1
|
Qin X, Cheng J, Qiu Y, Guan N, Gupta TB, Wu S, Jiang Y, Yang X, Man C. Characterization of psychrotrophic and thermoduric bacteria in raw milk using a multi-omics approach. Microb Genom 2024; 10:001311. [PMID: 39504117 PMCID: PMC11540130 DOI: 10.1099/mgen.0.001311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Psychrotrophic and thermoduric bacteria are the main reasons for the spoilage of dairy products. This study aims to address the composition and function of psychrotrophic and thermoduric bacteria in eight groups of raw milk samples obtained from Heilongjiang Province and Inner Mongolia (China). Microbial enumeration showed an average total bacterial count of 4.63 log c.f.u. ml-1 and psychrotrophic bacterial counts of 4.82 log c.f.u. ml-1. The mean counts of mesophilic and thermophilic thermoduric bacteria were 3.68 log and 1.81 log c.f.u. ml-1, respectively. Isolated psychrotrophic bacteria (26 genera and 50 species) and mesophilic thermoduric bacteria (20 genera and 32 species) showed high microbial diversity. Through metagenomic and proteomic analyses, significant disparities in the concentration and community structure of psychrotrophic and thermoduric bacteria were observed among different locations. A large number of peptidases were annotated by metagenomics, which may result in milk spoilage. They mainly come from some typical psychrotrophic and thermoduric bacteria, such as Chryseobacterium, Epilithonimonas, Pseudomonas, Psychrobacter, Acinetobacter, Lactococcus, Escherichia and Bacillus. However, the main proteins detected in fresh raw milk were associated with bacterial growth, reproduction and adaptation to cold environments. This investigation provides valuable insights into the microbial communities and protein profiles of raw milk, shedding light on the microbial factors contributing to milk deterioration.
Collapse
Affiliation(s)
- Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingqi Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Qiu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning Guan
- Center for Dairy Safety and Quality, National Center of Technology Innovation for Dairy, No.1 Jinshan Road, Jinshan Development Zone, Hohhot, PR China
| | - Tanushree B. Gupta
- AgResearch Ltd, Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Shuyan Wu
- AgResearch Ltd, Hopkirk Research Institute, Cnr University Ave and Library Road, Massey University, Palmerston North 4442, New Zealand
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science and Engineering, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
2
|
Sarasa-Buisan C, Nieves-Morión M, Arévalo S, Helm RF, Sevilla E, Luque I, Fillat MF. FurC (PerR) contributes to the regulation of peptidoglycan remodeling and intercellular molecular transfer in the cyanobacterium Anabaena sp. strain PCC 7120. mBio 2024; 15:e0323123. [PMID: 38334377 PMCID: PMC10936207 DOI: 10.1128/mbio.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Microbial extracellular proteins and metabolites provide valuable information concerning how microbes adapt to changing environments. In cyanobacteria, dynamic acclimation strategies involve a variety of regulatory mechanisms, being ferric uptake regulator proteins as key players in this process. In the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120, FurC (PerR) is a global regulator that modulates the peroxide response and several genes involved in photosynthesis and nitrogen metabolism. To investigate the possible role of FurC in shaping the extracellular environment of Anabaena, the analysis of the extracellular metabolites and proteins of a furC-overexpressing variant was compared to that of the wild-type strain. There were 96 differentially abundant proteins, 78 of which were found for the first time in the extracellular fraction of Anabaena. While these proteins belong to different functional categories, most of them are predicted to be secreted or have a peripheral location. Several stress-related proteins, including PrxA, flavodoxin, and the Dps homolog All1173, accumulated in the exoproteome of furC-overexpressing cells, while decreased levels of FurA and a subset of membrane proteins, including several export proteins and amiC gene products, responsible for nanopore formation, were detected. Direct repression by FurC of some of those genes, including amiC1 and amiC2, could account for odd septal nanopore formation and impaired intercellular molecular transfer observed in the furC-overexpressing variant. Assessment of the exometabolome from both strains revealed the release of two peptidoglycan fragments in furC-overexpressing cells, namely 1,6-anhydro-N-acetyl-β-D-muramic acid (anhydroMurNAc) and its associated disaccharide (β-D-GlcNAc-(1-4)-anhydroMurNAc), suggesting alterations in peptidoglycan breakdown and recycling.IMPORTANCECyanobacteria are ubiquitous photosynthetic prokaryotes that can adapt to environmental stresses by modulating their extracellular contents. Measurements of the organization and composition of the extracellular milieu provide useful information about cyanobacterial adaptive processes, which can potentially lead to biomimetic approaches to stabilizing biological systems to adverse conditions. Anabaena sp. strain PCC 7120 is a multicellular, nitrogen-fixing cyanobacterium whose intercellular molecular exchange is mediated by septal junctions that traverse the septal peptidoglycan through nanopores. FurC (PerR) is an essential transcriptional regulator in Anabaena, which modulates the response to several stresses. Here, we show that furC-overexpressing cells result in a modified exoproteome and the release of peptidoglycan fragments. Phenotypically, important alterations in nanopore formation and cell-to-cell communication were observed. Our results expand the roles of FurC to the modulation of cell-wall biogenesis and recycling, as well as in intercellular molecular transfer.
Collapse
Affiliation(s)
- Cristina Sarasa-Buisan
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Mercedes Nieves-Morión
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Sergio Arévalo
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - Richard F. Helm
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Emma Sevilla
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Sevilla, Spain
| | - María F. Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias e Instituto de Biocomputación y Física de Sistemas Complejos. Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
3
|
Chen J, Yang D, Zhang Y, Yang L, Wang Q, Jiang M, Pan L. A novel bi-functional cold-adaptive chitinase from Chitinilyticum aquatile CSC-1 for efficient synthesis of N-acetyl-D-glucosaminidase. Int J Biol Macromol 2024; 259:129063. [PMID: 38159710 DOI: 10.1016/j.ijbiomac.2023.129063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
In order to better utilize chitinolytic enzymes to produce high-value N-acetyl-D-glucosamine (GlcNAc) from chitinous waste, there is an urgent need to explore bi-functional chitinases with exceptional properties of temperature, pH and metal tolerance. In this study, we cloned and characterized a novel bi-functional cold-adaptive chitinase called CaChi18A from a newly isolated strain, Chitinilyticum aquatile CSC-1, in Bama longevity village of Guangxi Province, China. The activity of CaChi18A at 50 °C was 4.07 U/mg. However, it exhibited significant catalytic activity even at 5 °C. Its truncated variant CaChi18A_ΔChBDs, containing only catalytic domain, demonstrated significant activity levels, exceeding 40 %, over a temperature range of 5-60 °C and a pH range of 3 to 10. It was noteworthy that it displayed tolerance towards most metal ions at a final concentration of 0.1 mM, including Fe3+ and Cu2+ ions, retaining 122.52 ± 0.17 % and 116.42 ± 1.52 % activity, respectively. Additionally, it exhibited favorable tolerance towards organic solvents with the exception of formic acid. Interestedly, CaChi18A and CaChi18A_ΔChBDs had a low Km value towards colloidal chitin (CC), 0.94 mg mL-1 and 2.13 mg mL-1, respectively. Both enzymes exhibited chitobiosidase and N-acetyl-D-glucosaminidase activities, producing GlcNAc as the primary product when hydrolyzing CC. The high activities across a broader temperature and pH range, strong environmental adaptability, and hydrolytic properties of CaChi18A_ΔChBDs suggested that it could be a promising candidate for GlcNAc production.
Collapse
Affiliation(s)
- Jianrong Chen
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Dengfeng Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Yunkai Zhang
- College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Liyan Yang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Qingyan Wang
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Lixia Pan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Institute of Biology, Guangxi Academy of Sciences, Nanning 530007, China; College of Food and Quality Engineering, Nanning University, Nanning 530200, China.
| |
Collapse
|
4
|
Wilson SA, Tank RKJ, Hobbs JK, Foster SJ, Garner EC. An exhaustive multiple knockout approach to understanding cell wall hydrolase function in Bacillus subtilis. mBio 2023; 14:e0176023. [PMID: 37768080 PMCID: PMC10653849 DOI: 10.1128/mbio.01760-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
IMPORTANCE In order to grow, bacterial cells must both create and break down their cell wall. The enzymes that are responsible for these processes are the target of some of our best antibiotics. Our understanding of the proteins that break down the wall- cell wall hydrolases-has been limited by redundancy among the large number of hydrolases many bacteria contain. To solve this problem, we identified 42 cell wall hydrolases in Bacillus subtilis and created a strain lacking 40 of them. We show that cells can survive using only a single cell wall hydrolase; this means that to understand the growth of B. subtilis in standard laboratory conditions, it is only necessary to study a very limited number of proteins, simplifying the problem substantially. We additionally show that the ∆40 strain is a research tool to characterize hydrolases, using it to identify three "helper" hydrolases that act in certain stress conditions.
Collapse
Affiliation(s)
- Sean A. Wilson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raveen K. J. Tank
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Jamie K. Hobbs
- Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | - Ethan C. Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
- Center for Systems Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Bidart GN, Gharabli H, Welner DH. Functional characterization of the phosphotransferase system in Parageobacillus thermoglucosidasius. Sci Rep 2023; 13:7131. [PMID: 37130962 PMCID: PMC10154347 DOI: 10.1038/s41598-023-33918-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Parageobacillus thermoglucosidasius is a thermophilic bacterium characterized by rapid growth, low nutrient requirements, and amenability to genetic manipulation. These characteristics along with its ability to ferment a broad range of carbohydrates make P. thermoglucosidasius a potential workhorse in whole-cell biocatalysis. The phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) catalyzes the transport and phosphorylation of carbohydrates and sugar derivatives in bacteria, making it important for their physiological characterization. In this study, the role of PTS elements on the catabolism of PTS and non-PTS substrates was investigated for P. thermoglucosidasius DSM 2542. Knockout of the common enzyme I, part of all PTSs, showed that arbutin, cellobiose, fructose, glucose, glycerol, mannitol, mannose, N-acetylglucosamine, N-acetylmuramic acid, sorbitol, salicin, sucrose, and trehalose were PTS-dependent on translocation and coupled to phosphorylation. The role of each putative PTS was investigated and six PTS-deletion variants could not grow on arbutin, mannitol, N-acetylglucosamine, sorbitol, and trehalose as the main carbon source, or showed diminished growth on N-acetylmuramic acid. We concluded that PTS is a pivotal factor in the sugar metabolism of P. thermoglucosidasius and established six PTS variants important for the translocation of specific carbohydrates. This study lays the groundwork for engineering efforts with P. thermoglucosidasius towards efficient utilization of diverse carbon substrates for whole-cell biocatalysis.
