1
|
Krug SA, Shahzad S, Witt WT, Barbier M, Wilks A, Kane MA. Quantitative LC-MS/MS Analysis of Endogenous Pseudomonas aeruginosa Isomeric Metabolites Biliverdin IX Alpha, Beta, and Delta in Cell Culture Supernatant, Cell Pellet, and Lung Tissue. J Proteome Res 2025; 24:649-656. [PMID: 39792953 DOI: 10.1021/acs.jproteome.4c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Pseudomonas aeruginosa (Pa) utilizes heme as an iron source from the host during infection. Biliverdin beta and delta (BVIXβ and BVIXδ) are generated by HemO, specific to Pa, while biliverdin alpha is generated from the bacterial BphO system and by mammalian heme oxygenases. Here, we have developed and characterized a quantitative LC-MS/MS assay for the separation of three endogenous isomers, BVIXα, BVIXβ, and BVIXδ. The assay was validated for accuracy, precision, linearity, extraction recovery, solution stability, freeze-thaw stability, benchtop stability, postextraction stability, and nonspecific oxidation of BVIX. The addition of an antioxidant, butylated hydroxytoluene, during sample preparation is needed in order to prevent coupled oxidation from inflating quantitative values of BVIX. The assay development included optimization of a liquid-liquid extraction for bacterial culture supernatants and sample preparation procedures for cell pellets and tissue homogenate to reduce sample demand and automate the extraction procedure in a 96-well format, to enhance extraction throughput. This method was applied to analyze isomer distribution in Pa supernatant, bacterial pellet, and infected lung tissue from Pa-challenged mice. This method can be used in the future for low-volume culture samples, as well as tissue samples, to understand the mechanisms of virulence and inform future drug development.
Collapse
Affiliation(s)
- Samuel A Krug
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Saba Shahzad
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - William T Witt
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Mariette Barbier
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506, United States
| | - Angela Wilks
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Maureen A Kane
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
Aftab H, Samudio J, Wang G, Le L, Soni RK, Donegan RK. Heme alters biofilm formation in Mycobacterium abscessus. Microbiol Spectr 2025; 13:e0241524. [PMID: 39705014 PMCID: PMC11792503 DOI: 10.1128/spectrum.02415-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Mycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung. During infection, Mabs can form biofilms in the lung which reduce both the ability of the immune response to clear infection and the effectiveness of antibiotic therapy. In the CF lung, heme and hemoglobin levels are increased and may provide both iron and heme to Mabs cells. In this work, we show that exogenous heme altered Mabs biofilm formation and measured the effects of exogenous heme on protein level and metabolism in Mabs. Our findings suggest that heme impacts iron homeostasis in Mabs and affects other aspects of its metabolism, highlighting the potential role of heme as a critical nutrient for Mabs growth and biofilm formation.IMPORTANCEMycobacterium abscessus (Mabs) is commonly found in the cystic fibrosis (CF) lung, where Mabs can form biofilms that can reduce the efficacy of antibiotics. During infection, the CF lung can have more than 10 times the extracellular heme than that of a healthy lung. We have found that extracellular heme can change the way Mabs cells grow and form biofilms, which may have implications for pathogenesis.
Collapse
Affiliation(s)
- Hadia Aftab
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Jessica Samudio
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Grace Wang
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Lily Le
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| | - Rajesh K. Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Rebecca K. Donegan
- Department of Chemistry, Barnard College, Columbia University, New York, New York, USA
| |
Collapse
|
3
|
Burch-Konda J, Kayastha BB, Achour M, Kubo A, Hull M, Braga R, Winton L, Rogers RR, Lutter EI, Patrauchan MA. EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in Pseudomonas aeruginosa. mBio 2024; 15:e0244724. [PMID: 39436074 PMCID: PMC11559002 DOI: 10.1128/mbio.02447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca2+-binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca2+-regulated virulence in P. aeruginosa. Here, we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ), and several virulence factors, such as the production of pyocins. The Ca2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca2+ and Fe, and this regulation required a Ca2+-dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to the host.IMPORTANCEPseudomonas aeruginosa (Pa) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca2+ sensor, EfhP, is required for at least 1/3 of the Ca2+ response, including the majority of the iron uptake mechanisms and the production of pyocins. Transcription of efhP itself is regulated by Ca2+ and Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca2+ and associated regulatory mechanisms will serve in the development of future therapeutics targeting Pa's dangerous infections.
Collapse
Affiliation(s)
- Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Biraj B. Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Myriam Achour
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mackenzie Hull
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lorelei Winton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rendi R. Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
4
|
Suttenfield LC, Rapti Z, Chandrashekhar JH, Steinlein AC, Vera JC, Kim T, Whitaker RJ. Phage-mediated resolution of genetic conflict alters the evolutionary trajectory of Pseudomonas aeruginosa lysogens. mSystems 2024; 9:e0080124. [PMID: 39166874 PMCID: PMC11406979 DOI: 10.1128/msystems.00801-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity of P. aeruginosa PA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat (CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogen Pseudomonas aeruginosa is persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers and cas genes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations.
Collapse
Affiliation(s)
- Laura C Suttenfield
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zoi Rapti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jayadevi H Chandrashekhar
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Amelia C Steinlein
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Juan Cristobal Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Ted Kim
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J Whitaker
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Chourashi R, Oglesby AG. Iron starvation increases the production of the Pseudomonas aeruginosa RsmY and RsmZ sRNAs in static conditions. J Bacteriol 2024; 206:e0027823. [PMID: 38624234 PMCID: PMC11112995 DOI: 10.1128/jb.00278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that induces virulence gene expression in response to host-mediated iron starvation. Recently, our laboratory showed that some virulence factors are responsive to iron limitation in static but not shaking growth conditions. One of these is the HSI-2-type six secretion system (T6SS), which is also induced during chronic infection. Iron regulation of T6SS was partially impacted by the iron-responsive PrrF sRNA and completely dependent upon the Pseudomonas quinolone signal (PQS) biosynthetic gene pqsA. Here, we analyzed the impact of iron on the expression of two small regulatory RNAs (sRNAs), RsmY and RsmZ, that activate the expression of T6SS by sequestering the RsmA translation inhibitor. Our results demonstrate that iron starvation induces the expression of RsmY and RsmZ in static but not shaking cultures. We further show that this induction occurs through the rsmY and rsmZ promoters and is dependent upon PqsA. Disruption of either the pqsR gene also eliminated iron-dependent regulation of rsmY and rsmZ promoter activity. Taken together, our results show novel targets of iron regulation that are specific to static growth, highlighting the importance of studying regulatory mechanisms in static communities that may be more representative of growth during chronic infection.IMPORTANCEIron is a central component of various bacterial metabolic pathways making it an important host-acquired nutrient for pathogens to establish infection. Previous iron regulatory studies primarily relied on shaking bacterial cultures; while these ensure cultural homogeneity, they do not reflect growth conditions during infection. We recently showed that static growth of Pseudomonas aeruginosa promotes iron-dependent regulation of a type six secretion system (T6SS), a virulence factor that is induced during chronic infections. In the current study, we found that static growth also promotes iron-dependent regulation of the RsmY and RsmZ sRNAs, which are global regulators that affect T6SS during chronic P. aeruginosa lung infection. Hence, our work demonstrates the Rsm sRNAs as potential effectors of iron regulation during static growth that may also be relevant in chronic infection.
Collapse
Affiliation(s)
- Rhishita Chourashi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Motz RN, Guo C, Sargun A, Walker GT, Sassone-Corsi M, Raffatellu M, Nolan EM. Conjugation to Native and Nonnative Triscatecholate Siderophores Enhances Delivery and Antibacterial Activity of a β-Lactam to Gram-Negative Bacterial Pathogens. J Am Chem Soc 2024; 146:7708-7722. [PMID: 38457782 PMCID: PMC11037102 DOI: 10.1021/jacs.3c14490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing new antibiotics and delivery strategies is of critical importance for treating infections caused by Gram-negative bacterial pathogens. Hijacking bacterial iron uptake machinery, such as that of the siderophore enterobactin (Ent), represents one promising approach toward these goals. Here, we report a novel Ent-inspired siderophore-antibiotic conjugate (SAC) employing an alternative siderophore moiety as the delivery vector and demonstrate the potency of our SACs harboring the β-lactam antibiotic ampicillin (Amp) against multiple pathogenic Gram-negative bacterial strains. We establish the ability of N,N',N''-(nitrilotris(ethane-2,1-diyl))tris(2,3-dihydroxybenzamide) (TRENCAM, hereafter TC), a synthetic mimic of Ent, to facilitate drug delivery across the outer membrane (OM) of Gram-negative pathogens. Conjugation of Amp to a new monofunctionalized TC scaffold affords TC-Amp, which displays markedly enhanced antibacterial activity against the gastrointestinal pathogen Salmonella enterica serovar Typhimurium (STm) compared with unmodified Amp. Bacterial uptake, antibiotic susceptibility, and microscopy studies with STm show that the TC moiety facilitates TC-Amp uptake by the OM receptors FepA and IroN and that the Amp warhead inhibits penicillin-binding proteins. Moreover, TC-Amp achieves targeted activity, selectively killing STm in the presence of a commensal lactobacillus. Remarkably, we uncover that TC-Amp and its Ent-based predecessor Ent-Amp achieve enhanced antibacterial activity against diverse Gram-negative ESKAPE pathogens that express Ent uptake machinery, including strains that possess intrinsic β-lactam resistance. TC-Amp and Ent-Amp exhibit potency comparable to that of the FDA-approved SAC cefiderocol against Gram-negative pathogens. These results demonstrate the effective application of native and appropriately designed nonnative siderophores as vectors for drug delivery across the OM of multiple Gram-negative bacterial pathogens.
