1
|
Haeberle AL, Greenwood-Quaintance KE, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. Microbiol Spectr 2024; 12:e0056524. [PMID: 38912797 PMCID: PMC11302728 DOI: 10.1128/spectrum.00565-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic-resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at the Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Finally, we evaluated the antibiotic efficacy of these isolates and found strain-specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research. IMPORTANCE Periprosthetic joint infections (PJIs) affect ~1-2% of those who undergo joint replacement surgery. Enterococcus faecalis is a Gram-positive opportunistic pathogen that causes ~10% of PJIs in the United States each year, but our understanding of how and why E. faecalis causes PJIs is limited. E. faecalis infections are typically biofilm-associated and can be difficult to clear with antibiotic therapy. Here, we provide complete genomes for four E. faecalis PJI isolates from the Mayo Clinic. These isolates have strain-specific differences in biofilm formation, aggregation, and antibiotic susceptibility in simulated synovial fluid. These results provide important insight into the genomic and phenotypic features of E. faecalis isolates from PJI.
Collapse
Affiliation(s)
- Amanda L. Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kerryl E. Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Schwarz C, Mathieu J, Laverde Gomez J, Miller MR, Tikhonova M, Hamor C, Alvarez PJJ. Isolation and Characterization of Six Novel Fusobacterium necrophorum Phages. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:63-75. [PMID: 39119211 PMCID: PMC11304844 DOI: 10.1089/phage.2023.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Introduction Fusobacterium necrophorum, a human and animal pathogen, is the primary etiologic agent of bovine liver abscesses and a driving factor for prophylactic antibiotic use in the fed cattle industry. Considering calls to reduce agricultural antibiotic use, we isolated phages capable of killing F. necrophorum as an alternative or complementary biocontrol strategy. Methods Six novel phages (φFN37, φRTG5, φKSUM, φHugo, φPaco, and φBB) were isolated from rumen fluid or ruminal F. necrophorum isolates and subjected to host range testing on both F. necrophorum subspecies. Four F. necrophorum subspecies, necrophorum phages, were tested for cross-resistance and host growth inhibition individually and in pairs. Additionally, genomic sequencing, annotation, and analysis were performed.s. Results Four of six isolated phages were able to form lysogens, although all six contained lysogeny-related genes. φKSUM and φBB, did not form lysogens and were able to infect both subspecies. Four phages could infect F. necrophorum 8L1 (a liver abscess model challenge strain) in vitro. Genomic analysis showed that these phages belong to class Caudoviricetes with genome sizes ranging from 35 kbp to 111 kbp and GC values ranging from 26% to 36% and have extremely limited similarity to other deposited phage genomes infecting Fusobacterium or other genera. Conclusions Although all phages isolated contained sequences bearing similarities to genes implicated in lysogeny, the four selected for use in cocktails showed potential in inhibiting host growth, with several demonstrating promising attributes for biocontrol and therapeutic applications. Phage cocktails that may offer enhanced antibacterial activity were also identified, indicating the potential of some lysogenic phages to be adapted for biocontrol or therapeutic purposes when lytic phages are difficult to obtain.
Collapse
Affiliation(s)
- Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| | | | - Megan R. Miller
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | - Clark Hamor
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Pedro J. J. Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Sentinel Environmental, Houston, Texas, USA
| |
Collapse
|
3
|
Wagner TM, Pöntinen AK, Fenzel CK, Engi D, Janice J, Almeida-Santos AC, Tedim AP, Freitas AR, Peixe L, van Schaik W, Johannessen M, Hegstad K. Interactions between commensal Enterococcus faecium and Enterococcus lactis and clinical isolates of Enterococcus faecium. FEMS MICROBES 2024; 5:xtae009. [PMID: 38606354 PMCID: PMC11008740 DOI: 10.1093/femsmc/xtae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024] Open
Abstract
Enterococcus faecium (Efm) is a versatile pathogen, responsible for multidrug-resistant infections, especially in hospitalized immunocompromised patients. Its population structure has been characterized by diverse clades (A1, A2, and B (reclassified as E. lactis (Ela)), adapted to different environments, and distinguished by their resistomes and virulomes. These features only partially explain the predominance of clade A1 strains in nosocomial infections. We investigated in vitro interaction of 50 clinical isolates (clade A1 Efm) against 75 commensal faecal isolates from healthy humans (25 clade A2 Efm and 50 Ela). Only 36% of the commensal isolates inhibited clinical isolates, while 76% of the clinical isolates inhibited commensal isolates. The most apparent overall differences in inhibition patterns were presented between clades. The inhibitory activity was mainly mediated by secreted, proteinaceous, heat-stable compounds, likely indicating an involvement of bacteriocins. A custom-made database targeting 76 Bacillota bacteriocins was used to reveal bacteriocins in the genomes. Our systematic screening of the interactions between nosocomial and commensal Efm and Ela on a large scale suggests that, in a clinical setting, nosocomial strains not only have an advantage over commensal strains due to their possession of AMR genes, virulence factors, and resilience but also inhibit the growth of commensal strains.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Anna Kaarina Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
| | - Carolin Kornelia Fenzel
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Engi
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jessin Janice
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Ana C Almeida-Santos
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana P Tedim
- Group for Biomedical Research in Sepsis (BioSepsis), Instituto de Investigación Biomédica de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CiberES CB22/06/00035), 28029 Madrid, Spain
| | - Ana R Freitas
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- 1H- TOXRUN – One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4584-116 Gandra, Portugal
| | - Luísa Peixe
- UCIBIO. Departamento de Ciências Biológicas, Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mona Johannessen
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Kristin Hegstad
- Research group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, 9037 Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, 9038 Tromsø, Norway
| |
Collapse
|
4
|
Haeberle A, Greenwood-Quaintance K, Zar S, Johnson S, Patel R, Willett JLE. Genotypic and phenotypic characterization of Enterococcus faecalis isolates from periprosthetic joint infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579140. [PMID: 38370742 PMCID: PMC10871183 DOI: 10.1101/2024.02.06.579140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Over 2.5 million prosthetic joint implantation surgeries occur annually in the United States. Periprosthetic joint infections (PJIs), though occurring in only 1-2% of patients receiving replacement joints, are challenging to diagnose and treat and are associated with significant morbidity. The Gram-positive bacterium Enterococcus faecalis, which can be highly antibiotic resistant and is a robust biofilm producer on indwelling medical devices, accounts for 2-11% of PJIs. E. faecalis PJIs are understudied compared to those caused by other pathogens, such as Staphylococcus aureus. This motivates the need to generate a comprehensive understanding of E. faecalis PJIs to guide future treatments for these infections. To address this, we describe a panel of E. faecalis strains isolated from the surface of prosthetic joints in a cohort of individuals treated at Mayo Clinic in Rochester, MN. Here, we present the first complete genome assemblage of E. faecalis PJI isolates. Comparative genomics shows differences in genome size, virulence factors, antimicrobial resistance genes, plasmids, and prophages, underscoring the genetic diversity of these strains. These isolates have strain-specific differences in in vitro biofilm biomass, biofilm burden, and biofilm morphology. We measured robust changes in biofilm architecture and aggregation for all isolates when grown in simulated synovial fluid (SSF). Lastly, we evaluated antibiotic efficacy of these isolates and found strain specific changes across all strains when grown in SSF. Results of this study highlight the existence of genetic and phenotypic heterogeneity among E. faecalis PJI isolates which will provide valuable insight and resources for future E. faecalis PJI research.
Collapse
Affiliation(s)
- Amanda Haeberle
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| | - Kerryl Greenwood-Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sarah Zar
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| | - Stephen Johnson
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Julia L. E. Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota USA
| |
Collapse
|
5
|
Rossi A, Morlino MS, Gaspari M, Basile A, Kougias P, Treu L, Campanaro S. Analysis of the anaerobic digestion metagenome under environmental stresses stimulating prophage induction. MICROBIOME 2022; 10:125. [PMID: 35965344 PMCID: PMC9377139 DOI: 10.1186/s40168-022-01316-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle. RESULTS The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bacteriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were reconstructed, 64 of which included an integrated prophage in their sequence. Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 different samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral genomes on a broader scale. CONCLUSIONS Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic digestion virome and its relation with the microbial community and the diverse environmental parameters. Video Abstract.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arianna Basile
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
- CRIBI biotechnology center, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| |
Collapse
|
6
|
Krause AL, Stinear TP, Monk IR. Barriers to genetic manipulation of Enterococci: Current Approaches and Future Directions. FEMS Microbiol Rev 2022; 46:6650352. [PMID: 35883217 PMCID: PMC9779914 DOI: 10.1093/femsre/fuac036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are Gram-positive commensal gut bacteria that can also cause fatal infections. To study clinically relevant multi-drug resistant E. faecalis and E. faecium strains, methods are needed to overcome physical (thick cell wall) and enzymatic barriers that limit the transfer of foreign DNA and thus prevent facile genetic manipulation. Enzymatic barriers to DNA uptake identified in E. faecalis and E. faecium include type I, II and IV restriction modification systems and CRISPR-Cas. This review examines E. faecalis and E. faecium DNA defence systems and the methods with potential to overcome these barriers. DNA defence system bypass will allow the application of innovative genetic techniques to expedite molecular-level understanding of these important, but somewhat neglected, pathogens.