Collapse
Affiliation(s)
- Gonzalo N Bidart
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Hani Gharabli
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Kwan JMC, Qiao Y. Mechanistic Insights into the Activities of Major Families of Enzymes in Bacterial Peptidoglycan Assembly and Breakdown. Chembiochem 2023; 24:e202200693. [PMID: 36715567 DOI: 10.1002/cbic.202200693] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Serving as an exoskeletal scaffold, peptidoglycan is a polymeric macromolecule that is essential and conserved across all bacteria, yet is absent in mammalian cells; this has made bacterial peptidoglycan a well-established excellent antibiotic target. In addition, soluble peptidoglycan fragments derived from bacteria are increasingly recognised as key signalling molecules in mediating diverse intra- and inter-species communication in nature, including in gut microbiota-host crosstalk. Each bacterial species encodes multiple redundant enzymes for key enzymatic activities involved in peptidoglycan assembly and breakdown. In this review, we discuss recent findings on the biochemical activities of major peptidoglycan enzymes, including peptidoglycan glycosyltransferases (PGT) and transpeptidases (TPs) in the final stage of peptidoglycan assembly, as well as peptidoglycan glycosidases, lytic transglycosylase (LTs), amidases, endopeptidases (EPs) and carboxypeptidases (CPs) in peptidoglycan turnover and metabolism. Biochemical characterisation of these enzymes provides valuable insights into their substrate specificity, regulation mechanisms and potential modes of inhibition.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), 21 Nanyang Link, Singapore, 637371, Singapore.,LKC School of Medicine, Nanyang Technological University (NTU) Singapore, 11 Mandalay Road, Singapore, Singapore, 208232, Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology (CCEB), Nanyang Technological University (NTU), Singapore, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Bacterial chitinases: genetics, engineering and applications. World J Microbiol Biotechnol 2022; 38:252. [DOI: 10.1007/s11274-022-03444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
|
8
|
Hughes AM, Darby JF, Dodson EJ, Wilson SJ, Turkenburg JP, Thomas GH, Wilkinson AJ. Peptide transport in Bacillus subtilis - structure and specificity in the extracellular solute binding proteins OppA and DppE. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748525 DOI: 10.1099/mic.0.001274] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peptide transporters play important nutritional and cell signalling roles in Bacillus subtilis, which are pronounced during stationary phase adaptations and development. Three high-affinity ATP-binding cassette (ABC) family transporters are involved in peptide uptake - the oligopeptide permease (Opp), another peptide permease (App) and a less well-characterized dipeptide permease (Dpp). Here we report crystal structures of the extracellular substrate binding proteins, OppA and DppE, which serve the Opp and Dpp systems, respectively. The structure of OppA was determined in complex with endogenous peptides, modelled as Ser-Asn-Ser-Ser, and with the sporulation-promoting peptide Ser-Arg-Asn-Val-Thr, which bind with K d values of 0.4 and 2 µM, respectively, as measured by isothermal titration calorimetry. Differential scanning fluorescence experiments with a wider panel of ligands showed that OppA has highest affinity for tetra- and penta-peptides. The structure of DppE revealed the unexpected presence of a murein tripeptide (MTP) ligand, l-Ala-d-Glu-meso-DAP, in the peptide binding groove. The mode of MTP binding in DppE is different to that observed in the murein peptide binding protein, MppA, from Escherichia coli, suggesting independent evolution of these proteins from an OppA-like precursor. The presence of MTP in DppE points to a role for Dpp in the uptake and recycling of cell wall peptides, a conclusion that is supported by analysis of the genomic context of dpp, which revealed adjacent genes encoding enzymes involved in muropeptide catabolism in a gene organization that is widely conserved in Firmicutes.
Collapse
Affiliation(s)
- Adam M Hughes
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - John F Darby
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Eleanor J Dodson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Samuel J Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Johan P Turkenburg
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gavin H Thomas
- Department of Biology, University of York, York YO10 5DD, UK
| | - Anthony J Wilkinson
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| |
Collapse
|
9
|
NamZ1 and NamZ2 from the oral pathogen Tannerella forsythia are peptidoglycan processing exo-β- N-acetylmuramidases with distinct substrate specificity. J Bacteriol 2022; 204:e0059721. [PMID: 35129368 DOI: 10.1128/jb.00597-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative periodontal pathogen Tannerella forsythia is inherently auxotrophic for N-acetylmuramic acid (MurNAc), which is an essential carbohydrate constituent of the peptidoglycan (PGN) of the bacterial cell wall. Thus, to build up its cell wall, T. forsythia strictly depends on the salvage of exogenous MurNAc or sources of MurNAc, such as polymeric or fragmentary PGN, derived from cohabiting bacteria within the oral microbiome. In our effort to elucidate how T. forsythia satisfies its demand for MurNAc, we recognized that the organism possesses three putative orthologs of the exo-β-N-acetylmuramidase BsNamZ from Bacillus subtilis, which cleaves non-reducing end, terminal MurNAc entities from the artificial substrate pNP-MurNAc and the naturally-occurring disaccharide substrate MurNAc-N-acetylglucosamine (GlcNAc). TfNamZ1 and TfNamZ2 were successfully purified as soluble, pure recombinant His6-fusions and characterized as exo-lytic β-N-acetylmuramidases with distinct substrate specificities. The activity of TfNamZ1 was considerably lower compared to TfNamZ2 and BsNamZ, in the cleavage of MurNAc-GlcNAc. When peptide-free PGN glycans were used as substrates, we revealed striking differences in the specificity and mode of action of these enzymes, as analyzed by mass spectrometry. TfNamZ1, but not TfNamZ2 or BsNamZ, released GlcNAc-MurNAc disaccharides from these glycans. In addition, glucosamine (GlcN)-MurNAc disaccharides were generated when partially N-deacetylated PGN glycans from B. subtilis 168 were applied. This characterizes TfNamZ1 as a unique disaccharide-forming exo-lytic β-N-acetylmuramidase (exo-disaccharidase), and, TfNamZ2 and BsNamZ as sole MurNAc monosaccharide-lytic exo-β-N-acetylmuramidases. IMPORTANCE Two exo-N-acetylmuramidases from T. forsythia belonging to glycosidase family GH171 (www.cazy.org) were shown to differ in their activities, thus revealing a functional diversity within this family: NamZ1 releases disaccharides (GlcNAc-MurNAc/GlcN-MurNAc) from the non-reducing ends of PGN glycans, whereas NamZ2 releases terminal MurNAc monosaccharides. This work provides a better understanding of how T. forsythia may acquire the essential growth factor MurNAc by the salvage of PGN from cohabiting bacteria in the oral microbiome, which may pave avenues for the development of anti-periodontal drugs. On a broad scale, our study indicates that the utilization of PGN as a nutrient source, involving exo-lytic N-acetylmuramidases with different modes of action, appears to be a general feature of bacteria, particularly among the phylum Bacteroidetes.
Collapse
|
10
|
Fatani S, Saito Y, Alarawi M, Gojobori T, Mineta K. Genome sequencing and identification of cellulase genes in Bacillus paralicheniformis strains from the Red Sea. BMC Microbiol 2021; 21:254. [PMID: 34548024 PMCID: PMC8456639 DOI: 10.1186/s12866-021-02316-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background Cellulolytic microorganisms are considered a key player in the degradation of plant biomass in various environments. These microorganisms can be isolated from various environments, such as soils, the insect gut, the mammalian rumen and oceans. The Red Sea exhibits a unique environment in terms of presenting a high seawater temperature, high salinity, low nutrient levels and high biodiversity. However, there is little information regarding cellulase genes in the Red Sea environment. This study aimed to examine whether the Red Sea can be a resource for the bioprospecting of microbial cellulases by isolating cellulase-producing microorganisms from the Red Sea environment and characterizing cellulase genes. Results Three bacterial strains were successfully isolated from the plankton fraction and the surface of seagrass. The isolated strains were identified as Bacillus paralicheniformis and showed strong cellulase activity. These results suggested that these three isolates secreted active cellulases. By whole genome sequencing, we found 10 cellulase genes from the three isolates. We compared the expression of these cellulase genes under cellulase-inducing and non-inducing conditions and found that most of the cellulase genes were generally upregulated during cellulolysis in the isolates. Our operon structure analysis also showed that cellulase genes form operons with genes involved in various kinds of cellular reactions, such as protein metabolism, which suggests the existence of crosstalk between cellulolysis and other metabolic pathways in the bacterial isolates. These results suggest that multiple cellulases are playing important roles in cellulolysis. Conclusions Our study reports the isolation and characterization of cellulase-producing bacteria from the Red Sea. Our whole-genome sequencing classified our three isolates as Bacillus paralicheniformis, and we revealed the presence of ten cellulase orthologues in each of three isolates’ genomes. Our comparative expression analysis also identified that most of the cellulase genes were upregulated under the inducing conditions in general. Although cellulases have been roughly classified into three enzyme groups of beta-glucosidase, endo-β-1,4-glucanase and exoglucanase, these findings suggest the importance to consider microbial cellulolysis as a more complex reaction with various kinds of cellulase enzymes. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02316-w.
