1
|
Wicander J, Gorsuch J, Chen L, Caldbeck R, Korza G, Brul S, Christie G, Setlow P. Germination of Bacillus spores by LiCl. J Bacteriol 2025:e0051024. [PMID: 40013823 DOI: 10.1128/jb.00510-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
Spores of Bacillus subtilis have been found to germinate when incubated with LiCl, but not with other monovalent or divalent metal cations. Bacillus megaterium spores also germinated with LiCl, but B. cereus spores did not. In B. subtilis, the LiCl germination was via the activation of spores' GerA germinant receptor (GR), and in B. megaterium, it was the GerU GR. Notably, LiCl germination was much slower than normal physiological germinant triggered GR germination. In B. subtilis spores, rates of LiCl germination were increased in spores with a more fluid IM and decreased in spores with a less fluid IM. Analyses of the GerA germinant binding site suggested that Li+ could bind in a specific site in the B. subtilis GerAB subunit where normally a Na+ likely binds. Importantly, NaCl strongly inhibited LiCl germination of B. subtilis spores, much more so than the larger cation in KCl, although neither salt inhibited L-alanine germination via the GerA GR. These findings increase the understanding of features of mechanisms of germination of Bacillus spores.IMPORTANCEThe ability of some bacteria to form spores upon nutrient starvation confers properties of metabolic dormancy and enhanced resistance to environmental stressors that would otherwise kill vegetative cells. Since spore-forming bacteria include several notable pathogens and economically significant spoilage organisms, insight into how spores are stimulated to germinate and form new vegetative cells is important. Here, we reveal that relatively high concentrations of the inorganic salt lithium chloride trigger the germination of Bacillus subtilis and Bacillus megaterium spores by stimulating one of the spores of each species cohort of nutrient germinant receptors. This is significant since novel germinants and increased knowledge of the germination process should provide opportunities for improved control of spores in healthcare, food, and environmental sectors.
Collapse
Affiliation(s)
- James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | | | - Longjiao Chen
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Rebecca Caldbeck
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, North Holland, Netherlands
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Dolu H, Killi D, Bas S, Bilecen DS, Seymen M. Effectiveness of salt priming and plant growth-promoting bacteria in mitigating salt-induced photosynthetic damage in melon. PHOTOSYNTHESIS RESEARCH 2025; 163:7. [PMID: 39820779 DOI: 10.1007/s11120-024-01128-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Seed priming and plant growth-promoting bacteria (PGPB) may alleviate salt stress effects. We exposed a salt-sensitive variety of melon to salinity following seed priming with NaCl and inoculation with Bacillus. Given the sensitivity of photosystem II (PSII) to salt stress, we utilized dark- and light-adapted chlorophyll fluorescence alongside analysis of leaf stomatal conductance of water vapour (Gsw). Priming increased total seed germination by 15.5% under salt-stress. NaCl priming with Bacillus inoculation (PB) increased total leaf area (LA) by 45% under control and 15% under stress. Under the control condition, priming (P) reduced membrane permeability (RMP) by 36% and PB by 55%, while under stress Bacillus (BS) reduced RMP by 10%. Although Bacillus inoculation (B) and priming (P) treatments did not show significant effects on some PSII efficiency parameters (FV/FM, ABS/RC, PIABS, FM), the BS treatment induced a significantly higher quantum efficiency of PSII (ΦPSII) and increased Gsw by 159% in the final week of the experiment. The BS treatment reduced electron transport rate per reaction center (ETO/RC) by 10% in comparison to the salt treatment, which showed less reaction centre damage. Bacillus inoculation and seed priming treatment under the stressed condition (PBS) induced an increase in electron transport rate of 40%. Salt stress started to show significant effects on PSII after 12 days, and adversely impacted all morphological and photosynthetic parameters after 22 days. Salt priming and PGPB mitigated the negative impacts of salt stress and may serve as effective tools in future-proofing saline agriculture.
Collapse
Affiliation(s)
- Hüsna Dolu
- National Research Council of Italy-Institute of Sustainable Plant Protection (CNR-IPSP), Firenze, Italy
- Department of Plant Production and Technologies, Konya Food and Agriculture University, Konya, Turkey
| | - Dilek Killi
- National Research Council of Italy-Institute of Sustainable Plant Protection (CNR-IPSP), Firenze, Italy.
- Department of Plant Production and Technologies, Konya Food and Agriculture University, Konya, Turkey.
| | - Serpil Bas
- Department of Biotechnology, Konya Food and Agriculture University, Konya, Turkey
| | - Deniz Sezlev Bilecen
- Department of Molecular Biology and Genetics, Konya Food and Agriculture University, Konya, Turkey
| | - Musa Seymen
- Horticulture Department of Agriculture Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
3
|
Freire V, Casañas L, Laborda L, Condón S, Gayán E. Influence of Sporulation Temperature on Germination and Growth of B. weihenstephanensis Strains in Specific Nutrients and in an Extended Shelf-Life Refrigerated Matrix Under Commercial Pasteurization and Storage Conditions. Foods 2024; 13:3434. [PMID: 39517218 PMCID: PMC11545089 DOI: 10.3390/foods13213434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Extended shelf-life (ESL) refrigerated ready-to-eat foods are thermally pasteurized to ensure food safety and stability. However, surviving psychrotrophic Bacillus cereus spores can still pose a challenge. Studies predicting their behavior often overlook sporulation conditions. This study investigated the effect of sporulation temperature on germination of three Bacillus weihenstephanensis strains in specific nutrients (inosine and/or amino acids) with or without prior heat activation (80 °C, 10 min). Sporulation temperature variably affected germination, with stronger effects in moderately responsive strains and nutrients. Heat activation strongly stimulated germination, particularly in nutrients with poorer responses, mitigating differences induced by sporulation temperature. The influence of sporulation temperature on germination and growth in an ESL matrix at refrigeration temperatures (4 °C or 8 °C) in vacuum packaging after heat activation or commercial pasteurization (90 °C, 10 min) was also studied. The latter treatment increased germination rates of surviving spores; however, some strains suffered damage and lost viability upon germination at 4 °C but recovered and grew at 8 °C. These findings highlight the need to account for variability in spore recovery and outgrowth during quantitative risk assessments for psychrotrophic B. cereus in ESL foods.
Collapse
Affiliation(s)
| | | | | | | | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), Faculty of Veterinary, University of Zaragoza-CITA, Miguel Servet 177, 50013 Zaragoza, Spain; (V.F.); (L.C.); (S.C.)
| |
Collapse
|
4
|
Heydenreich R, Delbrück AI, Trunet C, Mathys A. Strategies for effective high pressure germination or inactivation of Bacillus spores involving nisin. Appl Environ Microbiol 2024; 90:e0229923. [PMID: 39311577 PMCID: PMC11505639 DOI: 10.1128/aem.02299-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/10/2024] [Indexed: 10/25/2024] Open
Abstract
The major challenge in employing high pressure (HP) at moderate temperature for sterilization is the remarkable resistance of bacterial spores. High isostatic pressure can initiate spore germination, enabling subsequent inactivation under mild conditions. However, not all spores could be triggered to germinate under pressure at temperatures ≤80°C so far. In this study, germination treatment combinations were evaluated for Bacillus spores involving moderate HP (150 MPa, 37°C, 5 min), very HP (vHP, 550 MPa, 60°C, 2.5 or 9 min), simple and complex nutrient germinants [L-valine, L-alanine, and tryptic soy broth (TSB)], nisin, and incubation at atmospheric pressure (37°C). The most effective combinations for Bacillus subtilis resulted in a reduction of culturable dormant spores by 8 log10 units. The combinations involved nisin, a nutrient germinant (L-valine or TSB), a first vHP treatment (550 MPa, 60°C, 2.5 min), incubation at atmospheric pressure (37°C, 6 h), and a second vHP treatment (550 MPa, 60°C, 2.5 min). Such treatment combination with L-valine reduced Bacillus amyloliquefaciens spores by only 2 log10 units. B. amyloliquefaciens, thus, proved to be substantially more HP-resistant compared to B. subtilis, validating previous studies. Despite combining different germination mechanisms, complete germination could not be achieved for either species. The natural bacteriocin nisin did seemingly not promote HP germination initiation under chosen HP conditions, contrary to previous literature. Nevertheless, nisin might be beneficial to inhibit the growth of HP-germinated or remaining ungerminated spores. Future germination experiments might consider that nisin could not be completely removed from spores by washing, thereby affecting plate count enumeration. IMPORTANCE Extremely resistant spore-forming bacteria are widely distributed in nature. They infiltrate the food chain and processing environments, posing risks of spoilage and food safety. Traditional heat-intensive inactivation methods often negatively affect the product quality. HP germination-inactivation offers a potential solution for better preserving sensitive ingredients while inactivating spores. However, the presence of ungerminated (superdormant) spores hampers the strategy's success and safety. Knowledge of strategies to overcome resistance to HP germination is vital to progress mild spore control technologies. Our study contributes to the evaluation and development of mild preservation processes by evaluating strategies to enhance the HP germination-inactivation efficacy. Mild preservation processes can fulfill the consumers' demand for safe and minimally processed food.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Alessia I. Delbrück
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| | - Clément Trunet
- Univ Brest, INRAE,
Laboratoire Universitaire de Biodiversité et Écologie
Microbienne, UMT ACTIA 19.03
ALTER’iX, Quimper,
France
| | - Alexander Mathys
- Sustainable Food
Processing Laboratory, Institute of Food, Nutrition, and Health,
Department of Health Science and Technology, ETH
Zurich, Zurich,
Switzerland
| |
Collapse
|
5
|
Jiang Y, Wang K, Xu L, Xu L, Xu Q, Mu Y, Hong Q, He J, Jiang J, Qiu J. DipR, a GntR/FadR-family transcriptional repressor: regulatory mechanism and widespread distribution of the dip cluster for dipicolinic acid catabolism in bacteria. Nucleic Acids Res 2024; 52:10951-10964. [PMID: 39180394 PMCID: PMC11472048 DOI: 10.1093/nar/gkae728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Dipicolinic acid is an essential component of bacterial spores for stress resistance, which is released into the environment after spore germination. In a previous study, a dip gene cluster was found to be responsible for the catabolism of dipicolinic acid in Alcaligenes faecalis JQ135. However, the transcriptional regulatory mechanism remains unclear. The present study characterized the new GntR/FadR family transcriptional factor DipR, showing that the dip cluster is transcribed as the six transcriptional units, dipR, dipA, dipBC, dipDEFG, dipH and dipJKLM. The purified DipR protein has six binding sites sharing the 6-bp conserved motif sequence 5'-GWATAC-3'. Site-directed mutations indicated that these motif sequences are essential for DipR binding. Moreover, the four key amino acid residues R63, R67, H196 and H218 of DipR, examined by site-directed mutagenesis, played crucial roles in DipR regulation. Bioinformatics analysis showed that dip clusters including dipR genes are widely distributed in bacteria, are taxon-related, and co-evolved with their hosts. This paper provides new insights into the transcriptional regulatory mechanism of dipicolinic acid degradation by DipR in bacteria.