Collapse
Affiliation(s)
- Rachel N. Motz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chuchu Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Artur Sargun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gregory T. Walker
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martina Sassone-Corsi
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Microbiology & Molecular Genetics, University of California Irvine, Irvine, CA 92697, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, La Jolla, CA 92093, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Shahzad S, Krug SA, Mouriño S, Huang W, Kane MA, Wilks A. Pseudomonas aeruginosa heme metabolites biliverdin IXβ and IXδ are integral to lifestyle adaptations associated with chronic infection. mBio 2024; 15:e0276323. [PMID: 38319089 PMCID: PMC10936436 DOI: 10.1128/mbio.02763-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen requiring iron for its survival and virulence within the host. The ability to switch to heme as an iron source and away from siderophore uptake provides an advantage in chronic infection. We have recently shown the extracellular heme metabolites biliverdin IXβ (BVIXβ) and BVIXδ positively regulate the heme-dependent cell surface signaling cascade. We further investigated the role of BVIXβ and BVIXδ in cell signaling utilizing allelic strains lacking a functional heme oxygenase (hemOin) or one reengineered to produce BVIXα (hemOα). Compared to PAO1, both strains show a heme-dependent growth defect, decreased swarming and twitching, and less robust biofilm formation. Interestingly, the motility and biofilm defects were partially rescued on addition of exogenous BVIXβ and BVIXδ. Utilizing liquid chromatography-tandem mass spectrometry, we performed a comparative proteomics and metabolomics analysis of PAO1 versus the allelic strains in shaking and static conditions. In shaking conditions, the hemO allelic strains showed a significant increase in proteins involved in quorum sensing, phenazine production, and chemotaxis. Metabolite profiling further revealed increased levels of Pseudomonas quinolone signal and phenazine metabolites. In static conditions, we observed a significant repression of chemosensory pathways and type IV pili biogenesis proteins as well as several phosphodiesterases associated with biofilm dispersal. We propose BVIX metabolites function as signaling and chemotactic molecules integrating heme utilization as an iron source into the adaptation of P. aeruginosa from a planktonic to sessile lifestyle. IMPORTANCE The opportunistic pathogen Pseudomonas aeruginosa causes long-term chronic infection in the airways of cystic fibrosis patients. The ability to scavenge iron and to establish chronic infection within this environment coincides with a switch to utilize heme as the primary iron source. Herein, we show the heme metabolites biliverdin beta and delta are themselves important signaling molecules integrating the switch in iron acquisition systems with cooperative behaviors such as motility and biofilm formation that are essential for long-term chronic infection. These significant findings will enhance the development of viable multi-targeted therapeutics effective against both heme utilization and cooperative behaviors essential for survival and persistence within the host.
Collapse
Affiliation(s)
- Saba Shahzad
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Samuel A. Krug
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Galdino ACM, Vaillancourt M, Celedonio D, Huse K, Doi Y, Lee JS, Jorth P. Siderophores promote cooperative interspecies and intraspecies cross-protection against antibiotics in vitro. Nat Microbiol 2024; 9:631-646. [PMID: 38409256 PMCID: PMC11239084 DOI: 10.1038/s41564-024-01601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/09/2024] [Indexed: 02/28/2024]
Abstract
The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists β-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.
Collapse
Affiliation(s)
- Anna Clara M Galdino
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mylene Vaillancourt
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diana Celedonio
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kara Huse
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally evolved Staphylococcus aureus shows increased survival in the presence of Pseudomonas aeruginosa by acquiring mutations in the amino acid transporter, GltT. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001445. [PMID: 38426877 PMCID: PMC10999751 DOI: 10.1099/mic.0.001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
When cultured together under standard laboratory conditions Pseudomonas aeruginosa has been shown to be an effective inhibitor of Staphylococcus aureus. However, P. aeruginosa and S. aureus are commonly observed in coinfections of individuals with cystic fibrosis (CF) and in chronic wounds. Previous work from our group revealed that S. aureus isolates from CF infections are able to persist in the presence of P. aeruginosa strain PAO1 with a range of tolerances with some isolates being eliminated entirely and others maintaining large populations. In this study, we designed a serial transfer, evolution experiment to identify mutations that allow S. aureus to survive in the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa PAO1. After eight coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompeted wild-type S. aureus when glutamate was absent from chemically defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two are cultured together.
Collapse
Affiliation(s)
- Ashley M. Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M. Luu
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D. Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Peet JJY, Phan AD, Oglesby AG, Nolan EM. Iron Sequestration by Murine Calprotectin Induces Starvation Responses in Pseudomonas aeruginosa. ACS Infect Dis 2024; 10:688-700. [PMID: 38261753 PMCID: PMC11273327 DOI: 10.1021/acsinfecdis.3c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Pathogen sensing by the mammalian host induces a pro-inflammatory response that involves release of the antimicrobial metal-sequestering protein calprotectin (CP, S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) from neutrophils. Biochemical investigations on human CP (hCP) have informed the molecular basis of how this protein sequesters metal ions. Murine models of infection have provided invaluable insights into the ability of murine CP (mCP) to compete with bacterial pathogens for essential metal nutrients. Despite this extensive work, our knowledge of how mCP sequesters metals from bacterial pathogens and its impacts on bacterial physiology is limited. Moreover, whether mCP sequesters iron and induces iron-starvation responses in bacterial pathogens has not been evaluated. Here, we examine the ability of mCP to withhold iron from Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen that causes severe infections in immunocompromised individuals and cystic fibrosis patients. We demonstrate that mCP prevents iron uptake and induces iron-starvation responses in P. aeruginosa laboratory strains PA14 and PAO1 and the JSRI-1 clinical isolate from a cystic fibrosis patient. We also show that mCP prevents iron uptake and induces an iron-starvation response in the Gram-positive bacterial pathogen Staphylococcus aureus. The His6 site of mCP is the iron-sequestering site; it exhibits Ca(II)-dependent Fe(II) affinity and binds Fe(II) with subpicomolar affinity in the presence of excess Ca(II) ions. This work is important for understanding the structure, function, and physiological consequences of mCP and how the mammalian host and bacterial pathogens compete for essential metal nutrients.
Collapse
Affiliation(s)
- Janet J. Y. Peet
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Angelica D. Phan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amanda G. Oglesby
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, 21201, USA
- School of Medicine, Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21021, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Valappil SP, Abou Neel EA, Zakir Hossain KM, Paul W, Cherukaraveedu D, Wade B, Ansari TI, Hope CK, Higham SM, Sharma CP. Novel lactoferrin-conjugated gallium complex to treat Pseudomonas aeruginosa wound infection. Int J Biol Macromol 2024; 258:128838. [PMID: 38128798 DOI: 10.1016/j.ijbiomac.2023.128838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Pseudomonas aeruginosa is one of the leading causes of opportunistic infections such as chronic wound infection that could lead to multiple organ failure and death. Gallium (Ga3+) ions are known to inhibit P. aeruginosa growth and biofilm formation but require carrier for localized controlled delivery. Lactoferrin (LTf), a two-lobed protein, can deliver Ga3+ at sites of infection. This study aimed to develop a Ga-LTf complex for the treatment of wound infection. The characterisation of the Ga-LTf complex was conducted using differential scanning calorimetry (DSC), Infra-Red (FTIR) and Inductive Coupled Plasma Optical Emission Spectrometry (ICP-OES). The antibacterial activity was assessed by agar disc diffusion, liquid broth and biofilm inhibition assays using the colony forming units (CFUs). The healing capacity and biocompatibility were evaluated using a P.aeruginosa infected wound in a rat model. DSC analyses showed thermal transition consistent with apo-lactoferrin; FTIR confirmed the complexation of gallium to lactoferrin. ICP-OES confirmed the controlled local delivery of Ga3+. Ga-LTf showed a 0.57 log10 CFUs reduction at 24 h compared with untreated control in planktonic liquid broth assay. Ga-LTf showed the highest antibiofilm activity with a 2.24 log10 CFUs reduction at 24 h. Furthermore, Ga-LTf complex is biocompatible without any adverse effect on brain, kidney, liver and spleen of rats tested in this study. Ga-LTf can be potentially promising novel therapeutic agent to treat pathogenic bacterial infections.
Collapse
Affiliation(s)
- Sabeel P Valappil
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, United Kingdom; Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom.
| | - Ensanya A Abou Neel
- Preventive and Restorative Dentistry Department, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, Royal Free Hospital, Rowland Hill Street, London, UK
| | | | - Willi Paul
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Durgadas Cherukaraveedu
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| | - Benjamin Wade
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Tahera I Ansari
- Northwick Park Institute for Medical Research, Watford Road, Harrow HA1 3UJ, United Kingdom
| | - Christopher K Hope
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Susan M Higham
- Institute of Population Health, University of Liverpool, Research Wing, Daulby Street, Liverpool L69 3GN, United Kingdom
| | - Chandra P Sharma
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695012, India
| |
Collapse
|
12
|
Burch-Konda J, Kayastha BB, Kubo A, Achour M, Hull M, Braga R, Winton L, Rogers RR, McCoy J, Lutter EI, Patrauchan MA. EF-Hand Calcium Sensor, EfhP, Controls Transcriptional Regulation of Iron Uptake by Calcium in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574892. [PMID: 38260268 PMCID: PMC10802428 DOI: 10.1101/2024.01.09.574892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The human pathogen Pseudomonas aeruginosa poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca 2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca 2+ -binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca 2+ -regulated virulence in P. aeruginosa . Here we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca 2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca 2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ) and several virulence factors, such as production of pyocins. The Ca 2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca 2+ and Fe, and this regulation required Ca 2+ -dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca 2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca 2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to host. IMPORTANCE Pseudomonas aeruginosa ( Pa ) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca 2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca 2+ sensor, EfhP, is required for at least 1/3 of the Ca 2+ response, including all the iron uptake mechanisms and production of pyocins. Transcription of efhP itself is regulated by Ca 2+ , Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca 2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca 2+ and associated regulatory mechanisms will serve the development of future therapeutics targeting Pa dangerous infections.