Collapse
Affiliation(s)
- Siham Fatani
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yoshimoto Saito
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Open Innovation Institute (MaOI), Shizuoka, Japan
| | - Mohammed Alarawi
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Takashi Gojobori
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Katsuhiko Mineta
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Walter A, Friz S, Mayer C. Chitin, Chitin Oligosaccharide, and Chitin Disaccharide Metabolism of Escherichia coli Revisited: Reassignment of the Roles of ChiA, ChbR, ChbF, and ChbG. Microb Physiol 2021; 31:178-194. [PMID: 33794535 DOI: 10.1159/000515178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/05/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is unable to grow on polymeric and oligomeric chitin, but grows on chitin disaccharide (GlcNAc-GlcNAc; N,N'-diacetylchitobiose) and chitin trisaccharide (GlcNAc-GlcNAc-GlcNAc; N,N',N''-triacetylchitotriose) via expression of the chb operon (chbBCARFG). The phosphotransferase system (PTS) transporter ChbBCA facilitates transport of both saccharides across the inner membrane and their concomitant phosphorylation at the non-reducing end, intracellularly yielding GlcNAc 6-phosphate-GlcNAc (GlcNAc6P-GlcNAc) and GlcNAc6P-GlcNAc-GlcNAc, respectively. We revisited the intracellular catabolism of the PTS products, thereby correcting the reported functions of the 6-phospho-glycosidase ChbF, the monodeacetylase ChbG, and the transcriptional regulator ChbR. Intracellular accumulation of glucosamine 6P-GlcNAc (GlcN6P-GlcNAc) and GlcN6P-GlcNAc-GlcNAc in a chbF mutant unraveled a role for ChbG as a monodeacetylase that removes the N-acetyl group at the non-reducing end. Consequently, GlcN6P- but not GlcNAc6P-containing saccharides likely function as coactivators of ChbR. Furthermore, ChbF removed the GlcN6P from the non-reducing terminus of the former saccharides, thereby degrading the inducers of the chb operon and facilitating growth on the saccharides. Consequently, ChbF was unable to hydrolyze GlcNAc6P-residues from the non-reducing end, contrary to previous assumptions but in agreement with structural modeling data and with the unusual catalytic mechanism of the family 4 of glycosidases, to which ChbF belongs. We also refuted the assumption that ChiA is a bifunctional endochitinase/lysozyme ChiA, and show that it is unable to degrade peptidoglycans but acts as a bona fide chitinase in vitro and in vivo, enabling growth of E. coli on chitin oligosaccharides when ectopically expressed. Overall, this study revises our understanding of the chitin, chitin oligosaccharide, and chitin disaccharide metabolism of E. coli.
Collapse
Affiliation(s)
- Axel Walter
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Simon Friz
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Organismic Interactions/Glycobiology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
12
|
Müller M, Calvert M, Hottmann I, Kluj RM, Teufel T, Balbuchta K, Engelbrecht A, Selim KA, Xu Q, Borisova M, Titz A, Mayer C. The exo-β-N-acetylmuramidase NamZ from Bacillus subtilis is the founding member of a family of exo-lytic peptidoglycan hexosaminidases. J Biol Chem 2021; 296:100519. [PMID: 33684445 PMCID: PMC8054146 DOI: 10.1016/j.jbc.2021.100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 11/11/2022] Open
Abstract
Endo-β-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the β-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-β-N-acetylmuramidases, which catalyze an exo-lytic cleavage of β-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-β-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl β-MurNAc and the peptidoglycan-derived disaccharide MurNAc-β-1,4-GlcNAc. Together with the exo-β-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.
Collapse
Affiliation(s)
- Maraike Müller
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Matthew Calvert
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Isabel Hottmann
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Robert Maria Kluj
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Tim Teufel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Katja Balbuchta
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alicia Engelbrecht
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Khaled A Selim
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany; Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Center, Giza, Egypt
| | - Qingping Xu
- GM/CA @ APS, Argonne National Laboratory, Lemont, Illinois, USA
| | - Marina Borisova
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig, Germany; Department of Chemistry, Saarland University, Saarbrücken, Germany
| | - Christoph Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
13
|
Mayer VMT, Tomek MB, Figl R, Borisova M, Hottmann I, Blaukopf M, Altmann F, Mayer C, Schäffer C. Utilization of different MurNAc sources by the oral pathogen Tannerella forsythia and role of the inner membrane transporter AmpG. BMC Microbiol 2020; 20:352. [PMID: 33203363 PMCID: PMC7670621 DOI: 10.1186/s12866-020-02006-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The Gram-negative oral pathogen Tannerella forsythia strictly depends on the external supply of the essential bacterial cell wall sugar N-acetylmuramic acid (MurNAc) for survival because of the lack of the common MurNAc biosynthesis enzymes MurA/MurB. The bacterium thrives in a polymicrobial biofilm consortium and, thus, it is plausible that it procures MurNAc from MurNAc-containing peptidoglycan (PGN) fragments (muropeptides) released from cohabiting bacteria during natural PGN turnover or cell death. There is indirect evidence that in T. forsythia, an AmpG-like permease (Tanf_08365) is involved in cytoplasmic muropeptide uptake. In E. coli, AmpG is specific for the import of N-acetylglucosamine (GlcNAc)-anhydroMurNAc(-peptides) which are common PGN turnover products, with the disaccharide portion as a minimal requirement. Currently, it is unclear which natural, complex MurNAc sources T. forsythia can utilize and which role AmpG plays therein. RESULTS We performed a screen of various putative MurNAc sources for T. forsythia mimicking the situation in the natural habitat and compared bacterial growth and cell morphology of the wild-type and a mutant lacking AmpG (T. forsythia ΔampG). We showed that supernatants of the oral biofilm bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and of E. coli ΔampG, as well as isolated PGN and defined PGN fragments obtained after enzymatic digestion, namely GlcNAc-anhydroMurNAc(-peptides) and GlcNAc-MurNAc(-peptides), could sustain growth of T. forsythia wild-type, while T. forsythia ΔampG suffered from growth inhibition. In supernatants of T. forsythia ΔampG, the presence of GlcNAc-anhMurNAc and, unexpectedly, also GlcNAc-MurNAc was revealed by tandem mass spectrometry analysis, indicating that both disaccharides are substrates of AmpG. The importance of AmpG in the utilization of PGN fragments as MurNAc source was substantiated by a significant ampG upregulation in T. forsythia cells cultivated with PGN, as determined by quantitative real-time PCR. Further, our results indicate that PGN-degrading amidase, lytic transglycosylase and muramidase activities in a T. forsythia cell extract are involved in PGN scavenging. CONCLUSION T. forsythia metabolizes intact PGN as well as muropeptides released from various bacteria and the bacterium's inner membrane transporter AmpG is essential for growth on these MurNAc sources, and, contrary to the situation in E. coli, imports both, GlcNAc-anhMurNAc and GlcNAc-MurNAc fragments.
Collapse
Affiliation(s)
- Valentina M T Mayer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Markus B Tomek
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Rudolf Figl
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Marina Borisova
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Isabel Hottmann
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany
| | - Markus Blaukopf
- Department of Chemistry, Institute of Organic Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Department of Biology, Eberhard Karls Universität Tübingen, Microbiology/Glycobiology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Tübingen, Germany.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria.
| |
Collapse
|
14
|
Helian Y, Gai Y, Fang H, Sun Y, Zhang D. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris. J Ind Microbiol Biotechnol 2020; 47:1161-1172. [PMID: 32935229 DOI: 10.1007/s10295-020-02311-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/07/2020] [Indexed: 01/26/2023]
Abstract
Phytase is an additive in animal feed that degrades phytic acid in plant material, reducing feeding costs, and pollution from fecal phosphorus excretion. A multistrategy approach was adopted to improve the expression of E. coli phytase in Pichia pastoris. We determined that the most suitable signal peptide for phytase secretion was an α-factor secretion signal with an initial enzyme activity of 153.51 U/mL. Increasing the copy number of this gene to four increased phytase enzyme activity by 234.35%. PDI overexpression and Pep4 gene knockout increased extracellular phytase production by 35.33% and 26.64%, respectively. By combining favorable factors affecting phytase expression and secretion, the enzyme activity of the phytase-engineered strain was amplified 384.60% compared with that of the original strain. We also evaluated the potential for the industrial production of the engineered strain using a 50-L fed-batch fermenter and achieved a total activity of 30,246 U/mL after 180 h of fermentation.
Collapse
Affiliation(s)
- Yuankun Helian
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi, Dalian, 116034, Liaoning, People's Republic of China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yuanming Gai
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Huan Fang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi, Dalian, 116034, Liaoning, People's Republic of China.
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China. .,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
15
|
Characterization and diversity of the complete set of GH family 3 enzymes from Rhodothermus marinus DSM 4253. Sci Rep 2020; 10:1329. [PMID: 31992772 PMCID: PMC6987092 DOI: 10.1038/s41598-020-58015-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
The genome of Rhodothermus marinus DSM 4253 encodes six glycoside hydrolases (GH) classified under GH family 3 (GH3): RmBgl3A, RmBgl3B, RmBgl3C, RmXyl3A, RmXyl3B and RmNag3. The biochemical function, modelled 3D-structure, gene cluster and evolutionary relationships of each of these enzymes were studied. The six enzymes were clustered into three major evolutionary lineages of GH3: β-N-acetyl-glucosaminidases, β-1,4-glucosidases/β-xylosidases and macrolide β-glucosidases. The RmNag3 with additional β-lactamase domain clustered with the deepest rooted GH3-lineage of β-N-acetyl-glucosaminidases and was active on acetyl-chitooligosaccharides. RmBgl3B displayed β-1,4-glucosidase activity and was the only representative of the lineage clustered with macrolide β-glucosidases from Actinomycetes. The β-xylosidases, RmXyl3A and RmXyl3B, and the β-glucosidases RmBgl3A and RmBgl3C clustered within the major β-glucosidases/β-xylosidases evolutionary lineage. RmXyl3A and RmXyl3B showed β-xylosidase activity with different specificities for para-nitrophenyl (pNP)-linked substrates and xylooligosaccharides. RmBgl3A displayed β-1,4-glucosidase/β-xylosidase activity while RmBgl3C was active on pNP-β-Glc and β-1,3-1,4-linked glucosyl disaccharides. Putative polysaccharide utilization gene clusters were also investigated for both R. marinus DSM 4253 and DSM 4252T (homolog strain). The analysis showed that in the homolog strain DSM 4252TRmar_1080 (RmXyl3A) and Rmar_1081 (RmXyl3B) are parts of a putative polysaccharide utilization locus (PUL) for xylan utilization.
