN, 2-1, Hirosawa, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
34
|
Machuca J, Briales A, Labrador G, Díaz-de-Alba P, López-Rojas R, Docobo-Pérez F, Martínez-Martínez L, Rodríguez-Baño J, Pachón ME, Pascual A, Rodríguez-Martínez JM. Interplay between plasmid-mediated and chromosomal-mediated fluoroquinolone resistance and bacterial fitness in Escherichia coli. J Antimicrob Chemother 2014; 69:3203-15. [PMID: 25139837 DOI: 10.1093/jac/dku308] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVES The aim of this study was to analyse the interplay among plasmid-mediated qnr genes, alone or in combination with multiple chromosomal-mediated fluoroquinolone (FQ) resistance determinants, susceptibility to FQs and bacterial fitness in an isogenic Escherichia coli collection. METHODS E. coli ATCC 25922 was used to modify or delete chromosomal genes. qnr genes were cloned into the pBK-CMV vector. The MICs of FQs were determined by microdilution. Mutant prevention concentration and frequency of mutants were evaluated. Bacterial fitness was analysed using ΔlacZ system competition assays using in vitro and in vivo models. RESULTS The relationships between the number of resistance mutations and bacterial fitness were complex. With specific combinations of resistance mechanisms the addition of a new resistance mutation was shown to improve bacterial fitness. qnrA1 caused a decrease in fitness (7%-21%) while qnrS1 caused an increase in fitness (9%-21%) when combined with chromosomal mutations. We identified susceptible triple mutants in which the acquisition of a fourth resistance mutation significantly increased fitness and at the same time reached the clinical resistance level (the acquisition of qnrS1 in a S83L + D87N + ΔmarR genetic background). A strong correlation with the production of reactive oxygen species, as well as changes in susceptibility, was observed following treatment with ciprofloxacin. CONCLUSIONS Our data indicate that there may be critical stages (depending on the genotype) in resistance development, including chromosomal- and plasmid-mediated mechanisms, at which some low-fitness mutants below the resistance breakpoint are able to evolve clinical resistance with just one or two mutations, and show increased fitness.
Collapse
Affiliation(s)
- Jesús Machuca
- Infectious Diseases and Clinical Microbiology Unit, University Hospital Virgen Macarena, Seville, Spain
| | - Alejandra Briales
- Department of Microbiology, University of Seville, Seville, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Labrador
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | | | - Rafael López-Rojas
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Fernando Docobo-Pérez
- Infectious Diseases and Clinical Microbiology Unit, University Hospital Virgen Macarena, Seville, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Luis Martínez-Martínez
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain University Hospital Marques de Valdecilla and Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain Department of Molecular Biology, University of Cantabria, Santander, Spain
| | - Jesús Rodríguez-Baño
- Infectious Diseases and Clinical Microbiology Unit, University Hospital Virgen Macarena, Seville, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Medicine Department, University of Seville, Seville, Spain
| | - Maria Eugenia Pachón
- Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain
| | - Alvaro Pascual
- Infectious Diseases and Clinical Microbiology Unit, University Hospital Virgen Macarena, Seville, Spain Department of Microbiology, University of Seville, Seville, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - José-Manuel Rodríguez-Martínez
- Department of Microbiology, University of Seville, Seville, Spain Spanish Network for Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Abstract
OBJECTIVES Loop B is important for low-level quinolone resistance conferred by Qnr proteins. The role of individual amino acids within QnrS1 loop B in quinolone resistance and gyrase protection was assessed. METHODS qnrS1 and 11 qnrS1 alleles with site-directed Ala mutations in loop B were expressed in Escherichia coli BL21(DE3) and proteins were purified by affinity chromatography. Ciprofloxacin MICs were determined with and without IPTG. Gyrase DNA supercoiling was measured with and without ciprofloxacin IC50 and with various concentrations of QnrS1 proteins. RESULTS Wild-type QnrS1 and QnrS1 with Asn-110→Ala and Arg-111→Ala substitutions increased the ciprofloxacin MIC 12-fold in BL21(DE3), although QnrS1 with Gln-107→Ala replacement increased it 2-fold more than wild-type did. However, QnrS1 with Ala substitutions at His-106, Val-108, Ser-109, Met-112, Tyr-113, Phe-114, Cys-115 and Ser-116 increased ciprofloxacin MIC 1.4- to 8-fold less than wild-type QnrS1. Induction by 10-1000 μM IPTG increased ciprofloxacin MICs for all mutants, reaching values similar to those for wild-type. Purified wild-type and mutated proteins differed in protection of gyrase from ciprofloxacin action. Wild-type QnrS1 produced complete protection of gyrase supercoiling from ciprofloxacin (1.8 μM) action at 0.05 nM and half protection at 0.5 pM, whereas QnrS1 with Ala replacements that conferred the least increase in ciprofloxacin MICs also required the highest QnrS1 concentrations for protection. CONCLUSIONS Key individual residues in QnrS1 loop B affect ciprofloxacin resistance and gyrase protection from ciprofloxacin action, supporting the concept that loop B is key for interaction with gyrase necessary for quinolone resistance.