Collapse
|
13
|
Hoang TM, Huang W, Gans J, Weiner J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. mSphere 2023; 8:e0039223. [PMID: 37800921 PMCID: PMC10597452 DOI: 10.1128/msphere.00392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small RNAs (sRNAs), which post-transcriptionally repress expression of nonessential iron-containing proteins, thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been extensively studied, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to the wild type, while the mRNAs for these proteins were not affected by the prrH mutation. We identified complementarity between the PrrH sRNA and the sequence upstream of the pchE mRNA, suggesting the potential for PrrH to directly regulate the expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered that controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function. IMPORTANCE In the human host, iron is predominantly in the form of heme, which Pseudomonas aeruginosa can acquire as an iron source during infection. We previously showed that the iron-responsive PrrF small RNAs (sRNAs) are critical for mediating iron homeostasis during P. aeruginosa infection; however, the function of the heme-responsive PrrH sRNA remains unclear. In this study, we identified genes for pyochelin siderophore biosynthesis, which mediates uptake of inorganic iron, as a novel target of PrrH regulation. This study therefore highlights a novel relationship between heme availability and siderophore biosynthesis in P. aeruginosa.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Jacob Weiner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Guadarrama-Orozco KD, Perez-Gonzalez C, Kota K, Cocotl-Yañez M, Jiménez-Cortés JG, Díaz-Guerrero M, Hernández-Garnica M, Munson J, Cadet F, López-Jácome LE, Estrada-Velasco ÁY, Fernández-Presas AM, García-Contreras R. To cheat or not to cheat: cheatable and non-cheatable virulence factors in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2023; 99:fiad128. [PMID: 37827541 DOI: 10.1093/femsec/fiad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Important bacterial pathogens such as Pseudomonas aeruginosa produce several exoproducts such as siderophores, degradative enzymes, biosurfactants, and exopolysaccharides that are used extracellularly, benefiting all members of the population, hence being public goods. Since the production of public goods is a cooperative trait, it is in principle susceptible to cheating by individuals in the population who do not invest in their production, but use their benefits, hence increasing their fitness at the expense of the cooperators' fitness. Among the most studied virulence factors susceptible to cheating are siderophores and exoproteases, with several studies in vitro and some in animal infection models. In addition to these two well-known examples, cheating with other virulence factors such as exopolysaccharides, biosurfactants, eDNA production, secretion systems, and biofilm formation has also been studied. In this review, we discuss the evidence of the susceptibility of each of those virulence factors to cheating, as well as the mechanisms that counteract this behavior and the possible consequences for bacterial virulence.
Collapse
Affiliation(s)
- Katya Dafne Guadarrama-Orozco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Caleb Perez-Gonzalez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Kokila Kota
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Jesús Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Mariel Hernández-Garnica
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Julia Munson
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, 75013, France
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389 Mexico City, Mexico
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| |
Collapse
|
15
|
Murante D, Demers EG, Kurbessoian T, Ruzic M, Ashare A, Stajich JE, Hogan DA. Mrs4 loss of function in fungi during adaptation to the cystic fibrosis lung. mBio 2023; 14:e0117123. [PMID: 37432019 PMCID: PMC10470810 DOI: 10.1128/mbio.01171-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
The genetic disease cystic fibrosis (CF) frequently leads to chronic lung infections by bacteria and fungi. We identified three individuals with CF with persistent lung infections dominated by Clavispora (Candida) lusitaniae. Whole-genome sequencing analysis of multiple isolates from each infection found evidence for selection for mutants in the gene MRS4 in all three distinct lung-associated populations. In each population, we found one or two unfixed, non-synonymous mutations in MRS4 relative to the reference allele found in multiple environmental and clinical isolates including the type strain. Genetic and phenotypic analyses found that all evolved alleles led to loss of function (LOF) of Mrs4, a mitochondrial iron transporter. RNA-seq analyses found that Mrs4 variants with decreased activity led to increased expression of genes involved in iron acquisition mechanisms in both low iron and replete iron conditions. Furthermore, surface iron reductase activity and intracellular iron were much higher in strains with Mrs4 LOF variants. Parallel studies found that a subpopulation of a CF-associated Exophiala dermatitidis infection also had a non-synonymous LOF mutation in MRS4. Together, these data suggest that MRS4 mutations may be beneficial during chronic CF lung infections in diverse fungi, perhaps, for the purposes of adaptation to an iron-restricted environment with chronic infections. IMPORTANCE The identification of MRS4 mutations in Clavispora (Candida) lusitaniae and Exophiala dermatitidis in individuals with cystic fibrosis (CF) highlights a possible adaptive mechanism for fungi during chronic CF lung infections. The findings of this study suggest that loss of function of the mitochondrial iron transporter Mrs4 can lead to increased activity of iron acquisition mechanisms, which may be advantageous for fungi in iron-restricted environments during chronic infections. This study provides valuable information for researchers working toward a better understanding of the pathogenesis of chronic lung infections and more effective therapies to treat them.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Elora G. Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Tania Kurbessoian
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Marina Ruzic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Medicine, Dartmouth Health, Lebanon, New Hampshire, USA
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
16
|
Alexander AM, Luu JM, Raghuram V, Bottacin G, van Vliet S, Read TD, Goldberg JB. Experimentally Evolved Staphylococcus aureus Survives in the Presence of Pseudomonas aeruginosa by Acquiring Mutations in the Amino Acid Transporter, GltT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550428. [PMID: 37546966 PMCID: PMC10402077 DOI: 10.1101/2023.07.24.550428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Staphylococcus aureus and Pseudomonas aeruginosa are the most common bacterial pathogens isolated from cystic fibrosis (CF) related lung infections. When both of these opportunistic pathogens are found in a coinfection, CF patients tend to have higher rates of pulmonary exacerbations and experience a more rapid decrease in lung function. When cultured together under standard laboratory conditions, it is often observed that P. aeruginosa effectively inhibits S. aureus growth. Previous work from our group revealed that S. aureus from CF infections have isolate-specific survival capabilities when cocultured with P. aeruginosa. In this study, we designed a serial transfer evolution experiment to identify mutations that allow S. aureus to adapt to the presence of P. aeruginosa. Using S. aureus USA300 JE2 as our ancestral strain, populations of S. aureus were repeatedly cocultured with fresh P. aeruginosa strain, PAO1. After 8 coculture periods, S. aureus populations that survived better in the presence of PAO1 were observed. We found two independent mutations in the highly conserved S. aureus aspartate transporter, gltT, that were unique to evolved P. aeruginosa-tolerant isolates. Subsequent phenotypic testing demonstrated that gltT mutants have reduced uptake of glutamate and outcompete wild-type S. aureus when glutamate is absent from chemically-defined media. These findings together demonstrate that the presence of P. aeruginosa exerts selective pressure on S. aureus to alter its uptake and metabolism of key amino acids when the two bacteria are cultured together.
Collapse
Affiliation(s)
- Ashley M Alexander
- Population Biology, Ecology, and Evolution Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Justin M Luu
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vishnu Raghuram
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Giulia Bottacin
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
| | - Simon van Vliet
- Biozentrum, University of Basel, Spitalstrasse 41,4056 Basel, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, Quartier Unil-Sorge, 1015 Lausanne, Switzerland
| | - Timothy D Read
- Division of Infectious Diseases and Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonology, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Murante D, Demers EG, Kurbessoian T, Ruzic M, Ashare A, Stajich JE, Hogan DA. Mrs4 loss of function in fungi during adaptation to the cystic fibrosis lung. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.05.535776. [PMID: 37066389 PMCID: PMC10104081 DOI: 10.1101/2023.04.05.535776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The genetic disease cystic fibrosis (CF) frequently leads to chronic lung infections by bacteria and fungi. We identified three individuals with CF with persistent lung infections dominated by Clavispora ( Candida ) lusitaniae . Whole genome sequencing analysis of multiple isolates from each infection found evidence for selection for mutants in the gene MRS4 in all three distinct lung-associated populations. In each population, we found one or two unfixed, non-synonymous mutations in MRS4 relative to the reference allele found in multiple environmental and clinical isolates including the type strain. Genetic and phenotypic analyses found that all evolved alleles led to loss of function of Mrs4, a mitochondrial iron transporter. RNA Seq analyses found that Mrs4 variants with decreased activity led to increased expression of genes involved in iron acquisition mechanisms in both low iron and replete iron conditions. Furthermore, surface iron reductase activity and intracellular iron was much higher in strains with Mrs4 loss of function variants. Parallel studies found that a subpopulation of a CF-associated Exophiala dermatiditis infection also had a non-synonymous loss of function mutation in MRS4. Together, these data suggest that MRS4 mutations may be beneficial during chronic CF lung infections in diverse fungi perhaps for the purposes of adaptation to an iron restricted environment with chronic infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Elora G. Demers
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Tania Kurbessoian
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Marina Ruzic
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Alix Ashare
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
- Department of Medicine, Dartmouth Health, Lebanon, NH, USA
| | - Jason E. Stajich
- Department of Microbiology & Plant Pathology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| |
Collapse
|
18
|
Souche A, Vandenesch F, Doléans-Jordheim A, Moreau K. How Staphylococcus aureus and Pseudomonas aeruginosa Hijack the Host Immune Response in the Context of Cystic Fibrosis. Int J Mol Sci 2023; 24:ijms24076609. [PMID: 37047579 PMCID: PMC10094765 DOI: 10.3390/ijms24076609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Cystic fibrosis (CF) is a serious genetic disease that leads to premature death, mainly due to impaired lung function. CF lungs are characterized by ongoing inflammation, impaired immune response, and chronic bacterial colonization. Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) are the two most predominant bacterial agents of these chronic infections. Both can colonize the lungs for years by developing host adaptation strategies. In this review, we examined the mechanisms by which SA and PA adapt to the host immune response. They are able to bypass the physical integrity of airway epithelia, evade recognition, and then modulate host immune cell proliferation. They also modulate the immune response by regulating cytokine production and by counteracting the activity of neutrophils and other immune cells. Inhibition of the immune response benefits not only the species that implements them but also other species present, and we therefore discuss how these mechanisms can promote the establishment of coinfections in CF lungs.
