1
|
Clabaut M, Boukerb AM, Mlouka AB, Suet A, Tahrioui A, Verdon J, Barreau M, Maillot O, Le Tirant A, Karsybayeva M, Kremser C, Redziniak G, Duclairoir-Poc C, Pichon C, Hardouin J, Cosette P, Chevalier S, Feuilloley MGJ. Variability of the response of human vaginal Lactobacillus crispatus to 17β-estradiol. Sci Rep 2021; 11:11533. [PMID: 34075148 PMCID: PMC8169910 DOI: 10.1038/s41598-021-91017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed that the physiological concentration of 17β-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17β-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17β-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17β-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17β-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.
Collapse
Affiliation(s)
- Maximilien Clabaut
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Amine Ben Mlouka
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Amandine Suet
- Centre de Biophysique Moléculaire, UPR4301 French National Centre for Scientific Research, Orléans, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Julien Verdon
- Laboratoire EBI, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | | | | | | | | | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 French National Centre for Scientific Research, Orléans, France
| | - Julie Hardouin
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Pascal Cosette
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
2
|
Klotz C, Barrangou R. Engineering Components of the Lactobacillus S-Layer for Biotherapeutic Applications. Front Microbiol 2018; 9:2264. [PMID: 30333802 PMCID: PMC6176008 DOI: 10.3389/fmicb.2018.02264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Lactic acid bacteria (LAB) are frequently harnessed for the delivery of biomolecules to mucosal tissues. Several species of Lactobacillus are commonly employed for this task, of which a subset are known to possess surface-layers (S-layers). S-layers are two-dimensional crystalline arrays of repeating proteinaceous subunits that form the outermost coating of many prokaryotic cell envelopes. Their periodicity and abundance have made them a target for numerous biotechnological applications. In the following review, we examine the multi-faceted S-layer protein (Slp), and its use in both heterologous protein expression systems and mucosal vaccine delivery frameworks, through its diverse genetic components: the strong native promoter, capable of synthesizing as many as 500 Slp subunits per second; the signal peptide that stimulates robust secretion of recombinant proteins; and the structural domains, which can be harnessed for both cell surface display of foreign peptides or adhesion enhancement of a host bacterium. Although numerous studies have established vaccine platforms based on one or more components of the Lactobacillus S-layer, this area of research still remains largely in its infancy, thus this review is meant to not only highlight past works, but also advocate for the future usage of Slps in biotherapeutic research.
Collapse
Affiliation(s)
- Courtney Klotz
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Lactobacillus slpA promotes ESC growth through the ERK1/2 pathway. Cytotechnology 2017; 69:117-122. [PMID: 28074388 DOI: 10.1007/s10616-016-0043-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022] Open
Abstract
Bacterial surface layers (S-layers) are cell envelope structures ubiquitously found in gram-negative and gram-positive bacteria, including Lactobacillus. S-layers play a role in the determination and maintenance of cell shape as virulence factors, mediate cell adhesion, and regulate immature dendritic and T cells. In this study, we sought to understand the involvement of MAPK serine/threonine kinases in alterations in Endometrial epithelial cells (ESC) growth induced by Lactobacillus crispatus (L. crispatus) slpA, an S-layer protein. We applied various concentrations of L. crispatus to cultured ESCs and observed growth and changes in the phosphorylation status of ERK1/2, JNK, and p38. Similar experiments were conducted using L. crispatus lacking and overexpressing slpA. We found that ESC growth was altered by slpA primarily via ERK1/2. Our findings suggest that L. crispatus slpA promotes ESC growth mainly through an ERK1/2-dependent pathway.