Collapse
Affiliation(s)
- Alexandra L Krause
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia
| | - Ian R Monk
- Corresponding author: Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection & Immunity, Melbourne, VIC 3000 Australia. E-mail:
| |
Collapse
|
7
|
Rigvava S, Kusradze I, Tchgkonia I, Karumidze N, Dvalidze T, Goderdzishvili M. Novel lytic bacteriophage vB_GEC_EfS_9 against Enterococcus faecium. Virus Res 2022; 307:198599. [PMID: 34648886 DOI: 10.1016/j.virusres.2021.198599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/31/2023]
Abstract
Enterococcus spp. is a common commensal microorganism, however, some strains can cause opportunistic infections in humans. Treatment of Enterococcus faecium-related endocarditis, urinary and genital tract infections, meningitis, septicemia, and even neonatal sepsis is often complicated by antibiotic resistance. The spread of multi-resistant bacterial strains has renewed interest in phage therapy, which has many advantages: Its advantages include a much lower frequency of resistance development compared to antibiotics and strict specificity, which allows affecting of only their target microbes without disturbing necessary microbiome. We isolated and characterized a virulent bacteriophage which is active against Enterococcus faecium clinical strains. The phage, which was designated as vB_GEC_EfS_9 was studied in terms of its growth pattern and adsorption rate, as well as its host range. The whole genome of the phage was sequenced and analyzed. Obtained results indicate that phage vB_GEC_EfS_9 is a virulent phage which has a very good potential for therapeutic use against strains of E. faecium.
Collapse
Affiliation(s)
- S Rigvava
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; Caucasus International University, Tbilisi, Georgia.
| | - I Kusradze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - I Tchgkonia
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - N Karumidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia; European University, Tbilisi, Georgia
| | - T Dvalidze
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| | - M Goderdzishvili
- G Eliava Institute of Bacteriophage, Microbiology and Virology, Tbilisi, Georgia
| |
Collapse
|
8
|
Tkachev PV, Goncharov A, Dmitriev A. Temperate enterococcal bacteriophages: genetic features and practical application. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2022. [DOI: 10.36488/cmac.2022.3.213-218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Temperate bacteriophages are of interest as carriers and vectors of pathogenicity factors that determine an epidemic potential of opportunistic bacteria as well as biotechnology objects. This review describes studies of temperate bacteriophages infecting bacteria of the genus Enterococcus, including strains associated with the development of nosocomial infections. Genetic features of moderate enterococcal phages as well as their potential for practical application in medicine are considered.
Collapse
Affiliation(s)
| | - A.E. Goncharov
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| | - A.V. Dmitriev
- Institute of Experimental Medicine (Saint-Petersburg, Russia)
| |
Collapse
|
9
|
Lisotto P, Raangs EC, Couto N, Rosema S, Lokate M, Zhou X, Friedrich AW, Rossen JWA, Harmsen HJM, Bathoorn E, Chlebowicz-Fliss MA. Long-read sequencing-based in silico phage typing of vancomycin-resistant Enterococcus faecium. BMC Genomics 2021; 22:758. [PMID: 34688274 PMCID: PMC8542323 DOI: 10.1186/s12864-021-08080-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vancomycin-resistant enterococci (VRE) are successful nosocomial pathogens able to cause hospital outbreaks. In the Netherlands, core-genome MLST (cgMLST) based on short-read sequencing is often used for molecular typing. Long-read sequencing is more rapid and provides useful information about the genome's structural composition but lacks the precision required for SNP-based typing and cgMLST. Here we compared prophages among 50 complete E. faecium genomes belonging to different lineages to explore whether a phage signature would be usable for typing and identifying an outbreak caused by VRE. As a proof of principle, we investigated if long-read sequencing data would allow for identifying phage signatures and thereby outbreak-related isolates. RESULTS Analysis of complete genome sequences of publicly available isolates showed variation in phage content among different lineages defined by MLST. We identified phage present in multiple STs as well as phages uniquely detected within a single lineage. Next, in silico phage typing was applied to twelve MinION sequenced isolates belonging to two different genetic backgrounds, namely ST117/CT24 and ST80/CT16. Genomic comparisons of the long-read-based assemblies allowed us to correctly identify isolates of the same complex type based on global genome architecture and specific phage signature similarity. CONCLUSIONS For rapid identification of related VRE isolates, phage content analysis in long-read sequencing data is possible. This allows software development for real-time typing analysis of long-read sequencing data, which will generate results within several hours. Future studies are required to assess the discriminatory power of this method in the investigation of ongoing outbreaks over a longer time period.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin C Raangs
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.,IDbyDNA Inc., Salt Lake City, UT, USA
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
10
|
Lisotto P, Couto N, Rosema S, Lokate M, Zhou X, Bathoorn E, Harmsen HJM, Friedrich AW, Rossen JWA, Chlebowicz-Fliss MA. Molecular Characterisation of Vancomycin-Resistant Enterococcus faecium Isolates Belonging to the Lineage ST117/CT24 Causing Hospital Outbreaks. Front Microbiol 2021; 12:728356. [PMID: 34646248 PMCID: PMC8503688 DOI: 10.3389/fmicb.2021.728356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Vancomycin-resistant Enterococcus faecium (VREfm) is a successful nosocomial pathogen. The current molecular method recommended in the Netherlands for VREfm typing is based on core genome Multilocus sequence typing (cgMLST), however, the rapid emergence of specific VREfm lineages challenges distinguishing outbreak isolates solely based on their core genome. Here, we explored if a detailed molecular characterisation of mobile genetic elements (MGEs) and accessory genes could support and expand the current molecular typing of VREfm isolates sharing the same genetic background, enhancing the discriminatory power of the analysis. Materials/Methods: The genomes of 39 VREfm and three vancomycin-susceptible E. faecium (VSEfm) isolates belonging to ST117/CT24, as assessed by cgMLST, were retrospectively analysed. The isolates were collected from patients and environmental samples from 2011 to 2017, and their genomes were analysed using short-read sequencing. Pangenome analysis was performed on de novo assemblies, which were also screened for known predicted virulence factors, antimicrobial resistance genes, bacteriocins, and prophages. Two representative isolates were also sequenced using long-read sequencing, which allowed a detailed analysis of their plasmid content. Results: The cgMLST analysis showed that the isolates were closely related, with a minimal allelic difference of 10 between each cluster’s closest related isolates. The vanB-carrying transposon Tn1549 was present in all VREfm isolates. However, in our data, we observed independent acquisitions of this transposon. The pangenome analysis revealed differences in the accessory genes related to prophages and bacteriocins content, whilst a similar profile was observed for known predicted virulence and resistance genes. Conclusion: In the case of closely related isolates sharing a similar genetic background, a detailed analysis of MGEs and the integration point of the vanB-carrying transposon allow to increase the discriminatory power compared to the use of cgMLST alone. Thus, enabling the identification of epidemiological links amongst hospitalised patients.
Collapse
Affiliation(s)
- Paola Lisotto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Natacha Couto
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sigrid Rosema
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Mariëtte Lokate
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Xuewei Zhou
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Erik Bathoorn
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Hermie J M Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Alexander W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.,IDbyDNA Inc., Salt Lake City, UT, United States
| | - Monika A Chlebowicz-Fliss
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Johnson CN, Sheriff EK, Duerkop BA, Chatterjee A. Let Me Upgrade You: Impact of Mobile Genetic Elements on Enterococcal Adaptation and Evolution. J Bacteriol 2021; 203:e0017721. [PMID: 34370561 PMCID: PMC8508098 DOI: 10.1128/jb.00177-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococci are Gram-positive bacteria that have evolved to thrive as both commensals and pathogens, largely due to their accumulation of mobile genetic elements via horizontal gene transfer (HGT). Common agents of HGT include plasmids, transposable elements, and temperate bacteriophages. These vehicles of HGT have facilitated the evolution of the enterococci, specifically Enterococcus faecalis and Enterococcus faecium, into multidrug-resistant hospital-acquired pathogens. On the other hand, commensal strains of Enterococcus harbor CRISPR-Cas systems that prevent the acquisition of foreign DNA, restricting the accumulation of mobile genetic elements. In this review, we discuss enterococcal mobile genetic elements by highlighting their contributions to bacterial fitness, examine the impact of CRISPR-Cas on their acquisition, and identify key areas of research that can improve our understanding of enterococcal evolution and ecology.
Collapse
Affiliation(s)
- Cydney N. Johnson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Emma K. Sheriff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Breck A. Duerkop
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Anushila Chatterjee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
12
|
Ojha AK, Shah NP, Mishra V. Conjugal Transfer of Antibiotic Resistances in Lactobacillus spp. Curr Microbiol 2021; 78:2839-2849. [PMID: 34076710 DOI: 10.1007/s00284-021-02554-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
Lactic acid bacteria (LAB) are a heterogeneous group of bacteria which are Gram-positive, facultative anaerobes and non-motile, non-spore forming, with varied shapes from cocci to coccobacilli and bacilli. Lactobacillus is the largest and most widely used bacterial species amongst LAB in fermented foods and beverages. The genus is a common member of human gut microbiome. Several species are known to provide benefits to the human gut via synergistic interactions with the gut microbiome and their ability to survive the gut environment. This ability to confer positive health effects provide them a status of generally recognized as safe (GRAS) microorganisms. Due to their various beneficial characteristics, other factors such as their resistance acquisition were overlooked. Overuse of antibiotics has made certain bacteria develop resistance against these drugs. Antibiotic resistance was found to be acquired mainly through conjugation which is a type of lateral gene transfer. Several in vitro methods of conjugation have been discussed previously depending on their success to transfer resistance. In this review, we have addressed methods that are employed to study the transfer of resistance genes using the conjugation phenomenon in lactobacilli.