Collapse
Affiliation(s)
- María M Tavío
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA Microbiología, Departamento de Ciencias Clínicas, Universidad de Las Palmas de Gran Canaria, Las Palmas de G.C., España
| | | | - David C Hooper
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Skoblov M, Marakhonov A, Marakasova E, Guskova A, Chandhoke V, Birerdinc A, Baranova A. Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development. Bioessays 2013; 35:586-96. [PMID: 23592240 DOI: 10.1002/bies.201300002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The KCTD family includes tetramerization (T1) domain containing proteins with diverse biological effects. We identified a novel member of the KCTD family, BTBD10. A comprehensive analysis of protein-protein interactions (PPIs) allowed us to put forth a number of testable hypotheses concerning the biological functions for individual KCTD proteins. In particular, we predict that KCTD20 participates in the AKT-mTOR-p70 S6k signaling cascade, KCTD5 plays a role in cytokinesis in a NEK6 and ch-TOG-dependent manner, KCTD10 regulates the RhoA/RhoB pathway. Developmental regulator KCTD15 represses AP-2α and contributes to energy homeostasis by suppressing early adipogenesis. TNFAIP1-like KCTD proteins may participate in post-replication DNA repair through PCNA ubiquitination. KCTD12 may suppress the proliferation of gastrointestinal cells through interference with GABAb signaling. KCTD9 deserves experimental attention as the only eukaryotic protein with a DNA-like pentapeptide repeat domain. The value of manual curation of PPIs and analysis of existing high-throughput data should not be underestimated.
Collapse
Affiliation(s)
- Mikhail Skoblov
- Research Center for Medical Genetics RAMS, Moscow, Russian Federation, Russia
| | | | | | | | | | | | | |
Collapse
|
37
|
Phylogenetic analysis of chromosomally determined qnr and related proteins. Antimicrob Agents Chemother 2013; 57:1930-4. [PMID: 23318805 DOI: 10.1128/aac.02080-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
qnr genes were discovered on plasmids by their ability to reduce quinolone susceptibility, but homologs can be found in the genomes of at least 92 Gram-negative, Gram-positive, and strictly anaerobic bacterial species. The related pentapeptide repeat protein-encoding mfpA gene is present in the genome of at least 19 species of Mycobacterium and 10 other Actinobacteria species. The native function of these genes is not yet known.
