1
|
Acinetobacter baumannii Catabolizes Ethanolamine in the Absence of a Metabolosome and Converts Cobinamide into Adenosylated Cobamides. mBio 2022; 13:e0179322. [PMID: 35880884 PMCID: PMC9426561 DOI: 10.1128/mbio.01793-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen typically associated with hospital-acquired infections. Our understanding of the metabolism and physiology of A. baumannii is limited. Here, we report that A. baumannii uses ethanolamine (EA) as the sole source of nitrogen and can use this aminoalcohol as a source of carbon and energy if the expression of the eutBC genes encoding ethanolamine ammonia-lyase (EAL) is increased. A strain with an ISAba1 element upstream of the eutBC genes efficiently used EA as a carbon and energy source. The A. baumannii EAL (AbEAL) enzyme supported the growth of a strain of Salmonella lacking the entire eut operon. Remarkably, the growth of the above-mentioned Salmonella strain did not require the metabolosome, the reactivase EutA enzyme, the EutE acetaldehyde dehydrogenase, or the addition of glutathione to the medium. Transmission electron micrographs showed that when Acinetobacter baumannii or Salmonella enterica subsp. enterica serovar Typhimurium strain LT2 synthesized AbEAL, the protein localized to the cell membrane. We also report that the A. baumannii genome encodes all of the enzymes needed for the assembly of the nucleotide loop of cobamides and that it uses these enzymes to synthesize different cobamides from the precursor cobinamide and several nucleobases. In the absence of exogenous nucleobases, the most abundant cobamide produced by A. baumannii was cobalamin.
Collapse
|
2
|
Elmendorf LD, Brunold TC. Electronic structure studies of free and enzyme-bound B 12 species by magnetic circular dichroism and complementary spectroscopic techniques. Methods Enzymol 2022; 669:333-365. [PMID: 35644179 DOI: 10.1016/bs.mie.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Electronic absorption (Abs) and circular dichroism (CD) spectroscopic techniques have been used successfully for over half a century in studies of free and enzyme-bound B12 species. More recently, magnetic circular dichroism (MCD) spectroscopy and other complementary techniques have provided an increasingly detailed understanding of the electronic structure of cobalamins. While CD spectroscopy measures the difference in the absorption of left- and right-circularly polarized light, MCD spectroscopy adds the application of a magnetic field parallel to the direction of light propagation. Transitions that are formally forbidden according to the Abs and CD selection rules, such as ligand field (or d→d) transitions, can gain MCD intensity through spin-orbit coupling. As such, MCD spectroscopy provides a uniquely sensitive probe of the different binding modes, Co oxidation states, and axial ligand environments of B12 species in enzyme active sites, and thus the distinct reactivities displayed by these species. This chapter summarizes representative MCD studies of free and enzyme-bound B12 species, including those present in adenosyltransferases, isomerases, and reductive dehalogenases. Complementary spectroscopic and computational data are also presented and discussed where appropriate.