Collapse
Affiliation(s)
- Yinhu Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kexin Wang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lu Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanyi Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qimiao Xu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Mu
- Taizhou Center for Disease Prevention and Control, Taizhou 225300, China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian He
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Heydenreich R, Delbrück AI, Peternell C, Trunet C, Mathys A. Characterization of high-pressure-treated Bacillus subtilis spore populations using flow cytometry - Shedding light on spore superdormancy at 550 MPa. Int J Food Microbiol 2024; 422:110812. [PMID: 38970996 DOI: 10.1016/j.ijfoodmicro.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 07/08/2024]
Abstract
Mild spore inactivation can be challenging in industry because of the remarkable resistance of bacterial spores. High pressure (HP) can trigger spore germination, which reduces the spore's resistance, and thereby allows mild spore inactivation. However, spore germination is heterogenous. Some slowly germinating or non-germinating spores called superdormant spores remain resistant and can survive. Therefore, superdormant spores need to be characterized to understand the causes of their germination deficiency. Bacillus subtilis spores were pressurized for 50 s - 6 min at a very high pressure (vHP) level of 550 MPa and 60 °C in buffer to trigger germination. For a rapid quantification of the remaining ungerminated superdormant spores, flow cytometry (FCM) analysis was validated using single cell sorting and growth analysis. FCM based on propidium iodide (PI) and SYTO16 can be used for 550 MPa-superdormant spores after short vHP treatments of ≤1 min and post-HP incubation at 37 °C or 60 °C. The need for a post-HP incubation is particular for vHP treatments. The incubation was successful to separate FCM signals from superdormant and germinated spores, thus allowing superdormant spore quantification. The SYTO16 and PI fluorescence levels did not necessarily indicate superdormancy or apparent viability. This highlights the general need for FCM validation for different HP treatment conditions. The ∼7 % of ungerminated, i.e., superdormant, spores were isolated after a vHP treatment (550 MPa, 60 °C, 43-52 s). This allowed the characterization of vHP superdormant spores for the first time. The superdormant spores had a similar dipicolinic acid content as spores of the initial dormant population. Descendants of superdormant spores had a normal vHP germination capacity. The causes of vHP superdormancy were thus unlikely linked to the dipicolinic acid content or a permanent genetic change. Isolated superdormant spores germinated better in a second vHP treatment compared to the initial spore population. This has not been observed for other germination stimuli so far. In addition, the germination capacity of the initial spore population was time-dependent. A vHP germination deficiency can therefore be lost over time and seems to be caused by transient factors. Permanent cellular properties played a minor role as causes of superdormancy under chosen HP treatment conditions. The study gained new fundamental insights in vHP superdormancy which are of applied interest. Understanding superdormancy helps to efficiently develop a strategy to avoid superdormant spores and hence to inactivate all spores. The development of a mild HP spore germination-inactivation process aims at better preserving the food quality.
Collapse
Affiliation(s)
- Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christina Peternell
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Clément Trunet
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, Quimper, France.
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition, and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Freire V, Condón S, Gayán E. Impact of sporulation temperature on germination of Bacillus subtilis spores under optimal and adverse environmental conditions. Food Res Int 2024; 182:114064. [PMID: 38519157 DOI: 10.1016/j.foodres.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 03/24/2024]
Abstract
Bacillus subtilis spores are important food spoilage agents and are occasionally involved in food poisoning. In foods that are not processed with intense heat, such bacterial spores are controlled by a combination of different hurdles, such as refrigeration, acidification, and low water activity (aw), which inhibit or delay germination and/or growth. Sporulation temperature has long been regarded as a relevant factor for the assessment of germination in chemically defined media, but little is known about its impact on food preservation environments. In this study, we compared germination dynamics of B. subtilis spores produced at optimal temperature (37 °C) with others incubated at suboptimal (20 °C) and supraoptimal (43 °C) temperatures in a variety of nutrients (rich-growth medium, L-alanine, L-valine, and AGFK) under optimal conditions as well as under food-related stresses (low aw, pH, and temperature). Spores produced at 20 °C had a lower germination rate and efficiency than those incubated at 37 °C in all the nutrients, while those sporulated at 43 °C displayed a higher germination rate and/or efficiency in response to rich-growth medium and mostly to L-alanine and AGFK under optimal environmental conditions. However, differences in germination induced by changes in sporulation temperature decreased when spores were activated by heat, mainly due to the greater benefit of heat for spores produced at 20 °C and 37 °C than at 43 °C, especially in AGFK. Non-heat-activated spores produced at 43 °C still displayed superior germination fitness under certain stresses that had considerably impaired the germination of the other two populations, such as reduced temperature and aw. Moreover, they presented lower temperature and pH boundaries for the inhibition of germination in rich-growth medium, while requiring a higher NaCl concentration threshold compared to spores obtained at optimal and suboptimal temperature. Sporulation temperature is therefore a relevant source of variability in spore germination that should be taken into account for the accurate prediction of spore behaviour under variable food preservation conditions with the aim of improving food safety and stability.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
8
|
Freire V, Del Río J, Gómara P, Salvador M, Condón S, Gayán E. Comparative study on the impact of equally stressful environmental sporulation conditions on thermal inactivation kinetics of B. subtilis spores. Int J Food Microbiol 2023; 405:110349. [PMID: 37591013 DOI: 10.1016/j.ijfoodmicro.2023.110349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/30/2023] [Accepted: 07/29/2023] [Indexed: 08/19/2023]
Abstract
Control of bacterial spores continues to be one of the main challenges for the food industry due to their wide dissemination and extremely high resistance to processing methods. Furthermore, the large variability in heat resistance in spores that contaminate foods makes it difficult to establish general processing conditions. Such heterogeneity not only derives from inherent differences among species and strains, but also from differences in sporulation environments that are generally ignored in spores encountered in foods. We evaluated heat inactivation kinetics and the thermodependency of resistance parameters in B. subtilis 168 spores sporulated at adverse temperatures, water activity (aw), and pH, applying an experimental approach that allowed us to quantitatively compare the impact of each condition. Reduction of incubation temperature from the optimal temperature dramatically reduced thermal resistance, and it was the most influential factor, especially at the highest treatment temperatures. These spores were also more sensitive to chemicals presumably acting in the inner membrane. Reducing sporulation aw increased heat resistance, although the magnitude of that effect depended on the solute and the treatment temperature. Thus, changes in sporulation environments varied 3D100°C values up to 10.4-fold and z values up to 1.7-fold, highlighting the relevance of taking such a source of variability into account when setting heat processing conditions. UV-C treatment and sodium hypochlorite efficiently inactivated all spore populations, including heat-resistant ones produced at low aw.
Collapse
Affiliation(s)
- Víctor Freire
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Javier Del Río
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Paula Gómara
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Maika Salvador
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Santiago Condón
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain
| | - Elisa Gayán
- Department of Animal Production and Food Science, AgriFood Institute of Aragon (IA2), University of Zaragoza-CITA, Faculty of Veterinary, Miguel Servet 177, 50013 Zaragoza, Spain.
| |
Collapse
|
9
|
Li YQ, He L, Aryal M, Wicander J, Korza G, Setlow P. Thioflavin-T does not report on electrochemical potential and memory of dormant or germinating bacterial spores. mBio 2023; 14:e0222023. [PMID: 37830807 PMCID: PMC10653816 DOI: 10.1128/mbio.02220-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Bacillus and Clostridium spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies. One germination feature is the memory of a pulsed germinant stimulus leading to greater germination following a second pulse. Recent observations of increases in spore binding of the potentiometric dye thioflavin-T early in their germination of spores led to the suggestion that increasing electrochemical potential is how spores "remember" germinant pulses. However, new work finds no increased thioflavin-T binding in the physiological germination of Coatless spores or of intact spores germinating with dodecylamine, even though spore memory is seen in both cases. Thus, using thioflavin-T uptake by germinating spores to assess the involvement of electrochemical potential in memory of germinant exposure, as suggested recently, is questionable.