Collapse
|
16
|
Itoh T, Araki T, Nishiyama T, Hibi T, Kimoto H. Structural and functional characterization of a glycoside hydrolase family 3 β-N-acetylglucosaminidase from Paenibacillus sp. str. FPU-7. J Biochem 2019; 166:503-515. [DOI: 10.1093/jb/mvz072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/11/2019] [Indexed: 11/14/2022] Open
Abstract
AbstractChitin, a β-1,4-linked homopolysaccharide of N-acetyl-d-glucosamine (GlcNAc), is one of the most abundant biopolymers on Earth. Paenibacillus sp. str. FPU-7 produces several different chitinases and converts chitin into N,N′-diacetylchitobiose ((GlcNAc)2) in the culture medium. However, the mechanism by which the Paenibacillus species imports (GlcNAc)2 into the cytoplasm and divides it into the monomer GlcNAc remains unclear. The gene encoding Paenibacillus β-N-acetyl-d-glucosaminidase (PsNagA) was identified in the Paenibacillus sp. str. FPU-7 genome using an expression cloning system. The deduced amino acid sequence of PsNagA suggests that the enzyme is a part of the glycoside hydrolase family 3 (GH3). Recombinant PsNagA was successfully overexpressed in Escherichia coli and purified to homogeneity. As assessed by gel permeation chromatography, the enzyme exists as a 57-kDa monomer. PsNagA specifically hydrolyses chitin oligosaccharides, (GlcNAc)2–4, 4-nitrophenyl N-acetyl β-d-glucosamine (pNP-GlcNAc) and pNP-(GlcNAc)2–6, but has no detectable activity against 4-nitrophenyl β-d-glucose, 4-nitrophenyl β-d-galactosamine and colloidal chitin. In this study, we present a 1.9 Å crystal structure of PsNagA bound to GlcNAc. The crystal structure reveals structural features related to substrate recognition and the catalytic mechanism of PsNagA. This is the first study on the structural and functional characterization of a GH3 β-N-acetyl-d-glucosaminidase from Paenibacillus sp.
Collapse
Affiliation(s)
- Takafumi Itoh
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomomitsu Araki
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Tomohiro Nishiyama
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Takao Hibi
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Hisashi Kimoto
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| |
Collapse
|
17
|
Mayer VMT, Hottmann I, Figl R, Altmann F, Mayer C, Schäffer C. Peptidoglycan-type analysis of the N-acetylmuramic acid auxotrophic oral pathogen Tannerella forsythia and reclassification of the peptidoglycan-type of Porphyromonas gingivalis. BMC Microbiol 2019; 19:200. [PMID: 31477019 PMCID: PMC6721243 DOI: 10.1186/s12866-019-1575-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Tannerella forsythia is a Gram-negative oral pathogen. Together with Porphyromonas gingivalis and Treponema denticola it constitutes the "red complex" of bacteria, which is crucially associated with periodontitis, an inflammatory disease of the tooth supporting tissues that poses a health burden worldwide. Due to the absence of common peptidoglycan biosynthesis genes, the unique bacterial cell wall sugar N-acetylmuramic acid (MurNAc) is an essential growth factor of T. forsythia to build up its peptidoglycan cell wall. Peptidoglycan is typically composed of a glycan backbone of alternating N-acetylglucosamine (GlcNAc) and MurNAc residues that terminates with anhydroMurNAc (anhMurNAc), and short peptides via which the sugar backbones are cross-linked to build up a bag-shaped network. RESULTS We investigated T. forsythia's peptidoglycan structure, which is an essential step towards anti-infective strategies against this pathogen. A new sensitive radioassay was developed which verified the presence of MurNAc and anhMurNAc in the cell wall of the bacterium. Upon digest of isolated peptidoglycan with endo-N-acetylmuramidase, exo-N-acetylglucosaminidase and muramyl-L-alanine amidase, respectively, peptidoglycan fragments were obtained. HPLC and mass spectrometry (MS) analyses revealed the presence of GlcNAc-MurNAc-peptides and the cross-linked dimer with retention-times and masses, respectively, equalling those of control digests of Escherichia coli and P. gingivalis peptidoglycan. Data were confirmed by tandem mass spectrometry (MS2) analysis, revealing the GlcNAc-MurNAc-tetra-tetra-MurNAc-GlcNAc dimer to contain the sequence of the amino acids alanine, glutamic acid, diaminopimelic acid (DAP) and alanine, as well as a direct cross-link between DAP on the third and alanine on the fourth position of the two opposite stem peptides. The stereochemistry of DAP was determined by reversed-phase HPLC after dabsylation of hydrolysed peptidoglycan to be of the meso-type. CONCLUSION T. forsythia peptidoglycan is of the A1γ-type like that of E. coli. Additionally, the classification of P. gingivalis peptidoglycan as A3γ needs to be revised to A1γ, due to the presence of meso-DAP instead of LL-DAP, as reported previously.
Collapse
Affiliation(s)
- Valentina M T Mayer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria
| | - Isabel Hottmann
- Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany
| | - Rudolf Figl
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, Institute of Biochemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christoph Mayer
- Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität, Tübingen, Germany.
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology unit, Universität für Bodenkultur Wien, Vienna, Austria.
| |
Collapse
|
18
|
Mayer C, Kluj RM, Mühleck M, Walter A, Unsleber S, Hottmann I, Borisova M. Bacteria's different ways to recycle their own cell wall. Int J Med Microbiol 2019; 309:151326. [PMID: 31296364 DOI: 10.1016/j.ijmm.2019.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/28/2019] [Accepted: 06/30/2019] [Indexed: 01/05/2023] Open
Abstract
The ability to recover components of their own cell wall is a common feature of bacteria. This was initially recognized in the Gram-negative bacterium Escherichia coli, which recycles about half of the peptidoglycan of its cell wall during one cell doubling. Moreover, E. coli was shown to grow on peptidoglycan components provided as nutrients. A distinguished recycling enzyme of E. coli required for both, recovery of the cell wall sugar N-acetylmuramic acid (MurNAc) of the own cell wall and for growth on external MurNAc, is the MurNAc 6-phosphate (MurNAc 6P) lactyl ether hydrolase MurQ. We revealed however, that most Gram-negative bacteria lack a murQ ortholog and instead harbor a pathway, absent in E. coli, that channels MurNAc directly to peptidoglycan biosynthesis. This "anabolic recycling pathway" bypasses the initial steps of peptidoglycan de novo synthesis, including the target of the antibiotic fosfomycin, thus providing intrinsic resistance to the antibiotic. The Gram-negative oral pathogen Tannerella forsythia is auxotrophic for MurNAc and apparently depends on the anabolic recycling pathway to synthesize its own cell wall by scavenging cell wall debris of other bacteria. In contrast, Gram-positive bacteria lack the anabolic recycling genes, but mostly contain one or two murQ orthologs. Quantification of MurNAc 6P accumulation in murQ mutant cells by mass spectrometry allowed us to demonstrate for the first time that Gram-positive bacteria do recycle their own peptidoglycan. This had been questioned earlier, since peptidoglycan turnover products accumulate in the spent media of Gram-positives. We showed, that these fragments are recovered during nutrient limitation, which prolongs starvation survival of Bacillus subtilis and Staphylococcus aureus. Peptidoglycan recycling in these bacteria however differs, as the cell wall is either cleaved exhaustively and monosaccharide building blocks are taken up (B. subtilis) or disaccharides are released and recycled involving a novel phosphomuramidase (MupG; S.aureus). In B. subtilis also the teichoic acids, covalently bound to the peptidoglycan (wall teichoic acids; WTAs), are recycled. During phosphate limitation, the sn-glycerol-3-phosphate phosphodiesterase GlpQ specifically degrades WTAs of B. subtilis. In S. aureus, in contrast, GlpQ is used to scavenge external teichoic acid sources. Thus, although bacteria generally recover their own cell wall, they apparently apply distinct strategies for breakdown and reutilization of cell wall fragments. This review summarizes our work on this topic funded between 2011 and 2019 by the DFG within the collaborative research center SFB766.
Collapse
Affiliation(s)
- Christoph Mayer
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| | - Robert Maria Kluj
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Maraike Mühleck
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Axel Walter
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Sandra Unsleber
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Isabel Hottmann
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Marina Borisova
- Mikrobiologie/Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin Tübingen (IMIT), Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
19
|
Zhang R, Xu S, Li X, Han X, Song Z, Zhou J, Huang Z. Examining the molecular characteristics of glycoside hydrolase family 20 β-N-acetylglucosaminidases with high activity. Bioengineered 2019; 10:71-77. [PMID: 30982422 PMCID: PMC6527067 DOI: 10.1080/21655979.2019.1602427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) possess many important biological functions and are used for promising applications that are often hampered by low-activity enzymes. We previously demonstrated that most GlcNAcases of the glycoside hydrolase (GH) family 20 showed higher activities than those of other GH families, and we presented two novel GH 20 GlcNAcases that showed higher activities than most GlcNAcases. A highly flexible structure, which was attributed to the presence of to a high proportion of random coils and flexible amino acid residues, was presumed to be a factor in the high activity of GH 20 GlcNAcases. In this study, we further hypothesized that two special positions might play a key role in catalytic activity. The increase in GH 20 GlcNAcase activity might correspond to the increased structural flexibility and substrate affinity of the two positions due to an increase in random coils and amino acid residues, notably acidic Asp and Glu.
Collapse
Affiliation(s)
- Rui Zhang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Shujing Xu
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xinyue Li
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Xiaowei Han
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Zhifeng Song
- b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China
| | - Junpei Zhou
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| | - Zunxi Huang
- a Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education , Yunnan Normal University , Kunming , P. R. China.,b College of Life Sciences , Yunnan Normal University , Kunming , P. R. China.,c Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment , Yunnan , Kunming , P. R. China.,d Key Laboratory of Enzyme Engineering , Yunnan Normal University , Kunming , P. R. China
| |
Collapse
|
20
|
Irazoki O, Hernandez SB, Cava F. Peptidoglycan Muropeptides: Release, Perception, and Functions as Signaling Molecules. Front Microbiol 2019; 10:500. [PMID: 30984120 PMCID: PMC6448482 DOI: 10.3389/fmicb.2019.00500] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/27/2019] [Indexed: 12/12/2022] Open
Abstract
Peptidoglycan (PG) is an essential molecule for the survival of bacteria, and thus, its biosynthesis and remodeling have always been in the spotlight when it comes to the development of antibiotics. The peptidoglycan polymer provides a protective function in bacteria, but at the same time is continuously subjected to editing activities that in some cases lead to the release of peptidoglycan fragments (i.e., muropeptides) to the environment. Several soluble muropeptides have been reported to work as signaling molecules. In this review, we summarize the mechanisms involved in muropeptide release (PG breakdown and PG recycling) and describe the known PG-receptor proteins responsible for PG sensing. Furthermore, we overview the role of muropeptides as signaling molecules, focusing on the microbial responses and their functions in the host beyond their immunostimulatory activity.