Collapse
Affiliation(s)
- Laura D Elmendorf
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
3
|
Costa FG, Villa EA, Escalante-Semerena JC. A method for the efficient adenosylation of corrinoids. Methods Enzymol 2022; 668:87-108. [PMID: 35589203 DOI: 10.1016/bs.mie.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosylcobamides (AdoCbas) are coenzymes required by organisms from all domains of life to perform challenging chemical reactions. AdoCbas are characterized by a cobalt-containing tetrapyrrole ring, where an adenosyl group is covalently attached to the cobalt ion via a unique Co-C organometallic bond. During catalysis, this bond is homolytically cleaved by AdoCba-dependent enzymes to form an adenosyl radical that is critical for intra-molecular rearrangements. The formation of the Co-C bond is catalyzed by a family of enzymes known as ATP:Co(I)rrinoid adenosyltransferases (ACATs). ACATs adenosylate Cbas in two steps: (I) they generate a planar, Co(II) four-coordinate Cba to facilitate the reduction of Co(II) to Co(I), and (II) they transfer the adenosyl group from ATP to the Co(I) ion. To synthesize adenosylated corrinoids in vitro, it is imperative that anoxic conditions are maintained to avoid oxidation of Co(II) or Co(I) ions. Here we describe a method for the enzymatic synthesis and quantification of specific AdoCbas.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Elizabeth A Villa
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | | |
Collapse
|
4
|
Costa FG, Greenhalgh ED, Brunold TC, Escalante-Semerena JC. Mutational and Functional Analyses of Substrate Binding and Catalysis of the Listeria monocytogenes EutT ATP:Co(I)rrinoid Adenosyltransferase. Biochemistry 2020; 59:1124-1136. [PMID: 32125848 DOI: 10.1021/acs.biochem.0c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth D Greenhalgh
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | | |
Collapse
|
5
|
Stracey NG, Costa FG, Escalante-Semerena JC, Brunold TC. Spectroscopic Study of the EutT Adenosyltransferase from Listeria monocytogenes: Evidence for the Formation of a Four-Coordinate Cob(II)alamin Intermediate. Biochemistry 2018; 57:5088-5095. [PMID: 30071158 DOI: 10.1021/acs.biochem.8b00743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The EutT enzyme from Listeria monocytogenes ( LmEutT) is a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes that catalyze the biosynthesis of adenosylcobalamin (AdoCbl) from exogenous Co(II)rrinoids and ATP. Apart from EutT-type ACATs, two evolutionary unrelated types of ACATs have been identified, termed PduO and CobA. Although the three types of ACATs are nonhomologous, they all generate a four-coordinate cob(II)alamin (4C Co(II)Cbl) species to facilitate the formation of a supernucleophilic Co(I)Cbl intermediate capable of attacking the 5'-carbon of cosubstrate ATP. Previous spectroscopic studies of the EutT ACAT from Salmonella enterica ( SeEutT) revealed that this enzyme requires a divalent metal cofactor for the conversion of 5C Co(II)Cbl to a 4C species. Interestingly, LmEutT does not require a divalent metal cofactor for catalytic activity, which exemplifies an interesting phylogenetic divergence among the EutT enzymes. To explore if this disparity in the metal cofactor requirement among EutT enzymes correlates with differences in substrate specificity or the mechanism of Co(II)Cbl reduction, we employed various spectroscopic techniques to probe the interaction of Co(II)Cbl and cob(II)inamide (Co(II)Cbi+) with LmEutT in the absence and presence of cosubstrate ATP. Our data indicate that LmEutT displays a similar substrate specificity as SeEutT and can bind both Co(II)Cbl and Co(II)Cbi+ when complexed with MgATP, though it exclusively converts Co(II)Cbl to a 4C species. Notably, LmEutT is the most effective ACAT studied to date in generating the catalytically relevant 4C Co(II)Cbl species, achieving a >98% 5C → 4C conversion yield on the addition of just over one mol equiv of cosubstrate MgATP.
Collapse
Affiliation(s)
- Nuru G Stracey
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Flavia G Costa
- Department of Microbiology , University of Georgia , Athens , Georgia 30602 , United States
| | | | - Thomas C Brunold
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
6
|
Costa FG, Escalante-Semerena JC. A New Class of EutT ATP:Co(I)rrinoid Adenosyltransferases Found in Listeria monocytogenes and Other Firmicutes Does Not Require a Metal Ion for Activity. Biochemistry 2018; 57:5076-5087. [PMID: 30071718 DOI: 10.1021/acs.biochem.8b00715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ATP:Co(I)rrinoid adenosyltransferases (ACATs) are involved in de novo adenosylcobamide (AdoCba) biosynthesis and in salvaging complete and incomplete corrinoids from the environment. The ACAT enzyme family is comprised of three classes of structurally and evolutionarily distinct proteins (i.e., CobA, PduO, and EutT). The structure of EutT is unknown, and an understanding of its mechanism is incomplete. The Salmonella enterica EutT ( SeEutT) enzyme is the best-characterized member of its class and is known to be a ferroprotein. Here, we report the identification and initial biochemical characterization of an enzyme representative of a new class of EutTs that does not require a metal ion for activity. In vivo and in vitro evidence shows that the metal-free EutT homologue from Listeria monocytogenes ( LmEutT) has ACAT activity and that, unlike other ACATs, the biologically active form of LmEutT is a tetramer. In vitro studies revealed that LmEutT was more efficient than SeEutT and displayed positive cooperativity. LmEutT adenosylated cobalamin, but not cobinamide, showed specificity for ATP and 2'-deoxyATP and released a triphosphate byproduct. Bioinformatics analyses suggest that metal-free EutT ACATs are also present in other Firmicutes.