Collapse
|
38
|
Tao J, Han J, Wu H, Hu X, Deng J, Fleming J, Maxwell A, Bi L, Mi K. Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance. Nucleic Acids Res 2012; 41:2370-81. [PMID: 23275532 PMCID: PMC3575795 DOI: 10.1093/nar/gks1351] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA gyrase plays a vital role in resolving DNA topological problems and is the target of antibiotics such as fluoroquinolones. Mycobacterium fluoroquinolone resistance protein A (MfpA) from Mycobacterium smegmatis is a newly identified DNA gyrase inhibitor that is believed to confer intrinsic resistance to fluoroquinolones. However, MfpA does not prevent drug-induced inhibition of DNA gyrase in vitro, implying the involvement of other as yet unknown factors. Here, we have identified a new factor, named Mycobacterium fluoroquinolone resistance protein B (MfpB), which is involved in the protection of DNA gyrase against drugs both in vivo and in vitro. Genetic results suggest that MfpB is necessary for MfpA protection of DNA gyrase against drugs in vivo; an mfpB knockout mutant showed greater susceptibility to ciprofloxacin than the wild-type, whereas a strain overexpressing MfpA and MfpB showed higher loss of susceptibility. Further biochemical characterization indicated that MfpB is a small GTPase and its GTP bound form interacts directly with MfpA and influences its interaction with DNA gyrase. Mutations in MfpB that decrease its GTPase activity disrupt its protective efficacy. Our studies suggest that MfpB, a small GTPase, is required for MfpA-conferred protection of DNA gyrase.
Collapse
Affiliation(s)
- Jun Tao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, CAS, Beijing, 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Michon A, Allou N, Chau F, Podglajen I, Fantin B, Cambau E. Plasmidic qnrA3 enhances Escherichia coli fitness in absence of antibiotic exposure. PLoS One 2011; 6:e24552. [PMID: 21915350 PMCID: PMC3168526 DOI: 10.1371/journal.pone.0024552] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/12/2011] [Indexed: 01/12/2023] Open
Abstract
The widespread presence of plasmid-mediated quinolone resistance determinants, particularly qnr genes, has become a current issue. By protecting DNA-gyrase from quinolones, Qnr proteins confer a low level quinolone resistance that is not sufficient to explain their emergence. Since Qnr proteins were hypothesized to act as DNA-binding protein regulators, qnr genes could have emerged by providing a selective advantage other than antibiotic resistance. We investigated host fitness of Escherichia coli isogenic strains after acquisition of the qnrA3 gene, inserted either alone onto a small plasmid (pBR322), or harbored on a large conjugative native plasmid, pHe96(qnrA3) found in a clinical isolate. The isogenic strains were derived from the susceptible E. coli CFT073, a virulent B2 group strain known to infect bladder and kidneys in a mouse model of pyelonephritis. In vitro experiments included growth analysis by automatic spectrophotometry and flow cytometry, and competitions with CFU enumeration. In vivo experiments included infection with each strain and pairwise competitions in absence of antimicrobial exposure. As controls for our experiments we used mutations known to reduce fitness (rpsL K42N mutation) or to enhance fitness (tetA deletion in pBR322). E. coli CFT073 transformed with pBRAM(PBR322-qnrA3) had significantly higher maximal OD than E. coli CFT073 transformed with pBR322 or pBR322ΔtetA, and in vivo competitions were more often won by the qnrA3 carrying strain (24 victories vs. 9 loss among 42 competitions, p = 0.001). In contrast, when pHe96(qnrA3) was introduced by conjugation in E. coli CFT073, it exerted a fitness cost shown by an impaired growth observed in vitro and in vivo and a majority of lost competitions (33/35, p<0.0001). In conclusion, qnrA3 acquisition enhanced bacterial fitness, which may explain qnr emergence and suggests a regulation role of qnr. However, fitness was reduced when qnrA3 was inserted onto multidrug-resistant plasmids and this can slow down its dissemination without antibiotic exposure.