Collapse
Affiliation(s)
- Yong-qing Li
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - Lin He
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Makunda Aryal
- Department of Physics, East Carolina University, Greenville, North Carolina, USA
| | - James Wicander
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - George Korza
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Mathematical modeling of temperature and natural antimicrobial effects on germination and outgrowth of Clostridium perfringens in chilled chicken. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
11
|
Rao L, Zhou B, Serruya R, Moussaieff A, Sinai L, Ben-Yehuda S. Glutamate catabolism during sporulation determines the success of the future spore germination. iScience 2022; 25:105242. [PMID: 36274945 PMCID: PMC9579013 DOI: 10.1016/j.isci.2022.105242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/19/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Bacterial spores can preserve cellular dormancy for years, but still hold the remarkable ability to revive and recommence life. This cellular awakening begins with a rapid and irreversible event termed germination; however, the metabolic determinants required for its success have been hardly explored. Here, we show that at the onset of the process of sporulation, the metabolic enzyme RocG catabolizes glutamate, facilitating ATP production in the spore progenitor cell, and subsequently influencing the eventual spore ATP reservoir. Mutants displaying low RocG levels generate low ATP-containing spores that exhibit severe germination deficiency. Importantly, this phenotype could be complemented by expressing RocG at a specific window of time during the initiation of sporulation. Thus, we propose that despite its low abundance in dormant spores, ATP energizes spore germination, and its production, fueled by RocG, is coupled with the initial developmental phase of spore formation.
Collapse
Affiliation(s)
- Lei Rao
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Bing Zhou
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Raphael Serruya
- The Institute for Drug Research, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Lior Sinai
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| | - Sigal Ben-Yehuda
- The Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120 Jerusalem, Israel
| |
Collapse
|
12
|
The Novel Monooxygenase Gene dipD in the dip Gene Cluster of Alcaligenes faecalis JQ135 Is Essential for the Initial Catabolism of Dipicolinic Acid. Appl Environ Microbiol 2022; 88:e0036022. [PMID: 35766505 PMCID: PMC9317849 DOI: 10.1128/aem.00360-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dipicolinic acid (DPA), an essential pyridine derivative biosynthesized in Bacillus spores, constitutes a major proportion of global biomass carbon pool. Alcaligenes faecalis strain JQ135 could catabolize DPA through the "3HDPA (3-hydroxydipicolinic acid) pathway." However, the genes involved in this 3HDPA pathway are still unknown. In this study, a dip gene cluster responsible for DPA degradation was cloned from strain JQ135. The expression of dip genes was induced by DPA and negatively regulated by DipR. A novel monooxygenase gene, dipD, was crucial for the initial hydroxylation of DPA into 3HDPA and proposed to encode the key catalytic component of the multicomponent DPA monooxygenase. The heme binding protein gene dipF, ferredoxin reductase gene dipG, and ferredoxin genes dipJ/dipK/dipL were also involved in the DPA hydroxylation and proposed to encode other components of the multicomponent DPA monooxygenase. The 18O2 stable isotope labeling experiments confirmed that the oxygen atom in the hydroxyl group of 3HDPA came from dioxygen molecule rather than water. The protein sequence of DipD exhibits no significant sequence similarities with known oxygenases, suggesting that DipD was a new member of oxygenase family. Moreover, bioinformatic survey suggested that the dip gene cluster was widely distributed in many Alpha-, Beta-, and Gammaproteobacteria, including soil bacteria, aquatic bacteria, and pathogens. This study provides new molecular insights into the catabolism of DPA in bacteria. IMPORTANCE Dipicolinic acid (DPA) is a natural pyridine derivative that serves as an essential component of the Bacillus spore. DPA accounts for 5 to 15% of the dry weight of spores. Due to the huge number of spores in the environment, DPA is also considered to be an important component of the global biomass carbon pool. DPA could be decomposed by microorganisms and enter the global carbon cycling; however, the underlying molecular mechanisms are rarely studied. In this study, a DPA catabolic gene cluster (dip) was cloned and found to be widespread in Alpha-, Beta-, and Gammaproteobacteria. The genes responsible for the initial hydroxylation of DPA to 3-hydroxyl-dipicolinic acid were investigated in Alcaligenes faecalis strain JQ135. The present study opens a door to elucidate the mechanism of DPA degradation and its possible role in DPA-based carbon biotransformation on earth.
Collapse
|
13
|
Lamba S, Mundanda Muthappa D, Fanning S, Scannell AGM. Sporulation and Biofilms as Survival Mechanisms of Bacillus Species in Low-Moisture Food Production Environments. Foodborne Pathog Dis 2022; 19:448-462. [PMID: 35819266 DOI: 10.1089/fpd.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Low-moisture foods (LMF) have clear advantages with respect to limiting the growth of foodborne pathogens. However, the incidences of Bacillus species in LMF reported in recent years raise concerns about food quality and safety, particularly when these foods are used as ingredients in more complex higher moisture products. This literature review describes the interlinked pathways of sporulation and biofilm formation by Bacillus species and their underlying molecular mechanisms that contribute to the bacteriums' persistence in LMF production environments. The long-standing challenges of food safety and quality in the LMF industry are also discussed with a focus on the bakery industry.
Collapse
Affiliation(s)
- Sakshi Lamba
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Dechamma Mundanda Muthappa
- UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD Institute of Food and Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD Centre for Food Safety, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland.,UCD School of Agriculture and Food Science, and Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Moderate high-pressure superdormancy in Bacillus spores: properties of superdormant spores and proteins potentially influencing moderate high-pressure germination. Appl Environ Microbiol 2021; 88:e0240621. [PMID: 34910565 PMCID: PMC8863042 DOI: 10.1128/aem.02406-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Resistant bacterial spores are a major concern in industrial decontamination processes. An approach known as pressure-mediated germination-inactivation strategy aims to artificially germinate spores by isostatic pressure to mitigate their resistance to inactivation processes. The successful implementation of such a germination-inactivation strategy relies on the germination of all spores. However, germination is heterogeneous, with some “superdormant” spores germinating extremely slowly or not at all. The present study investigated potential underlying reasons for moderate high-pressure (150 MPa; 37°C) superdormancy of Bacillus subtilis spores. The water and dipicolinic acid content of superdormant spores was compared with that of the initial dormant spore population. The results suggest that water and dipicolinic acid content are not major drivers of moderate high-pressure superdormancy. A proteomic analysis was used to identify proteins that were quantified at significantly different levels in superdormant spores. Subsequent validation of the germination capacity of deletion mutants revealed that the presence of protein YhcN is required for efficient moderate high-pressure germination and that proteins MinC, cse60, and SspK may also play a role, albeit a minor one. IMPORTANCE Spore-forming bacteria are ubiquitous in nature and, as a consequence, inevitably enter the food chain or other processing environments. Their presence can lead to significant spoilage or safety-related issues. Intensive treatment is usually required to inactivate them; however, this treatment harms important product quality attributes. A pressure-mediated germination-inactivation approach can balance the need for effective spore inactivation and retention of sensitive ingredients. However, superdormant spores are the bottleneck preventing the successful and safe implementation of such a strategy. An in-depth understanding of moderate high-pressure germination and the underlying causes of superdormancy is necessary to advance the development of mild high pressure-based spore control technologies. The approach used in this work allowed the identification of proteins that have not yet been associated with reduced germination at moderate high pressure. This research paves the way for further studies on the germination and superdormancy mechanisms in spores, assisting the development of mild spore inactivation strategies.
Collapse
|
15
|
Vashisht P, Pendyala B, Gopisetty VVS, Patras A. Modeling and validation of delivered fluence of a continuous Dean flow pilot scale UV system: monitoring fluence by biodosimetry approach. Food Res Int 2021; 148:110625. [PMID: 34507769 DOI: 10.1016/j.foodres.2021.110625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
The inactivation of pathogenic microorganisms in water and high transmittance liquid foods has been studied extensively. The efficiency of the process is relatively low for treating opaque liquid foods using traditional UV systems. This study evaluated the ability of UV-C light to inactivate foodborne pathogens in a simulated opaque fluid (6.5 to 17 cm-1) at commercial relevant flow rates (31.70, 63.40, 95.10 gph) using a pilot-scale Dean Flow UV system. In this study, a mathematical model for the prediction of delivered fluence was developed by the biodosimetry method. The results revealed that increased Reduction equivalent fluence (REF) rates were observed with increased flow rates due to additional turbulence. The experimental and calculated REF were well correlated with the UV-C absorption coefficient range of 6.5 to 17 cm-1 indicating efficient mixing in the reactor. REF scaled up linearly at experimental conditions as an inverse function of flow rate and absorption coefficient, and a linear mathematical model (R2 > 0.99, p < 0.05) to predict delivered REF was developed. The model was tested and validated against independent experiments using Salmonella Typhimurium and Bacillus cereus endospores. The predicted and experimental REF values were in close agreement (p > 0.05). It is demonstrated that the developed model can predict the REF, thus microbial inactivation of microbial suspensions in simulated fluid with the absorption coefficient of 6.5-17 cm-1 and flow rates of 31.70-95.10 gph. The pilot system will be field-tested against microorganisms in highly absorbing and scattering fluids.