Collapse
Affiliation(s)
- Anup Kumar Ojha
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India
| | - Nagendra Prasad Shah
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | - Vijendra Mishra
- National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonipat, Haryana, 131028, India.
| |
Collapse
|
13
|
Patil A, Banerji R, Kanojiya P, Koratkar S, Saroj S. Bacteriophages for ESKAPE: role in pathogenicity and measures of control. Expert Rev Anti Infect Ther 2021; 19:845-865. [PMID: 33261536 DOI: 10.1080/14787210.2021.1858800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The quest to combat bacterial infections has dreaded humankind for centuries. Infections involving ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) impose therapeutic challenges due to the emergence of antimicrobial drug resistance. Recently, investigations with bacteriophages have led to the development of novel strategies against ESKAPE infections. Also, bacteriophages have been demonstrated to be instrumental in the dissemination of virulence markers in ESKAPE pathogens. AREAS COVERED The review highlights the potential of bacteriophage in and against the pathogenicity of antibiotic-resistant ESKAPE pathogens. The review also emphasizes the challenges of employing bacteriophage in treating ESKAPE pathogens and the knowledge gap in the bacteriophage mediated antibiotic resistance and pathogenicity in ESKAPE infections. EXPERT OPINION Bacteriophage infection can kill the host bacteria but in survivors can transfer genes that contribute toward the survival of the pathogens in the host and resistance toward multiple antimicrobials. The knowledge on the dual role of bacteriophages in the treatment and pathogenicity will assist in the prediction and development of novel therapeutics targeting antimicrobial-resistant ESKAPE. Therefore, extensive investigations on the efficacy of synthetic bacteriophage, bacteriophage cocktails, and bacteriophage in combination with antibiotics are needed to develop effective therapeutics against ESKAPE infections.
Collapse
Affiliation(s)
- Amrita Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Rajashri Banerji
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Santosh Koratkar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| | - Sunil Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Symbiosis Knowledge Village, Lavale, Pune Maharashtra, India
| |
Collapse
|
14
|
Freitas AR, Tedim AP, Novais C, Lanza VF, Peixe L. Comparative genomics of global optrA-carrying Enterococcus faecalis uncovers a common chromosomal hotspot for optrA acquisition within a diversity of core and accessory genomes. Microb Genom 2020; 6. [PMID: 32149599 PMCID: PMC7371108 DOI: 10.1099/mgen.0.000350] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Linezolid-resistant Enterococcus faecalis (LREfs) carrying optrA are increasingly reported globally from multiple sources, but we lack a comprehensive analysis of human and animal optrA-LREfs strains. To assess if optrA is dispersed in isolates with varied genetic backgrounds or with common genetic features, we investigated the phylogenetic structure, genetic content [antimicrobial resistance (AMR), virulence, prophages, plasmidome] and optrA-containing platforms of 27 publicly available optrA-positive E. faecalis genomes from different hosts in seven countries. At the genome-level analysis, an in-house database with 64 virulence genes was tested for the first time. Our analysis showed a diversity of clones and adaptive gene sequences related to a wide range of genera from Firmicutes. Phylogenies of core and accessory genomes were not congruent, and at least PAI-associated and prophage genes contribute to such differences. Epidemiologically unrelated clones (ST21, ST476-like and ST489) obtained from human clinical and animal hosts in different continents over eight years (2010–2017) could be phylogenetically related (3–126 SNPs difference). optrA was located on the chromosome within a Tn6674-like element (n=10) or on medium-size plasmids (30–60 kb; n=14) belonging to main plasmid families (RepA_N/Inc18/Rep_3). In most cases, the immediate gene vicinity of optrA was generally identical in chromosomal (Tn6674) or plasmid (impB-fexA-optrA) backbones. Tn6674 was always inserted into the same ∆radC integration site and embedded in a 32 kb chromosomal platform common to strains from different origins (patients, healthy humans, and animals) in Europe, Africa, and Asia during 2012–2017. This platform is conserved among hundreds of E. faecalis genomes and proposed as a chromosomal hotspot for optrA integration. The finding of optrA in strains sharing common adaptive features and genetic backgrounds across different hosts and countries suggests the occurrence of common and independent genetic events occurring in distant regions and might explain the easy de novo generation of optrA-positive strains. It also anticipates a dramatic increase of optrA carriage and spread with a serious impact on the efficacy of linezolid for the treatment of Gram-positive infections.
Collapse
Affiliation(s)
- Ana R Freitas
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Ana P Tedim
- Grupo de Investigación Biomédica en Sepsis - BioSepsis. Hospital Universitario Río Hortega, Instituto de Investigación Biomédica de Salamanca (IBSAL), Valladollid, Spain
| | - Carla Novais
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| | - Val F Lanza
- Departamento de Bioinformática. Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Luísa Peixe
- UCIBIO/REQUIMTE. Departamento de Ciências Biológicas. Laboratório de Microbiologia. Faculdade de Farmácia. Universidade do Porto. Porto, Porto, Portugal
| |
Collapse
|
15
|
Affiliation(s)
- Juliet Roshini Mohan Raj
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| | - Indrani Karunasagar
- Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Mangaluru, India
| |
Collapse
|
16
|
Bacteriophage φEf11 ORF28 Endolysin, a Multifunctional Lytic Enzyme with Properties Distinct from All Other Identified Enterococcus faecalis Phage Endolysins. Appl Environ Microbiol 2019; 85:AEM.00555-19. [PMID: 30979842 DOI: 10.1128/aem.00555-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 02/01/2023] Open
Abstract
ϕEf11 is a temperate Siphoviridae bacteriophage that infects strains of Enterococcus faecalis The ϕEf11 genome, encompassing 65 open reading frames (ORFs), is contained within 42,822 bp of DNA. Within this genome, a module of six lysis-related genes was identified. Based upon sequence homology, one of these six genes, ORF28, was predicted to code for an N-acetylmuramoyl-l-alanine amidase endolysin of 46.133 kDa, composed of 421 amino acids. The PCR-amplified ORF28 was cloned and expressed, and the resulting gene product was affinity purified to homogeneity. The purified protein was obtained from a fusion protein that exhibited a molecular mass of 72.5 kDa, consistent with a 46.1-kDa protein combined with a fused 26.5-kDa glutathione S-transferase tag. It produced rapid, profound lysis in E. faecalis populations and was active against 73 of 103 (71%) E. faecalis strains tested. In addition, it caused substantial destruction of E. faecalis biofilms. The lysin was quite stable, retaining its activity for three years in refrigerated storage, was stable over a wide range of pHs, and was unaffected by the presence of a reducing agent; however, it was inhibited by increasing concentrations of Ca2+ Liquid chromatography-mass spectrometry analysis of E. faecalis cell wall digestion products produced by the ORF28 endolysin indicated that the lysin acted as an N-acetylmuramidase, an endo-β-N-acetylglucosaminidase, and an endopeptidase, rather than an N-acetylmuramoyl-l-alanine amidase. The ϕEf11 ORF28 lysin shared 10% to 37% amino acid identity with the lytic enzymes of all other characterized E. faecalis bacteriophages.IMPORTANCE The emergence of multidrug-resistant pathogenic microorganisms has brought increasing attention to the urgent need for the development of alternative antimicrobial strategies. One such alternative to conventional antibiotics employs lytic enzymes (endolysins) that are produced by bacteriophages in the course of lytic infection. During lytic infection by a bacteriophage, these enzymes hydrolyze the cell wall peptidoglycan, resulting in the lysis of the host cell. However, external endolysin application can result in lysis from without. In this study, we have cloned, expressed, purified, and characterized an endolysin produced by a bacteriophage infecting strains of Enterococcus faecalis The lysin is broadly active against most of the tested E. faecalis strains and exhibits multifunctional enzymatic specificities that differ from all other characterized endolysins produced by E. faecalis bacteriophages.
Collapse
|
17
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
18
|
Abstract
The study of the genetics of enterococci has focused heavily on mobile genetic elements present in these organisms, the complex regulatory circuits used to control their mobility, and the antibiotic resistance genes they frequently carry. Recently, more focus has been placed on the regulation of genes involved in the virulence of the opportunistic pathogenic species Enterococcus faecalis and Enterococcus faecium. Little information is available concerning fundamental aspects of DNA replication, partition, and division; this article begins with a brief overview of what little is known about these issues, primarily by comparison with better-studied model organisms. A variety of transcriptional and posttranscriptional mechanisms of regulation of gene expression are then discussed, including a section on the genetics and regulation of vancomycin resistance in enterococci. The article then provides extensive coverage of the pheromone-responsive conjugation plasmids, including sections on regulation of the pheromone response, the conjugative apparatus, and replication and stable inheritance. The article then focuses on conjugative transposons, now referred to as integrated, conjugative elements, or ICEs, and concludes with several smaller sections covering emerging areas of interest concerning the enterococcal mobilome, including nonpheromone plasmids of particular interest, toxin-antitoxin systems, pathogenicity islands, bacteriophages, and genome defense.
Collapse
|
19
|
Abstract
The genus Enterococcus comprises a ubiquitous group of Gram-positive bacteria that are of great relevance to human health for their role as major causative agents of health care-associated infections. The enterococci are resilient and versatile species able to survive under harsh conditions, making them well adapted to the health care environment. Two species cause the majority of enterococcal infections: Enterococcus faecalis and Enterococcus faecium Both species demonstrate intrinsic resistance to common antibiotics, such as virtually all cephalosporins, aminoglycosides, clindamycin, and trimethoprim-sulfamethoxazole. Additionally, a remarkably plastic genome allows these two species to readily acquire resistance to further antibiotics, such as high-level aminoglycoside resistance, high-level ampicillin resistance, and vancomycin resistance, either through mutation or by horizontal transfer of genetic elements conferring resistance determinants.