Collapse
Affiliation(s)
- Flavia G Costa
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| | - Jorge C Escalante-Semerena
- Department of Microbiology , University of Georgia , 212C Biological Sciences Building, 120 Cedar Street , Athens , Georgia 30602 , United States
| |
Collapse
|
7
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Evidence of a Tetrahedrally Coordinated Divalent Transition Metal Cofactor with Cysteine Ligation. Biochemistry 2017; 56:364-375. [PMID: 28045498 DOI: 10.1021/acs.biochem.6b00750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The EutT enzyme from Salmonella enterica, a member of the family of ATP:cobalt(I) corrinoid adenosyltransferase (ACAT) enzymes, requires a divalent transition metal ion for catalysis, with Fe(II) yielding the highest activity. EutT contains a unique cysteine-rich HX11CCX2C(83) motif (where H and the last C occupy the 67th and 83rd positions, respectively, in the amino acid sequence) not found in other ACATs and employs an unprecedented mechanism for the formation of adenosylcobalamin. Recent kinetic and spectroscopic studies of this enzyme revealed that residues in the HX11CCX2C(83) motif are required for the tight binding of the divalent metal ion and are critical for the formation of a four-coordinate (4c) cob(II)alamin [Co(II)Cbl] intermediate in the catalytic cycle. However, it remained unknown which, if any, of the residues in the HX11CCX2C(83) motif bind the divalent metal ion. To address this issue, we have characterized Co(II)-substituted wild-type EutT (EutTWT/Co) by using electronic absorption, electron paramagnetic resonance, and magnetic circular dichroism (MCD) spectroscopies. Our results indicate that the reduced catalytic activity of EutTWT/Co relative to that of the Fe(II)-containing enzyme arises from the incomplete incorporation of Co(II) ions and, thus, a decrease in the relative population of 4c Co(II)Cbl. Our MCD data for EutTWT/Co also reveal that the Co(II) ions reside in a distorted tetrahedral coordination environment with direct cysteine sulfur ligation. Additional spectroscopic studies of EutT/Co variants possessing a single alanine substitution of either His67, His75, Cys79, Cys80, or Cys83 indicate that Cys80 coordinates to the Co(II) ion, while the additional residues are important for maintaining the structural integrity and/or high affinity of the metal binding site.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Park K, Mera PE, Escalante-Semerena JC, Brunold TC. Resonance Raman spectroscopic study of the interaction between Co(II)rrinoids and the ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri. J Biol Inorg Chem 2016; 21:669-81. [PMID: 27383231 PMCID: PMC5118822 DOI: 10.1007/s00775-016-1371-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/14/2016] [Indexed: 12/01/2022]
Abstract