Collapse
Affiliation(s)
- Pranav Vashisht
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Brahmaiah Pendyala
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| | - Vybhav Vipul Sudhir Gopisetty
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA
| | - Ankit Patras
- Food Biosciences and Technology Program, Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville 37209, TN, USA.
| |
Collapse
|
16
|
Delbrück AI, Zhang Y, Heydenreich R, Mathys A. Bacillus spore germination at moderate high pressure: A review on underlying mechanisms, influencing factors, and its comparison with nutrient germination. Compr Rev Food Sci Food Saf 2021; 20:4159-4181. [PMID: 34147040 DOI: 10.1111/1541-4337.12789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Spore-forming bacteria are resistant to stress conditions owing to their ability to form highly resistant dormant spores. These spores can survive adverse environmental conditions in nature, as well as decontamination processes in the food and related industries. Bacterial spores may return to their vegetative state through a process called germination. As spore germination is critical for the loss of resistance, outgrowth, and development of pathogenicity and spoilage potential, the germination pathway has piqued the interest of the scientific community. The inhibition and induction of germination have critical applications in the food industry. Targeted germination can aid in decreasing the resistance of spores and allow the application of milder inactivation procedures. This germination-inactivation strategy allows better maintenance of important food quality attributes. Different stimuli are reported to trigger germination. Among those, isostatic high pressure (HP) has gained increasing attention due to its potential applications in industrial processes. However, pressure-mediated spore germination is extremely heterogeneous as some spores germinate rapidly, while others exhibit slow germination or do not undergo germination at all. The successful and safe implementation of the germination-inactivation strategy, however, depends on the germination of all spores. Therefore, there is a need to elucidate the mechanisms of HP-mediated germination. This work aimed to critically review the current state of knowledge on Bacillus spore germination at a moderate HP of 50-300 MPa. In this review, the germination mechanism, heterogeneity, and influencing factors have been outlined along with knowledge gaps.
Collapse
Affiliation(s)
- Alessia I Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Rosa Heydenreich
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
17
|
Abstract
Developments in genome editing offer potential solutions to challenges in agriculture, industry, medicine, and the environment. However, many technologies remain unexploited due to limitations in the use of genetically altered organisms. In this study, we use B. subtilis spores to explore the possibility of bioengineering organisms while leaving their genome intact. Taking advantage of the differential expression between the mother cell and the fore-spore compartments during sporulation, we created plasmids programmed to modify the spore phenotype from the mother cell compartment, but to "self-digest" in the fore-spore. At the end of sporulation, the mother cell undergoes lysis and releases the phenotypically engineered, genetically unaltered spores. Using this approach, we demonstrated the potential to express foreign proteins in B. subtilis spores without genome alterations by producing spores expressing GFP in their protective coats, where approximately 90% of the spore population had no detectable plasmid or chromosome alterations. In a separate demonstration, we programmed KinA overexpression during vegetative growth to artificially induce sporulation, and also obtained spores with nearly 90% of them free of detectable plasmid. Artificial induction of sporulation could potentially simplify the bioprocess for industrial spore production, as it reduces the number of steps involved. Overall, these findings demonstrate the potential to create genetically intact bioengineered organisms.
Collapse
Affiliation(s)
- Juan F. Quijano
- Department of Biological Sciences, Columbia University, New York, 10027, United States
- Department of Biological Sciences and Department of Physics, Columbia University, New York, 10027, United States
| | - Ozgur Sahin
- Department of Biological Sciences, Columbia University, New York, 10027, United States
- Department of Biological Sciences and Department of Physics, Columbia University, New York, 10027, United States
| |
Collapse
|
18
|
Pendyala B, Patras A, Sudhir Gopisetty VV, Sasges M. UV-C inactivation of microorganisms in a highly opaque model fluid using a pilot scale ultra-thin film annular reactor: Validation of delivered dose. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Isolation, stability, and characteristics of high-pressure superdormant Bacillus subtilis spores. Int J Food Microbiol 2021; 343:109088. [PMID: 33621831 DOI: 10.1016/j.ijfoodmicro.2021.109088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 01/30/2021] [Indexed: 12/26/2022]
Abstract
Bacterial spores are a major challenge in industrial decontamination processes owing to their extreme resistance. High-pressure (HP) of 150 MPa at 37 °C can trigger the germination of spores, making them lose their extreme resistance. Once their resistance is lost, germinated spores can easily be inactivated by a mild decontamination step. The implementation of this gentle germination-inactivation strategy is hindered by the presence of a subpopulation of so-called high-pressure superdormant (HPSD) spores, which resist germination or germinate only very slowly in response to HP. It is essential to understand the properties of HPSD spores and the underlying causes of superdormancy to tackle superdormant spores and further develop germination-inactivation strategies involving HP. This study investigated factors influencing the prevalence of HPSD spores and successfully isolated them by combining buoyant density centrifugation and fluorescence-activated cell sorting, which allowed further characterisation of HPSD spores for the first time. The prevalence of HPSD spores was shown to be strongly dependent on the HP dwell time, with increasing treatment times reducing their prevalence. Spore mutants lacking major germinant receptors further showed a highly increased prevalence of HPSD spores; 93% of the spores remained dormant even after a prolonged HP dwell time of 40 min. In contrast to nutrient germination, sublethal heat treatment of 75 °C for 30 min prior to pressure treatment did not induce spore activation and increase germination. The isolated HPSD spores did not show visible structural differences compared to the initial dormant spores when investigated with transmission electron microscopy. Re-sporulated HPSD spores showed similar germination capacity compared to the initial dormant spores, indicating that HPSD spores are most likely not genetically different from the rest of the population. Moreover, the majority of HPSD spores germinated when exposed a second time to the same germination treatment; however, the germination capacity was lower than that of the initial population. The fact that the majority of spores lost superdormancy when exposed a second time to the same trigger makes it unlikely that there is one factor that determines whether a spore germinates with a certain HP treatment or not. Instead, it seems possible that there are other reversible or cumulative causes. This study investigated the factors influencing spore HP superdormancy to improve the understanding of HPSD spores with regard to their stability, germination capacity, and potential underlying causes of spore HP superdormancy. This knowledge will contribute to the development of HP-based germination-inactivation strategies for gentle but effective spore control.
Collapse
|
20
|
McEvoy B, Lynch M, Rowan NJ. Opportunities for the application of real-time bacterial cell analysis using flow cytometry for the advancement of sterilization microbiology. J Appl Microbiol 2020; 130:1794-1812. [PMID: 33155740 DOI: 10.1111/jam.14876] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 01/11/2023]
Abstract
Medical devices provide critical care and diagnostic applications through patient contact. Sterility assurance level (SAL) may be defined as the probability of a single viable micro-organism occurring on an item after a sterilization process. Sterilization microbiology often relies upon using an overkill validation method where a 12-log reduction in recalcitrant bacterial endospore population occurs during the process that exploits conventional laboratory-based culture media for enumeration. This timely review explores key assumptions underpinning use of conventional culture-based methods in sterilization microbiology. Consideration is given to how such methods may limit the ability to fully appreciate the inactivation kinetics of a sterilization process such as vaporized hydrogen peroxide (VH2O2) sterilization, and consequently design efficient sterilization processes. Specific use of the real-time flow cytometry (FCM) is described by way of elucidating the practical relevance of these limitation factors with implications and opportunities for the sterilization industry discussed. Application of FCM to address these culture-based limitation factors will inform real-time kinetic inactivation modelling and unlock potential to embrace emerging opportunities for pharma, medical device and sterilization industries including potentially disruptive applications that may involve reduced usage of sterilant.
Collapse
Affiliation(s)
- B McEvoy
- STERIS Applied Sterilization Technologies, IDA Business and Technology Park, Tullamore, Ireland
| | - M Lynch
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| | - N J Rowan
- Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
21
|
Kakagianni M, Chatzitzika C, Koutsoumanis KP, Valdramidis VP. The impact of high power ultrasound for controlling spoilage by Alicyclobacillus acidoterrestris: A population and a single spore assessment. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Reineke K, Mathys A. Endospore Inactivation by Emerging Technologies: A Review of Target Structures and Inactivation Mechanisms. Annu Rev Food Sci Technol 2020; 11:255-274. [DOI: 10.1146/annurev-food-032519-051632] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent developments in preservation technologies allow for the delivery of food with nutritional value and superior taste. Of special interest are low-acid, shelf-stable foods in which the complete control or inactivation of bacterial endospores is the crucial step to ensure consumer safety. Relevant preservation methods can be classified into physicochemical or physical hurdles, and the latter can be subclassified into thermal and nonthermal processes. The underlying inactivation mechanisms for each of these physicochemical or physical processes impact different morphological or molecular structures essential for spore germination and integrity in the dormant state. This review provides an overview of distinct endospore defense mechanisms that affect emerging physical hurdles as well as which technologies address these mechanisms. The physical spore-inactivation technologies considered include thermal, dynamic, and isostatic high pressure and electromagnetic technologies, such as pulsed electric fields, UV light, cold atmospheric pressure plasma, and high- or low-energy electron beam.