Collapse
Affiliation(s)
- Aubin Souche
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - François Vandenesch
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Anne Doléans-Jordheim
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, 69002 Lyon, France
| | - Karen Moreau
- Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69007 Lyon, France
| |
Collapse
|
19
|
Ribeiro CMP, Higgs MG, Muhlebach MS, Wolfgang MC, Borgatti M, Lampronti I, Cabrini G. Revisiting Host-Pathogen Interactions in Cystic Fibrosis Lungs in the Era of CFTR Modulators. Int J Mol Sci 2023; 24:ijms24055010. [PMID: 36902441 PMCID: PMC10003689 DOI: 10.3390/ijms24055010] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) modulators, a new series of therapeutics that correct and potentiate some classes of mutations of the CFTR, have provided a great therapeutic advantage to people with cystic fibrosis (pwCF). The main hindrances of the present CFTR modulators are related to their limitations in reducing chronic lung bacterial infection and inflammation, the main causes of pulmonary tissue damage and progressive respiratory insufficiency, particularly in adults with CF. Here, the most debated issues of the pulmonary bacterial infection and inflammatory processes in pwCF are revisited. Special attention is given to the mechanisms favoring the bacterial infection of pwCF, the progressive adaptation of Pseudomonas aeruginosa and its interplay with Staphylococcus aureus, the cross-talk among bacteria, the bronchial epithelial cells and the phagocytes of the host immune defenses. The most recent findings of the effect of CFTR modulators on bacterial infection and the inflammatory process are also presented to provide critical hints towards the identification of relevant therapeutic targets to overcome the respiratory pathology of pwCF.
Collapse
Affiliation(s)
- Carla M. P. Ribeiro
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (C.M.P.R.); (G.C.)
| | - Matthew G. Higgs
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marianne S. Muhlebach
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew C. Wolfgang
- Marsico Lung Institute/Cystic Fibrosis Research Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Monica Borgatti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Ilaria Lampronti
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
| | - Giulio Cabrini
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
- Innthera4CF, Center on Innovative Therapies for Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (C.M.P.R.); (G.C.)
| |
Collapse
|
20
|
Sánchez-Jiménez A, Marcos-Torres FJ, Llamas MA. Mechanisms of iron homeostasis in Pseudomonas aeruginosa and emerging therapeutics directed to disrupt this vital process. Microb Biotechnol 2023. [PMID: 36857468 DOI: 10.1111/1751-7915.14241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/13/2023] [Indexed: 03/03/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen able to infect any human tissue. One of the reasons for its high adaptability and colonization of host tissues is its capacity of maintaining iron homeostasis through a wide array of iron acquisition and removal mechanisms. Due to their ability to cause life-threatening acute and chronic infections, especially among cystic fibrosis and immunocompromised patients, and their propensity to acquire resistance to many antibiotics, the World Health Organization (WHO) has encouraged the scientific community to find new strategies to eradicate this pathogen. Several recent strategies to battle P. aeruginosa focus on targeting iron homeostasis mechanisms, turning its greatest advantage into an exploitable weak point. In this review, we discuss the different mechanisms used by P. aeruginosa to maintain iron homeostasis and the strategies being developed to fight this pathogen by blocking these mechanisms. Among others, the use of iron chelators and mimics, as well as disruption of siderophore production and uptake, have shown promising results in reducing viability and/or virulence of this pathogen. The so-called 'Trojan-horse' strategy taking advantage of the siderophore uptake systems is emerging as an efficient method to improve delivery of antibiotics into the bacterial cells. Moreover, siderophore transporters are considered promising targets for the developing of P. aeruginosa vaccines.
Collapse
Affiliation(s)
- Ana Sánchez-Jiménez
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Francisco J Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María A Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|
21
|
Hoang TM, Huang W, Gans J, Nowak E, Barbier M, Wilks A, Kane MA, Oglesby AG. The heme-responsive PrrH sRNA regulates Pseudomonas aeruginosa pyochelin gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524833. [PMID: 36712080 PMCID: PMC9882372 DOI: 10.1101/2023.01.19.524833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that requires iron for growth and virulence, yet this nutrient is sequestered by the innate immune system during infection. When iron is limiting, P. aeruginosa expresses the PrrF1 and PrrF2 small regulatory RNAs (sRNAs), which post-transcriptionally repress expression of non-essential iron-containing proteins thus sparing this nutrient for more critical processes. The genes for the PrrF1 and PrrF2 sRNAs are arranged in tandem on the chromosome, allowing for the transcription of a longer heme-responsive sRNA, termed PrrH. While the functions of PrrF1 and PrrF2 have been studied extensively, the role of PrrH in P. aeruginosa physiology and virulence is not well understood. In this study, we performed transcriptomic and proteomic studies to identify the PrrH regulon. In shaking cultures, the pyochelin synthesis proteins were increased in two distinct prrH mutants compared to wild type, while the mRNAs for these proteins were not affected by prrH mutation. We identified complementarity between the PrrH sRNA and sequence upstream of the pchE mRNA, suggesting potential for PrrH to directly regulate expression of genes for pyochelin synthesis. We further showed that pchE mRNA levels were increased in the prrH mutants when grown in static but not shaking conditions. Moreover, we discovered controlling for the presence of light was critical for examining the impact of PrrH on pchE expression. As such, our study reports on the first likely target of the PrrH sRNA and highlights key environmental variables that will allow for future characterization of PrrH function.
Collapse
Affiliation(s)
- Tra-My Hoang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Jonathan Gans
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Evan Nowak
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV USA
- Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD USA
| |
Collapse
|
22
|
Martin LW, Gray AR, Brockway B, Lamont IL. Pseudomonas aeruginosa is oxygen-deprived during infection in cystic fibrosis lungs, reducing the effectiveness of antibiotics. FEMS Microbiol Lett 2023; 370:fnad076. [PMID: 37516450 PMCID: PMC10408701 DOI: 10.1093/femsle/fnad076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/04/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023] Open
Abstract
Pseudomonas aeruginosa infects the lungs of patients with cystic fibrosis. Sputum expectorated from the lungs of patients contains low levels of oxygen, indicating that P. aeruginosa may be oxygen-deprived during infection. During in vitro growth under oxygen-limiting conditions, a P. aeruginosa reference strain increases expression of a cytochrome oxidase with a high affinity for oxygen, and of nitrate and nitrite reductases that enable it to use nitrate instead of oxygen during respiration. Here, we quantified transcription of the genes encoding these three enzymes in sputum samples from 18 infected patients, and in bacteria isolated from the sputum samples and grown in aerobic and anaerobic culture. In culture, expression of all three genes was increased by averages of 20- to 500-fold in anaerobically grown bacteria compared with those grown aerobically, although expression levels varied greatly between isolates. Expression of the same genes in sputum was similar to that of the corresponding bacteria in anaerobic culture. The isolated bacteria were less susceptible to tobramycin and ciprofloxacin, two widely used anti-pseudomonal antibiotics, when grown anaerobically than when grown aerobically. Our findings show that P. aeruginosa experiences oxygen starvation during infection in cystic fibrosis, reducing the effectiveness of antibiotic treatment.
Collapse
Affiliation(s)
- Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Andrew R Gray
- Biostatistics Centre, University of Otago, Dunedin 9016, New Zealand
| | - Ben Brockway
- Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
23
|
Yu W, Weber DJ, MacKerell AD. Computer-Aided Drug Design: An Update. Methods Mol Biol 2023; 2601:123-152. [PMID: 36445582 PMCID: PMC9838881 DOI: 10.1007/978-1-0716-2855-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Computer-aided drug design (CADD) approaches are playing an increasingly important role in understanding the fundamentals of ligand-receptor interactions and helping medicinal chemists design therapeutics. About 5 years ago, we presented a chapter devoted to an overview of CADD methods and covered typical CADD protocols including structure-based drug design (SBDD) and ligand-based drug design (LBDD) approaches that were frequently used in the antibiotic drug design process. Advances in computational hardware and algorithms and emerging CADD methods are enhancing the accuracy and ability of CADD in drug design and development. In this chapter, an update to our previous chapter is provided with a focus on new CADD approaches from our laboratory and other peers that can be employed to facilitate the development of antibiotic therapeutics.
Collapse
Affiliation(s)
- Wenbo Yu
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA.
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - David J Weber
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, Computer-Aided Drug Design Center, School of Pharmacy, University of Maryland, Baltimore, MD, USA.
- Institute for Bioscience and Biotechnology Research (IBBR), Rockville, MD, USA.