The human-type ATP:corrinoid adenosyltransferase PduO from Lactobacillus reuteri (LrPduO) catalyzes the adenosylation of Co(II)rrinoids to generate adenosylcobalamin (AdoCbl) or adenosylcobinamide (AdoCbi(+)). This process requires the formation of "supernucleophilic" Co(I)rrinoid intermediates in the enzyme active site which are properly positioned to abstract the adeonsyl moiety from co-substrate ATP. Previous magnetic circular dichroism (MCD) spectroscopic and X-ray crystallographic analyses revealed that LrPduO achieves the thermodynamically challenging reduction of Co(II)rrinoids by displacing the axial ligand with a non-coordinating phenylalanine residue to produce a four-coordinate species. However, relatively little is currently known about the interaction between the tetradentate equatorial ligand of Co(II)rrinoids (the corrin ring) and the enzyme active site. To address this issue, we have collected resonance Raman (rR) data of Co(II)rrinoids free in solution and bound to the LrPduO active site. The relevant resonance-enhanced vibrational features of the free Co(II)rrinoids are assigned on the basis of rR intensity calculations using density functional theory to establish a suitable framework for interpreting rR spectral changes that occur upon Co(II)rrinoid binding to the LrPduO/ATP complex in terms of structural perturbations of the corrin ring. To complement our rR data, we have also obtained MCD spectra of Co(II)rrinoids bound to LrPduO complexed with the ATP analogue UTP. Collectively, our results provide compelling evidence that in the LrPduO active site, the corrin ring of Co(II)rrinoids is firmly locked in place by several amino acid side chains so as to facilitate the dissociation of the axial ligand.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Paola E Mera
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Pallares IG, Moore TC, Escalante-Semerena JC, Brunold TC. Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Mechanism of Four-Coordinate Co(II)Cbl Formation. J Am Chem Soc 2016; 138:3694-704. [PMID: 26886077 DOI: 10.1021/jacs.5b11708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co(I)rrinoid adenosyltransferases (ACATs), implicated in the biosynthesis of adenosylcobalamin (AdoCbl). In the presence of cosubstrate ATP, ACATs raise the Co(II)/Co(I) reduction potential of their cob(II)alamin [Co(II)Cbl] substrate by >250 mV via the formation of a unique four-coordinate (4c) Co(II)Cbl species, thereby facilitating the formation of a "supernucleophilic" cob(I)alamin intermediate required for the formation of the AdoCbl product. Previous kinetic studies of EutT revealed the importance of a HX11CCX2C(83) motif for catalytic activity and have led to the proposal that residues in this motif serve as the binding site for a divalent transition metal cofactor [e.g., Fe(II) or Zn(II)]. This motif is absent in other ACAT families, suggesting that EutT employs a distinct mechanism for AdoCbl formation. To assess how metal ion binding to the HX11CCX2C(83) motif affects the relative yield of 4c Co(II)Cbl generated in the EutT active site, we have characterized several enzyme variants by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our results indicate that Fe(II) or Zn(II) binding to the HX11CCX2C(83) motif of EutT is required for promoting the formation of 4c Co(II)Cbl. Intriguingly, our spectroscopic data also reveal the presence of an equilibrium between five-coordinate "base-on" and "base-off" Co(II)Cbl species bound to the EutT active site at low ATP concentrations, which shifts in favor of "base-off" Co(II)Cbl in the presence of excess ATP, suggesting that the base-off species serves as a precursor to 4c Co(II)Cbl.