Collapse
Affiliation(s)
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Department of Health Science and Technology, ETH Zurich, CH-8092 Zurich, Switzerland
| |
Collapse
|
23
|
Trunet C, Mtimet N, Mathot AG, Postollec F, Leguerinel I, Couvert O, Broussolle V, Carlin F, Coroller L. Suboptimal Bacillus licheniformis and Bacillus weihenstephanensis Spore Incubation Conditions Increase Heterogeneity of Spore Outgrowth Time. Appl Environ Microbiol 2020; 86:e02061-19. [PMID: 31900309 PMCID: PMC7054099 DOI: 10.1128/aem.02061-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/14/2019] [Indexed: 11/20/2022] Open
Abstract
Changes with time of a population of Bacillus weihenstephanensis KBAB4 and Bacillus licheniformis AD978 dormant spores into germinated spores and vegetative cells were followed by flow cytometry, at pH ranges of 4.7 to 7.4 and temperatures of 10°C to 37°C for B. weihenstephanensis and 18°C to 59°C for B. licheniformis Incubation conditions lower than optimal temperatures or pH led to lower proportions of dormant spores able to germinate and extended time of germination, a lower proportion of germinated spores able to outgrow, an extension of their times of outgrowth, and an increase of the heterogeneity of spore outgrowth time. A model based on the strain growth limits was proposed to quantify the impact of incubation temperature and pH on the passage through each physiological stage. The heat treatment temperature or time acted independently on spore recovery. Indeed, a treatment at 85°C for 12 min or at 95°C for 2 min did not have the same impact on spore germination and outgrowth kinetics of B. weihenstephanensis despite the fact that they both led to a 10-fold reduction of the population. Moreover, acidic sporulation pH increased the time of outgrowth 1.2-fold and lowered the proportion of spores able to germinate and outgrow 1.4-fold. Interestingly, we showed by proteomic analysis that some proteins involved in germination and outgrowth were detected at a lower abundance in spores produced at pH 5.5 than in those produced at pH 7.0, maybe at the origin of germination and outgrowth behavior of spores produced at suboptimal pH.IMPORTANCE Sporulation and incubation conditions have an impact on the numbers of spores able to recover after exposure to sublethal heat treatment. Using flow cytometry, we were able to follow at a single-cell level the changes in the physiological states of heat-stressed spores of Bacillus spp. and to discriminate between dormant spores, germinated spores, and outgrowing vegetative cells. We developed original mathematical models that describe (i) the changes with time of the proportion of cells in their different states during germination and outgrowth and (ii) the influence of temperature and pH on the kinetics of spore recovery using the growth limits of the tested strains as model parameters. We think that these models better predict spore recovery after a sublethal heat treatment, a common situation in food processing and a concern for food preservation and safety.
Collapse
Affiliation(s)
- C Trunet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - N Mtimet
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - A-G Mathot
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - F Postollec
- ADRIA Food Expertise, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - I Leguerinel
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - O Couvert
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| | - V Broussolle
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - F Carlin
- INRAE, Avignon Université, UMR SQPOV, Avignon, France
| | - L Coroller
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, UMT ACTIA 19.03 ALTER'iX, Quimper, France
| |
Collapse
|
24
|
Zhang Y, Delbrück AI, Off CL, Benke S, Mathys A. Flow Cytometry Combined With Single Cell Sorting to Study Heterogeneous Germination of Bacillus Spores Under High Pressure. Front Microbiol 2020; 10:3118. [PMID: 32038559 PMCID: PMC6985370 DOI: 10.3389/fmicb.2019.03118] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 01/27/2023] Open
Abstract
Isostatic high pressure (HP) of 150 MPa can trigger the germination of bacterial spores, making them lose their extreme resistance to stress factors, and increasing their susceptibility to milder inactivation strategies. However, germination response of spores within a population is very heterogeneous, and tools are needed to study this heterogeneity. Here, classical methods were combined with more recent and powerful techniques such as flow cytometry (FCM) and fluorescence activated cell sorting (FACS) to investigate spore germination behavior under HP. Bacillus subtilis spores were treated with HP at 150 MPa and 37°C, stained with SYTO16 and PI, and analyzed via FCM. Four sub-populations were detected. These sub-populations were for the first time isolated on single cell level using FACS and characterized in terms of their heat resistance (80°C, 10 min) and cultivability in a nutrient-rich environment. The four isolated sub-populations were found to include (1) heat-resistant and mostly cultivable superdormant spores, i.e., spores that remained dormant after this specific HP treatment, (2) heat-sensitive and cultivable germinated spores, (3) heat-sensitive and partially-cultivable germinated spores, and (4) membrane-compromised cells with barely detectable cultivability. Of particular interest was the physiological state of the third sub-population, which was previously referred to as "unknown". Moreover, the kinetic transitions between different physiological states were characterized. After less than 10 min of HP treatment, the majority of spores germinated and ended up in a sublethally damaged stage. HP treatment at 150 MPa and 37°C did not cause inactivation of all geminated spores, suggesting that subsequent inactivation strategies such as mild heat inactivation or other inactivation techniques are necessary to control spores in food. This study validated FCM as a powerful technique to investigate the heterogeneous behavior of spores under HP, and provided a pipeline using FACS for isolation of different sub-populations and subsequent characterization to understand their physiological states.
Collapse
Affiliation(s)
- Yifan Zhang
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Alessia I. Delbrück
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Cosima L. Off
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Stephan Benke
- Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
25
|
Pendyala B, Patras A, Ravi R, Gopisetty VVS, Sasges M. Evaluation of UV-C Irradiation Treatments on Microbial Safety, Ascorbic Acid, and Volatile Aromatics Content of Watermelon Beverage. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02363-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Pendyala B, Patras A, Gopisetty VVS, Sasges M, Balamurugan S. Inactivation of Bacillus and Clostridium Spores in Coconut Water by Ultraviolet Light. Foodborne Pathog Dis 2019; 16:704-711. [PMID: 31135181 DOI: 10.1089/fpd.2019.2623] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Bacterial spores are generally more resistant than vegetative bacteria to ultraviolet (UV) inactivation. The UV sensitivity of these spores must be known for implementing UV disinfection of low acid liquid foods. UV inactivation kinetics of bacterial spores in coconut water (CW) and distilled sterile water was studied. Populations of Bacillus cereus and Clostridium sporogenes dormant spores were reduced by more than 5.5 log10 at the UV-C photon fluence of 1142 μE·m-2 and 1919 μE·m-2 respectively. C. sporogenes spores showed higher UV-C resistance than B. cereus, with the photon fluence 300 μE·m-2 required for one log inactivation (D10) and 194 μE·m-2, respectively. No significant difference was observed in D10 values of spores suspended in the two fluid types (p > 0.05). The inactivation kinetics of microorganisms were described by log linear models with low root mean square error and high coefficient of determination (R2 > 0.98). This study clearly demonstrated that high levels of inactivation of bacterial spores can be achieved in CW. The baseline data generated from this study will be used to conduct spore inactivation studies in continuous flow UV systems. Further proliferation of the technology will include conducting extensive pilot studies.
Collapse
Affiliation(s)
- Brahmaiah Pendyala
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee
| | - Ankit Patras
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, Tennessee
| | | | | | | |
Collapse
|
27
|
Jo HL, Hwang HJ, Chung MS. Inactivation of Bacillus subtilis spores at various germination and outgrowth stages using intense pulsed light. Food Microbiol 2019; 82:409-415. [PMID: 31027800 DOI: 10.1016/j.fm.2019.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 08/21/2018] [Indexed: 10/27/2022]
Abstract
It is important to inactivate spore-forming bacteria in foods because their spores are highly resistant to various stresses. Although thermal treatment is an effective inactivation method, the associated high temperatures can cause changes in food quality. Intense pulsed light (IPL) is a nonthermal technique that can effectively improve food safety. This study evaluated the inactivation effects of IPL at various fluences on Bacillus subtilis spores. IPL treatment at a total fluence of 7.40 J/cm2 resulted in a 7 log reduction, indicating the potential of IPL to effectively inactivate bacterial spores. The sensitivity of B. subtilis spores to IPL during germination and outgrowth was also measured. The resistance to the IPL increased temporarily until 1 h after the start of incubation, and then gradually decreased for longer incubation periods. This temporary increase in resistance at the early stage of incubation was attributed to the leakage of dipicolinic acid from the spores. The results also showed that the inactivation efficiency increases after 1 h pre-incubation because the numbers of vegetative cells increased with the incubation time.
Collapse
Affiliation(s)
- Hye-Lim Jo
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 120-750, South Korea
| | - Hee-Jeong Hwang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 120-750, South Korea
| | - Myong-Soo Chung
- Department of Food Science and Engineering, Ewha Womans University, Seoul, 120-750, South Korea.
| |
Collapse
|
28
|
Zhang Y, Mathys A. Superdormant Spores as a Hurdle for Gentle Germination-Inactivation Based Spore Control Strategies. Front Microbiol 2019; 9:3163. [PMID: 30662433 PMCID: PMC6328458 DOI: 10.3389/fmicb.2018.03163] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023] Open
Abstract
Bacterial spore control strategies based on the germination-inactivation principle can lower the thermal load needed to inactivate bacterial spores and thus preserve food quality better. However, the success of this strategy highly depends on the germination of spores, and a subpopulation of spores that fail to germinate or germinate extremely slowly hinders the application of this strategy. This subpopulation of spores is termed 'superdormant (SD) spores.' Depending on the source of the germination stimulus, SD spores are categorized as nutrient-SD spores, Ca2+-dipicolinic acid SD spores, dodecylamine-SD spores, and high pressure SD spores. In recent decades, research has been done to isolate these different groups of SD spores and unravel the cause of their germination deficiency as well as their germination capacities. This review summarizes the challenges caused by SD spores, their isolation and characterization, the underlying mechanisms of their germination deficiency, and the future research directions needed to tackle this topic in further depth.