- Center for Biomolecular Therapeutics (CBT), School of Medicine, University of Maryland, Baltimore, MD, USA.
| |
Collapse
|
24
|
Kannon M, Nebane NM, Ruiz P, McKellip S, Vinson PN, Mitra A. A Novel Approach To Identify Inhibitors of Iron Acquisition Systems of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0243722. [PMID: 36098531 PMCID: PMC9604216 DOI: 10.1128/spectrum.02437-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that has been declared by the World Health Organization as a "priority 1 critical pathogen" needing immediate new strategies for chemotherapy. During infection, P. aeruginosa uses redundant mechanisms to acquire ferric, heme (Hm), or ferrous iron from the host to survive and colonize. Significant efforts have been undertaken to develop siderophore blockers to inhibit ferric iron acquisition by P. aeruginosa, but there is a lack of inhibitors that can block Hm or ferrous iron acquisition by P. aeruginosa. We developed and employed a targeted high-throughput screen (HTS) and identified a molecule(s) that can specifically inhibit the Hm and ferrous iron acquisition systems of P. aeruginosa. Our targeted approach relies on screening a small-molecule library against P. aeruginosa under three growth conditions, where the only variable was the iron source (ferric, Hm, or ferrous iron). Each condition served as a counterscreen for the other, and we identified molecules that inhibit the growth of P. aeruginosa in the presence of only Hm or ferrous iron. Our data indicate that econazole, bithionate, and raloxifene inhibit the growth of P. aeruginosa in the presence of Hm and that oxyquinoline inhibits the growth of P. aeruginosa in the presence of ferrous iron. These iron-specific inhibitors do not interfere with the activity of meropenem, a commercial antipseudomonal, and can also increase meropenem activity. In conclusion, we present a proof of concept of a successful targeted conditional screening method by which we can identify specific iron acquisition inhibitors. This approach is highly adaptable and can easily be extended to any other pathogen. IMPORTANCE Since acquiring iron is paramount to P. aeruginosa's survival and colonization in the human host, developing novel strategies to block the access of P. aeruginosa to host iron will allow us to starve it of an essential nutrient. P. aeruginosa uses siderophore, heme, or ferrous iron uptake systems to acquire iron in the human host. We have developed a novel approach through which we can directly identify molecules that can prevent P. aeruginosa from utilizing heme or ferrous iron. This approach overcomes the need for the in silico design of molecules and identifies structurally diverse biologically active inhibitor molecules. This screening approach is adaptable and can be extended to any pathogen. Since Gram-negative pathogens share many similarities in iron acquisition at both the mechanistic and molecular levels, our screening approach presents a significant opportunity to develop novel broad-spectrum iron acquisition inhibitors of Gram-negative pathogens.
Collapse
Affiliation(s)
- Mamie Kannon
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - N. Miranda Nebane
- High Throughput Screening Center, Southern Research, Birmingham, Alabama, USA
| | - Pedro Ruiz
- High Throughput Screening Center, Southern Research, Birmingham, Alabama, USA
| | - Sara McKellip
- High Throughput Screening Center, Southern Research, Birmingham, Alabama, USA
| | - Paige N. Vinson
- High Throughput Screening Center, Southern Research, Birmingham, Alabama, USA
| | - Avishek Mitra
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
25
|
de Lima VM, Batista BB, da Silva Neto JF. The Regulatory Protein ChuP Connects Heme and Siderophore-Mediated Iron Acquisition Systems Required for Chromobacterium violaceum Virulence. Front Cell Infect Microbiol 2022; 12:873536. [PMID: 35646721 PMCID: PMC9131926 DOI: 10.3389/fcimb.2022.873536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/30/2022] [Indexed: 11/22/2022] Open
Abstract
Chromobacterium violaceum is an environmental Gram-negative beta-proteobacterium that causes systemic infections in humans. C. violaceum uses siderophore-based iron acquisition systems to overcome the host-imposed iron limitation, but its capacity to use other iron sources is unknown. In this work, we characterized ChuPRSTUV as a heme utilization system employed by C. violaceum to explore an important iron reservoir in mammalian hosts, free heme and hemoproteins. We demonstrate that the chuPRSTUV genes comprise a Fur-repressed operon that is expressed under iron limitation. The chu operon potentially encodes a small regulatory protein (ChuP), an outer membrane TonB-dependent receptor (ChuR), a heme degradation enzyme (ChuS), and an inner membrane ABC transporter (ChuTUV). Our nutrition growth experiments using C. violaceum chu deletion mutants revealed that, with the exception of chuS, all genes of the chu operon are required for heme and hemoglobin utilization in C. violaceum. The mutant strains without chuP displayed increased siderophore halos on CAS plate assays. Significantly, we demonstrate that ChuP connects heme and siderophore utilization by acting as a positive regulator of chuR and vbuA, which encode the TonB-dependent receptors for the uptake of heme (ChuR) and the siderophore viobactin (VbuA). Our data favor a model of ChuP as a heme-binding post-transcriptional regulator. Moreover, our virulence data in a mice model of acute infection demonstrate that C. violaceum uses both heme and siderophore for iron acquisition during infection, with a preference for siderophores over the Chu heme utilization system.
Collapse
|
26
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
27
|
Adaptation to an amoeba host leads to Pseudomonas aeruginosa isolates with attenuated virulence. Appl Environ Microbiol 2022; 88:e0232221. [PMID: 35020451 PMCID: PMC8904051 DOI: 10.1128/aem.02322-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is ubiquitous in the environment, and in humans, it is capable of causing acute or chronic infections. In the natural environment, predation by bacterivorous protozoa represents a primary threat to bacteria. Here, we determined the impact of long-term exposure of P. aeruginosa to predation pressure. P. aeruginosa persisted when coincubated with the bacterivorous Acanthamoeba castellanii for extended periods and produced genetic and phenotypic variants. Sequencing of late-stage amoeba-adapted P. aeruginosa isolates demonstrated single nucleotide polymorphisms within genes that encode known virulence factors, and this correlated with a reduction in expression of virulence traits. Virulence for the nematode Caenorhabditis elegans was attenuated in late-stage amoeba-adapted P. aeruginosa compared to early-stage amoeba-adapted and nonadapted counterparts. Further, late-stage amoeba-adapted P. aeruginosa showed increased competitive fitness and enhanced survival in amoebae as well as in macrophage and neutrophils. Interestingly, our findings indicate that the selection imposed by amoebae resulted in P. aeruginosa isolates with reduced virulence and enhanced fitness, similar to those recovered from chronic cystic fibrosis infections. Thus, predation by protozoa and long-term colonization of the human host may represent similar environments that select for similar losses of gene function. IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen that causes both acute infections in plants and animals, including humans, and chronic infections in immunocompromised and cystic fibrosis patients. This bacterium is commonly found in soils and water, where bacteria are constantly under threat of being consumed by bacterial predators, e.g., protozoa. To escape being killed, bacteria have evolved a suite of mechanisms that protect them from being consumed or digested. Here, we examined the effect of long-term predation on the genotypes and phenotypes expressed by P. aeruginosa. We show that long-term coincubation with protozoa gave rise to mutations that resulted in P. aeruginosa becoming less pathogenic. This is particularly interesting as similar mutations arise in bacteria associated with chronic infections. Importantly, the genetic and phenotypic traits possessed by late-stage amoeba-adapted P. aeruginosa are similar to those observed in isolates obtained from chronic cystic fibrosis infections. This notable overlap in adaptation to different host types suggests similar selection pressures among host cell types as well as similar adaptation strategies.
Collapse
|
28
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Robinson EA, Frankenberg-Dinkel N, Xue F, Wilks A. Recombinant Production of Biliverdin IXβ and δ Isomers in the T7 Promoter Compatible Escherichia coli Nissle. Front Microbiol 2021; 12:787609. [PMID: 34956154 PMCID: PMC8692735 DOI: 10.3389/fmicb.2021.787609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
The ability to obtain purified biliverdin IX (BVIX) isomers other than the commercially available BVIXα is limited due to the low yields obtained by the chemical coupled oxidation of heme. Chemical oxidation requires toxic chemicals, has very poor BVIX yields (<0.05%), and is not conducive to scalable production. Alternative approaches utilizing recombinant E. coli BL21 expressing a cyanobacterial heme oxygenase have been employed for the production BVIXα, but yields are limited by the rate of endogenous heme biosynthesis. Furthermore, the emerging roles of BVIXβ and BVIXδ in biology and their lack of commercial availability has led to a need for an efficient and scalable method with the flexibility to produce all three physiologically relevant BVIX isomers. Herein, we have taken advantage of an optimized non-pathogenic E. coli Nissle (EcN(T7)) strain that encodes an endogenous heme transporter and an integrated T7 polymerase gene. Protein production of the Pseudomonas aeruginosa BVIXβ and BVIXδ selective heme oxygenase (HemO) or its BVIXα producing mutant (HemOα) in the EcN(T7) strain provides a scalable method to obtain all three isomers, that is not limited by the rate of endogenous heme biosynthesis, due to the natural ability of EcN(T7) to transport extracellular heme. Additionally, we have optimized our previous LC-MS/MS protocol for semi-preparative separation and validation of the BVIX isomers. Utilizing this new methodology for scalable production and separation we have increased the yields of the BVIXβ and -δ isomers >300-fold when compared to the chemical oxidation of heme.
Collapse
Affiliation(s)
- Elizabeth A. Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Nicole Frankenberg-Dinkel
- Fachbereich Biologie, Abt. Mikrobiologie, Technische Universität Kaiserlautern, Kaiserslautern, Germany
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| |
Collapse
|
30
|
Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis. Adv Microb Physiol 2021; 79:89-132. [PMID: 34836613 DOI: 10.1016/bs.ampbs.2021.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron is an essential micronutrient for all bacteria but presents a significant challenge given its limited bioavailability. Furthermore, iron's toxicity combined with the need to maintain iron levels within a narrow physiological range requires integrated systems to sense, regulate and transport a variety of iron complexes. Most bacteria encode systems to chelate and transport ferric iron (Fe3+) via siderophore receptor mediated uptake or via cytoplasmic energy dependent transport systems. Pathogenic bacteria have further lowered the barrier to iron acquisition by employing systems to utilize haem as a source of iron. Haem, a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such pathogenic bacteria have evolved sophisticated cell surface signaling (CSS) and transport systems to sense and obtain haem from the host. Once internalized haem is cleaved by both oxidative and non-oxidative mechanisms to release iron. Herein we summarize our current understanding of the mechanism of haem sensing, uptake and utilization in Pseudomonas aeruginosa, its role in pathogenesis and virulence, and the potential of these systems as antimicrobial targets.