Collapse
|
4
|
Górska S, Buda B, Brzozowska E, Schwarzer M, Srutkova D, Kozakova H, Gamian A. Identification of Lactobacillus proteins with different recognition patterns between immune rabbit sera and nonimmune mice or human sera. BMC Microbiol 2016; 16:17. [PMID: 26861940 PMCID: PMC4748627 DOI: 10.1186/s12866-016-0631-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 01/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background The genus Lactobacillus belongs to a large heterogeneous group of low G + C Gram-positive anaerobic bacteria, which are frequently used as probiotics. The health-beneficial effects, in particular the immunomodulation effect, of probiotics depend on the strain and dose used. Strain variations may be related to diversity of the cell surface architecture of bacteria and the ability to express specific antigens or secrete compounds. The use of Lactobacillus as probiotic requires a comprehensive understanding of its effect on host immune system. To evaluate the potential immunoreactive properties of proteins isolated from four Lactobacillus strains: L. johnsonii 142 and L. johnsonii 151, L. rhamnosus LOCK 0900 and L. casei LOCK 0919, the polyclonal sera obtained from mouse and human have been tested as well as with sera from rabbits immunized with whole lactobacilli cells. Results The reactivity of isolated proteins detected by SDS-PAGE and Western blotting was heterogeneous and varied between different serum samples. The proteins with the highest immunoreactivity were isolated, purified and sequenced, in particular the fractions were identified as phosphoglycerate kinase (L. johnsonii 142), glyceraldehyde 3-phosphate dehydrogenase (L. johnosnii 142, L. rhamnosus LOCK 0900), hypothetic protein JDM1_1307 (L. johnsonii 151) and fructose/tagatose-bisphosphate-aldolase (L. casei LOCK 0919). Conclusion The different prevalence of reactions against tested antigens in rabbit, mouse and human sera may indicate significant differences in immune system and commensal cross-talk in these groups. The identification of immunoreactive lactobacilli proteins opens the possibility to use them as an antigens for development of vaccines.
Collapse
Affiliation(s)
- Sabina Górska
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wroclaw, Poland.
| | - Barbara Buda
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Faculty of Food Science, Wroclaw, Poland
| | - Ewa Brzozowska
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wroclaw, Poland
| | - Martin Schwarzer
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Dagmar Srutkova
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Hana Kozakova
- Institute of Microbiology, Laboratory of Gnotobiology, Academy of Sciences of the Czech Republic v. v. i., 549 22, Novy Hradek, Czech Republic
| | - Andrzej Gamian
- Department of Medical Microbiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy of the Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Abstract
UNLABELLED Type IV pili (T4Ps) are surface appendages used by Gram-negative and Gram-positive pathogens for motility and attachment to epithelial surfaces. In Gram-negative bacteria, such as the important pediatric pathogen enteropathogenic Escherichia coli (EPEC), during extension and retraction, the pilus passes through an outer membrane (OM) pore formed by the multimeric secretin complex. The secretin is common to Gram-negative assemblies, including the related type 2 secretion (T2S) system and the type 3 secretion (T3S) system. The N termini of the secretin monomers are periplasmic and in some systems have been shown to mediate substrate specificity. In this study, we mapped the topology of BfpB, the T4P secretin from EPEC, using a combination of biochemical and biophysical techniques that allowed selective identification of periplasmic and extracellular residues. We applied rules based on solved atomic structures of outer membrane proteins (OMPs) to generate our topology model, combining the experimental results with secondary structure prediction algorithms and direct inspection of the primary sequence. Surprisingly, the C terminus of BfpB is extracellular, a result confirmed by flow cytometry for BfpB and a distantly related T4P secretin, PilQ, from Pseudomonas aeruginosa. Keeping with prior evidence, the C termini of two T2S secretins and one T3S secretin were not detected on the extracellular surface. On the basis of our data and structural constraints, we propose that BfpB forms a beta barrel with 16 transmembrane beta strands. We propose that the T4P secretins have a C-terminal segment that passes through the center of each monomer. IMPORTANCE Secretins are multimeric proteins that allow the passage of secreted toxins and surface structures through the outer membranes (OMs) of Gram-negative bacteria. To date, there have been no atomic structures of the C-terminal region of a secretin, although electron microscopy (EM) structures of the complex are available. This work provides a detailed topology prediction of the membrane-spanning domain of a type IV pilus (T4P) secretin. Our study used innovative techniques to provide new and comprehensive information on secretin topology, highlighting similarities and differences among secretin subfamilies. Additionally, the techniques used in this study may prove useful for the study of other OM proteins.