Collapse
Affiliation(s)
| | | | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Lonergan ZR, Nairn BL, Wang J, Hsu YP, Hesse LE, Beavers WN, Chazin WJ, Trinidad JC, VanNieuwenhze MS, Giedroc DP, Skaar EP. An Acinetobacter baumannii, Zinc-Regulated Peptidase Maintains Cell Wall Integrity during Immune-Mediated Nutrient Sequestration. Cell Rep 2019; 26:2009-2018.e6. [PMID: 30784584 PMCID: PMC6441547 DOI: 10.1016/j.celrep.2019.01.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/10/2023] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen capable of causing wound infections, pneumonia, and bacteremia. During infection, A. baumannii must acquire Zn to survive and colonize the host. Vertebrates have evolved mechanisms to sequester Zn from invading pathogens by a process termed nutritional immunity. One of the most upregulated genes during Zn starvation encodes a putative cell wall-modifying enzyme which we named ZrlA. We found that inactivation of zrlA diminished growth of A. baumannii during Zn starvation. Additionally, this mutant strain displays increased cell envelope permeability, decreased membrane barrier function, and aberrant peptidoglycan muropeptide abundances. This altered envelope increases antibiotic efficacy both in vitro and in an animal model of A. baumannii pneumonia. These results establish ZrlA as a crucial link between nutrient metal uptake and cell envelope homeostasis during A. baumannii pathogenesis, which could be targeted for therapeutic development.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Brittany L Nairn
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jiefei Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Laura E Hesse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William N Beavers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter J Chazin
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, USA; Laboratory for Biological Mass Spectrometry, Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Michael S VanNieuwenhze
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - David P Giedroc
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Jiang S, Jiang H, Zhou Y, Jiang S, Zhang G. High-level expression of β-N-Acetylglucosaminidase BsNagZ in Pichia pastoris to obtain GlcNAc. Bioprocess Biosyst Eng 2019; 42:611-619. [DOI: 10.1007/s00449-018-02067-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 12/21/2018] [Indexed: 01/11/2023]
|
23
|
Ankati S, Rani TS, Podile AR. Partner-triggered proteome changes in the cell wall of Bacillus sonorensis and roots of groundnut benefit each other. Microbiol Res 2018; 217:91-100. [DOI: 10.1016/j.micres.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/02/2018] [Accepted: 10/06/2018] [Indexed: 01/01/2023]
|
24
|
Kluj RM, Ebner P, Adamek M, Ziemert N, Mayer C, Borisova M. Recovery of the Peptidoglycan Turnover Product Released by the Autolysin Atl in Staphylococcus aureus Involves the Phosphotransferase System Transporter MurP and the Novel 6-phospho- N-acetylmuramidase MupG. Front Microbiol 2018; 9:2725. [PMID: 30524387 PMCID: PMC6262408 DOI: 10.3389/fmicb.2018.02725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/24/2018] [Indexed: 11/29/2022] Open
Abstract
The peptidoglycan of the bacterial cell wall undergoes a permanent turnover during cell growth and differentiation. In the Gram-positive pathogen Staphylococcus aureus, the major peptidoglycan hydrolase Atl is required for accurate cell division, daughter cell separation and autolysis. Atl is a bifunctional N-acetylmuramoyl-L-alanine amidase/endo-β-N-acetylglucosaminidase that releases peptides and the disaccharide N-acetylmuramic acid-β-1,4-N-acetylglucosamine (MurNAc-GlcNAc) from the peptido-glycan. Here we revealed the recycling pathway of the cell wall turnover product MurNAc-GlcNAc in S. aureus. The latter disaccharide is internalized and concomitantly phosphorylated by the phosphotransferase system (PTS) transporter MurP, which had been implicated previously in the uptake and phosphorylation of MurNAc. Since MurP mutant cells accumulate MurNAc-GlcNAc and not MurNAc in the culture medium during growth, the disaccharide represents the physiological substrate of the PTS transporter. We further identified and characterized a novel 6-phospho-N-acetylmuramidase, named MupG, which intracellularly hydrolyses MurNAc 6-phosphate-GlcNAc, the product of MurP-uptake and phosphorylation, yielding MurNAc 6-phosphate and GlcNAc. MupG is the first characterized representative of a novel family of glycosidases containing domain of unknown function 871 (DUF871). The corresponding gene mupG (SAUSA300_0192) of S. aureus strain USA300 is the first gene within a putative operon that also includes genes encoding the MurNAc 6-phosphate etherase MurQ, MurP, and the putative transcriptional regulator MurR. Using mass spectrometry, we observed cytoplasmic accumulation of MurNAc 6-phosphate-GlcNAc in ΔmupG and ΔmupGmurQ markerless non-polar deletion mutants, but not in the wild type or in the complemented ΔmupG strain. MurNAc 6-phosphate-GlcNAc levels in the mutants increased during stationary phase, in accordance with previous observations regarding peptidoglycan recycling in S. aureus.
Collapse
Affiliation(s)
- Robert Maria Kluj
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Martina Adamek
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Nadine Ziemert
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Marina Borisova
- Microbiology/Biotechnology, Department of Biology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Lebre PH, Aliyu H, De Maayer P, Cowan DA. In silico characterization of the global Geobacillus and Parageobacillus secretome. Microb Cell Fact 2018; 17:156. [PMID: 30285747 PMCID: PMC6171300 DOI: 10.1186/s12934-018-1005-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Geobacillus and Parageobacillus are two ecologically diverse thermophilic genera within the phylum Firmicutes. These taxa have long been of biotechnological interest due to their ability to secrete thermostable enzymes and other biomolecules that have direct applications in various industrial and clinical fields. Despite the commercial and industrial interest in these microorganisms, the full scope of the secreted protein, i.e. the secretome, of Geobacillus and Parageobacillus species remains largely unexplored, with most studies focusing on single enzymes. A genome-wide exploration of the global secretome can provide a platform for understanding the extracellular functional “protein cloud” and the roles that secreted proteins play in the survival and adaptation of these biotechnologically relevant organisms. Results In the present study, the global secretion profile of 64 Geobacillus and Parageobacillus strains, comprising 772 distinct proteins, was predicted using comparative genomic approaches. Thirty-one of these proteins are shared across all strains used in this study and function in cell-wall/membrane biogenesis as well as transport and metabolism of carbohydrates, amino acids and inorganic ions. An analysis of the clustering patterns of the secretomes of the 64 strains according to shared functional orthology revealed a correlation between the secreted profiles of different strains and their phylogeny, with Geobacillus and Parageobacillus species forming two distinct functional clades. Conclusions The in silico characterization of the global secretome revealed a metabolically diverse set of secreted proteins, which include proteases, glycoside hydrolases, nutrient binding proteins and toxins. Electronic supplementary material The online version of this article (10.1186/s12934-018-1005-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Habibu Aliyu
- Technical Biology, Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Pieter De Maayer
- School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
26
|
Ruscitto A, Sharma A. Peptidoglycan synthesis in Tannerella forsythia: Scavenging is the modus operandi. Mol Oral Microbiol 2018; 33:125-132. [PMID: 29247483 DOI: 10.1111/omi.12210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2017] [Indexed: 01/05/2023]
Abstract
Tannerella forsythia is a Gram-negative oral pathogen strongly associated with periodontitis. This bacterium has an absolute requirement for exogenous N-acetylmuramic acid (MurNAc), an amino sugar that forms the repeating disaccharide unit with amino sugar N-acetylglucosamine (GlcNAc) of the peptidoglycan backbone. In silico genome analysis indicates that T. forsythia lacks the key biosynthetic enzymes needed for the de novo synthesis of MurNAc, and so relies on alternative ways to meet its requirement for peptidoglycan biosynthesis. In the subgingival niche, the bacterium can acquire MurNAc and peptidoglycan fragments (muropeptides) released by the cohabiting bacteria during their cell wall breakdown associated with cell division. Tannerella forsythia is able to also use host sialic acid (Neu5Ac) in lieu of MurNAc or muropeptides for its survival during the biofilm growth. Evidence suggests that the bacterium might be able to shunt sialic acid into a metabolic pathway leading to peptidoglycan synthesis. In this review, we explore the mechanisms by which T. forsythia is able to scavenge MurNAc, muropeptide and sialic acid for its peptidoglycan synthesis, and the impact of these scavenging activities on pathogenesis.
Collapse
Affiliation(s)
| | - A Sharma
- Department of Oral Biology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
27
|
Abstract
Most bacteria break down a significant portion of their cell wall peptidoglycan during each round of growth and cell division. This process generates peptidoglycan fragments of various sizes that can either be imported back into the cytoplasm for recycling or released from the cell. Released fragments have been shown to act as microbe-associated molecular patterns for the initiation of immune responses, as triggers for the initiation of mutualistic host-microbe relationships, and as signals for cell-cell communication in bacteria. Characterizing these released peptidoglycan fragments can, therefore, be considered an important step in understanding how microbes communicate with other organisms in their environments. In this chapter, we describe methods for labeling cell wall peptidoglycan, calculating the rate at which peptidoglycan is turned over, and collecting released peptidoglycan to determine the abundance and species of released fragments. Methods are described for both the separation of peptidoglycan fragments by size-exclusion chromatography and further detailed analysis by HPLC.
Collapse
|
28
|
Enzymatic properties of β-N-acetylglucosaminidases. Appl Microbiol Biotechnol 2017; 102:93-103. [PMID: 29143882 DOI: 10.1007/s00253-017-8624-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 01/27/2023]
Abstract
β-N-Acetylglucosaminidases (GlcNAcases) hydrolyse N-acetylglucosamine-containing oligosaccharides and proteins. These enzymes produce N-acetylglucosamine (GlcNAc) and have a wide range of promising applications in the food, energy, and pharmaceutical industries, such as synergistic degradation of chitin with endo-chitinases and using GlcNAc to produce sialic acid, bioethanol, single-cell proteins, and pharmaceutical therapeutics. GlcNAcases also play an important role in the dynamic balance of cellular O-linked GlcNAc levels, catabolism of ganglioside storage in Tay-Sachs disease, and bacterial cell wall recycling and flagellar assembly. In view of these important biological functions and the wide range of industrial applications of GlcNAcases, this review aims to provide a better understanding of various advances for these enzymes. It focuses on enzymatic properties of GlcNAcases, including substrate specificity, catalytic activity, pH optimum, temperature optimum, thermostability, the effects of various metal ions and organic reagents, and transglycosylation.