Collapse
|
31
|
Wardell SJT, Gauthier J, Martin LW, Potvin M, Brockway B, Levesque RC, Lamont IL. Genome evolution drives transcriptomic and phenotypic adaptation in Pseudomonas aeruginosa during 20 years of infection. Microb Genom 2021; 7. [PMID: 34826267 PMCID: PMC8743555 DOI: 10.1099/mgen.0.000681] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lungs of patients with cystic fibrosis (CF). During infection the bacteria evolve and adapt to the lung environment. Here we use genomic, transcriptomic and phenotypic approaches to compare multiple isolates of P. aeruginosa collected more than 20 years apart during a chronic infection in a CF patient. Complete genome sequencing of the isolates, using short- and long-read technologies, showed that a genetic bottleneck occurred during infection and was followed by diversification of the bacteria. A 125 kb deletion, an 0.9 Mb inversion and hundreds of smaller mutations occurred during evolution of the bacteria in the lung, with an average rate of 17 mutations per year. Many of the mutated genes are associated with infection or antibiotic resistance. RNA sequencing was used to compare the transcriptomes of an earlier and a later isolate. Substantial reprogramming of the transcriptional network had occurred, affecting multiple genes that contribute to continuing infection. Changes included greatly reduced expression of flagellar machinery and increased expression of genes for nutrient acquisition and biofilm formation, as well as altered expression of a large number of genes of unknown function. Phenotypic studies showed that most later isolates had increased cell adherence and antibiotic resistance, reduced motility, and reduced production of pyoverdine (an iron-scavenging siderophore), consistent with genomic and transcriptomic data. The approach of integrating genomic, transcriptomic and phenotypic analyses reveals, and helps to explain, the plethora of changes that P. aeruginosa undergoes to enable it to adapt to the environment of the CF lung during a chronic infection.
Collapse
Affiliation(s)
| | - Jeff Gauthier
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Marianne Potvin
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Ben Brockway
- Department of Medicine, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
32
|
Abstract
Iron (Fe) plays important roles in both essential cellular processes and virulence pathways for many bacteria. Consequently, Fe withholding by the human innate immune system is an effective form of defense against bacterial infection. In this Perspective, we review recent studies that have established a foundation for our understanding of the impact of the metal-sequestering host defense protein calprotectin (CP) on bacterial Fe homeostasis. We also discuss two recently uncovered strategies for bacterial adaptation to Fe withholding by CP. Together, these studies provide insight into how Fe sequestration by CP affects bacterial pathogens that include Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. Overall, recent studies suggest that Fe withholding by CP may have implications for bacterial survival and virulence in the host, and further explorations that directly address this possibility present an important area for discovery.
Collapse
Affiliation(s)
- Adunoluwa O. Obisesan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
33
|
Tahmasebi H, Dehbashi S, Arabestani MR. Antibiotic resistance alters through iron-regulating Sigma factors during the interaction of Staphylococcus aureus and Pseudomonas aeruginosa. Sci Rep 2021; 11:18509. [PMID: 34531485 PMCID: PMC8445946 DOI: 10.1038/s41598-021-98017-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/02/2021] [Indexed: 12/26/2022] Open
Abstract
Iron is a limiting factor in such a condition that usually is sequestered by the host during polymicrobial infections of Pseudomonas aeruginosa and Staphylococcus aureus. This study aimed to investigate the interaction of S. aureus and P. aeruginosa, which alters iron-related sigma factors regulation and antibiotic resistance. The antibiotic resistance of P. aeruginosa and S. aureus was investigated in a L929 cell culture model. The expression level of pvdS, hasI (P. aeruginosa sigma factors), and sigS (S. aureus sigma factor) genes was determined using Quantitative Real-Time PCR. pvdS and hasI were downregulated during co-culture with S. aureus, while the susceptibility to carbapenems increased (p-value < 0.0001). Also, there was a direct significant relationship between resistance to vancomycin with sigS. Regarding the findings of the current study, iron-related sigma factors of P. aeruginosa and S. aureus play a role in induction susceptibility to various antibiotics, including carbapenems and vancomycin.
Collapse
Affiliation(s)
- Hamed Tahmasebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sanaz Dehbashi
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
34
|
Dent AT, Brimberry M, Albert T, Lanzilotta WN, Moënne-Loccoz P, Wilks A. Axial Heme Coordination by the Tyr-His Motif in the Extracellular Hemophore HasAp Is Critical for the Release of Heme to the HasR Receptor of Pseudomonas aeruginosa. Biochemistry 2021; 60:2549-2559. [PMID: 34324310 DOI: 10.1021/acs.biochem.1c00389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa senses extracellular heme via an extra cytoplasmic function σ factor that is activated upon interaction of the hemophore holo-HasAp with the HasR receptor. Herein, we show Y75H holo-HasAp interacts with HasR but is unable to release heme for signaling and uptake. To understand this inhibition, we undertook a spectroscopic characterization of Y75H holo-HasAp by resonance Raman (RR), electron paramagnetic resonance (EPR), and X-ray crystallography. The RR spectra are consistent with a mixed six-coordinate high-spin (6cHS), six-coordinate low-spin (6cLS) heme configuration and an H218O exchangeable FeIII-O stretching frequency with 16O/18O and H/D isotope shifts that support a two-body Fe-OH2 oscillator with (iron-hydroxy)-like character as both hydrogen atoms are engaged in short hydrogen bond interactions with protein side chains. Further support comes from the EPR spectrum of Y75H holo-HasAp that shows a LS rhombic signal with ligand-field splitting values intermediate between those of His-hydroxy and bis-His ferric hemes. The crystal structure of Y75H holo-HasAp confirmed the coordinated solvent molecule hydrogen bonded through H75 and H83. The long-range conformational rearrangement of HasAp upon heme binding can still take place in Y75H holo-HasAp, because the intercalation of a hydroxy ligand between the heme iron and H75 allows the variant to reproduce the heme binding pocket observed in wild-type holo-HasAp. However, in the absence of a covalent linkage to the Y75 loop combined with the malleability provided by the bracketing H75 and H83 hydrogen bonds, either the hydroxy sixth ligand remains bound after complexation of Y75H holo-HasAp with HasR or rearrangement and coordination of H85 prevent heme transfer.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Marley Brimberry
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Therese Albert
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - William N Lanzilotta
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, Georgia 30602, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, School of Medicine, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
35
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
36
|
Kang D, Revtovich AV, Deyanov AE, Kirienko NV. Pyoverdine Inhibitors and Gallium Nitrate Synergistically Affect Pseudomonas aeruginosa. mSphere 2021; 6:e0040121. [PMID: 34133200 PMCID: PMC8265654 DOI: 10.1128/msphere.00401-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is a multidrug-resistant, opportunistic pathogen that frequently causes ventilator-associated pneumonia in intensive care units and chronic lung infections in cystic fibrosis patients. The rising prevalence of drug-resistant bacteria demands the exploration of new therapeutic avenues for treating P. aeruginosa infections. Perhaps the most thoroughly explored alternative is to use novel treatments to target pathogen virulence factors, like biofilm or toxin production. Gallium(III) nitrate is one such agent. It has been recognized for its ability to inhibit pathogen growth and biofilm formation in P. aeruginosa by disrupting bacterial iron homeostasis. However, irreversible sequestration by pyoverdine substantially limits its effectiveness. In this report, we show that disrupting pyoverdine production (genetically or chemically) potentiates the efficacy of gallium nitrate. Interestingly, we report that the pyoverdine inhibitor 5-fluorocytosine primarily functions as an antivirulent, even when it indirectly affects bacterial growth in the presence of gallium, and that low selective pressure for resistance occurs. We also demonstrate that the antibiotic tetracycline inhibits pyoverdine at concentrations below those required to prevent bacterial growth, and this activity allows it to synergize with gallium to inhibit bacterial growth and rescue Caenorhabditis elegans during P. aeruginosa pathogenesis. IMPORTANCE P. aeruginosa is one of the most common causative agents for ventilator-associated pneumonia and nosocomial bacteremia and is a leading cause of death in patients with cystic fibrosis. Pandrug-resistant strains of P. aeruginosa are increasingly identified in clinical samples and show resistance to virtually all major classes of antibiotics, including aminoglycosides, cephalosporins, and carbapenems. Gallium(III) nitrate has received considerable attention as an antipseudomonal agent that inhibits P. aeruginosa growth and biofilm formation by disrupting bacterial iron homeostasis. This report demonstrates that biosynthetic inhibitors of pyoverdine, such as 5-fluorocytosine and tetracycline, synergize with gallium nitrate to inhibit P. aeruginosa growth and biofilm formation, rescuing C. elegans hosts during pathogenesis.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | | | | | | |
Collapse
|
37
|
Abstract
Antimicrobial resistance is a serious medical threat, particularly given the decreasing rate of discovery of new treatments. Although attempts to find new treatments continue, it has become clear that merely discovering new antimicrobials, even if they are new classes, will be insufficient. It is essential that new strategies be aggressively pursued. Toward that end, the search for treatments that can mitigate bacterial virulence and tilt the balance of host-pathogen interactions in favor of the host has become increasingly popular. In this review, we will discuss recent progress in this field, with a special focus on synthetic small molecule antivirulents that have been identified from high-throughput screens and on treatments that are effective against the opportunistic human pathogen Pseudomonas aeruginosa.
Collapse
|
38
|
Robinson EA, Wilks A, Xue F. Repurposing Acitretin as an Antipseudomonal Agent Targeting the Pseudomonas aeruginosa Iron-Regulated Heme Oxygenase. Biochemistry 2021; 60:689-698. [PMID: 33621054 DOI: 10.1021/acs.biochem.0c00895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Iron is an essential micronutrient for the survival and virulence of the bacterial pathogen Pseudomonas aeruginosa. To overcome iron withholding and successfully colonize a host, P. aeruginosa uses a variety of mechanisms to acquire iron, including the secretion of high-affinity iron chelators (siderophores) or the uptake and utilization of heme. P. aeruginosa heme oxygenase (HemO) plays pivotal roles in heme sensing, uptake, and utilization and has emerged as a therapeutic target for the development of antipseudomonal agents. Using a high-throughput fluorescence quenching assay combined with minimum inhibitory concentration measurements, we screened the Selleck Bioactive collection of 2100 compounds and identified acitretin, a Food and Drug Administration-approved oral retinoid, as a potent and selective inhibitor of HemO. Acitretin binds to HemO with a KD value of 0.10 ± 0.02 μM and inhibits the growth of P. aeruginosa PAO1 with an IC50 of 70 ± 18 μg/mL. In addition, acitretin showed good selectivity for HemO, which uniquely generates BVIXβ/δ, over human heme oxygenase (hHO1) and other BVIXα-producing homologues such as the heme oxygenases from Neisseria meningitidis (nmHO) and Acinetobacter baumannii (abHO). The binding of acitretin within the HemO active site was confirmed by 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance, and molecular modeling provided further insight into potential interactions of acitretin with residues specific for orienting heme in the β/δ selective HemO. Moreover, at 20 μM, acitretin inhibited the enzymatic activity of HemO in P. aeruginosa cells by >60% and effectively blocked the ability of P. aeruginosa to sense and acquire heme as demonstrated in the β-galactosidase transcriptional reporter assay.