Collapse
Affiliation(s)
| | | | | | | | - Bruno Fantin
- EA 3964, University Paris Diderot, Paris, France
- Medecine Interne Hôpital Beaujon, APHP, Clichy, France
| | - Emmanuelle Cambau
- EA 3964, University Paris Diderot, Paris, France
- Bacteriologie, Groupe Hospitalier Saint Louis-Lariboisière-Fernand Widal, APHP, Paris, France
- * E-mail:
| |
Collapse
|
40
|
Vetting MW, Hegde SS, Wang M, Jacoby GA, Hooper DC, Blanchard JS. Structure of QnrB1, a plasmid-mediated fluoroquinolone resistance factor. J Biol Chem 2011; 286:25265-73. [PMID: 21597116 PMCID: PMC3137097 DOI: 10.1074/jbc.m111.226936] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/19/2011] [Indexed: 11/06/2022] Open
Abstract
QnrB1 is a plasmid-encoded pentapeptide repeat protein (PRP) that confers a moderate degree of resistance to fluoroquinolones. Its gene was cloned into an expression vector with an N-terminal polyhistidine tag, and the protein was purified by nickel affinity chromatography. The structure of QnrB1 was determined by a combination of trypsinolysis, surface mutagenesis, and single anomalous dispersion phasing. QnrB1 folds as a right-handed quadrilateral β-helix with a highly asymmetric dimeric structure typical of PRP-topoisomerase poison resistance factors. The threading of pentapeptides into the β-helical fold is interrupted by two noncanonical PRP sequences that produce outward projecting loops that interrupt the regularity of the PRP surface. Deletion of the larger upper loop eliminated the protective effect of QnrB1 on DNA gyrase toward inhibition by quinolones, whereas deletion of the smaller lower loop drastically reduced the protective effect. These loops are conserved among all plasmid-based Qnr variants (QnrA, QnrC, QnrD, and QnrS) and some chromosomally encoded Qnr varieties. A mechanism in which PRP-topoisomerase poison resistance factors bind to and disrupt the quinolone-DNA-gyrase interaction is proposed.
Collapse
Affiliation(s)
- Matthew W. Vetting
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Subray S. Hegde
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Minghua Wang
- the Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | | | - David C. Hooper
- the Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - John S. Blanchard
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
41
|
Xiong X, Bromley EHC, Oelschlaeger P, Woolfson DN, Spencer J. Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a gram-negative bacterium. Nucleic Acids Res 2011; 39:3917-27. [PMID: 21227918 PMCID: PMC3089455 DOI: 10.1093/nar/gkq1296] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Quinolones inhibit bacterial type II DNA topoisomerases (e.g. DNA gyrase) and are among the most important antibiotics in current use. However, their efficacy is now being threatened by various plasmid-mediated resistance determinants. Of these, the pentapeptide repeat-containing (PRP) Qnr proteins are believed to act as DNA mimics and are particularly prevalent in Gram-negative bacteria. Predicted Qnr-like proteins are also present in numerous environmental bacteria. Here, we demonstrate that one such, Aeromonas hydrophila AhQnr, is soluble, stable, and relieves quinolone inhibition of Escherichia coli DNA gyrase, thus providing an appropriate model system for Gram-negative Qnr proteins. The AhQnr crystal structure, the first for any Gram-negative Qnr, reveals two prominent loops (1 and 2) that project from the PRP structure. Deletion mutagenesis demonstrates that both contribute to protection of E. coli DNA gyrase from quinolones. Sequence comparisons indicate that these are likely to be present across the full range of Gram-negative Qnr proteins. On this basis we present a model for the AhQnr:DNA gyrase interaction where loop1 interacts with the gyrase A ‘tower’ and loop2 with the gyrase B TOPRIM domains. We propose this to be a general mechanism directing the interactions of Qnr proteins with DNA gyrase in Gram-negative bacteria.