Collapse
|
29
|
Borisova M, Mayer C. Analysis of N-acetylmuramic acid-6-phosphate (MurNAc-6P) Accumulation by HPLC-MS. Bio Protoc 2017; 7:e2420. [PMID: 34541148 DOI: 10.21769/bioprotoc.2420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 11/02/2022] Open
Abstract
We describe here in detail a high-performance liquid chromatography-mass spectrometry (HPLC-MS)-based method to determine N-acetylmuramic acid-6-phosphate (MurNAc-6P) in bacterial cell extracts. The method can be applied to both Gram-negative and Gram-positive bacteria, and as an example we use Escherichia coli cells in this study. Wild type and mutant cells are grown for a defined time in a medium of choice and harvested by centrifugation. Then the cells are disintegrated and soluble cell extracts are generated. After removal of proteins by precipitation with acetone, the extracts are analyzed by HPLC-MS. Base peak chromatograms of wild type and mutant cell extracts are used to determine a differential ion spectrum that reveals differences in the MurNAc-6P content of the two samples. Determination of peak areas of extracted chromatograms of MurNAc-6P ((M-H)- = 372.070 m/z in negative ion mode) allows quantifying MurNAc-6P levels, that are used to calculate recycling rates of the MurNAc-content of peptidoglycan.
Collapse
Affiliation(s)
- Marina Borisova
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christoph Mayer
- Department of Microbiology and Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
30
|
Dik DA, Marous DR, Fisher JF, Mobashery S. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit Rev Biochem Mol Biol 2017. [PMID: 28644060 DOI: 10.1080/10409238.2017.1337705] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lytic transglycosylases (LTs) are bacterial enzymes that catalyze the non-hydrolytic cleavage of the peptidoglycan structures of the bacterial cell wall. They are not catalysts of glycan synthesis as might be surmised from their name. Notwithstanding the seemingly mundane reaction catalyzed by the LTs, their lytic reactions serve bacteria for a series of astonishingly diverse purposes. These purposes include cell-wall synthesis, remodeling, and degradation; for the detection of cell-wall-acting antibiotics; for the expression of the mechanism of cell-wall-acting antibiotics; for the insertion of secretion systems and flagellar assemblies into the cell wall; as a virulence mechanism during infection by certain Gram-negative bacteria; and in the sporulation and germination of Gram-positive spores. Significant advances in the mechanistic understanding of each of these processes have coincided with the successive discovery of new LTs structures. In this review, we provide a systematic perspective on what is known on the structure-function correlations for the LTs, while simultaneously identifying numerous opportunities for the future study of these enigmatic enzymes.
Collapse
Affiliation(s)
- David A Dik
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Daniel R Marous
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Jed F Fisher
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| | - Shahriar Mobashery
- a Department of Chemistry and Biochemistry , University of Notre Dame , Notre Dame , IN , USA
| |
Collapse
|
31
|
Ezeilo UR, Zakaria II, Huyop F, Wahab RA. Enzymatic breakdown of lignocellulosic biomass: the role of glycosyl hydrolases and lytic polysaccharide monooxygenases. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1330124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
32
|
Zhou J, Song Z, Zhang R, Liu R, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Distinctive molecular and biochemical characteristics of a glycoside hydrolase family 20 β-N-acetylglucosaminidase and salt tolerance. BMC Biotechnol 2017; 17:37. [PMID: 28399848 PMCID: PMC5387316 DOI: 10.1186/s12896-017-0358-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/04/2017] [Indexed: 12/05/2022] Open
Abstract
Background Enzymatic degradation of chitin has attracted substantial attention because chitin is an abundant renewable natural resource, second only to lignocellulose, and because of the promising applications of N-acetylglucosamine in the bioethanol, food and pharmaceutical industries. However, the low activity and poor tolerance to salts and N-acetylglucosamine of most reported β-N-acetylglucosaminidases limit their applications. Mining for novel enzymes from new microorganisms is one way to address this problem. Results A glycoside hydrolase family 20 (GH 20) β-N-acetylglucosaminidase (GlcNAcase) was identified from Microbacterium sp. HJ5 harboured in the saline soil of an abandoned salt mine and was expressed in Escherichia coli. The purified recombinant enzyme showed specific activities of 1773.1 ± 1.1 and 481.4 ± 2.3 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and N,N'-diacetyl chitobiose, respectively, a Vmax of 3097 ± 124 μmol min−1 mg−1 towards p-nitrophenyl β-N-acetylglucosaminide and a Ki of 14.59 mM for N-acetylglucosamine inhibition. Most metal ions and chemical reagents at final concentrations of 1.0 and 10.0 mM or 0.5 and 1.0% (v/v) had little or no effect (retaining 84.5 − 131.5% activity) on the enzyme activity. The enzyme can retain more than 53.6% activity and good stability in 3.0–20.0% (w/v) NaCl. Compared with most GlcNAcases, the activity of the enzyme is considerably higher and the tolerance to salts and N-acetylglucosamine is much better. Furthermore, the enzyme had higher proportions of aspartic acid, glutamic acid, alanine, glycine, random coils and negatively charged surfaces but lower proportions of cysteine, lysine, α-helices and positively charged surfaces than its homologs. These molecular characteristics were hypothesised as potential factors in the adaptation for salt tolerance and high activity of the GH 20 GlcNAcase. Conclusions Biochemical characterization revealed that the GlcNAcase had novel salt–GlcNAc tolerance and high activity. These characteristics suggest that the enzyme has versatile potential in biotechnological applications, such as bioconversion of chitin waste and the processing of marine materials and saline foods. Molecular characterization provided an understanding of the molecular–function relationships for the salt tolerance and high activity of the GH 20 GlcNAcase. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0358-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junpei Zhou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zhifeng Song
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Rui Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Rui Liu
- College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junjun Li
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Xianghua Tang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Bo Xu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Junmei Ding
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China.,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, 650500, People's Republic of China. .,College of Life Sciences, Yunnan Normal University, No. 768 Juxian Street, Chenggong, Kunming, Yunnan, 650500, People's Republic of China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan, Kunming, 650500, People's Republic of China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, 650500, People's Republic of China.
| |
Collapse
|
33
|
Abstract
Peptidoglycan recycling is a metabolic process by which Gram-negative bacteria reutilize up to half of their cell wall within one generation during vegetative growth. Whether peptidoglycan recycling also occurs in Gram-positive bacteria has so far remained unclear. We show here that three Gram-positive model organisms, Staphylococcus aureus, Bacillus subtilis, and Streptomyces coelicolor, all recycle the sugar N-acetylmuramic acid (MurNAc) of their peptidoglycan during growth in rich medium. They possess MurNAc-6-phosphate (MurNAc-6P) etherase (MurQ in E. coli) enzymes, which are responsible for the intracellular conversion of MurNAc-6P to N-acetylglucosamine-6-phosphate and d-lactate. By applying mass spectrometry, we observed accumulation of MurNAc-6P in MurNAc-6P etherase deletion mutants but not in either the isogenic parental strains or complemented strains, suggesting that MurQ orthologs are required for the recycling of cell wall-derived MurNAc in these bacteria. Quantification of MurNAc-6P in ΔmurQ cells of S. aureus and B. subtilis revealed small amounts during exponential growth phase (0.19 nmol and 0.03 nmol, respectively, per ml of cells at an optical density at 600 nm [OD600] of 1) but large amounts during transition (0.56 nmol and 0.52 nmol) and stationary (0.53 nmol and 1.36 nmol) phases. The addition of MurNAc to ΔmurQ cultures greatly increased the levels of intracellular MurNAc-6P in all growth phases. The ΔmurQ mutants of S. aureus and B. subtilis showed no growth deficiency in rich medium compared to the growth of the respective parental strains, but intriguingly, they had a severe survival disadvantage in late stationary phase. Thus, although peptidoglycan recycling is apparently not essential for the growth of Gram-positive bacteria, it provides a benefit for long-term survival. IMPORTANCE The peptidoglycan of the bacterial cell wall is turned over steadily during growth. As peptidoglycan fragments were found in large amounts in spent medium of exponentially growing Gram-positive bacteria, their ability to recycle these fragments has been questioned. We conclusively showed recycling of the peptidoglycan component MurNAc in different Gram-positive model organisms and revealed that a MurNAc-6P etherase (MurQ or MurQ ortholog) enzyme is required in this process. We further demonstrated that recycling occurs predominantly during the transition to stationary phase in S. aureus and B. subtilis, explaining why peptidoglycan fragments are found in the medium during exponential growth. We quantified the intracellular accumulation of recycling products in MurNAc-6P etherase gene mutants, revealing that about 5% and 10% of the MurNAc of the cell wall per generation is recycled in S. aureus and B. subtilis, respectively. Importantly, we showed that MurNAc recycling and salvaging does not sustain growth in these bacteria but is used to enhance survival during late stationary phase.
Collapse
|
34
|
Su C, Lu Y, Liu H. N-acetylglucosamine sensing by a GCN5-related N-acetyltransferase induces transcription via chromatin histone acetylation in fungi. Nat Commun 2016; 7:12916. [PMID: 27694804 PMCID: PMC5063960 DOI: 10.1038/ncomms12916] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 08/16/2016] [Indexed: 12/11/2022] Open
Abstract
N-acetylglucosamine (GlcNAc) exists ubiquitously as a component of the surface on a wide range of cells, from bacteria to humans. Many fungi are able to utilize environmental GlcNAc to support growth and induce cellular development, a property important for their survival in various host niches. However, how the GlcNAc signal is sensed and subsequently transduced is largely unknown. Here, we identify a gene that is essential for GlcNAc signalling (NGS1) in Candida albicans, a commensal and pathogenic yeast of humans. Ngs1 can bind GlcNAc through the N-terminal β-N-acetylglucosaminidase homology domain. This binding activates N-acetyltransferase activity in the C-terminal GCN5-related N-acetyltransferase domain, which is required for GlcNAc-induced promoter histone acetylation and transcription. Ngs1 is targeted to the promoters of GlcNAc-inducible genes constitutively by the transcription factor Rep1. Ngs1 is conserved in diverse fungi that have GlcNAc catabolic genes. Thus, fungi use Ngs1 as a GlcNAc-sensor and transducer for GlcNAc-induced transcription. Many fungi are able to metabolise environmental N-acetylglucosamine, however the mechanism by which this molecule is sensed is unclear. Su and Lu et al. show that Candida albicans NGS1 fulfils this function by mediating N-acetylglucosamine-dependent histone acetylation at target genes.