Collapse
Affiliation(s)
- Mónica García-Solache
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Louis B Rice
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
20
|
The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg Microbes Infect 2018; 7:168. [PMID: 30302018 PMCID: PMC6177407 DOI: 10.1038/s41426-018-0169-z] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 01/21/2023]
Abstract
Faced with the crisis of multidrug-resistant bacteria, bacteriophages, viruses that infect and replicate within bacteria, have been reported to have both beneficial and detrimental effects with respect to disease management. Bacteriophages (phages) have important ecological and evolutionary impacts on their bacterial hosts and have been associated with therapeutic use to kill bacterial pathogens, but can lead to the transmission of antibiotic resistance. Although the process known as transduction has been reported for many bacterial species by classic and modern genetic approaches, its contribution to the spread of antibiotic resistance in nature remains unclear. In addition, detailed molecular studies have identified phages residing in bacterial genomes, revealing unexpected interactions between phages and their bacterial hosts. Importantly, antibiotics can induce the production of phages and phage-encoded products, disseminating these viruses and virulence-related genes, which have dangerous consequences for disease severity. These unwanted side-effects of antibiotics cast doubt on the suitability of some antimicrobial treatments and may require new strategies to prevent and limit the selection for virulence. Foremost among these treatments is phage therapy, which could be used to treat many bacterial infectious diseases and confront the pressing problem of antibiotic resistance in pathogenic bacteria. This review discusses the interactions between bacteriophages, antibiotics, and bacteria and provides an integrated perspective that aims to inspire the development of successful antibacterial therapies.
Collapse
|
21
|
Manning KA, Quiles-Puchalt N, Penadés JR, Dokland T. A novel ejection protein from bacteriophage 80α that promotes lytic growth. Virology 2018; 525:237-247. [PMID: 30308422 DOI: 10.1016/j.virol.2018.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
Many staphylococcal bacteriophages encode a minor capsid protein between the genes for the portal and scaffolding proteins. In Staphylococcus aureus bacteriophage 80α, this protein, called gp44, is essential for the production of viable phage, but dispensable for the phage-mediated mobilization of S. aureus pathogenicity islands. We show here that gp44 is not required for capsid assembly, DNA packaging or ejection of the DNA, nor for generalized transduction of plasmids. An 80α Δ44 mutant could be complemented in trans by gp44 expressed from a plasmid, indicating that gp44 plays a post-injection role in the host. Our results show that gp44 is an ejection (pilot) protein that is involved in deciding the fate of the phage DNA after injection. Our data are consistent with a model in which gp44 acts as a regulatory protein that promotes progression to the lytic cycle.
Collapse
Affiliation(s)
- Keith A Manning
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Terje Dokland
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Górski A, Jończyk-Matysiak E, Międzybrodzki R, Weber-Dąbrowska B, Łusiak-Szelachowska M, Bagińska N, Borysowski J, Łobocka MB, Węgrzyn A, Węgrzyn G. Phage Therapy: Beyond Antibacterial Action. Front Med (Lausanne) 2018; 5:146. [PMID: 29876350 PMCID: PMC5974148 DOI: 10.3389/fmed.2018.00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Until recently, phages were considered as mere “bacteria eaters” with potential for use in combating antimicrobial resistance. The real value of phage therapy assessed according to the standards of evidence-based medicine awaits confirmation by clinical trials. However, the progress in research on phage biology has shed more light on the significance of phages. Accumulating data indicate that phages may also interact with eukaryotic cells. How such interactions could be translated into advances in medicine (especially novel means of therapy) is discussed herein.
Collapse
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Beata Weber-Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.,Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marzanna Łusiak-Szelachowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, Transplantation Institute, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata B Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
23
|
O'Sullivan L, Lucid A, Neve H, Franz CMAP, Bolton D, McAuliffe O, Paul Ross R, Coffey A. Comparative genomics of Cp8viruses with special reference to Campylobacter phage vB_CjeM_los1, isolated from a slaughterhouse in Ireland. Arch Virol 2018; 163:2139-2154. [PMID: 29687158 DOI: 10.1007/s00705-018-3845-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 03/10/2018] [Indexed: 01/08/2023]
Abstract
Campylobacter phage vB_CjeM_Los1 was recently isolated from a slaughterhouse in the Republic of Ireland using the host Campylobacter jejuni subsp. jejuni PT14, and full-genome sequencing and annotation were performed. The genome was found to be 134,073 bp in length and to contain 169 predicted open reading frames. Transmission electron microscopy images of vB_CjeM_Los1 revealed that it belongs to the family Myoviridae, with tail fibres observed in both extended and folded conformations, as seen in T4. The genome size and morphology of vB_CjeM_Los1 suggest that it belongs to the genus Cp8virus, and seven other Campylobacter phages with similar size characteristics have also been fully sequenced. In this work, comparative studies were performed in relation to genomic rearrangements and conservation within each of the eight genomes. None of the eight genomes were found to have undergone internal rearrangements, and their sequences retained more than 98% identity with one another despite the widespread geographical distribution of each phage. Whole-genome phylogenetics were also performed, and clades were shown to be representative of the differing number of tRNAs present in each phage. This may be an indication of lineages within the genus, despite their striking homology.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
- Teagasc, Food Research Centre, Ashtown, Co. Dublin, Ireland
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Declan Bolton
- Teagasc, Food Research Centre, Ashtown, Co. Dublin, Ireland
| | - Olivia McAuliffe
- Teagasc, Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - R Paul Ross
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Mercier C, Lossouarn J, Nesbø CL, Haverkamp THA, Baudoux AC, Jebbar M, Bienvenu N, Thiroux S, Dupont S, Geslin C. Two viruses, MCV1 and MCV2, which infect Marinitoga
bacteria isolated from deep-sea hydrothermal vents: functional and genomic analysis. Environ Microbiol 2017; 20:577-587. [DOI: 10.1111/1462-2920.13967] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Affiliation(s)
- C. Mercier
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - J. Lossouarn
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - C. L. Nesbø
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology; University of Oslo; Oslo 0316 Norway
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G2R3 Canada
| | - T. H. A. Haverkamp
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology; University of Oslo; Oslo 0316 Norway
| | - A. C. Baudoux
- Sorbonne Universités, UPMC Université Paris 06, UMR 7144, Equipe DIPO, Station Biologique de Roscoff; F-29680 Roscoff France
- CNRS, UMR 7144, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff; F-29680 Roscoff France
| | - M. Jebbar
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - N. Bienvenu
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - S. Thiroux
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - S. Dupont
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| | - C. Geslin
- Université de Bretagne Occidentale (UBO), Institut Universitaire Européen de la Mer (IUEM) - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes, rue Dumont d'Urville; F-29280 Plouzané France
- CNRS, IUEM - UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer, UMR 6197 Laboratoire de Microbiologie des Environnements Extrêmes (LMEE), Technopôle de la Pointe du diable; F-29280 Plouzané France
| |
Collapse
|
25
|
Long-term genomic coevolution of host-parasite interaction in the natural environment. Nat Commun 2017; 8:111. [PMID: 28740072 PMCID: PMC5524643 DOI: 10.1038/s41467-017-00158-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Antagonistic coevolution of parasite infectivity and host resistance may alter the biological functionality of species, yet these dynamics in nature are still poorly understood. Here we show the molecular details of a long-term phage-bacterium arms race in the environment. Bacteria (Flavobacterium columnare) are generally resistant to phages from the past and susceptible to phages isolated in years after bacterial isolation. Bacterial resistance selects for increased phage infectivity and host range, which is also associated with expansion of phage genome size. We identified two CRISPR loci in the bacterial host: a type II-C locus and a type VI-B locus. While maintaining a core set of conserved spacers, phage-matching spacers appear in the variable ends of both loci over time. The spacers mostly target the terminal end of the phage genomes, which also exhibit the most variation across time, resulting in arms-race-like changes in the protospacers of the coevolving phage population.Arms races between phage and bacteria are well known from lab experiments, but insight from field systems is limited. Here, the authors show changes in the resistance and CRISPR loci of bacteria and the infectivity, host range and genome size of phage over multiple years in an aquaculture environment.
Collapse
|
26
|
Beukers AG, Zaheer R, Goji N, Amoako KK, Chaves AV, Ward MP, McAllister TA. Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol 2017; 17:52. [PMID: 28270110 PMCID: PMC5341189 DOI: 10.1186/s12866-017-0962-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/21/2017] [Indexed: 01/18/2023] Open
Abstract
Background Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. Results We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. Conclusions This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-0962-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicia G Beukers
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia.,Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Noriko Goji
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - Kingsley K Amoako
- Canadian Food Inspection Agency, National Center for Animal Disease, Lethbridge Laboratory, Lethbridge, AB, Canada
| | - Alexandre V Chaves
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Michael P Ward
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Tim A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
27
|
Stevens RH, Zhang H, Hsiao C, Kachlany S, Tinoco EMB, DePew J, Fouts DE. Structural proteins of Enterococcus faecalis bacteriophage ϕEf11. BACTERIOPHAGE 2016; 6:e1251381. [PMID: 28090386 PMCID: PMC5221750 DOI: 10.1080/21597081.2016.1251381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/06/2023]
Abstract
ϕEf11, a temperate Siphoviridae bacteriophage, was isolated by induction from a root canal isolate of Enterococcus faecalis. Sequence analysis suggested that the ϕEf11 genome included a contiguous 8 gene module whose function was related to head structure assembly and another module of 10 contiguous genes whose products were responsible for tail structure assembly. SDS-PAGE analysis of virions of a ϕEf11 derivative revealed 11 well-resolved protein bands. To unify the deduced functional gene assignments emanating from the DNA sequence data, with the structural protein analysis of the purified virus, 6 of the SDS-PAGE bands were subjected to mass spectrometry analysis. 5 of the 6 protein bands analyzed by mass spectrometry displayed identical amino acid sequences to those predicted to be specified by 4 of the ORFs identified in the ϕEf11 genome. These included: ORF8 (predicted scaffold protein), ORF10 (predicted major head protein), ORF15 (predicted major tail protein), and ORF23 (presumptive antireceptor).