Collapse
Affiliation(s)
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Soni A, Oey I, Silcock P, Permina E, Bremer PJ. Differential gene expression for investigation of the effect of germinants and heat activation to induce germination in Bacillus cereus spores. Food Res Int 2018; 119:462-468. [PMID: 30884678 DOI: 10.1016/j.foodres.2018.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/10/2018] [Accepted: 12/22/2018] [Indexed: 11/15/2022]
Abstract
Differential gene expression was used to explore the mechanisms underpinning the differences in the impact of heat activation (70 °C for 30 min) on the germination of Bacillus cereus spores in the presence and absence of a germinant (L-alanine). The number of germinated cells, after heat activation plus L-alanine (3.5 ± 0.02 log CFU/ml) in the spore only initial population was found to be higher than that in only heat activated spores (2.01 ± 0.02 log CFU/ml). The concentration of DPA released by heat activated spores in the presence of L-alanine was 68.3 ± 0.1 and 112.1 ± 0.02 μg/ml after 30 and 60 min, compared to 96.5 and 166.2 ± 0.01 μg/ml after 30 and 90 min, respectively released by spores subjected only to heat activation. Gene (BC0784) encoding for the spore germination protein, gerA operon was up-regulated with a log2-transformed fold change value of 1.2 due to heat activation in the presence of L-alanine. The GerA operon located in the inner membrane is known to be involved in the uptake of L-alanine by B. cereus and has been reported to be involved in L-alanine mediated germination. In addition the up-regulation of genes involved in the uptake of L-alanine is proposed to provide the answer to the synergistic effect of heat and L-alanine in inducing germination in B. cereus spores. In short, heat activation increases the ability of L-alanine to penetrate into the spore's inner membrane, where it can be recognized by the receptors for initiation of the germination pathway. In the current study, the majority of the ribosomal proteins were down-regulated (when spores were heat treated in presence of germinants) this process also appeared to slow down protein synthesis by restricting the protein translation machinery. Differential gene expression revealed the genes responsible for the pathways related to transport and recognition of L-alanine into the spore that could have led to the accelerated germination process along with partial shutting down of protein synthesis pathway and ABC transporters. Knowledge of gene regulation in spores during heat activation will help in the development of approaches to prevent spore germination, which could provide an additional safeguard against bacterial growth and toxin production in improperly cooled heat treated foods.
Collapse
Affiliation(s)
- Aswathi Soni
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; Riddet Institute, Palmerston North, New Zealand
| | - Patrick Silcock
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Elizabeth Permina
- Otago Genomics & Bioinformatics Facility, University of Otago, New Zealand
| | - Phil J Bremer
- Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; New Zealand Food Safety Science Research Centre, New Zealand.
| |
Collapse
|
30
|
Freedman AJE, Peet KC, Boock JT, Penn K, Prather KLJ, Thompson JR. Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Front Microbiol 2018; 9:2152. [PMID: 30319556 PMCID: PMC6167967 DOI: 10.3389/fmicb.2018.02152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 08/22/2018] [Indexed: 12/27/2022] Open
Abstract
Supercritical carbon dioxide (scCO2) is an attractive substitute for conventional organic solvents due to its unique transport and thermodynamic properties, its renewability and labile nature, and its high solubility for compounds such as alcohols, ketones, and aldehydes. However, biological systems that use scCO2 are mainly limited to in vitro processes due to its strong inhibition of cell viability and growth. To solve this problem, we used a bioprospecting approach to isolate a microbial strain with the natural ability to grow while exposed to scCO2. Enrichment culture and serial passaging of deep subsurface fluids from the McElmo Dome scCO2 reservoir in aqueous media under scCO2 headspace enabled the isolation of spore-forming strain Bacillus megaterium SR7. Sequencing and analysis of the complete 5.51 Mbp genome and physiological characterization revealed the capacity for facultative anaerobic metabolism, including fermentative growth on a diverse range of organic substrates. Supplementation of growth medium with L-alanine for chemical induction of spore germination significantly improved growth frequencies and biomass accumulation under scCO2 headspace. Detection of endogenous fermentative compounds in cultures grown under scCO2 represents the first observation of bioproduct generation and accumulation under this condition. Culturing development and metabolic characterization of B. megaterium SR7 represent initial advancements in the effort toward enabling exploitation of scCO2 as a sustainable solvent for in vivo bioprocessing.
Collapse
Affiliation(s)
- Adam J. E. Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kyle C. Peet
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jason T. Boock
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kevin Penn
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Janelle R. Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
31
|
Gabiatti N, Yu P, Mathieu J, Lu GW, Wang X, Zhang H, Soares HM, Alvarez PJJ. Bacterial Endospores as Phage Genome Carriers and Protective Shells. Appl Environ Microbiol 2018; 84:e01186-18. [PMID: 30006404 PMCID: PMC6121981 DOI: 10.1128/aem.01186-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Bacterial endospores can serve as phage genome protection shells against various environmental stresses to enhance microbial control applications. The genomes of polyvalent lytic Bacillus phages PBSC1 and PBSC2, which infect both B. subtilis subsp. subtilis and B. cereus NRS 248, were incorporated into B. subtilis endospores (without integration into the host chromosome). When PBSC1 and PBSC2 were released from germinating endospores, they significantly inhibited the growth of the targeted opportunistic pathogen B. cereus Optimal endospore entrapment was achieved when phages were introduced to the fast-sporulating prespores at a multiplicity of infection of 1. Longer endospore maturation (48 h versus 24 h) increased both spore yield and efficiency of entrapment. Compared with free phages, spore-protected phage genomes showed significantly higher resistance toward high temperatures (60 to 80°C), extreme pH (pH 2 or pH 12), and copper ions (0.1 to 10 mg/liter). Endospore germination is inducible by low concentrations of l-alanine or by a germinant mixture (l-asparagine, d-glucose, d-fructose, and K+) to trigger the expression, assembly, and consequent release of phage particles within 60 to 90 min. Overall, the superior resiliency of polyvalent phages protected by endospores might enable nonrefrigerated phage storage and enhance phage applications after exposure to adverse environmental conditions.IMPORTANCE Bacteriophages are being considered for the control of multidrug-resistant and other problematic bacteria in environmental systems. However, the efficacy of phage-based microbial control is limited by infectivity loss during phage delivery and/or storage. Here, we exploit the pseudolysogenic state of phages, which involves incorporation of their genome into bacterial endospores (without integration into the host chromosome), to enhance survival in unfavorable environments. We isolated polyvalent (broad-host-range) phages that efficiently infect both benign and opportunistically pathogenic Bacillus strains and encapsulated the phage genomes in B. subtilis endospores to significantly improve resistance to various environmental stressors. Encapsulation by spores also significantly enhanced phage genome viability during storage. We also show that endospore germination can be induced on demand with nutrient germinants that trigger the release of active phages. Overall, we demonstrate that encapsulation of polyvalent phage genomes into benign endospores holds great promise for broadening the scope and efficacy of phage biocontrol.
Collapse
Affiliation(s)
- Naiana Gabiatti
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Pingfeng Yu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Grant W Lu
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | - Xifan Wang
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Hangjun Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hugo M Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis, Santa Catarina, Brazil
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
32
|
Rao L, Feeherry FE, Ghosh S, Liao X, Lin X, Zhang P, Li Y, Doona CJ, Setlow P. Effects of lowering water activity by various humectants on germination of spores of Bacillus species with different germinants. Food Microbiol 2018; 72:112-127. [DOI: 10.1016/j.fm.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|
33
|
Pereira APM, Sant’Ana AS. Diversity and fate of spore forming bacteria in cocoa powder, milk powder, starch and sugar during processing: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Martin MS, Santos IC, Carlton DD, Stigler-Granados P, Hildenbrand ZL, Schug KA. Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:1562-1571. [PMID: 29054663 DOI: 10.1016/j.scitotenv.2017.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 06/07/2023]
Abstract
Groundwater is a major source for drinking water in the United States, and therefore, its quality and quantity is of extreme importance. One major concern that has emerged is the possible contamination of groundwater due to the unconventional oil and gas extraction activities. As such, the impacts of exogenous contaminants on microbial ecology is an area to be explored to understand what are the chemical and physical conditions that allow the proliferation of pathogenic bacteria and to find alternatives for water treatment by identifying organic-degrading bacteria. In this work, we assess the interplay between groundwater quality and the microbiome in contaminated groundwaters rich in hydrocarbon gases, volatile organic and inorganic compounds, and various metals. Opportunistic pathogenic bacteria, such as Aeromonas hydrophila, Bacillus cereus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were identified, increasing the risk for consumption of and exposure to these contaminated groundwaters. Additionally, antimicrobial tests revealed that many of the identified bacteria were resistant to different antibiotics. The MALDI-TOF MS results were successfully confirmed with 16S rRNA gene sequencing, proving the accuracy of this high-throughput method. Collectively, these data provide a seminal understanding of the microbial populations in contaminated groundwater overlying anthropogenic activities like unconventional oil and gas development.
Collapse
Affiliation(s)
- Misty S Martin
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA; Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX, USA
| | - Doug D Carlton
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA; Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX, USA
| | | | - Zacariah L Hildenbrand
- Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX, USA; Inform Environmental, LLC, Dallas, TX, USA.
| | - Kevin A Schug
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX, USA; Collaborative Laboratories for Environmental Analysis and Remediation, The University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
35
|
Abstract
This study was to optimize the detection methods for Clostridium difficile from the animal manure-based composts. Both autoclaved and unautoclaved dairy composts were inoculated with a 12-h old suspension of a non-toxigenic C. difficile strain (ATCC 43593) and then plated on selected agar for vegetative cells and endospores. Six types of enrichment broths supplemented with taurocholate and l-cysteine were assessed for detecting a low level of artificially inoculated C. difficile (ca. 5 spores/g) from dairy composts. The efficacy of selected enrichment broths was further evaluated by isolating C. difficile from 29 commercial compost samples. Our results revealed that using heat-shock was more effective than using ethanol-shock for inducing endospore germination, and the highest endospore count (p < 0.05) was yielded at 60 °C for 25 min. C. difficile agar base, supplemented with 0.1% l-cysteine, 7% defibrinated horse blood, and cycloserine-cefoxitin (CDA-CYS-H-CC agar) was the best medium (p < 0.05) for recovering vegetative cells from compost. C. difficile endospore populations from both types of composts enumerated on both CDA-CYS-H-CC agar supplemented with 0.1% sodium taurocholate (CDA-CYS-H-CC-T agar) and brain heart infusion agar supplemented with 0.5% yeast extract, 0.1% l-cysteine, cycloserine-cefoxitin, and 0.1% sodium taurocholate (BHIA-YE-CYS-CC-T agar) media were not significantly different from each other (p > 0.05). Overall, enrichment of inoculated compost samples in broths containing moxalactam-norfloxacin (MN) produced significantly higher (p < 0.05) spore counts than in non-selective broths or broths supplemented with CC. Enrichment in BHIB-YE-CYS-MN-T broth followed by culturing on an agar containing 7% horse blood and 0.1% taurocholate provided a more sensitive and selective combination of media for detecting a low population of C. difficile from environmental samples with high background microflora.