Collapse
Affiliation(s)
- Chang Su
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Yang Lu
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| | - Haoping Liu
- Department of Biological Chemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
35
|
Perley-Robertson GE, Yadav AK, Winogrodzki JL, Stubbs KA, Mark BL, Vocadlo DJ. A Fluorescent Transport Assay Enables Studying AmpG Permeases Involved in Peptidoglycan Recycling and Antibiotic Resistance. ACS Chem Biol 2016; 11:2626-35. [PMID: 27442597 DOI: 10.1021/acschembio.6b00552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Inducible AmpC β-lactamases deactivate a broad-spectrum of β-lactam antibiotics and afford antibiotic resistance in many Gram-negative bacteria. The disturbance of peptidoglycan recycling caused by β-lactam antibiotics leads to accumulation of GlcNAc-1,6-anhydroMurNAc-peptides, which are transported by AmpG to the cytoplasm where they are processed into AmpC inducers. AmpG transporters are poorly understood; however, their loss restores susceptibility toward β-lactam antibiotics, highlighting AmpG as a potential target for resistance-attenuating therapeutics. We prepare a GlcNAc-1,6-anhydroMurNAc-fluorophore conjugate and, using live E. coli spheroplasts, quantitatively analyze its transport by AmpG and inhibition of this process by a competing substrate. Further, we use this transport assay to evaluate the function of two AmpG homologues from Pseudomonas aeruginosa and show that P. aeruginosa AmpG (Pa-AmpG) but not AmpP (Pa-AmpP) transports this probe substrate. We corroborate these results by AmpC induction assays with Pa-AmpG and Pa-AmpP. This fluorescent AmpG probe and spheroplast-based transport assay will enable improved understanding of PG recycling and of permeases from the major facilitator superfamily of transport proteins and may aid in identification of AmpG antagonists that combat AmpC-mediated resistance toward β-lactam antibiotics.
Collapse
Affiliation(s)
| | - Anuj K. Yadav
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Judith L. Winogrodzki
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Keith A. Stubbs
- School
of Chemistry and Biochemistry, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Brian L. Mark
- Department
of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David J. Vocadlo
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
36
|
Matano C, Kolkenbrock S, Hamer SN, Sgobba E, Moerschbacher BM, Wendisch VF. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase. BMC Microbiol 2016; 16:177. [PMID: 27492186 PMCID: PMC4974736 DOI: 10.1186/s12866-016-0795-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 07/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Gram-positive Corynebacterium glutamicum and other members of the suborder Corynebacterianeae, which includes mycobacteria, cell elongation and peptidoglycan biosynthesis is mainly due to polar growth. C. glutamicum lacks an uptake system for the peptidoglycan constituent N-acetylglucosamine (GlcNAc), but is able to catabolize GlcNAc-6-phosphate. Due to its importance in white biotechnology and in order to ensure more sustainable processes based on non-food renewables and to reduce feedstock costs, C. glutamicum strains have previously been engineered to produce amino acids from GlcNAc. GlcNAc also is a constituent of chitin, but it is unknown if C. glutamicum possesses chitinolytic enzymes. RESULTS Chitin was shown here not to be growth substrate for C. glutamicum. However, its genome encodes a putative N-acetylglucosaminidase. The nagA 2 gene product was active as β-N-acetylglucosaminidase with 0.27 mM 4-nitrophenyl N,N'-diacetyl-β-D-chitobioside as substrate supporting half-maximal activity. NagA2 was secreted into the culture medium when overproduced with TAT and Sec dependent signal peptides, while it remained cytoplasmic when overproduced without signal peptide. Heterologous expression of exochitinase gene chiB from Serratia marcescens resulted in chitinolytic activity and ChiB secretion was enhanced when a signal peptide from C. glutamicum was used. Colloidal chitin did not support growth of a strain secreting exochitinase ChiB and β-N-acetylglucosaminidase NagA2. CONCLUSIONS C. glutamicum possesses β-N-acetylglucosaminidase. In the wild type, β-N-acetylglucosaminidase activity was too low to be detected. However, overproduction of the enzyme fused to TAT or Sec signal peptides led to secretion of active β-N-acetylglucosaminidase. The finding that concomitant secretion of endogenous NagA2 and exochitinase ChiB from S. marcescens did not entail growth with colloidal chitin as sole or combined carbon source, may indicate the requirement for higher or additional enzyme activities such as processive chitinase or endochitinase activities.
Collapse
Affiliation(s)
- Christian Matano
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.,Present Address: GSK Vaccines S.r.l., Siena, 53100, Italy
| | - Stephan Kolkenbrock
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany.,Present address: altona Diagnostics GmbH, 22767, Hamburg, Germany
| | - Stefanie N Hamer
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany
| | - Elvira Sgobba
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany
| | - Bruno M Moerschbacher
- Institute for Biology and Biotechnology of Plants, WWU Münster University, 48143, Münster, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33501, Bielefeld, Germany.
| |
Collapse
|
37
|
Zhou J, Song Z, Zhang R, Ding L, Wu Q, Li J, Tang X, Xu B, Ding J, Han N, Huang Z. Characterization of a NaCl-tolerant β-N-acetylglucosaminidase from Sphingobacterium sp. HWLB1. Extremophiles 2016; 20:547-57. [DOI: 10.1007/s00792-016-0848-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
38
|
Studer P, Borisova M, Schneider A, Ayala JA, Mayer C, Schuppler M, Loessner MJ, Briers Y. The Absence of a Mature Cell Wall Sacculus in Stable Listeria monocytogenes L-Form Cells Is Independent of Peptidoglycan Synthesis. PLoS One 2016; 11:e0154925. [PMID: 27149671 PMCID: PMC4858229 DOI: 10.1371/journal.pone.0154925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.
Collapse
Affiliation(s)
- Patrick Studer
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Marina Borisova
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Alexander Schneider
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Juan A. Ayala
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Christoph Mayer
- Department of Microbiology/Biotechnology, University of Tuebingen, Tuebingen, Germany
| | - Markus Schuppler
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yves Briers
- Institute for Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
- Department of Applied Biosciences, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
39
|
Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. J Bacteriol 2015; 197:3472-85. [PMID: 26303829 DOI: 10.1128/jb.00541-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/15/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We determined whether there is turnover of the peptidoglycan (PG) cell wall of the ovococcus bacterial pathogen Streptococcus pneumoniae (pneumococcus). Pulse-chase experiments on serotype 2 strain D39 radiolabeled with N-acetylglucosamine revealed little turnover and release of PG breakdown products during growth compared to published reports of PG turnover in Bacillus subtilis. PG dynamics were visualized directly by long-pulse-chase-new-labeling experiments using two colors of fluorescent d-amino acid (FDAA) probes to microscopically detect regions of new PG synthesis. Consistent with minimal PG turnover, hemispherical regions of stable "old" PG persisted in D39 and TIGR4 (serotype 4) cells grown in rich brain heart infusion broth, in D39 cells grown in chemically defined medium containing glucose or galactose as the carbon source, and in D39 cells grown as biofilms on a layer of fixed human epithelial cells. In contrast, B. subtilis exhibited rapid sidewall PG turnover in similar FDAA-labeling experiments. High-performance liquid chromatography (HPLC) analysis of biochemically released peptides from S. pneumoniae PG validated that FDAAs incorporated at low levels into pentamer PG peptides and did not change the overall composition of PG peptides. PG dynamics were also visualized in mutants lacking PG hydrolases that mediate PG remodeling, cell separation, or autolysis and in cells lacking the MapZ and DivIVA division regulators. In all cases, hemispheres of stable old PG were maintained. In PG hydrolase mutants exhibiting aberrant division plane placement, FDAA labeling revealed patches of inert PG at turns and bulge points. We conclude that growing S. pneumoniae cells exhibit minimal PG turnover compared to the PG turnover in rod-shaped cells. IMPORTANCE PG cell walls are unique to eubacteria, and many bacterial species turn over and recycle their PG during growth, stress, colonization, and virulence. Consequently, PG breakdown products serve as signals for bacteria to induce antibiotic resistance and as activators of innate immune responses. S. pneumoniae is a commensal bacterium that colonizes the human nasopharynx and opportunistically causes serious respiratory and invasive diseases. The results presented here demonstrate a distinct demarcation between regions of old PG and regions of new PG synthesis and minimal turnover of PG in S. pneumoniae cells growing in culture or in host-relevant biofilms. These findings suggest that S. pneumoniae minimizes the release of PG breakdown products by turnover, which may contribute to evasion of the innate immune system.
Collapse
|
40
|
Plumbridge J. Regulation of the Utilization of Amino Sugars by Escherichia coli and Bacillus subtilis: Same Genes, Different Control. J Mol Microbiol Biotechnol 2015; 25:154-67. [DOI: 10.1159/000369583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amino sugars are dual-purpose compounds in bacteria: they are essential components of the outer wall peptidoglycan (PG) and the outer membrane of Gram-negative bacteria and, in addition, when supplied exogenously their catabolism contributes valuable supplies of energy, carbon and nitrogen to the cell. The enzymes for both the synthesis and degradation of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) are highly conserved but during evolution have become subject to different regulatory regimes. <i>Escherichia coli</i> grows more rapidly using GlcNAc as a carbon source than with GlcN. On the other hand, <i>Bacillus subtilis,</i> but not other <i>Bacilli</i> tested, grows more efficiently on GlcN than GlcNAc. The more rapid growth on this sugar is associated with the presence of a second, GlcN-specific operon, which is unique to this species. A single locus is associated with the genes for catabolism of GlcNAc and GlcN in <i>E. coli,</i> although they enter the cell via different transporters. In <i>E. coli</i> the amino sugar transport and catabolic genes have also been requisitioned as part of the PG recycling process. Although PG recycling likely occurs in <i>B. subtilis,</i> it appears to have different characteristics.