Collapse
Affiliation(s)
- Roy H Stevens
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA; Department of Endodontics, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Hongming Zhang
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA; Department of Endodontics, Temple University Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Chaiwing Hsiao
- Laboratory of Oral Infectious Diseases, Temple University Kornberg School of Dentistry , Philadelphia, PA, USA
| | - Scott Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Rutgers University , Newark, NJ, USA
| | | | - Jessica DePew
- Department of Genomic Medicine, J Craig Venter Institute , Rockville, MD, USA
| | - Derrick E Fouts
- Department of Genomic Medicine, J Craig Venter Institute , Rockville, MD, USA
| |
Collapse
|
28
|
Khalifa L, Shlezinger M, Beyth S, Houri-Haddad Y, Coppenhagen-Glazer S, Beyth N, Hazan R. Phage therapy against Enterococcus faecalis in dental root canals. J Oral Microbiol 2016; 8:32157. [PMID: 27640530 PMCID: PMC5027333 DOI: 10.3402/jom.v8.32157] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance is an ever-growing problem faced by all major sectors of health care, including dentistry. Recurrent infections related to multidrug-resistant bacteria such as methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, and vancomycin-resistant enterococci (VRE) in hospitals are untreatable and question the effectiveness of notable drugs. Two major reasons for these recurrent infections are acquired antibiotic resistance genes and biofilm formation. None of the traditionally known effective techniques have been able to efficiently resolve these issues. Hence, development of a highly effective antibacterial practice has become inevitable. One example of a hard-to-eradicate pathogen in dentistry is Enterococcus faecalis, which is one of the most common threats observed in recurrent root canal treatment failures, of which the most problematic to treat are its biofilm-forming VRE strains. An effective response against such infections could be the use of bacteriophages (phages). Phage therapy was found to be highly effective against biofilm and multidrug-resistant bacteria and has other advantages like ease of isolation and possibilities for genetic manipulations. The potential of phage therapy in dentistry, in particular against E. faecalis biofilms in root canals, is almost unexplored. Here we review the efforts to develop phage therapy against biofilms. We also focus on the phages isolated against E. faecalis and discuss the possibility of using phages against E. faecalis biofilm in root canals.
Collapse
Affiliation(s)
- Leron Khalifa
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Mor Shlezinger
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shaul Beyth
- Orthopedic Surgery Complex, Hadassah University Hospital, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Nurit Beyth
- Department of Prosthodontics, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ronen Hazan
- Institute of Dental Science, The Hebrew University Hadassah School of Dental Medicine, Jerusalem, Israel;
| |
Collapse
|
29
|
Hoai TD, Nishiki I, Yoshida T. Properties and genomic analysis of Lactococcus garvieae lysogenic bacteriophage PLgT-1, a new member of Siphoviridae , with homology to Lactococcus lactis phages. Virus Res 2016; 222:13-23. [DOI: 10.1016/j.virusres.2016.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/20/2016] [Accepted: 05/20/2016] [Indexed: 10/21/2022]
|
30
|
Asenjo F, Olmos A, Henríquez-Piskulich P, Polanco V, Aldea P, Ugalde JA, Trombert AN. Genome sequencing and analysis of the first complete genome of Lactobacillus kunkeei strain MP2, an Apis mellifera gut isolate. PeerJ 2016; 4:e1950. [PMID: 27114887 PMCID: PMC4841242 DOI: 10.7717/peerj.1950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 03/29/2016] [Indexed: 01/23/2023] Open
Abstract
Background. The honey bee (Apis mellifera) is the most important pollinator in agriculture worldwide. However, the number of honey bees has fallen significantly since 2006, becoming a huge ecological problem nowadays. The principal cause is CCD, or Colony Collapse Disorder, characterized by the seemingly spontaneous abandonment of hives by their workers. One of the characteristics of CCD in honey bees is the alteration of the bacterial communities in their gastrointestinal tract, mainly due to the decrease of Firmicutes populations, such as the Lactobacilli. At this time, the causes of these alterations remain unknown. We recently isolated a strain of Lactobacillus kunkeei (L. kunkeei strain MP2) from the gut of Chilean honey bees. L. kunkeei, is one of the most commonly isolated bacterium from the honey bee gut and is highly versatile in different ecological niches. In this study, we aimed to elucidate in detail, the L. kunkeei genetic background and perform a comparative genome analysis with other Lactobacillus species. Methods. L. kunkeei MP2 was originally isolated from the guts of Chilean A. mellifera individuals. Genome sequencing was done using Pacific Biosciences single-molecule real-time sequencing technology. De novo assembly was performed using Celera assembler. The genome was annotated using Prokka, and functional information was added using the EggNOG 3.1 database. In addition, genomic islands were predicted using IslandViewer, and pro-phage sequences using PHAST. Comparisons between L. kunkeei MP2 with other L. kunkeei, and Lactobacillus strains were done using Roary. Results. The complete genome of L. kunkeei MP2 comprises one circular chromosome of 1,614,522 nt. with a GC content of 36,9%. Pangenome analysis with 16 L. kunkeei strains, identified 113 unique genes, most of them related to phage insertions. A large and unique region of L. kunkeei MP2 genome contains several genes that encode for phage structural protein and replication components. Comparative analysis of MP2 with other Lactobacillus species, identified several unique genes of L. kunkeei MP2 related with metabolism, biofilm generation, survival under stress conditions, and mobile genetic elements (MGEs). Discussion. The presence of multiple mobile genetic elements, including phage sequences, suggest a high degree of genetic variability in L. kunkeei. Its versatility and ability to survive in different ecological niches (bee guts, flowers, fruits among others) could be given by its genetic capacity to change and adapt to different environments. L. kunkeei could be a new source of Lactobacillus with beneficial properties. Indeed, L. kunkeei MP2 could play an important role in honey bee nutrition through the synthesis of components as isoprenoids.
Collapse
Affiliation(s)
- Freddy Asenjo
- Centro de Genética y Genómica, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Alejandro Olmos
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor , Santiago , Chile
| | | | - Victor Polanco
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile; Centro de Estudios Apícolas CEAPI Mayor, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Patricia Aldea
- Centro de Estudios Apícolas CEAPI Mayor, Facultad de Ciencias, Universidad Mayor , Santiago , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina, Clinica Alemana Universidad del Desarrollo , Santiago , Chile
| | - Annette N Trombert
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor , Santiago , Chile
| |
Collapse
|
31
|
Dunlap CA, Kwon SW, Rooney AP, Kim SJ. Bacillus paralicheniformis sp. nov., isolated from fermented soybean paste. Int J Syst Evol Microbiol 2015; 65:3487-3492. [PMID: 26296568 DOI: 10.1099/ijsem.0.000441] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
An isolate of a Gram-stain-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacterium was recovered from soybean-based fermented paste. Phylogenetic analysis of the 16S rRNA gene indicated that the strain was most closely related to Bacillus sonorensis KCTC-13918T (99.5 % similarity) and Bacillus licheniformis DSM 13T (99.4 %). In phenotypic characterization, the novel strain was found to grow at 15–60 °C and to tolerate up to 10 % (w/v) NaCl. Furthermore, the strain grew in media with pH 6–11 (optimal growth at pH 7.0–8.0). The predominant cellular fatty acids were anteiso-C15 : 0 (37.7 %) and iso-C15 : 0 (31.5 %). The predominant isoprenoid quinone was menaquinone 7 (MK-7). The cell-wall peptidoglycan contained meso-diaminopimelic acid. A draft genome sequence of the strain was completed and used for phylogenetic analysis. Phylogenomic analysis of all published genomes of species in the B. licheniformis group revealed that strains belonging to B. licheniformis clustered into two distinct groups, with group 1 consisting of B. licheniformis DSM 13T and 11 other strains and group 2 consisting of KJ-16T and four other strains. The DNA G+C content of strain KJ-16T was 45.9 % (determined from the genome sequence). Strain KJ-16T and another strain from group 2 were subsequently characterized using a polyphasic taxonomic approach and compared with strains from group 1 and another closely related species of the genus Bacillus. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Bacillus, for which the name Bacillus paralicheniformis sp. nov. is proposed, with type strain KJ-16T ( = KACC 18426T = NRRL B-65293T).
Collapse
Affiliation(s)
- Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soon-Wo Kwon
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Alejandro P Rooney
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| | - Soo-Jin Kim
- Korean Agriculture Culture Collection (KACC), Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
32
|
Mikalsen T, Pedersen T, Willems R, Coque TM, Werner G, Sadowy E, van Schaik W, Jensen LB, Sundsfjord A, Hegstad K. Investigating the mobilome in clinically important lineages of Enterococcus faecium and Enterococcus faecalis. BMC Genomics 2015; 16:282. [PMID: 25885771 PMCID: PMC4438569 DOI: 10.1186/s12864-015-1407-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. RESULTS The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. CONCLUSIONS The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
Collapse
Affiliation(s)
- Theresa Mikalsen
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Torunn Pedersen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Rob Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Teresa M Coque
- Servicio de Microbiologia, Hospital Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. .,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain.