Collapse
Affiliation(s)
- Ivan G Pallares
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Theodore C Moore
- Department of Microbiology, University of Georgia , Athens, Georgia 30602, United States
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Toraya T, Tanokuchi A, Yamasaki A, Nakamura T, Ogura K, Tobimatsu T. Diol Dehydratase-Reactivase Is Essential for Recycling of Coenzyme B12 in Diol Dehydratase. Biochemistry 2015; 55:69-78. [PMID: 26704729 DOI: 10.1021/acs.biochem.5b01023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Holoenzymes of adenosylcobalamin-dependent diol and glycerol dehydratases undergo mechanism-based inactivation by glycerol and O2 inactivation in the absence of substrate, which accompanies irreversible cleavage of the coenzyme Co-C bond. The inactivated holodiol dehydratase and the inactive enzyme·cyanocobalamin complex were (re)activated by incubation with NADH, ATP, and Mg(2+) (or Mn(2+)) in crude extracts of Klebsiella oxytoca, suggesting the presence of a reactivating system in the extract. The reducing system with NADH could be replaced by FMNH2. When inactivated holoenzyme or the enzyme·cyanocobalamin complex, a model of inactivated holoenzyme, was incubated with purified recombinant diol dehydratase-reactivase (DD-R) and an ATP:cob(I)alamin adenosyltransferase in the presence of FMNH2, ATP, and Mg(2+), diol dehydratase activity was restored. Among the three adenosyltransferases (PduO, EutT, and CobA) of this bacterium, PduO and CobA were much more efficient for the reactivation than EutT, although PduO showed the lowest adenosyltransfease activity toward free cob(I)alamin. These results suggest that (1) diol dehydratase activity is maintained through coenzyme recycling by a reactivating system for diol dehydratase composed of DD-R, PduO adenosyltransferase, and a reducing system, (2) the releasing factor DD-R is essential for the recycling of adenosycobalamin, a tightly bound, prosthetic group-type coenzyme, and (3) PduO is a specific adenosylating enzyme for the DD reactivation, whereas CobA and EutT exert their effects through free synthesized coenzyme. Although FMNH2 was mainly used as a reductant in this study, a natural reducing system might consist of PduS cobalamin reductase and NADH.
Collapse
Affiliation(s)
- Tetsuo Toraya
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Aya Tanokuchi
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Ai Yamasaki
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takehiro Nakamura
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kenichi Ogura
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Takamasa Tobimatsu
- Department of Bioscience and Biotechnology, Graduate School of Natural Science and Technology, Okayama University , Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Moore TC, Escalante-Semerena JC. The EutQ and EutP proteins are novel acetate kinases involved in ethanolamine catabolism: physiological implications for the function of the ethanolamine metabolosome in Salmonella enterica. Mol Microbiol 2015; 99:497-511. [PMID: 26448059 DOI: 10.1111/mmi.13243] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.
Collapse
Affiliation(s)
- Theodore C Moore
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | |
Collapse
|
12
|
Park K, Mera PE, Moore TC, Escalante-Semerena JC, Brunold TC. Unprecedented Mechanism Employed by the Salmonella entericaEutT ATP:Co Irrinoid Adenosyltransferase Precludes Adenosylation of Incomplete Co IIrrinoids. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Park K, Mera PE, Moore TC, Escalante-Semerena JC, Brunold TC. Unprecedented Mechanism Employed by the Salmonella enterica EutT ATP:Co(I)rrinoid Adenosyltransferase Precludes Adenosylation of Incomplete Co(II)rrinoids. Angew Chem Int Ed Engl 2015; 54:7158-61. [PMID: 25914129 DOI: 10.1002/anie.201501930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Indexed: 11/08/2022]
Abstract
Three distinct families of ATP:corrinoid adenosyltransferases (ACATs) exist that are capable of converting vitamin B12 derivatives into coenzyme B12 by catalyzing the thermodynamically challenging reduction of Co(II) rrinoids to form "supernucleophilic" Co(I) intermediates. While the structures and mechanisms of two of the ACAT families have been studied extensively, little is known about the EutT enzymes beyond the fact that they exhibit a unique requirement for a divalent metal cofactor for enzymatic activity. In this study we have obtained compelling evidence that EutT converts cob(II)alamin into an effectively four-coordinate Co(II) species so as to facilitate Co(II)→Co(I) reduction. Intriguingly, EutT fails to promote axial ligand dissociation from the substrate analogue cob(II)inamide, a natural precursor of cob(II)alamin. This unique substrate specificity of EutT has important physiological implications.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA).,Present address: Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon (Republic of Korea)
| | - Paola E Mera
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706 (USA).,Present address: Department of Developmental Biology, Stanford University, Stanford, CA 94305 (USA)
| | - Theodore C Moore
- Department of Microbiology, University of Georgia-Athens, Athens, GA 30602 (USA)
| | | | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA).
| |
Collapse
|