Collapse
Affiliation(s)
- Elizabeth A Robinson
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
39
|
Firoz A, Haris M, Hussain K, Raza M, Verma D, Bouchama M, Namiq KS, Khan S. Can Targeting Iron Help in Combating Chronic Pseudomonas Infection? A Systematic Review. Cureus 2021; 13:e13716. [PMID: 33833927 PMCID: PMC8019538 DOI: 10.7759/cureus.13716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/05/2021] [Indexed: 11/07/2022] Open
Abstract
Cystic fibrosis is an autosomal recessive disorder caused by a mutation in genes for cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR gene is responsible for the production of sweat, digestive fluids, and mucus, and any mutation in this would lead to the thickening of these secretions. Cystic fibrosis is a multi-organ disorder, but 80% of patients suffer from respiratory problems due to chronic infections most commonly caused by Pseudomonas aeruginosa (P. aeruginosa). Eradication of these infections has become a challenge as P. aeruginosa has developed resistance to multiple antibiotics. In several studies, iron has been shown to play an integral role in biofilm formation, which is the predominant resistance mechanism used by P. aeruginosa to combat antibiotics. The increased iron content in cystic fibrosis patients' sputum samples explains their increased susceptibility to Pseudomonas infections. Hence in this review article, we have used the research data available on therapeutic agents that target iron as an adjuvant treatment for chronic Pseudomonas infection. We systematically screened three databases using focused words and Medical Subject Headings (MeSH) terms for relevant articles. Further, we applied the inclusion and exclusion criteria and performed a thorough quality appraisal. Thirty shortlisted relevant studies were meticulously reviewed. In our opinion, novel therapeutic approaches targeting iron such as iron chelators, gallium, and cefiderocol have potent anti-biofilm properties. Future studies and clinical trials using these approaches in the management of chronic Pseudomonas infection might help in decreasing morbidity and mortality in patients with cystic fibrosis. Exploring these approaches might also help to combat other resistant organisms whose survival is dependent on iron.
Collapse
Affiliation(s)
- Amena Firoz
- Pediatrics, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Muhammad Haris
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Khadija Hussain
- Radiology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Maham Raza
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Deepak Verma
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Manel Bouchama
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Karez S Namiq
- Oncology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
40
|
Wilson T, Mouriño S, Wilks A. The heme-binding protein PhuS transcriptionally regulates the Pseudomonas aeruginosa tandem sRNA prrF1,F2 locus. J Biol Chem 2021; 296:100275. [PMID: 33428928 PMCID: PMC7948967 DOI: 10.1016/j.jbc.2021.100275] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen requiring iron for its survival and virulence. P. aeruginosa can acquire iron from heme via the nonredundant heme assimilation system and Pseudomonas heme uptake (Phu) systems. Heme transported by either the heme assimilation system or Phu system is sequestered by the cytoplasmic protein PhuS. Furthermore, PhuS has been shown to specifically transfer heme to the iron-regulated heme oxygenase HemO. As the PhuS homolog ShuS from Shigella dysenteriae was observed to bind DNA as a function of its heme status, we sought to further determine if PhuS, in addition to its role in regulating heme flux through HemO, functions as a DNA-binding protein. Herein, through a combination of chromatin immunoprecipitation–PCR, EMSA, and fluorescence anisotropy, we show that apo-PhuS but not holo-PhuS binds upstream of the tandem iron-responsive sRNAs prrF1,F2. Previous studies have shown the PrrF sRNAs are required for sparing iron for essential proteins during iron starvation. Furthermore, under certain conditions, a heme-dependent read through of the prrF1 terminator yields the longer PrrH transcript. Quantitative PCR analysis of P. aeruginosa WT and ΔphuS strains shows that loss of PhuS abrogates the heme-dependent regulation of PrrF and PrrH levels. Taken together, our data show that PhuS, in addition to its role in extracellular heme metabolism, also functions as a transcriptional regulator by modulating PrrF and PrrH levels in response to heme. This dual function of PhuS is central to integrating extracellular heme utilization into the PrrF/PrrH sRNA regulatory network that is critical for P. aeruginosa adaptation and virulence within the host.
Collapse
Affiliation(s)
- Tyree Wilson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Susana Mouriño
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA.
| |
Collapse
|
41
|
Abstract
Drug-resistant infections pose a significant risk to global health as pathogenic bacteria become increasingly difficult to treat. The rapid selection of resistant strains through poor antibiotic stewardship has reduced the number of viable treatments and increased morbidity of infections, especially among the immunocompromised. To circumvent such challenges, new strategies are required to stay ahead of emerging resistance trends, yet research and funding for antibiotic development lags other classes of therapeutics. Though the use of metals in therapeutics has been around for centuries, recent strategies have devoted a great deal of effort into the pathways through which bacteria acquire and utilize iron, which is critical for the establishment of infection. To target iron uptake systems, siderophore-drug conjugates have been developed that hijack siderophore-based iron uptake for delivery of antibiotics. While this strategy has produced several potential leads, the use of siderophores in infection is diminished over time when bacteria adapt to utilize heme as an iron source, leading to a need for the development of porphyrin mimetics as therapeutics. The use of such strategies as well as the inclusion of gallium, a redox-inert iron mimic, are herein reviewed.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
42
|
Zygiel EM, Obisesan AO, Nelson CE, Oglesby AG, Nolan EM. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation. J Biol Chem 2020; 296:100160. [PMID: 33273016 PMCID: PMC7948498 DOI: 10.1074/jbc.ra120.015975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are opportunistic bacterial pathogens that cause severe infections in immunocompromised individuals and patients with cystic fibrosis. Both P. aeruginosa and S. aureus require iron to infect the mammalian host. To obtain iron, these pathogens may rely on siderophore-mediated ferric iron uptake, ferrous iron uptake, or heme uptake at different points during infection. The preferred iron source depends on environmental conditions, including the presence of iron-sequestering host-defense proteins. Here, we investigate how the presence of heme, a highly relevant iron source during infection, affects bacterial responses to iron withholding by the innate immune protein calprotectin (CP). Prior work has shown that P. aeruginosa is starved of iron in the presence of CP. We report that P. aeruginosa upregulates expression of heme uptake machinery in response to CP. Furthermore, we show that heme protects P. aeruginosa from CP-mediated inhibition of iron uptake and iron-starvation responses. We extend our study to a second bacterial pathogen, S. aureus, and demonstrate that CP also inhibits iron uptake and induces iron-starvation responses by this pathogen. Similarly to P. aeruginosa, we show that heme protects S. aureus from CP-mediated inhibition of iron uptake and iron-starvation responses. These findings expand our understanding of microbial responses to iron sequestration by CP and highlight the importance of heme utilization for bacterial adaptation to host iron-withholding strategies.
Collapse
Affiliation(s)
- Emily M Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Adunoluwa O Obisesan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cassandra E Nelson
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA
| | - Amanda G Oglesby
- School of Pharmacy, Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland, USA; School of Medicine, Department of Microbiology and Immunology, University of Maryland, Baltimore, Maryland, USA.
| | - Elizabeth M Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
43
|
Quantitative proteomic reveals gallium maltolate induces an iron-limited stress response and reduced quorum-sensing in Pseudomonas aeruginosa. J Biol Inorg Chem 2020; 25:1153-1165. [DOI: 10.1007/s00775-020-01831-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
|
44
|
Mould DL, Botelho NJ, Hogan DA. Intraspecies Signaling between Common Variants of Pseudomonas aeruginosa Increases Production of Quorum-Sensing-Controlled Virulence Factors. mBio 2020; 11:e01865-20. [PMID: 32843558 PMCID: PMC7448281 DOI: 10.1128/mbio.01865-20] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa damages hosts through the production of diverse secreted products, many of which are regulated by quorum sensing (QS). The lasR gene, which encodes a central QS regulator, is frequently mutated in clinical isolates from chronic infections, and loss of LasR function (LasR-) generally impairs the activity of downstream QS regulators RhlR and PqsR. We found that in cocultures containing LasR+ and LasR- strains, LasR- strains hyperproduce the RhlR/RhlI-regulated antagonistic factors pyocyanin and rhamnolipids in diverse models and media and in different strain backgrounds. Diffusible QS autoinducers produced by the wild type were not required for this effect. Using transcriptomics, genetics, and biochemical approaches, we uncovered a reciprocal interaction between wild-type and lasR mutant pairs wherein the iron-scavenging siderophore pyochelin produced by the lasR mutant induced citrate release and cross-feeding from the wild type. Citrate, a metabolite often secreted in low iron environments, stimulated RhlR signaling and RhlI levels in LasR-but not in LasR+ strains. These studies reveal the potential for complex interactions between recently diverged, genetically distinct isolates within populations from single chronic infections.IMPORTANCE Coculture interactions between lasR loss-of-function and LasR+ Pseudomonas aeruginosa strains may explain the worse outcomes associated with the presence of LasR- strains. More broadly, this report illustrates how interactions within a genotypically diverse population, similar to those that frequently develop in natural settings, can promote unpredictably high virulence factor production.