Collapse
|
6
|
Kontro I, Wiedmer SK, Hynönen U, Penttilä PA, Palva A, Serimaa R. The structure of Lactobacillus brevis surface layer reassembled on liposomes differs from native structure as revealed by SAXS. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2099-104. [DOI: 10.1016/j.bbamem.2014.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/03/2014] [Accepted: 04/23/2014] [Indexed: 11/29/2022]
|
7
|
Hynönen U, Kant R, Lähteinen T, Pietilä TE, Beganović J, Smidt H, Uroić K, Avall-Jääskeläinen S, Palva A. Functional characterization of probiotic surface layer protein-carrying Lactobacillus amylovorus strains. BMC Microbiol 2014; 14:199. [PMID: 25070625 PMCID: PMC4236617 DOI: 10.1186/1471-2180-14-199] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/12/2014] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Adhesiveness to intestinal epithelium, beneficial immunomodulating effects and the production of pathogen-inhibitory compounds are generally considered as beneficial characteristics of probiotic organisms. We showed the potential health-promoting properties and the mechanisms of probiotic action of seven swine intestinal Lactobacillus amylovorus isolates plus the type strain (DSM 20531T) by investigating their adherence to porcine intestinal epithelial cells (IPEC-1) and mucus as well as the capacities of the strains to i) inhibit the adherence of Escherichia coli to IPEC-1 cells, ii) to produce soluble inhibitors against intestinal pathogens and iii) to induce immune signaling in dendritic cells (DCs). Moreover, the role of the L. amylovorus surface (S) -layers - symmetric, porous arrays of identical protein subunits present as the outermost layer of the cell envelope - in adherence to IPEC-1 cells was assessed using a novel approach which utilized purified cell wall fragments of the strains as carriers for the recombinantly produced S-layer proteins. RESULTS Three of the L. amylovorus strains studied adhered to IPEC-1 cells, while four strains inhibited the adherence of E. coli, indicating additional mechanisms other than competition for binding sites being involved in the inhibition. None of the strains bound to porcine mucus. The culture supernatants of all of the strains exerted inhibitory effects on the growth of E. coli, Salmonella, Listeria and Yersinia, and a variable, strain-dependent induction was observed of both pro- and anti-inflammatory cytokines in human DCs. L. amylovorus DSM 16698 was shown to carry two S-layer-like proteins on its surface in addition to the major S-layer protein SlpA. In contrast to expectations, none of the major S-layer proteins of the IPEC-1 -adhering strains mediated bacterial adherence. CONCLUSIONS We demonstrated adhesive and significant pathogen inhibitory efficacies among the swine intestinal L. amylovorus strains studied, pointing to their potential use as probiotic feed supplements, but no independent role could be demonstrated for the major S-layer proteins in adherence to epithelial cells. The results indicate that many intestinal bacteria may coexist with and confer benefits to the host by mechanisms not attributable to adhesion to epithelial cells or mucus.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P,O, Box 66, Helsinki 00014, Finland.