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode Branch, Wernigerode, Germany.
| | - Ewa Sadowy
- Department of Molecular Microbiology, National Medicines Institute, ul, Chełmska 30/34, 00-725, Warsaw, Poland.
| | - Willem van Schaik
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Lars Bogø Jensen
- Division of Food Microbiologyt, National Food Institute, Danish Technical University, Copenhagen V, Denmark.
| | - Arnfinn Sundsfjord
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| | - Kristin Hegstad
- Research group for Host-microbe Interactions, Department of Medical Biology, Faculty of Health Science, UiT - The Arctic University of Norway, Tromsø, Norway. .,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway.
| |
Collapse
|
33
|
A genomic virulence reference map of Enterococcus faecalis reveals an important contribution of phage03-like elements in nosocomial genetic lineages to pathogenicity in a Caenorhabditis elegans infection model. Infect Immun 2015; 83:2156-67. [PMID: 25776747 DOI: 10.1128/iai.02801-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/07/2015] [Indexed: 02/07/2023] Open
Abstract
In the present study, the commensal and pathogenic host-microbe interaction of Enterococcus faecalis was explored using a Caenorhabditis elegans model system. The virulence of 28 E. faecalis isolates representing 24 multilocus sequence types (MLSTs), including human commensal and clinical isolates as well as isolates from animals and of insect origin, was investigated using C. elegans strain glp-4 (bn2ts); sek-1 (km4). This revealed that 6 E. faecalis isolates behaved in a commensal manner with no nematocidal effect, while the remaining strains showed a time to 50% lethality ranging from 47 to 120 h. Principal component analysis showed that the difference in nematocidal activity explained 94% of the variance in the data. Assessment of known virulence traits revealed that gelatinase and cytolysin production accounted for 40.8% and 36.5% of the observed pathogenicity, respectively. However, coproduction of gelatinase and cytolysin did not increase virulence additively, accounting for 50.6% of the pathogenicity and therefore indicating a significant (26.7%) saturation effect. We employed a comparative genomic analysis approach using the 28 isolates comprising a collection of 82,356 annotated coding sequences (CDS) to identify 2,325 patterns of presence or absence among the investigated strains. Univariate statistical analysis of variance (ANOVA) established that individual patterns positively correlated (n = 61) with virulence. The patterns were investigated to identify potential new virulence traits, among which we found five patterns consisting of the phage03-like gene clusters. Strains harboring phage03 showed, on average, 17% higher killing of C. elegans (P = 4.4e(-6)). The phage03 gene cluster was also present in gelatinase-and-cytolysin-negative strain E. faecalis JH2-2. Deletion of this phage element from the JH2-2 clinical strain rendered the mutant apathogenic in C. elegans, and a similar mutant of the nosocomial V583 isolate showed significantly attenuated virulence. Bioinformatics investigation indicated that, unlike other E. faecalis virulence traits, phage03-like elements were found at a higher frequency among nosocomial isolates. In conclusion, our report provides a valuable virulence map that explains enhancement in E. faecalis virulence and contributes to a deeper comprehension of the genetic mechanism leading to the transition from commensalism to a pathogenic lifestyle.
Collapse
|
34
|
Lossouarn J, Nesbø CL, Mercier C, Zhaxybayeva O, Johnson MS, Charchuck R, Farasin J, Bienvenu N, Baudoux AC, Michoud G, Jebbar M, Geslin C. ‘Ménage à trois’: a selfish genetic element uses a virus to propagate withinThermotogales. Environ Microbiol 2015; 17:3278-88. [DOI: 10.1111/1462-2920.12783] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Julien Lossouarn
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Camilla L. Nesbø
- CEES; Department of Biology; University of Oslo; Oslo 0316 Norway
- Department of Biological Sciences; University of Alberta; Edmonton AB T6G2R3 Canada
| | - Coraline Mercier
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Olga Zhaxybayeva
- Department of Biological Sciences; Dartmouth College; Hanover NH 03755 USA
| | - Milo S. Johnson
- Department of Biological Sciences; Dartmouth College; Hanover NH 03755 USA
| | | | - Julien Farasin
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Nadège Bienvenu
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Anne-Claire Baudoux
- Sorbonne Universités; UPMC Univ Paris 06; Paris 75005 France
- UMR 7144; Equipe DIPO; Station Biologique de Roscoff; Roscoff 29680 France
- CNRS; UMR 7144; Adaptation et Diversité en Milieu Marin; Station Biologique de Roscoff; Roscoff 29680 France
| | - Grégoire Michoud
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Mohamed Jebbar
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| | - Claire Geslin
- Université de Bretagne Occidentale (UBO, UEB); Institut Universitaire Européen de la Mer (IUEM) - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- CNRS; IUEM - UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); rue Dumont d'Urville; F-29280 Plouzané France
- Ifremer; UMR 6197; Laboratoire de Microbiologie des Environnements Extrêmes (LMEE); Technopôle Pointe du diablea; F-29280 Plouzané France
| |
Collapse
|
35
|
Maekawa LE, Rossoni RD, Barbosa JO, Jorge AOC, Junqueira JC, Valera MC. Different extracts of Zingiber officinale decrease Enterococcus faecalis infection in Galleria mellonella. Braz Dent J 2015; 26:105-9. [PMID: 25831098 DOI: 10.1590/0103-6440201300199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/31/2014] [Indexed: 12/15/2022] Open
Abstract
Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae.
Collapse
Affiliation(s)
- Lilian Eiko Maekawa
- Department of Restorative Dentistry, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - Rodnei Dennis Rossoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - Júnia Oliveira Barbosa
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| | - Marcia Carneiro Valera
- Department of Restorative Dentistry, Institute of Science and Technology, UNESP - Univ Estadual Paulista, São José dos Campos, SP, Brazil
| |
Collapse
|
36
|
Burns N, James CE, Harrison E. Polylysogeny magnifies competitiveness of a bacterial pathogen in vivo. Evol Appl 2015; 8:346-51. [PMID: 25926879 PMCID: PMC4408145 DOI: 10.1111/eva.12243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/18/2014] [Indexed: 11/30/2022] Open
Abstract
The rise of next generation sequencing is revealing a hidden diversity of temperate phages within the microbial community. While a handful of these phages have been well characterized, for the vast majority, the role of phage carriage, and especially multiple phage carriage, is poorly understood. The Liverpool epidemic strain of Pseudomonas aeruginosa is an aggressive pathogen in cystic fibrosis lung infections that has recently been found to contain several unique prophages within its genome. Here, we experimentally investigate the role of two of these phages in vivo, using an insect model of infection. We find that while no benefit is conferred by phage carriage in single bacterial infections, phages confer a large fitness advantage during mixed infections by mediating bacteria–bacteria competition. Differences between the two phages appeared to be associated with the rate at which the competitor acquired the phage, and therefore resistance. However, the advantage was greatest in the polylysogen, carrying both phages. These findings suggest that the LES phages may play an important role in host invasions and more generally show that the carriage of multiple phages may itself be beneficial by hindering the spread of resistance in rival bacterial populations.
Collapse
Affiliation(s)
- Nicola Burns
- Department of Biology, University of York York, UK
| | - Chloe E James
- Biomedical Science Research Center, University of Salford Salford, UK
| | | |
Collapse
|
37
|
Rossmann FS, Racek T, Wobser D, Puchalka J, Rabener EM, Reiger M, Hendrickx APA, Diederich AK, Jung K, Klein C, Huebner J. Phage-mediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog 2015; 11:e1004653. [PMID: 25706310 PMCID: PMC4338201 DOI: 10.1371/journal.ppat.1004653] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/02/2015] [Indexed: 01/10/2023] Open
Abstract
The microbiome and the phage meta-genome within the human gut are influenced by antibiotic treatments. Identifying a novel mechanism, here we demonstrate that bacteria use the universal communication molecule AI-2 to induce virulence genes and transfer them via phage release. High concentrations (i.e. 100 μM) of AI-2 promote dispersal of bacteria from already established biofilms, and is associated with release of phages capable of infecting other bacteria. Enterococcus faecalis V583ΔABC harbours 7 prophages in its genome, and a mutant deficient in one of these prophages (i.e. prophage 5) showed a greatly reduced dispersal of biofilm. Infection of a probiotic E. faecalis strain without lytic prophages with prophage 5 resulted in increased biofilm formation and also in biofilm dispersal upon induction with AI-2. Infection of the probiotic E. faecalis strain with phage-containing supernatants released through AI-2 from E. faecalis V583ΔABC resulted in a strong increase in pathogenicity of this strain. The polylysogenic probiotic strain was also more virulent in a mouse sepsis model and a rat endocarditis model. Both AI-2 and ciprofloxacin lead to phage release, indicating that conditions in the gastrointestinal tract of hospitalized patients treated with antibiotics might lead to distribution of virulence genes to apathogenic enterococci and possibly also to other commensals or even to beneficial probiotic strains. All higher organisms live in intimate contact with bacteria and viruses in their direct environment. Some of these bacteria in our gut can switch between being harmless commensals and causing severe and sometimes lethal infections. This involves a tight regulation of the mechanisms needed to initially colonize and later to harm the host. Here we describe a novel mechanism by which phages (i.e. viruses that infect bacteria) contribute to virulence in commensal gut bacteria. Our results show that bacteria "sense" the number of bacteria present at any given moment through a process called quorum sensing and this provides them with the information needed to assess the specific step during the infectious process. At late stages of infection bacteria are usually present in high numbers, and at this point release viruses that can infect nearby bacteria and transfer genes that are needed to cause infection, thereby enabling previously harmless bacteria to become dangerous pathogens.