Collapse
Affiliation(s)
- Xiaoli Xiong
- School of Cellular and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
42
|
Structural and biochemical analysis of the pentapeptide repeat protein EfsQnr, a potent DNA gyrase inhibitor. Antimicrob Agents Chemother 2010; 55:110-7. [PMID: 20937785 DOI: 10.1128/aac.01158-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The chromosomally encoded Qnr homolog protein from Enterococcus faecalis (EfsQnr), when expressed, confers to its host a decreased susceptibility to quinolones and consists mainly of tandem repeats, which is consistent with belonging to the pentapeptide repeat family of proteins (PRPs). EfsQnr was cloned with an N-terminal 6× His tag and purified to homogeneity. EfsQnr partially protected DNA gyrase from fluoroquinolone inhibition at concentrations as low as 20 nM. EfsQnr inhibited the ATP-dependent supercoiling activity of DNA gyrase with a 50% inhibitory concentration (IC(50)) of 1.2 μM, while no significant inhibition of ATP-independent relaxation activity was observed. EfsQnr was cytotoxic when overexpressed in Escherichia coli, resulting in the clumping of cells and a loss of viability. The X-ray crystal structure of EfsQnr was determined to 1.6-Å resolution. EfsQnr exhibits the right-handed quadrilateral beta-helical fold typical of PRPs, with features more analogous to MfpA (mycobacterium fluoroquinolone resistance pentapeptide) than to the PRPs commonly found in cyanobacteria.
Collapse
|
43
|
Richter SN, Frasson I, Bergo C, Manganelli R, Cavallaro A, Palù G. Characterisation of qnr plasmid-mediated quinolone resistance in Enterobacteriaceae from Italy: association of the qnrB19 allele with the integron element ISCR1 in Escherichia coli. Int J Antimicrob Agents 2010; 35:578-83. [PMID: 20356715 DOI: 10.1016/j.ijantimicag.2010.02.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/03/2010] [Accepted: 02/10/2010] [Indexed: 11/30/2022]
Abstract
The spread of plasmid-mediated quinolone resistance determinants (qnr-like determinants) was evaluated in a collection of 232 ciprofloxacin-resistant or extended-spectrum beta-lactamase (ESBL)-producing enterobacterial isolates recovered between November 2007 and May 2008 at Padua University Hospital, Italy. qnr genes were mainly found in Klebsiella pneumoniae (68%) and to a lesser extent in Escherichia coli (5.1%). Among the qnrA1, qnrS1 and qnrB19 alleles found, the latter was by far the most frequent. Genetic environment analysis revealed that one qnrB19 gene in E. coli was embedded in an ISCR1 complex class 1 integron. All other qnrB19 genes were flanked by an ISEcp1C region as part of the Tn2012 transposon. qnrA1- and qnrS1-containing strains were not clonally related. Both topoisomerase II mutations and ESBL (mainly SHV-12, TEM-1 and TEM-150 types) were present in most of the qnr-positive strains. qnrB19 is extremely frequent in K. pneumoniae isolates from Italy. In addition, association of qnrB19 with the ISCR1 mobile element in E. coli suggests a broad distribution of this resistance gene in the near future.
Collapse
Affiliation(s)
- Sara N Richter
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, via Gabelli 63, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although plasmid-mediated quinolone resistance (PMQR) was thought not to exist before its discovery in 1998, the past decade has seen an explosion of research characterizing this phenomenon. The best-described form of PMQR is determined by the qnr group of genes. These genes, likely originating in aquatic organisms, code for pentapeptide repeat proteins. These proteins reduce susceptibility to quinolones by protecting the complex of DNA and DNA gyrase or topoisomerase IV enzymes from the inhibitory effect of quinolones. Two additional PMQR mechanisms were recently described. aac(6')-Ib-cr encodes a variant aminoglycoside acetyltransferase with two amino acid alterations allowing it to inactivate ciprofloxacin through the acetylation of its piperazinyl substituent. oqxAB and qepA encode efflux pumps that extrude quinolones. All of these genes determine relatively small increases in the MICs of quinolones, but these changes are sufficient to facilitate the selection of mutants with higher levels of resistance. The contribution of these genes to the emergence of quinolone resistance is being actively investigated. Several factors suggest their importance in this process, including their increasing ubiquity, their association with other resistance elements, and their emergence simultaneous with the expansion of clinical quinolone resistance. Of concern, these genes are not yet being taken into account in resistance screening by clinical microbiology laboratories.
Collapse
|