Collapse
Affiliation(s)
- Muthu Dharmasena
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
36
|
Abstract
Despite being resistant to a variety of environmental insults, the bacterial endospore can sense the presence of small molecules and respond by germinating, losing the specialized structures of the dormant spore, and resuming active metabolism, before outgrowing into vegetative cells. Our current level of understanding of the spore germination process in bacilli and clostridia is reviewed, with particular emphasis on the germinant receptors characterized in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. The recent evidence for a local clustering of receptors in a "germinosome" would begin to explain how signals from different receptors could be integrated. The SpoVA proteins, involved in the uptake of Ca2+-dipicolinic acid into the forespore during sporulation, are also responsible for its release during germination. Lytic enzymes SleB and CwlJ, found in bacilli and some clostridia, hydrolyze the spore cortex: other clostridia use SleC for this purpose. With genome sequencing has come the appreciation that there is considerable diversity in the setting for the germination machinery between bacilli and clostridia.
Collapse
|
37
|
Stelder SK, Benito de Moya C, Hoefsloot HCJ, de Koning LJ, Brul S, de Koster CG. Stoichiometry, Absolute Abundance, and Localization of Proteins in the Bacillus cereus Spore Coat Insoluble Fraction Determined Using a QconCAT Approach. J Proteome Res 2018; 17:903-917. [PMID: 29260567 PMCID: PMC5799878 DOI: 10.1021/acs.jproteome.7b00732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Spores of Bacillus cereus pose a threat to food
safety due to their high resistance to the heat or acid treatments
commonly used to make food microbiologically safe. Spores may survive
these treatments and later resume growth either on foodstuffs or,
after ingestion, upon entering the gut they are capable of producing
toxins, which cause either vomiting or diarrhea. The outer layers
of the spore, the spore coat and exosporium, consist primarily of
proteins that may serve as potential biomarkers for detection. The
major morphogenetic protein CotE is important for correct assembly
and attachment of the outermost layer, the exosporium, and by extension
retention of many proteins. However, characterization of the proteins
affected by deletion of CotE has been limited to electrophoretic patterns.
Here we report the effect of CotE deletion on the insoluble fraction
of the spore proteome through liquid chromatography–Fourier
transform tandem mass spectrometry (LC–FTMS/MS) analysis. A total of 560 proteins have been identified in both mutant
and wild-type spore coat isolates. A further 163 proteins were identified
exclusively in wild-type spore isolates indicating that they are dependent
on CotE for their association with the spore. Several of these are
newly confirmed as associated with the exosporium, namely BC_2569
(BclF), BC_3345, BC_2427, BC_2878, BC_0666, BC_2984, BC_3481, and
BC_2570. A total of 153 proteins were only identified in ΔCotE
spore isolates. This was observed for proteins that are known or likely
to be interacting with or are encased by CotE. Crucial spore proteins
were quantified using a QconCAT reference standard, the first time
this was used in a biochemically heterogeneous system. This allowed
us to determine the absolute abundance of 21 proteins, which spanned
across three orders of magnitude and together covered 5.66% ±
0.51 of the total spore weight. Applying the QconCAT methodology to
the ΔCotE mutant allowed us to quantify 4.13% ± 0.14 of
the spore total weight and revealed a reduction in abundance for most
known exosporium associated proteins upon CotE deletion. In contrast,
several proteins, either known or likely to be interacting with or
encased by CotE (i.e., GerQ), were more abundant. The results obtained
provide deeper insight into the layered spore structure such as which
proteins are exposed on the outside of the spore. This information
is important for developing detection methods for targeting spores
in a food safety setting. Furthermore, protein stoichiometry and determination
of the abundance of germination mediating enzymes provides useful
information for germination and outgrowth model development.
Collapse
Affiliation(s)
- Sacha K Stelder
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Celia Benito de Moya
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Huub C J Hoefsloot
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Leo J de Koning
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Stanley Brul
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Chris G de Koster
- Molecular Biology & Microbial Food Safety, ‡Mass Spectrometry of Biomacromolecules, and §Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam , Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
38
|
Kohler LJ, Quirk AV, Welkos SL, Cote CK. Incorporating germination-induction into decontamination strategies for bacterial spores. J Appl Microbiol 2017; 124:2-14. [PMID: 28980459 DOI: 10.1111/jam.13600] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 01/05/2023]
Abstract
Bacterial spores resist environmental extremes and protect key spore macromolecules until more supportive conditions arise. Spores germinate upon sensing specific molecules, such as nutrients. Germination is regulated by specialized mechanisms or structural features of the spore that limit contact with germinants and enzymes that regulate germination. Importantly, germination renders spores more susceptible to inactivating processes such as heat, desiccation, and ultraviolet radiation, to which they are normally refractory. Thus, germination can be intentionally induced through a process called germination-induction and subsequent treatment of these germinated spores with common disinfectants or gentle heat will inactivate them. However, while the principle of germination-induction has been shown effective in the laboratory, this strategy has not yet been fully implemented in real-word scenarios. Here, we briefly review the mechanisms of bacterial spore germination and discuss the evolution of germination-induction as a decontamination strategy. Finally, we examine progress towards implementing germination-induction in three contexts: biodefense, hospital settings and food manufacture. SIGNIFICANCE AND IMPACT This article reviews implementation of germination-induction as part of a decontamination strategy for the cleanup of bacterial spores. To our knowledge this is the first time that germination-induction studies have been reviewed in this context. This article will provide a resource which summarizes the mechanisms of germination in Clostridia and Bacillus species, challenges and successes in germination-induction, and potential areas where this strategy may be implemented.
Collapse
Affiliation(s)
- L J Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - A V Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
39
|
Nerandzic MM, Donskey CJ. Sensitizing Clostridium difficile Spores with Germinants on Skin and Environmental Surfaces Represents a New Strategy for Reducing Spores via Ambient Mechanisms. Pathog Immun 2017; 2:404-421. [PMID: 29167835 PMCID: PMC5695872 DOI: 10.20411/pai.v2i3.221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Clostridium difficile is a leading cause of healthcare-associated infections worldwide. Prevention of C. difficile transmission is challenging because spores are not killed by alcohol-based hand sanitizers or many commonly used disinfectants. One strategy to control spores is to induce germination, thereby rendering the spores more susceptible to benign disinfection measures and ambient stressors. Methods/Results C. difficile spores germinated on skin after a single application of cholic acid-class bile salts and co-germinants; for 4 C. difficile strains, recovery of viable spores from skin was reduced by ~0.3 log10CFU to 2 log10CFU after 2 hours and ~1 log10CFU to > 2.5 log10CFU after 24 hours. The addition of taurocholic acid to 70% and 30% ethanol significantly enhanced reduction of viable spores on skin and on surfaces. Desiccation, and to a lesser extent the presence of oxygen, were identified as the stressors responsible for reductions of germinated spores on skin and surfaces. Additionally, germinated spores became susceptible to killing by pH 1.5 hydrochloric acid, suggesting that germinated spores that remain viable on skin and surfaces might be killed by gastric acid after ingestion. Antibiotic-treated mice did not become colonized after exposure to germinated spores, whereas 100% of mice became colonized after exposure to the same quantity of dormant spores. Conclusions Germination could provide a new approach to reduce C. difficile spores on skin and in the environment and to render surviving spores less capable of causing infection. Our findings suggest that it may be feasible to develop alcohol-based hand sanitizers containing germinants that reduce spores on hands.
Collapse
Affiliation(s)
| | - Curtis J Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio.,Geriatric Research, Education and Clinical Center, Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
40
|
Abstract
To survive adverse conditions, some bacterial species are capable of developing into a cell type, the "spore," which exhibits minimal metabolic activity and remains viable in the presence of multiple environmental challenges. For some pathogenic bacteria, this developmental state serves as a means of survival during transmission from one host to another. Spores are the highly infectious form of these bacteria. Upon entrance into a host, specific signals facilitate germination into metabolically active replicating organisms, resulting in disease pathogenesis. In this article, we will review spore structure and function in well-studied pathogens of two genera, Bacillus and Clostridium, focusing on Bacillus anthracis and Clostridium difficile, and explore current data regarding the lifestyles of these bacteria outside the host and transmission from one host to another.