Collapse
Affiliation(s)
- Friederike S. Rossmann
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Tomas Racek
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
| | - Jacek Puchalka
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Elaine M. Rabener
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Matthias Reiger
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Ann-Kristin Diederich
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Biology I, Microbiology, Munich Center for Integrated Protein Science, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Hospital, Freiburg, Germany
- Department of Pediatrics, Dr. von Hauner Children´s Hospital, Ludwig-Maximilians University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
38
|
Abstract
The genus Lelliottia was recently created from the group of environmental gammaproteobacteria previously included in the genus Enterobacter. Here, we report the complete genome sequence of phD2B, the first (according to our current knowledge) known phage that infects bacterium from the taxon.
Collapse
|
39
|
Adriaenssens EM, Edwards R, Nash JHE, Mahadevan P, Seto D, Ackermann HW, Lavigne R, Kropinski AM. Integration of genomic and proteomic analyses in the classification of the Siphoviridae family. Virology 2014; 477:144-154. [PMID: 25466308 DOI: 10.1016/j.virol.2014.10.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
Abstract
Using a variety of genomic (BLASTN, ClustalW) and proteomic (Phage Proteomic Tree, CoreGenes) tools we have tackled the taxonomic status of members of the largest bacteriophage family, the Siphoviridae. In all over 400 phages were examined and we were able to propose 39 new genera, comprising 216 phage species, and add 62 species to two previously defined genera (Phic3unalikevirus; L5likevirus) grouping, in total, 390 fully sequenced phage isolates. Many of the remainders are orphans which the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) chooses not to ascribe genus status at the time being.
Collapse
Affiliation(s)
- Evelien M Adriaenssens
- Centre for Microbial Ecology and Genomics, Genomics Research Institute, University of Pretoria, Lynnwood Road, Pretoria 0028, South Africa
| | - Rob Edwards
- Geology, Mathematics, and Computer Science, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - John H E Nash
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4
| | | | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, 10900 University Blvd, Manassas, VA 20110, USA
| | - Hans-Wolfgang Ackermann
- Département de Microbiologie-infectiologie et immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada G1K 7P4
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, KasteelparkArenberg 21 - b2462, Heverlee 3001, Belgium.
| | - Andrew M Kropinski
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, 110 Stone Road West, Guelph, ON, Canada N1G 3W4; Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2A1.
| |
Collapse
|
40
|
Yoon BH, Chang HI. Genomic annotation for the temperate phage EFC-1, isolated from Enterococcus faecalis KBL101. Arch Virol 2014; 160:601-4. [PMID: 25359106 DOI: 10.1007/s00705-014-2263-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/19/2014] [Indexed: 12/01/2022]
Abstract
The temperate phage EFC-1 was newly isolated from a mitomycin-C-induced lysate of Enterococcus faecalis KBL101. EFC-1 has an isometric head and a long tail. The phage belongs to the family Siphoviridae according to its genomic structure and morphology. The phage EFC-1 has 40,286 base pairs of double-stranded DNA and a G+C content of 35.05 %. Bioinformatic analysis of the phage revealed 60 putative open reading frames (ORFs). The genome of the temperate phage EFC-1 was not significantly similar to that of previously reported bacteriophages from E. faecalis.
Collapse
Affiliation(s)
- Bo Hyun Yoon
- College of Life Sciences and Biotechnology, Korea University, 145 Anam-Ro, Sungbuk-Gu, Seoul, Korea
| | | |
Collapse
|
41
|
López E, Domenech A, Ferrándiz MJ, Frias MJ, Ardanuy C, Ramirez M, García E, Liñares J, de la Campa AG. Induction of prophages by fluoroquinolones in Streptococcus pneumoniae: implications for emergence of resistance in genetically-related clones. PLoS One 2014; 9:e94358. [PMID: 24718595 PMCID: PMC3981806 DOI: 10.1371/journal.pone.0094358] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/13/2014] [Indexed: 11/29/2022] Open
Abstract
Antibiotic resistance in Streptococcus pneumoniae has increased worldwide by the spread of a few clones. Fluoroquinolone resistance occurs mainly by alteration of their intracellular targets, the type II DNA topoisomerases, which is acquired either by point mutation or by recombination. Increase in fluoroquinolone-resistance may depend on the balance between antibiotic consumption and the cost that resistance imposes to bacterial fitness. In addition, pneumococcal prophages could play an important role. Prophage induction by fluoroquinolones was confirmed in 4 clinical isolates by using Southern blot hybridization. Clinical isolates (105 fluoroquinolone-resistant and 160 fluoroquinolone-susceptible) were tested for lysogeny by using a PCR assay and functional prophage carriage was studied by mitomycin C induction. Fluoroquinolone-resistant strains harbored fewer inducible prophages (17/43) than fluoroquinolone-susceptible strains (49/70) (P = 0.0018). In addition, isolates of clones associated with fluoroquinolone resistance [CC156 (3/25); CC63 (2/20), and CC81 (1/19)], had lower frequency of functional prophages than isolates of clones with low incidence of fluoroquinolone resistance [CC30 (4/21), CC230 (5/20), CC62 (9/21), and CC180 (21/30)]. Likewise, persistent strains from patients with chronic respiratory diseases subjected to fluoroquinolone treatment had a low frequency of inducible prophages (1/11). Development of ciprofloxacin resistance was tested with two isogenic strains, one lysogenic and the other non-lysogenic: emergence of resistance was only observed in the non-lysogenic strain. These results are compatible with the lysis of lysogenic isolates receiving fluoroquinolones before the development of resistance and explain the inverse relation between presence of inducible prophages and fluoroquinolone-resistance.
Collapse
Affiliation(s)
- Elena López
- Centro Nacional de Microbiología, ISCIII (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Arnau Domenech
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL- Barcelona University, Barcelona, Spain
| | - María-José Ferrándiz
- Centro Nacional de Microbiología, ISCIII (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
| | - Maria João Frias
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Carmen Ardanuy
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL- Barcelona University, Barcelona, Spain
| | - Mario Ramirez
- Instituto de Microbiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ernesto García
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Centro de Investigaciones Biológicas, CSIC (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Josefina Liñares
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Microbiology Department, Hospital Universitari de Bellvitge-IDIBELL- Barcelona University, Barcelona, Spain
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, ISCIII (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain
- Ciber de Enfermedades Respiratorias, ISCIII, Madrid, Spain
- Presidencia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Salazar-Echegarai FJ, Tobar HE, Nieto PA, Riedel CA, Bueno SM. Conjugal transfer of the pathogenicity island ROD21 in Salmonella enterica serovar Enteritidis depends on environmental conditions. PLoS One 2014; 9:e90626. [PMID: 24705125 PMCID: PMC3976249 DOI: 10.1371/journal.pone.0090626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/04/2014] [Indexed: 01/14/2023] Open
Abstract
Unstable pathogenicity islands are chromosomal elements that can be transferred from one bacterium to another. Salmonella enterica serovar Enteritidis (S. Enteritidis) is a pathogenic bacterium containing such unstable pathogenicity islands. One of them, denominated ROD21, is 26.5 kb in size and capable of excising from the chromosome in certain culture conditions, as well as during bacterial infection of phagocytic cells. In this study we have evaluated whether ROD21 can be effectively transferred from one bacterium to another. We generated a donor and several recipient strains of S. Enteritidis to carry out transfer assays in liquid LB medium. These assays showed that ROD21 is effectively transferred from donor to recipient strains of S. Enteritidis and S. Typhimurium. When Escherichia coli was used as the recipient strain, ROD21 transfer failed to be observed. Subsequently, we showed that a conjugative process was required for the transfer of the island and that changes in temperature and pH increased the transfer frequency between Salmonella strains. Our data indicate that ROD21 is an unstable pathogenicity island that can be transferred by conjugation in a species-specific manner between Salmonellae. Further, ROD21 transfer frequency increases in response to environmental changes, such as pH and temperature.
Collapse
Affiliation(s)
- Francisco J. Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Tobar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pamela A. Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- INSERM UMR 1064, Nantes, France
- * E-mail:
| |
Collapse
|
43
|
Bondy-Denomy J, Davidson AR. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol 2014; 52:235-42. [PMID: 24585054 DOI: 10.1007/s12275-014-4083-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 12/25/2022]
Abstract
Most organisms on the planet have viruses that infect them. Viral infection may lead to cell death, or to a symbiotic relationship where the genomes of both virus and host replicate together. In the symbiotic state, both virus and cell potentially experience increased fitness as a result of the other. The viruses that infect bacteria, called bacteriophages (or phages), well exemplify the symbiotic relationships that can develop between viruses and their host. In this review, we will discuss the many ways that prophages, which are phage genomes integrated into the genomes of their hosts, influence bacterial behavior and virulence.
Collapse
Affiliation(s)
- Joseph Bondy-Denomy
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
44
|
Phage ϕC2 mediates transduction of Tn6215, encoding erythromycin resistance, between Clostridium difficile strains. mBio 2013; 4:e00840-13. [PMID: 24255122 PMCID: PMC3870246 DOI: 10.1128/mbio.00840-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In this work, we show that Clostridium difficile phage ϕC2 transduces erm(B), which confers erythromycin resistance, from a donor to a recipient strain at a frequency of 10−6 per PFU. The transductants were lysogenic for ϕC2 and contained the erm(B) gene in a novel transposon, Tn6215. This element is 13,008 bp in length and contains 17 putative open reading frames (ORFs). It could also be transferred at a lower frequency by filter mating. Clostridium difficile is a major human pathogen that causes diarrhea that can be persistent and difficult to resolve using antibiotics. C. difficile is potentially zoonotic and has been detected in animals, food, and environmental samples. C. difficile genomes contain large portions of horizontally acquired genetic elements. The conjugative elements have been reasonably well studied, but transduction has not yet been demonstrated. Here, we show for the first time transduction as a mechanism for the transfer of a novel genetic element in C. difficile. Transduction may also be a useful tool for the genetic manipulation of C. difficile.