| |
Collapse
|
8
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
9
|
Lähteinen T, Lindholm A, Rinttilä T, Junnikkala S, Kant R, Pietilä TE, Levonen K, von Ossowski I, Solano-Aguilar G, Jakava-Viljanen M, Palva A. Effect of Lactobacillus brevis ATCC 8287 as a feeding supplement on the performance and immune function of piglets. Vet Immunol Immunopathol 2014; 158:14-25. [DOI: 10.1016/j.vetimm.2013.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 06/11/2013] [Accepted: 09/02/2013] [Indexed: 01/13/2023]
|
10
|
Hynönen U, Palva A. Lactobacillus surface layer proteins: structure, function and applications. Appl Microbiol Biotechnol 2013; 97:5225-43. [PMID: 23677442 PMCID: PMC3666127 DOI: 10.1007/s00253-013-4962-2] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/26/2013] [Accepted: 04/27/2013] [Indexed: 12/26/2022]
Abstract
Bacterial surface (S) layers are the outermost proteinaceous cell envelope structures found on members of nearly all taxonomic groups of bacteria and Archaea. They are composed of numerous identical subunits forming a symmetric, porous, lattice-like layer that completely covers the cell surface. The subunits are held together and attached to cell wall carbohydrates by non-covalent interactions, and they spontaneously reassemble in vitro by an entropy-driven process. Due to the low amino acid sequence similarity among S-layer proteins in general, verification of the presence of an S-layer on the bacterial cell surface usually requires electron microscopy. In lactobacilli, S-layer proteins have been detected on many but not all species. Lactobacillus S-layer proteins differ from those of other bacteria in their smaller size and high predicted pI. The positive charge in Lactobacillus S-layer proteins is concentrated in the more conserved cell wall binding domain, which can be either N- or C-terminal depending on the species. The more variable domain is responsible for the self-assembly of the monomers to a periodic structure. The biological functions of Lactobacillus S-layer proteins are poorly understood, but in some species S-layer proteins mediate bacterial adherence to host cells or extracellular matrix proteins or have protective or enzymatic functions. Lactobacillus S-layer proteins show potential for use as antigen carriers in live oral vaccine design because of their adhesive and immunomodulatory properties and the general non-pathogenicity of the species.
Collapse
Affiliation(s)
- Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, P.O. Box 66, 00014 Helsinki, Finland
| |
Collapse
|
11
|
The quest for probiotic effector molecules—Unraveling strain specificity at the molecular level. Pharmacol Res 2013; 69:61-74. [DOI: 10.1016/j.phrs.2012.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/25/2022]
|
12
|
Aldridge C, Storm A, Cline K, Dabney-Smith C. The chloroplast twin arginine transport (Tat) component, Tha4, undergoes conformational changes leading to Tat protein transport. J Biol Chem 2012; 287:34752-63. [PMID: 22896708 PMCID: PMC3464578 DOI: 10.1074/jbc.m112.385666] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/14/2012] [Indexed: 11/06/2022] Open
Abstract
Twin arginine transport (Tat) systems transport folded proteins using proton-motive force as sole energy source. The thylakoid Tat system comprises three membrane components. A complex composed of cpTatC and Hcf106 is the twin arginine signal peptide receptor. Signal peptide binding triggers assembly of Tha4 for the translocation step. Tha4 is thought to serve as the protein-conducting element, and the topology it adopts during transport produces the transmembrane passageway. We analyzed Tha4 topology and conformation in actively transporting translocases and compared that with Tha4 in nontransporting membranes. Using cysteine accessibility labeling techniques and diagnostic protease protection assays, we confirm an overall N(OUT)-C(IN) topology for Tha4 that is maintained under transport conditions. Significantly, the amphipathic helix (APH) and C-tail exhibited substantial changes in accessibility when actively engaged in protein transport. Compared with resting state, cysteines within the APH became less accessible to stromally applied modifying reagent. The APH proximal C-tail, although still accessible to Cys-directed reagents, was much less accessible to protease. We attribute these changes in accessibility to indicate the Tha4 conformation that is adopted in the translocase primed for translocation. We propose that in the primed translocase, the APH partitions more extensively and uniformly into the membrane interface and the C-tails pack closer together in a mesh-like network. Implications for the mode by which the substrate protein crosses the bilayer are discussed.