Collapse
|
41
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
42
|
Abdullah MR, Gutiérrez-Fernández J, Pribyl T, Gisch N, Saleh M, Rohde M, Petruschka L, Burchhardt G, Schwudke D, Hermoso JA, Hammerschmidt S. Structure of the pneumococcal l,d-carboxypeptidase DacB and pathophysiological effects of disabled cell wall hydrolases DacA and DacB. Mol Microbiol 2014; 93:1183-206. [PMID: 25060741 DOI: 10.1111/mmi.12729] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/19/2022]
Abstract
Bacterial cell wall hydrolases are essential for peptidoglycan turnover and crucial to preserve cell shape. The d,d-carboxypeptidase DacA and l,d-carboxypeptidase DacB of Streptococcus pneumoniae function in a sequential manner. Here, we determined the structure of the surface-exposed lipoprotein DacB. The crystal structure of DacB, radically different to that of DacA, contains a mononuclear Zn(2+) catalytic centre located in the middle of a large and fully exposed groove. Two different conformations were found presenting a different arrangement of the active site topology. The critical residues for catalysis and substrate specificity were identified. Loss-of-function of DacA and DacB altered the cell shape and this was consistent with a modified peptidoglycan peptide composition in dac mutants. Contrary, an lgt mutant lacking lipoprotein diacylglyceryl transferase activity required for proper lipoprotein maturation retained l,d-carboxypeptidase activity and showed an intact murein sacculus. In addition we demonstrated pathophysiological effects of disabled DacA or DacB activities. Real-time bioimaging of intranasal infected mice indicated a substantial attenuation of ΔdacB and ΔdacAΔdacB pneumococci, while ΔdacA had no significant effect. In addition, uptake of these mutants by professional phagocytes was enhanced, while the adherence to lung epithelial cells was decreased. Thus, structural and functional studies suggest DacA and DacB as optimal drug targets.
Collapse
Affiliation(s)
- Mohammed R Abdullah
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt University of Greifswald, D-17487, Greifswald, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mechanisms of β-lactam killing and resistance in the context of Mycobacterium tuberculosis. J Antibiot (Tokyo) 2014; 67:645-54. [PMID: 25052484 DOI: 10.1038/ja.2014.94] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 04/21/2014] [Accepted: 05/16/2014] [Indexed: 02/07/2023]
Abstract
β-Lactams are one of the most useful classes of antibiotics against many common bacterial pathogens. One exception is Mycobacterium tuberculosis. However, with increasing incidence of multidrug-resistant tuberculosis and a need for new agents to treat it, the use of β-lactams, specifically the combination of carbapenem and clavulanate, is now being revisited. With this attention, comes the need to better understand both the mechanisms of action of β-lactams against M. tuberculosis as well as possible mechanisms of resistance, within the context of what is known about the β-lactam action in other bacteria. M. tuberculosis has two major mechanisms of intrinsic resistance: a highly active β-lactamase and a poorly permeable outer membrane. Within the cell wall, β-lactams bind several enzymes with differing peptidoglycan-synthetic and -lytic functions. The inhibition of these enzymes may lead to cell death through several mechanisms, involving disruption of the balance of synthetic and lethal activities. Currently, all known means of resistance to the β-lactams rely on diminishing the proportion of peptidoglycan-synthetic proteins bound and inhibited by β-lactams, through either exclusion or destruction of the antibiotic, or through replacement or supplementation of target enzymes. In this review, we discuss possible mechanisms for β-lactam activity in M. tuberculosis and the means by which it may acquire resistance, within the context of what is known in other bacterial species.
Collapse
|
44
|
Dworkin J. The medium is the message: interspecies and interkingdom signaling by peptidoglycan and related bacterial glycans. Annu Rev Microbiol 2014; 68:137-54. [PMID: 24847956 DOI: 10.1146/annurev-micro-091213-112844] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptidoglycan serves as a key structure of the bacterial cell by determining cell shape and providing resistance to internal turgor pressure. However, in addition to these essential and well-studied functions, bacterial signaling by peptidoglycan fragments, or muropeptides, has been demonstrated by recent work. Actively growing bacteria release muropeptides as a consequence of cell wall remodeling during elongation and division. Therefore, the presence of muropeptide synthesis is indicative of growth-promoting conditions and may serve as a broadly conserved signal for nongrowing cells to reinitiate growth. In addition, muropeptides serve as signals between bacteria and eukaryotic organisms during both pathogenic and symbiotic interactions. The increasingly appreciated role of the microbiota in metazoan organisms suggests that muropeptide signaling likely has important implications for homeostatic mammalian physiology.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032;
| |
Collapse
|
45
|
Hamer SN, Moerschbacher BM, Kolkenbrock S. Enzymatic sequencing of partially acetylated chitosan oligomers. Carbohydr Res 2014; 392:16-20. [PMID: 24824785 DOI: 10.1016/j.carres.2014.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 11/24/2022]
Abstract
Chitosan oligosaccharides have diverse biological activities with potentially valuable applications, for example, in the fields of medicine and agriculture. These functionalities are thought to depend on their degree of polymerization and acetylation, and possibly on specific patterns of acetylation. Chitosan oligomers with fully defined architecture are difficult to produce, and their complete analysis is demanding. Analysis is typically done using MS or NMR, requiring access to expensive infrastructure, and yielding unequivocal results only in the case of rather small oligomers. We here describe a simple and cost-efficient method for the sequencing of μg amounts of chitosan oligosaccharides which is based on the sequential action of two recombinant glycosidases, namely an exo-β-N-acetylhexosaminidase (GlcNAcase) from Bacillus subtilis 168 and an exo-β-d-glucosaminidase (GlcNase) from Thermococcus kodakarensis KOD1. Starting from the non-reducing end, GlcNAcase and GlcNase specifically remove N-acetyl glucosamine (A) and glucosamine (D) units, respectively. By the sequential addition and removal of these enzymes in an alternating way followed by analysis of the products using high-performance thin-layer chromatography, the sequence of chitosan oligosaccharides can be revealed. Importantly, both enzymes work under identical conditions so that no buffer exchange is required between steps, and the enzyme can be removed conveniently using simple ultra-filtration devices. As proof-of-principle, the method was used to sequence the product of enzymatic deacetylation of chitin pentamer using a recombinant chitin deacetylase from Vibrio cholerae which specifically removes the acetyl group from the second unit next to the non-reducing end of the substrate, yielding mono-deacetylated pentamer with the sequence ADAAA.
Collapse
Affiliation(s)
- Stefanie Nicole Hamer
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Bruno Maria Moerschbacher
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| | - Stephan Kolkenbrock
- Institute of Plant Biology and Biotechnology, Westphalian Wilhelm's-University Münster, Schlossplatz 8, 48143 Münster, Germany.
| |
Collapse
|
46
|
Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV, VanNieuwenhze M, Maurelli AT. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 2013; 506:507-10. [PMID: 24336210 PMCID: PMC3997218 DOI: 10.1038/nature12892] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/21/2013] [Indexed: 12/16/2022]
Abstract
Peptidoglycan (PG), an essential structure in the cell walls of the vast majority of bacteria, is critical for division and maintaining cell shape and hydrostatic pressure. Bacteria comprising the Chlamydiales were thought to be one of the few exceptions. Chlamydia harbour genes for PG biosynthesis and exhibit susceptibility to 'anti-PG' antibiotics, yet attempts to detect PG in any chlamydial species have proven unsuccessful (the 'chlamydial anomaly'). We used a novel approach to metabolically label chlamydial PG using d-amino acid dipeptide probes and click chemistry. Replicating Chlamydia trachomatis were labelled with these probes throughout their biphasic developmental life cycle, and the results of differential probe incorporation experiments conducted in the presence of ampicillin are consistent with the presence of chlamydial PG-modifying enzymes. These findings culminate 50 years of speculation and debate concerning the chlamydial anomaly and are the strongest evidence so far that chlamydial species possess functional PG.
Collapse
Affiliation(s)
- G W Liechti
- 1] Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA [2]
| | - E Kuru
- 1] Interdisciplinary Biochemistry Program, Indiana University, Bloomington, Indiana 47405, USA [2]
| | - E Hall
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - A Kalinda
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Y V Brun
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - M VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - A T Maurelli
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA
| |
Collapse
|
47
|
Fortifying the wall: synthesis, regulation and degradation of bacterial peptidoglycan. Curr Opin Struct Biol 2013; 23:695-703. [DOI: 10.1016/j.sbi.2013.07.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 12/24/2022]
|
48
|
Bacik JP, Whitworth GE, Stubbs KA, Vocadlo DJ, Mark BL. Active site plasticity within the glycoside hydrolase NagZ underlies a dynamic mechanism of substrate distortion. ACTA ACUST UNITED AC 2013. [PMID: 23177201 DOI: 10.1016/j.chembiol.2012.09.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NagZ is a glycoside hydrolase that participates in peptidoglycan (PG) recycling by removing β-N-acetylglucosamine from PG fragments that are excised from the bacterial cell wall during growth. Notably, the products formed by NagZ, 1,6-anhydroMurNAc-peptides, activate β-lactam resistance in many Gram-negative bacteria, making this enzyme of interest as a potential therapeutic target. Crystal structure determinations of NagZ from Salmonella typhimurium and Bacillus subtilis in complex with natural substrate, trapped as a glycosyl-enzyme intermediate, and bound to product, define the reaction coordinate of the NagZ family of enzymes. The structures, combined with kinetic studies, reveal an uncommon degree of structural plasticity within the active site of a glycoside hydrolase, and unveil how NagZ drives substrate distortion using a highly mobile loop that contains a conserved histidine that has been proposed as the general acid/base.
Collapse
Affiliation(s)
- John-Paul Bacik
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | |
Collapse
|
49
|
Abstract
Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC β-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both β-lactamase and β-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of β-lactams in vitro against inducible AmpC β-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.
Collapse
Affiliation(s)
- Jarrod W Johnson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
50
|
|