Collapse
|
41
|
Kakagianni M, Aguirre JS, Lianou A, Koutsoumanis KP. Effect of storage temperature on the lag time of Geobacillus stearothermophilus individual spores. Food Microbiol 2017. [PMID: 28648296 DOI: 10.1016/j.fm.2017.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The lag times (λ) of Geobacillus stearothermophilus single spores were studied at different storage temperatures ranging from 45 to 59 °C using the Bioscreen C method. A significant variability of λ was observed among individual spores at all temperatures tested. The storage temperature affected both the position and the spread of the λ distributions. The minimum mean value of λ (i.e. 10.87 h) was observed at 55 °C, while moving away from this temperature resulted in an increase for both the mean and standard deviation of λ. A Cardinal Model with Inflection (CMI) was fitted to the reverse mean λ, and the estimated values for the cardinal parameters Tmin, Tmax, Topt and the optimum mean λ of G. stearothermophilus were found to be 38.1, 64.2, 53.6 °C and 10.3 h, respectively. To interpret the observations, a probabilistic growth model for G. stearothermophilus individual spores, taking into account λ variability, was developed. The model describes the growth of a population, initially consisting of N0 spores, over time as the sum of cells in each of the N0 imminent subpopulations originating from a single spore. Growth simulations for different initial contamination levels showed that for low N0 the number of cells in the population at any time is highly variable. An increase in N0 to levels exceeding 100 spores results in a significant decrease of the above variability and a shorter λ of the population. Considering that the number of G. stearothermophilus surviving spores in the final product is usually very low, the data provided in this work can be used to evaluate the probability distribution of the time-to-spoilage and enable decision-making based on the "acceptable level of risk".
Collapse
Affiliation(s)
- Myrsini Kakagianni
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Juan S Aguirre
- Laboratorio de Microbiología y Probioticos, INTA, Universidad de Chile, Avenida El Líbano 5524, Macul, Santiago, Chile
| | - Alexandra Lianou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food, Biotechnology and Development, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Konstantinos P Koutsoumanis
- Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, School of Agriculture, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
42
|
Survival of Clostridium difficile spores at low water activity. Food Microbiol 2017; 65:274-278. [PMID: 28400013 DOI: 10.1016/j.fm.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/15/2017] [Indexed: 02/03/2023]
Abstract
Clostridium difficile is frequently found in meat and meat products. Germination efficiency, defined as colony formation, was previously investigated at temperatures found in meat handling and processing for spores of strain M120 (animal isolate), R20291 (human isolate), and DK1 (beef isolate). In this study, germination efficiency of these spore strains was assessed in phosphate buffered saline (PBS, aw ∼1.00), commercial beef jerky (aw ∼0.82/0.72), and aw-adjusted PBS (aw ∼0.82/0.72). Surface hydrophobicity was followed for spores stored in PBS. After three months and for all PBS aw levels tested, M120 and DK1 spores showed a ∼1 decimal reduction in colony formation but this was not the case when kept in beef jerky suggesting a protective food matrix effect. During storage, and with no significant aw effect, an increase in colony formation was observed for R20291 spores kept in PBS (∼2 decimal log increase) and beef jerky (∼1 decimal log increase) suggesting a loss of spore superdormancy. For all strains, no significant changes in spore surface hydrophobicity were observed after storage. Collectively, these results indicate that depending on the germination properties of C. difficile spores and the media properties, their germination efficiency may increase or decrease during long term food storage.
Collapse
|
43
|
Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep 2017; 7:44452. [PMID: 28294162 PMCID: PMC5353641 DOI: 10.1038/srep44452] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Spore-forming bacteria are a class of microorganisms that possess the ability to survive in extreme environmental conditions. Morphological features of spores assure their resistance to stress factors such as high temperature, radiation, disinfectants, and drying. Consequently, spore elimination in industrial and medical environments is very challenging. Ceragenins are a new class of cationic lipids characterized by a broad spectrum of bactericidal activity resulting from amphipathic nature and membrane-permeabilizing properties. To assess the impact of ceragenin CSA-13 on spores formed by Bacillus subtilis (ATCC 6051), we performed the series of experiments confirming that amphipathic and membrane-permeabilizing properties of CSA-13 are sufficient to disrupt the structure of B. subtilis spores resulting in decreased viability. Raman spectroscopy analysis provided evidence that upon CSA-13 treatment the number of CaDPA-positive spores was clearly diminished. As a consequence, a loss of impermeability of the inner membranes of spores, accompanied by a decrease in spore resistance and killing take place. In addition to their broad antimicrobial spectrum, ceragenins possess great potential for development as new sporicidal agents.
Collapse
|
44
|
Optimization of a Binary Concrete Crack Self-Healing System Containing Bacteria and Oxygen. MATERIALS 2017; 10:ma10020116. [PMID: 28772474 PMCID: PMC5459201 DOI: 10.3390/ma10020116] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/22/2017] [Indexed: 11/17/2022]
Abstract
An optimized strategy for the enhancement of microbially induced calcium precipitation including spore viability ensurance, nutrient selection and O2 supply was developed. Firstly, an optimal yeast extract concentration of 5 g/L in sporulation medium was determined based on viable spore yield and spore viability. Furthermore, the effects of certain influential factors on microbial calcium precipitation process of H4 in the presence of oxygen releasing tablet (ORT) were evaluated. The results showed that CaO2 is preferable to other peroxides in improving the calcium precipitation by H4. H4 strain is able to precipitate a highly insoluble calcium at the CaO2 dosage range of 7.5–12.5 g/L, and the most suitable spore concentration is 6 × 108 spores/ml when the spore viability (viable spore ratio) is approximately 50%. Lactate is the best carbon source and nitrate is the best nitrogen source for aerobic incubation. This work has laid a foundation of ternary self-healing system containing bacteria, ORT, and nutrients, which will be promising for the self-healing of cracks deep inside the concrete structure.
Collapse
|
45
|
Doona CJ, Feeherry FE, Kustin K, Chen H, Huang R, Philip Ye X, Setlow P. A Quasi-chemical Model for Bacterial Spore Germination Kinetics by High Pressure. FOOD ENGINEERING REVIEWS 2017. [DOI: 10.1007/s12393-016-9155-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Jamroskovic J, Chromikova Z, List C, Bartova B, Barak I, Bernier-Latmani R. Variability in DPA and Calcium Content in the Spores of Clostridium Species. Front Microbiol 2016; 7:1791. [PMID: 27891119 PMCID: PMC5104732 DOI: 10.3389/fmicb.2016.01791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/25/2016] [Indexed: 01/31/2023] Open
Abstract
Spores of a number of clostridial species, and their resistance to thermal treatment is a major concern for the food industry. Spore resistance to wet heat is related to the level of spore hydration, which is inversely correlated with the content of calcium and dipicolinic acid (DPA) in the spore core. It is widely believed that the accumulation of DPA and calcium in the spore core is a fundamental component of the sporulation process for all endospore forming species. We have noticed heterogeneity in the heat resistance capacity and overall DPA/calcium content among the spores of several species belonging to Clostridium sensu stricto group: two C. acetobutylicum strains (DSM 792 and 1731), two C. beijerinckii strains (DSM 791 and NCIMB 8052), and a C. collagenovorans strain (DSM 3089). A C. beijerinckii strain (DSM 791) and a C. acetobutylicum strain (DSM 792) display low Ca and DPA levels. In addition, these two species, with the lowest average Ca/DPA content amongst the strains considered, also exhibit minimal heat resistance. There appears to be no correlation between the Ca/DPA content and the phylogenetic distribution of the C. acetobutylicum and C. beijerinckii species based either on the 16S rRNA or the spoVA gene. This finding suggests that a subset of Clostridium sensu stricto species produce spores with low resistance to wet heat. Additionally, analysis of individual spores using STEM-EDS and STXM revealed that DPA and calcium levels can also vary amongst individual spores in a single spore population.
Collapse
Affiliation(s)
- Jan Jamroskovic
- Swiss Federal Institute of Technology in Lausanne (EPFL)Lausanne, Switzerland; Institute of Molecular Biology, Slovak Academy of SciencesBratislava, Slovakia
| | - Zuzana Chromikova
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | - Cornelia List
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Barbora Bartova
- Swiss Federal Institute of Technology in Lausanne (EPFL) Lausanne, Switzerland
| | - Imrich Barak
- Institute of Molecular Biology, Slovak Academy of Sciences Bratislava, Slovakia
| | | |
Collapse
|
47
|
|
48
|
Nerandzic MM, Donskey CJ. A Quaternary Ammonium Disinfectant Containing Germinants Reduces Clostridium difficile Spores on Surfaces by Inducing Susceptibility to Environmental Stressors. Open Forum Infect Dis 2016; 3:ofw196. [PMID: 28066792 PMCID: PMC5198585 DOI: 10.1093/ofid/ofw196] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 01/05/2023] Open
Abstract
Exposing Clostridium difficile spores to germinants in a quaternary ammonium matrix was an effective method to reduce environmental contamination by sensitizing the spores, leaving them susceptible to ambient conditions and enhancing killing by acid, high-intensity visible light, and radiation.
Collapse
Affiliation(s)
| | - Curtis J Donskey
- Case Western Reserve University School of Medicine, Cleveland, Ohio;; Geriatric Research, Education and Clinical Center, Cleveland Veterans Affairs Medical Center, Ohio
| |
Collapse
|
49
|
Govers SK, Gayan E, Aertsen A. Intracellular movement of protein aggregates reveals heterogeneous inactivation and resuscitation dynamics in stressed populations ofEscherichia coli. Environ Microbiol 2016; 19:511-523. [DOI: 10.1111/1462-2920.13460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Sander K. Govers
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Elisa Gayan
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems (M S), Faculty of Bioscience Engineering; KU Leuven; Leuven Belgium
| |
Collapse
|
50
|
Chemical Kinetics for the Microbial Safety of Foods Treated with High Pressure Processing or Hurdles. FOOD ENGINEERING REVIEWS 2016. [DOI: 10.1007/s12393-015-9138-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|