Collapse
Affiliation(s)
- Cassie Aldridge
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Amanda Storm
- the Department of Chemistry and Biochemistry and
| | - Kenneth Cline
- From the Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611 and
| | - Carole Dabney-Smith
- the Department of Chemistry and Biochemistry and
- Cell, Molecular, and Structural Biology, Miami University, Oxford, Ohio 45056
| |
Collapse
|
13
|
Sleytr UB, Schuster B, Egelseer EM, Pum D, Horejs CM, Tscheliessnig R, Ilk N. Nanobiotechnology with S-layer proteins as building blocks. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:277-352. [PMID: 21999999 DOI: 10.1016/b978-0-12-415906-8.00003-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
The Structure of Bacterial S-Layer Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 103:73-130. [DOI: 10.1016/b978-0-12-415906-8.00004-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Characterization and separate activities of the two promoters of the Lactobacillus brevis S-layer protein gene. Appl Microbiol Biotechnol 2010; 87:657-68. [PMID: 20229202 DOI: 10.1007/s00253-010-2500-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 02/03/2023]
Abstract
Lactobacillus brevis ATCC 8287 possesses a surface (S)-layer protein SlpA, the gene of which is very efficiently expressed. To study the expression signals of the slpA gene, several different reporter plasmids, based on the low-copy-number vector pKTH2121 derived from pGK12, were constructed. In the reporter plasmids, only one of the two consecutive slpA promoters (P1, P2) was placed upstream of the Lactobacillus helveticus proline iminopeptidase (pepI) gene, and defined parts of the sequences upstream of the promoter were deleted. As indicated by reporter enzyme activities, both promoters were efficiently recognized at different growth stages in L. brevis. An upstream region important for the full activity of P1 was identified. The quantification of pepI-specific mRNA in L. brevis and SDS-PAGE indicated that slpA expression is not regulated at the post-transcriptional level and revealed no regulation of slpA promoters under the conditions tested. The high expression levels of both slpA and the reporter gene in L. brevis were found to remain at a high level after the addition of bile or pancreatin in the growth medium or after a change of the carbon source, which is advantageous for the potential use of SlpA as a carrier in live oral vaccines.
Collapse
|
16
|
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA. The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010. [PMID: 20088967 DOI: 10.1111/j.1574-6976.2009.00208.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli belong to the lactic acid bacteria, which play a key role in industrial and artisan food raw-material fermentation, including a large variety of fermented dairy products. Next to their role in fermentation processes, specific strains of Lactobacillus are currently marketed as health-promoting cultures or probiotics. The last decade has witnessed the completion of a large number of Lactobacillus genome sequences, including the genome sequences of some of the probiotic species and strains. This development opens avenues to unravel the Lactobacillus-associated health-promoting activity at the molecular level. It is generally considered likely that an important part of the Lactobacillus effector molecules that participate in the proposed health-promoting interactions with the host (intestinal) system resides in the bacterial cell envelope. For this reason, it is important to accurately predict the Lactobacillus exoproteomes. Extensive annotation of these exoproteomes, combined with comparative analysis of species- or strain-specific exoproteomes, may identify candidate effector molecules, which may support specific effects on host physiology associated with particular Lactobacillus strains. Candidate health-promoting effector molecules of lactobacilli can then be validated via mutant approaches, which will allow for improved strain selection procedures, improved product quality control criteria and molecular science-based health claims.
Collapse
|
17
|
Structural characterization of teichoic acids from Lactobacillus brevis. Carbohydr Res 2009; 345:538-42. [PMID: 20034620 DOI: 10.1016/j.carres.2009.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/22/2022]
Abstract
Teichoic acids are a major constituent of the cell wall of Gram-positive bacteria. Structural characterization of lipoteichoic and teichoic acids isolated from Lactobacillus brevis was undertaken using 1D and 2D NMR experiments as well as chemical methodology. Compositional analysis indicated the presence of high amounts of glycerol, glucose, and alanine. In the case of LTA octadecenoic acid was also detected. The basic LTA/WTA structure was identified as 1,3-poly(glycerol phosphate) nonstoichiometrically substituted at C-2 of the glycerol residues with D-Ala or alpha-D-Glc. In the case of LTA a higher amount of Ala could be detected and partial alanylation at position C-6 of the Glc could also be observed.
Collapse
|