Collapse
|
45
|
Zhang W, Mi Z, Yin X, Fan H, An X, Zhang Z, Chen J, Tong Y. Characterization of Enterococcus faecalis phage IME-EF1 and its endolysin. PLoS One 2013; 8:e80435. [PMID: 24236180 PMCID: PMC3827423 DOI: 10.1371/journal.pone.0080435] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/03/2013] [Indexed: 01/21/2023] Open
Abstract
Enterococcus faecalis is increasingly becoming an important nosocomial infection opportunistic pathogen. E. faecalis can easily obtain drug resistance, making it difficult to be controlled in clinical settings. Using bacteriophage as an alternative treatment to drug-resistant bacteria has been revitalized recently, especially for fighting drug-resistant bacteria. In this research, an E. faecalis bacteriophage named IME-EF1 was isolated from hospital sewage. Whole genomic sequence analysis demonstrated that the isolated IME-EF1 belong to the Siphoviridae family, and has a linear double-stranded DNA genome consisting of 57,081 nucleotides. The IME-EF1 genome has a 40.04% G+C content and contains 98 putative coding sequences. In addition, IME-EF1 has an isometric head with a width of 35 nm to 60 nm and length of 75 nm to 90 nm, as well as morphology resembling a tadpole. IME-EF1 can adsorb to its host cells within 9 min, with an absorbance rate more than 99% and a latent period time of 25 min. The endolysin of IME-EF1 contains a CHAP domain in its N-terminal and has a wider bactericidal spectrum than its parental bacteriophage, including 2 strains of vancomycin-resistant E. faecalis. When administrated intraperitoneally, one dose of IME-EF1 or its endolysin can reduce bacterial count in the blood and protected the mice from a lethal challenge of E. faecalis, with a survival rate of 60% or 80%, respectively. Although bacteriophage could rescue mice from bacterial challenge, to the best of our knowledge, this study further supports the potential function of bacteriophage in dealing with E. faecalis infection in vivo. The results also indicated that the newly isolated bacteriophage IME-EF1 enriched the arsenal library of lytic E. faecalis bacteriophages and presented another choice for phage therapy in the future.
Collapse
Affiliation(s)
- Wenhui Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuyun Yin
- Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China
| | - Hang Fan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhiyi Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiankui Chen
- Affiliated Hospital, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (YT); (JC)
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- * E-mail: (YT); (JC)
| |
Collapse
|
46
|
Devirgiliis C, Zinno P, Perozzi G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol 2013; 4:301. [PMID: 24115946 PMCID: PMC3792357 DOI: 10.3389/fmicb.2013.00301] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/19/2013] [Indexed: 12/21/2022] Open
Abstract
Lactobacilli represent a major Lactic Acid Bacteria (LAB) component within the complex microbiota of fermented foods obtained from meat, dairy, and vegetable sources. Lactococci, on the other hand, are typical of milk and fermented dairy products, which in turn represent the vast majority of fermented foods. As is the case for all species originating from the environment, foodborne lactobacilli and lactococci consist of natural, uncharacterized strains, whose biodiversity depends on geographical origin, seasonality, animal feeding/plant growth conditions. Although a few species of opportunistic pathogens have been described, lactobacilli and lactococci are mostly non-pathogenic, Gram-positive bacteria displaying probiotic features. Since antibiotic resistant (AR) strains do not constitute an immediate threat to human health, scientific interest for detailed studies on AR genes in these species has been greatly hindered. However, increasing evidence points at a crucial role for foodborne LAB as reservoir of potentially transmissible AR genes, underlining the need for further, more detailed studies aimed at identifying possible strategies to avoid AR spread to pathogens through fermented food consumption. The availability of a growing number of sequenced bacterial genomes has been very helpful in identifying the presence/distribution of mobile elements associated with AR genes, but open questions and knowledge gaps still need to be filled, highlighting the need for systematic and datasharing approaches to implement both surveillance and mechanistic studies on transferability of AR genes. In the present review we report an update of the recent literature on AR in lactobacilli and lactococci following the 2006 EU-wide ban of the use of antibiotics as feed additives in animal farming, and we discuss the limits of the present knowledge in evaluating possible risks for human health.
Collapse
Affiliation(s)
- Chiara Devirgiliis
- CRA-NUT, Food and Nutrition Research Center, Agricultural Research Council Roma, Italy
| | | | | |
Collapse
|
47
|
Chibebe Junior J, Sabino CP, Tan X, Junqueira JC, Wang Y, Fuchs BB, Jorge AOC, Tegos GP, Hamblin MR, Mylonakis E. Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella. BMC Microbiol 2013; 13:217. [PMID: 24083556 PMCID: PMC3849975 DOI: 10.1186/1471-2180-13-217] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/17/2013] [Indexed: 02/08/2023] Open
Abstract
Background Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella. Results We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone. Conclusions G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.
Collapse
Affiliation(s)
- José Chibebe Junior
- Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, SP 12245000, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Santiago-Rodriguez TM, Rivera JI, Coradin M, Toranzos GA. Antibiotic-resistance and virulence genes in Enterococcus isolated from tropical recreational waters. JOURNAL OF WATER AND HEALTH 2013; 11:387-96. [PMID: 23981868 PMCID: PMC4096248 DOI: 10.2166/wh.2013.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The prevalence of enterococci harboring tetracycline- and vancomycin-resistance genes, as well as the enterococcal surface protein (esp) has mostly been determined in clinical settings, but their prevalence in tropical recreational waters remains largely unknown. The present study determined the prevalence of tetM (tetracycline-resistance), vanA and vanB (vancomycin-resistance) in the bacterial and viral fractions, enterococci and their induced phages isolated from tropical recreational marine and fresh waters, dry and wet sands. Since lysogenic phages can act as vectors for antibiotic-resistance and virulence factors, the prevalence of the mentioned genes, as well as that of an integrase-encoding gene (int) specific for Enterococcus faecalis phages was determined. Up to 60 and 54% of the bacterial fractions and enterococci, respectively, harbored at least one of the tested genes suggesting that bacteria in tropical environments may be reservoirs of antibiotic-resistance and virulence genes. int was detected in the viral fractions and in one Enterococcus isolate after induction. This study presents the opportunity to determine if the presence of bacteria harboring antibiotic-resistance and virulence genes in tropical recreational waters represents a threat to public health.
Collapse
|
49
|
Junqueira JC. Galleria mellonella as a model host for human pathogens: recent studies and new perspectives. Virulence 2013; 3:474-6. [PMID: 23211681 PMCID: PMC3524145 DOI: 10.4161/viru.22493] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The number of studies using G. mellonella as a model host for human pathogens has increased significantly in the last few years. Important studies were published from different countries for evaluating the pathogenesis of bacterial and fungal infections and for exploring the host defenses against pathogens. Therefore, standardized conditions for the use of G. melonella larvae need to be established. Recent research showed that the deprivation of G. mellonella larvae of food during the experiment caused a reduction in immune responses and an increased susceptibility to infection, suggesting that incubating of larvae in the presence or absence of nutrition may affect the results and comparisons among different laboratories.
Collapse
Affiliation(s)
- Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, São José dos Campos Dental School, Universidade Estadual Paulista/UNESP, São Paulo, Brazil.
| |
Collapse
|
50
|
Quiles-Puchalt N, Tormo-Más MÁ, Campoy S, Toledo-Arana A, Monedero V, Lasa I, Novick RP, Christie GE, Penadés JR. A super-family of transcriptional activators regulates bacteriophage packaging and lysis in Gram-positive bacteria. Nucleic Acids Res 2013; 41:7260-75. [PMID: 23771138 PMCID: PMC3753634 DOI: 10.1093/nar/gkt508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The propagation of bacteriophages and other mobile genetic elements requires exploitation of the phage mechanisms involved in virion assembly and DNA packaging. Here, we identified and characterized four different families of phage-encoded proteins that function as activators required for transcription of the late operons (morphogenetic and lysis genes) in a large group of phages infecting Gram-positive bacteria. These regulators constitute a super-family of proteins, here named late transcriptional regulators (Ltr), which share common structural, biochemical and functional characteristics and are unique to this group of phages. They are all small basic proteins, encoded by genes present at the end of the early gene cluster in their respective phage genomes and expressed under cI repressor control. To control expression of the late operon, the Ltr proteins bind to a DNA repeat region situated upstream of the terS gene, activating its transcription. This involves the C-terminal part of the Ltr proteins, which control specificity for the DNA repeat region. Finally, we show that the Ltr proteins are the only phage-encoded proteins required for the activation of the packaging and lysis modules. In summary, we provide evidence that phage packaging and lysis is a conserved mechanism in Siphoviridae infecting a wide variety of Gram-positive bacteria.
Collapse
Affiliation(s)
- Nuria Quiles-Puchalt
- Instituto de Biomedicina de Valencia (IBV-CSIC), 46010 Valencia, Spain, Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Apdo. 187, 12.400 Segorbe, Castellón, Spain, Departamento de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, 46113 Moncada, Valencia, Spain, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain, Instituto de Agrobiotecnología, CSIC-Universidad Pública de Navarra, 31006 Pamplona, Navarra, Spain, Laboratorio de Bacterias Lacticas y Probioticos, Instituto de Agroquimica y Tecnologia de Alimentos-CSIC, 46980 Paterna, Valencia, Spain, Skirball Institute Program in Molecular Pathogenesis and Departments of Microbiology and Medicine, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA, Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0678, USA and Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G12 8TA Glasgow, UK
| | | | | | | | | | | | | | | | | |
Collapse
|