Collapse
Affiliation(s)
- Dallas L Mould
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico J Botelho
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
45
|
Centola G, Deredge DJ, Hom K, Ai Y, Dent AT, Xue F, Wilks A. Gallium(III)-Salophen as a Dual Inhibitor of Pseudomonas aeruginosa Heme Sensing and Iron Acquisition. ACS Infect Dis 2020; 6:2073-2085. [PMID: 32551497 DOI: 10.1021/acsinfecdis.0c00138] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that causes life-threatening infections in immunocompromised patients. In infection, it uses heme as a primary iron source and senses the availability of exogenous heme through the heme assimilation system (Has), an extra cytoplasmic function σ-factor system. A secreted hemophore HasAp scavenges heme and, upon interaction with the outer-membrane receptor HasR, activates a signaling cascade, which in turn creates a positive feedback loop critical for sensing and adaptation within the host. The ability to sense and respond to heme as an iron source contributes to virulence. Consequently, the inhibition of this system will lead to a disruption in iron homeostasis, decreasing virulence. We have identified a salophen scaffold that successfully inhibits the activation of the Has signaling system while simultaneously targeting iron uptake via xenosiderophore receptors. We propose this dual mechanism wherein free Ga3+-salophen reduces growth through uptake and iron mimicry. A dual mechanism targeting extracellular heme signaling and uptake together with Ga3+-induced toxicity following active Ga3+salophen uptake provides a significant therapeutic advantage while reducing the propensity to develop resistance.
Collapse
Affiliation(s)
- Garrick Centola
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Yong Ai
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Alecia T. Dent
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - Angela Wilks
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
46
|
AlMatar M, Albarri O, Makky EA, Var I, Köksal F. A Glance on the Role of Bacterial Siderophore from the Perspectives of Medical and Biotechnological Approaches. Curr Drug Targets 2020; 21:1326-1343. [PMID: 32564749 DOI: 10.2174/1389450121666200621193018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/10/2020] [Accepted: 05/20/2020] [Indexed: 11/22/2022]
Abstract
Iron, which is described as the most basic component found in nature, is hard to be assimilated by microorganisms. It has become increasingly complicated to obtain iron from nature as iron (II) in the presence of oxygen oxidized to press (III) oxide and hydroxide, becoming unsolvable at neutral pH. Microorganisms appeared to produce organic molecules known as siderophores in order to overcome this condition. Siderophore's essential function is to connect with iron (II) and make it dissolvable and enable cell absorption. These siderophores, apart from iron particles, have the ability to chelate various other metal particles that have collocated away to focus the use of siderophores on wound care items. There is a severe clash between the host and the bacterial pathogens during infection. By producing siderophores, small ferric iron-binding molecules, microorganisms obtain iron. In response, host immune cells produce lipocalin 2 to prevent bacterial reuptake of siderophores loaded with iron. Some bacteria are thought to produce lipocalin 2-resistant siderophores to counter this risk. The aim of this article is to discuss the recently described roles and applications of bacterial siderophore.
Collapse
Affiliation(s)
- Manaf AlMatar
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Osman Albarri
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitusu) Cukurova University, Adana, Turkey
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Cukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
47
|
Dent AT, Wilks A. Contributions of the heme coordinating ligands of the Pseudomonas aeruginosa outer membrane receptor HasR to extracellular heme sensing and transport. J Biol Chem 2020; 295:10456-10467. [PMID: 32522817 DOI: 10.1074/jbc.ra120.014081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/06/2020] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa exhibits a high requirement for iron, which it can acquire via several mechanisms, including the acquisition and utilization of heme. The P. aeruginosa genome encodes two heme uptake systems, the heme assimilation system (Has) and the Pseudomonas heme utilization (Phu) system. Extracellular heme is sensed via the Has system, which encodes an extracytoplasmic function (ECF) σ factor system. Previous studies have shown that the transfer of heme from the extracellular hemophore HasAp to the outer membrane receptor HasR is required for activation of the σ factor HasI and upregulation of has operon expression. Here, employing site-directed mutagenesis, allelic exchange, quantitative PCR analyses, immunoblotting, and 13C-heme uptake experiments, we delineated the differential contributions of the extracellular FRAP/PNPNL loop residue His-624 in HasR and of His-221 in its N-terminal plug domain required for heme capture to heme transport and signaling, respectively. Specifically, we show that substitution of the N-terminal plug His-221 disrupts both signaling and transport, leading to dysregulation of both the Has and Phu uptake systems. Our results are consistent with a model wherein heme release from HasAp to the N-terminal plug of HasR is required to initiate signaling, whereas His-624 is required for simultaneously closing off the heme transport channel from the extracellular medium and triggering heme transport. Our results provide critical insight into heme release, signaling, and transport in P. aeruginosa and suggest a functional link between the ECF σ factor and Phu heme uptake system.
Collapse
Affiliation(s)
- Alecia T Dent
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| | - Angela Wilks
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
48
|
Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol 2020; 104:6549-6564. [PMID: 32500267 DOI: 10.1007/s00253-020-10687-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa infection is a significant threat for clinicians. Increasing incidents of resistant biofilm infection result in high mortality rates worldwide. There is a considerable current interest in the field of extracellular DNA (eDNA)-mediated P. aeruginosa biofilm formation. eDNA acts as a glue to make biofilm more stable. This review focuses on the diverse mechanisms and factors, which enhance the eDNA release into the extracellular milieu. Furthermore, eDNA-mediated molecular interactions within the biofilm are emphasized. In addition, drug resistance mechanisms due to the versatility of eDNA are discussed. Spatial physiological diversity is expected due to different metabolic activity of bacterial subpopulation present in P. aeruginosa biofilm layers. In P. aeruginosa, eDNA release is accomplished by cell lysis and OMVs (outer membrane vesicles). eDNA release is a spontaneous and multifactorial process, which may be accomplished by PQS, pyocyanin, and lambda prophage induction. Hydrogen peroxide and pyocin trigger cell death, which may facilitate eDNA release. Lung mucosa of cystic fibrosis patients is enriched with eDNA, which acidifies biofilm and develops P. aeruginosa resistance to aminoglycosides. Further studies on spatial and molecular characterization of bacterial subpopulation in biofilm will shed light on eDNA-biofilm interaction more precisely.Key Points• Extracellular DNA (eDNA) is a key component of Pseudomonas aeruginosa biofilm.• P. aeruginosa eDNA acts as a glue to make biofilm more stronger.• Bacterial cell death or lysis may be the potential way to release P. aeruginosa eDNA into extracellular milieu.• P. aeruginosa eDNA contributes to develop resistance to antimicrobials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
49
|
Jeon YJ, Jo A, Won J, Lee KM, Yoon SS, Choi JY, Kim HJ. IL-17C Protects Nasal Epithelium from Pseudomonas aeruginosa Infection. Am J Respir Cell Mol Biol 2020; 62:95-103. [PMID: 31318581 DOI: 10.1165/rcmb.2018-0377oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-17 family cytokines are directly involved in host immune responses and the critical mediators for host defense against infection or inflammation. IL-17C is highly expressed in respiratory epithelium and is induced after acute bacterial lung infection. However, the definite function of IL-17C induced by Pseudomonas aeruginosa (PAO1 strain) is not fully understood, and our study was designed to demonstrate IL-17C-induced immune response against PAO1 infection in nasal epithelium. Passage-2 normal human nasal epithelial (NHNE) cells were infected with PAO1 and the relationship between IL-17C-related immune responses and the iron absorption of PAO1, depending on inoculation of recombinant human IL-17C (rhIL-17C), was assessed by measuring the siderophore activity of PAO1. Microarray data showed that IL-17C expression increased 34.7 times at 8 hours postinfection (hpi) in NHNE cells, and IL-17C mRNA levels increased until 48 hpi. The PAO1 colonies significantly increased from 8 hpi in NHNE cells, and siderophore activity of PAO1 was enhanced in the supernatants of PAO1-infected NHNE cells. Interestingly, PAO1 colonies were reduced in PAO1-infected NHNE cells treated with rhIL-17C, and supernatants from NHNE cells treated with rhIL-17C also exhibited decreased PAO1 colonies. We found that the siderophore activity of PAO1 was significantly reduced in the supernatants of NHNE cells treated with rhIL-17C where LCN2 expression was highly elevated. Our findings indicate that IL-17C mediates an antibacterial effect against PAO1 by inhibiting siderophore activity in nasal epithelium. We propose that IL-17C might be an efficient mediator to suppress PAO1 infection through disturbing iron absorption of PAO1 in nasal epithelium.
Collapse
Affiliation(s)
- Yung Jin Jeon
- Department of Otorhinolaryngology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ara Jo
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jina Won
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Hyun Jik Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
50
|
Rezzoagli C, Granato ET, Kümmerli R. Harnessing bacterial interactions to manage infections: a review on the opportunistic pathogen Pseudomonas aeruginosa as a case example. J Med Microbiol 2020; 69:147-161. [PMID: 31961787 PMCID: PMC7116537 DOI: 10.1099/jmm.0.001134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During infections, bacterial pathogens can engage in a variety of interactions with each other, ranging from the cooperative sharing of resources to deadly warfare. This is especially relevant in opportunistic infections, where different strains and species often co-infect the same patient and interact in the host. Here, we review the relevance of these social interactions during opportunistic infections using the human pathogen Pseudomonas aeruginosa as a case example. In particular, we discuss different types of pathogen-pathogen interactions, involving both cooperation and competition, and elaborate on how they impact virulence in multi-strain and multi-species infections. We then review evolutionary dynamics within pathogen populations during chronic infections. We particuarly discuss how local adaptation through niche separation, evolutionary successions and antagonistic co-evolution between pathogens can alter virulence and the damage inflicted on the host. Finally, we outline how studying bacterial social dynamics could be used to manage infections. We show that a deeper appreciation of bacterial evolution and ecology in the clinical context is important for understanding microbial infections and can inspire novel treatment strategies.
Collapse
Affiliation(s)
- Chiara Rezzoagli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elisa T. Granato
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|